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Figure 1.1 The 3-D representation of a vector, A.The components of A are shown along the coordinate
axes

1.2.1 Elements of vector calculus

Many physical quantities with which we are concerned in our experience of the
universe are described entirely in terms of magnitude. Examples of these types of
quantities, known as scalars, are area, volume, money, and snowfall total. There are
other physical quantities such as velocity, the force of gravity, and slopes to topography
which are characterized by both magnitude and direction. Such quantities are known
asvectors and, as you might guess, any description of the fluid atmosphere necessarily
contains reference to both scalars and vectors. Thus, it isimportant that we familiarize
ourselves with the mathematical descriptions of these quantities, a formalism known
as vector analysis.?

Employing a Cartesian coordinate system in which the three directions (x, y, and
z) are mutually orthogonal (i.e. perpendicular to one another), an arbitrary vector,
A, has components in the x, y, and z directions labeled A,, A,, and A_, respectively.
These components themselves are scalars since they describe the magnitude of vectors
whose directions are given by the coordinate axes (as shown in Flgure 1.1). If we
denote the direction vectors in the x, y, and z directions as 1, j, and k, respectively
(where the " symbol indicates the fact that they are vectors with magnitude 1 in the
respective directions — so-called unit vectors), then

A= Ad+ A+ Ak (1.1a)

is the component form of the vector, A. In a similar manner, the component form
of an arbitrary vector B is given by

B = B,i+ B,j + B.k. (1.1b)

2 Vector analysis is generally considered to have been invented by the Irish mathematician Sir William
Rowan Hamilton in 1843. Despite its enormous value in the physical sciences, vector analysis was met with
skepticism in the nineteenth century. In fact, Lord Kelvin wrote, in the 1890s, that vectors were ‘an unmixed
evil to those who have touched them in any way . . vectors . . have never been of the slightest use to any creature’.
Remember, no matter how great a thinker one may be, one cannot always be right!
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Figure 1.2 (a) Vectors Aand B acting upon a point 0. (b) lllustration of the tail-to-head method for
adding vectors A and B. (c) lllustration of the parallelogram method for adding vectors A and B

The vectors A and B are equal if A, = By, A, = By, and A, = B,. Furthermore,
the magnitude of a vector Ais given by

- 1
}A‘ = (A2+ A2+ AY)" (1.2)

which is simply the 3-D Pythagorean theorem and can be visually verified with the
aid of Figure 1.1.

Vectors can be added to and subtracted from one another both by graphical
methods as well as by components. Graphical addition is illustrated with the aid of
Figure 1.2. Imagine that the force vectors A and B are acting at point O as shown
in Figure 1.2(a). The total force acting at O is equal to the sum of Aand B. Graph-
ical construction of the vector sum A 4+ B can be accomplished either by using the
tail-to-head method or the parallelogram method. The tail-to-head method involves
drawing B at the head of A and then connecting the tail of A to the head of the re-
drawn B (Figure 1.2b). Alternatively, upon constructing a parallelogram with sides
Aand B the diagonal of the parallelogram between Aand B represents the vector
sum, A+ B (Figure 1.2¢).

If we know the component forms of both Aand B, then their sum is given by

A+ B=(Ac+ B)i+ (A, + B))j + (A + Bk, (1.3a)

Thus, the sum of A and B is found by simply adding like components together. It is
clear from considering the componentform of vector addition that addition of vectors
is commutative (A+ B=B+ A) andassoc1at1ve((A+ B) +C=A+ (B + C))
Subtraction is simply the opposite of addition so B can be subtracted from A by
simply adding — B to A. . Graphical subtraction of B from Aisillustrated in Figure 1.3.
Notice that A—B=A+ (— B) results in a vector directed from the head of B to the
head of A (the lighter dashed arrow in Figure 1.3). Component subtraction involves

i
g T

Figure 1.3 Graphical subtraction of vector B from vector A
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Figure 1.4 (a) Yectorg A and B with an angle o between therp. (b) lllustration of the relatiqnshig
between vectors A and Bﬁ(gray grrows) and their cross-product, A x B (bold arrow). Note that A x B
is perpendicular to both A and B

subtracting like components and is given by
A—B=(A.—B)i+ (A, - B)j+ (A — Bk (1.3b)

Vector quantities may also be multiplied in a variety of ways. The simplest vector
multiplication involves the product of a vector, A, and a scalar, F. The resulting
expression for F A is given by

FA=FAd+ FA,j+ FAk, (1.4)

a vector with direction identical to the original vector, A, but with a magnitude F
times larger than the original magnitude.

It is also possible to multiply two vectors together. In fact, there are two different
vector multiplication operations. One such method renders a scalar as the product
of the vector multiplication and is thus known as the scalar (or dot) product. The
dot product of the vectors A and B shown in Figure 1.4(a) is given by

A-B=|A||B|cosa (1.5)

where « is the angle between A and B. Clearly this product is a scalar. Using this
formula, we can determlne aless mystlcal form of the dot product of Aand B. Given
that A= A,i + A ] + A,kand B = B,i + B ] + Bk, the dot product is given by

A-B=(Axi+ij+Azk)-(Bxi+Byj-i-sz) (1.6)
which expands to the following nine terms:
A-B=AB.(i 1)+ AB,(i-})+ AB.(i - k)
+AyBe(j 1)+ AyB,(j- j)+ AyB.(j - k)
+Asz(f< 1)+ A By (k- 1)+ A.B.(k - k).

Now, according to (1.5), 71 = j - ] = k- k =1 since the angle between like unit
vectors is 0°. However, the dot products of all other combinations of the unit vectors
are zero since the unit vectors are mutually orthogonal. Thus, only three terms survive
out of the nine-term expansion of A-Bto yield

A-B=AB,+ AB, + A,B,. (1.7)
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Given this result, it is easy to show that the dot product is commutative (A-B=
B- A) and distributive (A (B—I—C) A-B+A- C)

Two vectors can also be multiplied together to produce another vector. This vector
multiplication operation is known as the vector (or cross-)product and is signified

Ax B,
The magnitude of the resultant vector is given by
| Al | B] sin & (1.8)

where « is the angle between the vectors. Note that since the resultant of the cross-
product is a vector, there is also a direction to be discerned. The resultant vector is in
a plane that is perpendicular to the plane that contains Aand B (Figure 1.4b). The
direction in that plane can be determined by using the right hand rule. Upon curling
the fingers of one’s right hand in the direction from A to B, the thumb points in
the direction of the resultant vector, A x é, as shown in Figure 1.4(b). Because the
resultant direction depends upon the order of multiplication, the cross-product has
different properties than the dot product. It is not commutative (A x B #.. B x A
instead A x B = —B x A) andltlsnotassoaatlve(A X (B X C) #+ (A X B) X C)
but it is distributive (A X (B + C) Ax B+ Ax C)

Given the vectors A and B in their component forms, the cross-product can be
calculated by first setting up a 3 x 3 determinant using the unit vectors as the first
row, the components of A as the second row, and the components of B as the third
row:

1]k
AxB=|A A A
B, B, B

X

(1.9a)

N

N

y

Evaluating this determinant involves evaluating three 2x2 determinants, each one
corresponding to a unit vector 1 7, or. k. For the i component of the resultant
vector, only the components of A and B in the j and k columns are considered.
Multiplying the components along the diagonal (upper left to lower right) first, and
then subtracting from that result the product of the terms along the anti-diagonal
(lower left to upper right) yields the 7 component of the vector A x B, which equals
(A,B; — AZBy)I. The same operation done for the k component yields (A, B, —
A, B,)k. For the j component, the first and third columns are used to form the
2 x 2 determinant and since the columns are non-consecutive, the result must
be multiplied by —1 to yield —(A,B, — A,B,)j. Adding these three components
together yields

Ax B=(A,B,— A,B))i + (A,B, — A.B,)j + (AB, — A,B)k.  (1.9b)

Vectors, just like scalar functions, can be differentiated as long as the rules of vector
addition and multiplication are obeyed. One simple example is Newton’s second law
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(which we will see again soon) that states that an object’s momentum will not change
unless a force is applied to the object. In mathematical terms,

I
F = Et(mV) (1.10)

where mis the object’s mass and Visits velocity. Using the chain rule of differentiation
on the right hand side of (1.10) renders
F= dv+\7dm Fomig 7™ (1.11)
m— — or F=m — .
dt dt dt
where Ajis the object’s acceleration. Exploitation of the second term of this expansion
is what made Einstein famous!
Let us con51der a more general example. Consider a velocity vector defined as
V=ui+v 7 + wk. In such a case, the acceleration will be given by
av V d Us d 1 dv s d i odw, dk

The terms involving derivatives of the unit vectors may seem like mathematical
baggage but they will be extremely important in our subsequent studies. Physically,
such terms will be non-zero only when the coordinate axes used to reference motion
are not fixed in space. Our reference frame on a rotating Earth is clearly not fixed and
so we will eventually have to make some accommodation for the acceleration of our
rotating reference frame. Thus, all six terms in the above expansion will be relevant
in our examination of the mid-latitude atmosphere.

The last stop on the review of vector calculus is perhaps the most important one
and will examine a tool that is extremely useful in fluid dynamics. We will often
need to describe both the magnitude and direction of the derivative of a scalar field.
In order to do so we employ a mathematical operator known as the del operator,
defined as

V=—i+—j+—k (1.13)
z

If we apply this partial differential del operator to a scalar function or field, the
result is a vector that is known as the gradient of that scalar. Consider the 2-D
plan view of an isolated hill in an otherwise flat landscape. If the elevation at each
point in the landscape is represented on a 2-D projection, a set of elevation con-
tours results as shown in Figure 1.5. Such contours are lines of equal height above
sea level, Z. Given such information, we can determine the gradient of elevation,
VZ, as
BZ s 8Z s

VZ=— —7J.
8x 8)/

Note that the gradient vector, V Z, points up the hill from low values of elevation
to high values. At the top of the hill, the derivatives of Z in both the x and y
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Figure 1.5 The 2-D plan view of an isolated hill in a flat landscape. Solid lines are contours of elevation
(Z) at 50m intervals. Note that the gradient of Z points from low to high values of the scalar Z

directions are zero so there is no gradient vector there. Thus the gradient, V Z,
not only measures magnitude of the elevation difference but assigns that magnitude
a direction as well. Any scalar quantity, ®, is transformed into a vector quantity, V&,
by the del operator. In subsequent chapters in this book we will concern ourselves
with the gradients of a number of scalar variables, among them temperature and
pressure.

The del operator may also be applied to vector quantities. The dot product of V
with the vector A is written as

V.A a“+af+afc (Agd+ A, ]+ Ak
. =\ o ~ . x! z
ax "oy Tz v]

voi= (2 0 04 (1.14)
O\ ox ay 0z '

which isascalar quantity known as the divergence of A. Positive divergence physically
describes the tendency for a vector field to be directed away from a point whereas
negative divergence (also known as convergence) describes the tendency for a vector
field to be directed toward a point. Regions of convergence and divergence in the
atmospheric fluid are extremely important in determining its behavior.

The cross-product of V with the vector Ais given by

- d, 0, 0., . . .
VxA=|—1+—7+ —k| x(Aad+ A5+ Ak). (1.15a)
ax ay 0z
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The resulting vector can be calculated using the determinant form we have seen
previously,

ik

Vxiz| 22D (1.15b)
dx dy 0z
A A, A,

where the second row of the 3 x 3 determinant is filled by the components of V and
the third row is filled by the components of A. This vector is known as the curl of A.
The curl of the velocity vector, V, will be used to define a quantity called vorticity
which is a measure of the rotation of a fluid.

Quite often in a study of the dynamics of the atmosphere, we will encounter
second-order partial differential equations. Some of these equations will contain
a mathematical operator (which will operate on scalar quantities) known as the
Laplacian operator. The Laplacian is the divergence of the gradient and so takes the
form

9°F 9*F 03°F
) (1.16)

Laplacian=V - (VF)=V*F = — + — + —
4 (VE) ( axr  dy* 03722

It is also possible to combine the vector A with the del operator to form a new
operator that takes the form

iv=alialial

T 0x Ty ‘9z
and is known as the scalar invariant operator. This operator, which can be used with
both vector and scalar quantities, is important because it is used to describe a process

known as advection, a ubiquitous topic in the study of fluids.

1.2.2 The Taylor series expansion

It is sometimes convenient to estimate the value of a continuous function, f(x),
about the point x = 0 with a power series of the form

o0
fx) =Y anx"=ao+ ax+ax’ + -+ ax". (1.17)

n=0
The fact that this can actually be done might appear to be an assumption so we
must identify conditions for which this assumption is true. These conditions are
that (1) the polynomial expression (1.17) passes through the point (0, f(0)) and
(2) its first n derivatives match the first n derivatives of f(x) at x = 0. Implicit in
this second condition is the fact that f(x) is differentiable at x = 0. In order for
these conditions to be met, the coefficients ay, aj,. .., a, must be chosen properly.
Substituting x = 0 into (1.17) we find that f(0) = ao. Taking the first derivative of
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(1.17) with respect to x and substituting x = 0 into the resulting expression we get
1'(0) = a,. Taking the second derivative of (1.17) with respect to x and substituting
x = 0 into the result leaves f”(0) = 2ay, or f”(0)/2 = a,. If we continue to take
higher order derivatives of (1.17) and evaluate each of them at x = 0 we find that, in
order that the n derivatives of (1.17) match the n derivatives of f(x), the coefficients,
a,, of the polynomial expression (1.17) must take the general form

o)

" nl

Thus, the value of the function f(x) at x = 0 can be expressed as

') ,  f"(0) , o) ,
TR LRSSt
Now, if we want to determine the value of f(x) near the point x = x, the above

expression can be generalized into what is known as the Taylor series expansion of
f(x) about x = x, given by

f(x) = f(0)+ f'(0)x+ (1.18)

/" (x0)
2!

n
(%) (x — x0)".

7l

(1.19)

Since the dependent variables that describe the behavior of the atmosphere are all
continuous variables, use of the Taylor series to approximate the values of those
variables will prove to be a nifty little trick that we will exploit in our subsequent
analyses. Most often we consider Taylor series expansions in which the quantity
(x — x0) is very small in order that all terms of order 2 and higher in (1.19), the
so-called higher order terms, can be effectively neglected. In such cases, we will
approximate the given functions as

f(x) = f(x0) + f(x0)(x — Xo).

f(x) = flx0) + f(x0)(x — x0) + (x— %) +---+

1.2.3 Centered difference approximations to derivatives

Though the atmosphere is a continuous fluid and its observed state at any time
could theoretically be represented by a continuous function, the reality is that actual
observations of the atmosphere are only available at discrete points in space and
time. Given that much of the subsequent development in this book will arise from
consideration of the spatial and temporal variation of observable quantities, we must
consider a method of approximating derivative quantities from discrete data. One
such method is known as centered differencing’ and it follows directly from the
prior discussion of the Taylor series expansion.

3 Centered differencing is a subset of a broader category of such approximations known as finite differenc-
ing.
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Figure 1.6 Points x; and x, defined with respect to a central point x,

Consider the two points x; and x; in the near vicinity of a central point, xp, as
illustrated in Figure 1.6. We can apply (1.19) at both points to yield

f"(x0)
2!

(—Ax)" (1.20a)

flx) = flxo— Ax) = f(x0) + f'(x0)(—Ax) + (—Ax)*+ -
f(xo

n!

+

and

1" (x0)
2!

(Ax)". (1.20b)

f(x) = f(xo+ Ax) = f(x0) + f'(x0)(Ax) + (Ax)* + -

f"(x0)
n!
Subtracting (1.20a) from (1.20b) produces

+

(Ax)’
6

flxo+Ax) — flxo — Ax) =2 f'(x0)(Ax) + 2 f" (x0) +o (1.21)

Isolating the expression for f'(x;) on one side then leaves

oo [+ Ax) = flxo—Ax) . (Ax)?
f(x0) = Ay = o)

which, upon neglecting terms of second order and higher in A x, can be approximated
as

flxo+ Ax) — f(x — Ax)
2Ax ’

The foregoing expression represents the centered difference approximation to f'(x)
at xp accurate to second order (i.e. the neglected terms are at least quadratic in Ax).

Adding (1.20a) to (1.20b) gives a similarly approximated expression for the second
derivative as

f'(x0) ~ (1.22)

f(x + Ax) =2 f(x0) + f(x% — Ax)
Ax?

Such expressions will prove quite useful in evaluating a number of relationships we

will encounter later.

[ (x0) & . (1.23)
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1.2.4 Temporal changes of a continuous variable

The fluid atmosphere is an ever evolving medium and so the fundamental vari-
ables discussed in Section 1.1 are ceaselessly subject to temporal changes. But what
does it really mean to say ‘The temperature has changed in the last hour’? In the
broadest sense this statement could have two meanings. It could mean that the
temperature of an individual air parcel, moving past the thermometer on my back
porch, is changing as it migrates through space. In this case, we would be con-
sidering the change in temperature experienced while moving with a parcel of air.
However, the statement could also mean that the temperature of the air parcels
currently in contact with my thermometer is lower than that of air parcels that
used to reside there but have since been replaced by the importation of these colder
ones. In this case we would be considering the changes in temperature as mea-
sured at a fixed geographic point. These two notions of temporal change are clearly
not the same, but one might wonder if and how they are physically and mathe-
matically related. We will consider a not so uncommon example to illustrate this
relationship.

Imagine a winter day in Madison, Wisconsin characterized by biting northwest-
erly winds which are importing cold arctic air southward out of central Canada.
From the fixed geographical point of my back porch, the temperature (or poten-
tial temperature) drops with the passage of time. If, however, I could ride along
with the flow of the air, I would likely find that the temperature does not change
over the passage of time. In other words, a parcel with T = 270°K passing my
porch at 8 a.m. still has T = 270°K at 2 p.m. even though it has traveled nearly
to Chicago, Illinois by that time. Therefore, the steady drop in temperature I observe
at my porch is a result of the continuous importation of colder air parcels from Canada.
Phenomenologically, therefore, we can write an expression for this relationship we’ve
developed:

Change with Time Change with Time Rate of Importation
Following an Air = at a Fixed —  of Temperature by (1.24)
Parcel Location Movement of Air.

This relationship can be made mathematically rigorous. Doing so will assist us later in
the development of the equations of motion that govern the mid-latitude atmosphere.
The change following the air parcel is called the Lagrangian rate of change while
the change at a fixed point is called the Eulerian rate of change. We can quantify the
relationship between these two different views of temporal change by considering an
arbitrary scalar (or vector) quantity that we will call Q. If Q is a function of space
and time, then

Q= Q(x’ Vs z, t)
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and, from the differential calculus, the total differential of Q is

ad d d a
i0=(32) a+(32) w+(52) e (5Y) @
ax V,z,t 8)/ X,z,t aZ X, p,t 8t X,),2

(1.25)
where the subscripts refer to the independent variables that are held constant
whilst taking the indicated partial derivatives. Upon dividing both sides of (1.25)
by dt, the total differential of # which represents a time increment, the resulting
expression is

4Q _(9Q\dr | (0Q\dx  (9Q\dy  (0Q)d:
E_(3t>df+(8x> dt+(8y>dt+<az)dt (1.26)

where the subscripts on the partial derivatives have been dropped for convenience.
The rates of change of x, y, or z with respect to time are simply the component
velocities in the x, y, or z directions. We will refer to these velocities as u, v, and w and
define them as u = dx/dt, v = dy/dt, and w = dz/dt, respectively. Substituting
these expressions into (1.26) yields

dQ _ (9Q 9Q 9Q 9Q
z-(a)*“(a)“(w)”(%) (127

which can be rewritten in vector notation as

dQ 9Q >
I —(at)—FV-VQ (1.28)
where V = ui + v j + whis the 3-D vector wind. The three terms in (1.27) involving
the component winds and derivatives of Q physically represent the horizontal and
vertical transport of Q by the flow. Thus, we see that d Q/dt corresponds to the
Lagrangian rate of change noted in (1.24). The Eulerian rate of change is represented
by d Q/at. The rate of importation by the flow (recall it was subtracted from the
Eulerian change on the RHS of (1.24)) is represented by — V.V Q (minus the dot
product of the velocity vector and the gradient of Q). In subsequent discussions in
this book, — V.V Q will be referred to as advection of Q. Next we show that the
mathematical expression — V.VQ actually describes the rate of importation of Q
by the flow.

Consider the isotherms (lines of constant temperature) and wind vector shown
in Figure 1.7. The gradient of temperature (V T) is a vector that always points from
lowest temperatures to highest temperatures as indicated. The wind vector, clearly
drawn in Figure 1.7 so as to transport warmer air toward point A, is directed opposite
to VT. Recall that the dot product is given by V.VT = | \7| |V T| cosa where « is
the angle between the vectors V and VT. Given that the angle between Vand VT
is 180° in Figure 1.7, the dot product V- VT returns a negative value. Therefore,
the sign of V - VT does not accurately reflect the reality of the physical situation de-
picted in Figure 1.7 — that is, that importation of warmer air is occurring at point A.
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Figure 1.7 Isotherms (dashed lines) and wind vector vV (filled arrow) surrounding point A. The thin
black arrow is the horizontal temperature gradient vector

Thus, we define temperature advection, a measure of the rate (and sign) of im-
portation of temperature to point A, as — V. VT.The physical situation depicted in
Figure 1.7, therefore, is said to be characterized by positive temperature (or warm air)
advection.

To round out this discussion, we now return to the example that motivated the
mathematical development: measuring the temperature change on my back porch.
Rearranging (1.28) and substituting T (temperature) for Q we get

oT aT -
— ) =—-V.VT
ot dt

which shows that the Eulerian (fixed location) change is equal to the sum of the
Lagrangian (parcel following) change and advection. In the prior example we imag-
ined a temperature drop at my back porch. We also surmised that the temperature
of individual air parcels did not undergo any change as the day wore on. Thus, the
advective change at the porch must be negative — there must be negative temperature
advection, or cold air advection (i.e. =V - VT < 0), occurring in Madison on this
day. Clearly, the situation of northwesterly winds importing cold air southward out
of Canada fits the bill.

1.3 Estimating with Scale Analysis

In many fluid dynamical problems, it is convenient and insightful to estimate which
physical terms are likely to contribute most to a particular process under study. For
instance, in assessing the threat to coastal property in Hawaii in the face of a major
tsunami, it is not likely that the ambient wind speed will figure into the problem in
any significant way. In the development of the equations of motion in subsequent
chapters, a variety of physical processes will be confronted, each of which has some
bearing on the behavior of the fluid atmosphere. At many junctures, however, we will
attempt to simplify those equations by estimating the magnitude of the mathematical
terms that comprise them. A formal process known as scale analysis is employed in



