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Figure 1.1 The 3-D representation of a vector, EA. The components of EA are shown along the coordinate

axes

1.2.1 Elements of vector calculus

Many physical quantities with which we are concerned in our experience of the

universe are described entirely in terms of magnitude. Examples of these types of

quantities, known as scalars, are area, volume, money, and snowfall total. There are

other physical quantities such as velocity, the force of gravity, and slopes to topography

which are characterized by both magnitude and direction. Such quantities are known

as vectors and, as you might guess, any description of the fluid atmosphere necessarily

contains reference to both scalars and vectors. Thus, it is important that we familiarize

ourselves with the mathematical descriptions of these quantities, a formalism known

as vector analysis.2

Employing a Cartesian coordinate system in which the three directions (x , y, and

z) are mutually orthogonal (i.e. perpendicular to one another), an arbitrary vector,
EA, has components in the x , y, and z directions labeled Ax , Ay , and Az , respectively.

These components themselves are scalars since they describe the magnitude of vectors

whose directions are given by the coordinate axes (as shown in Figure 1.1). If we

denote the direction vectors in the x , y, and z directions as î , ĵ , and k̂, respectively

(where the ˆ symbol indicates the fact that they are vectors with magnitude 1 in the

respective directions – so-called unit vectors), then

EA = Ax î + Ay ĵ + Az k̂ (1.1a)

is the component form of the vector, EA. In a similar manner, the component form

of an arbitrary vector EB is given by

EB = Bx î + By ĵ + Bz k̂. (1.1b)

2 Vector analysis is generally considered to have been invented by the Irish mathematician Sir William
Rowan Hamilton in 1843. Despite its enormous value in the physical sciences, vector analysis was met with
skepticism in the nineteenth century. In fact, Lord Kelvin wrote, in the 1890s, that vectors were ‘an unmixed
evil to those who have touched them in any way . . vectors . . have never been of the slightest use to any creature’.
Remember, no matter how great a thinker one may be, one cannot always be right!
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Figure 1.2 (a) Vectors EA and EB acting upon a point O. (b) Illustration of the tail-to-head method for

adding vectors EA and EB . (c) Illustration of the parallelogram method for adding vectors EA and EB

The vectors EA and EB are equal if Ax = Bx , Ay = By , and Az = Bz . Furthermore,

the magnitude of a vector EA is given by
∣
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∣
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z

)1/2
(1.2)

which is simply the 3-D Pythagorean theorem and can be visually verified with the

aid of Figure 1.1.

Vectors can be added to and subtracted from one another both by graphical

methods as well as by components. Graphical addition is illustrated with the aid of

Figure 1.2. Imagine that the force vectors EA and EB are acting at point O as shown

in Figure 1.2(a). The total force acting at O is equal to the sum of EA and EB . Graph-

ical construction of the vector sum EA + EB can be accomplished either by using the

tail-to-head method or the parallelogram method. The tail-to-head method involves

drawing EB at the head of EA and then connecting the tail of EA to the head of the re-

drawn EB (Figure 1.2b). Alternatively, upon constructing a parallelogram with sides
EA and EB , the diagonal of the parallelogram between EA and EB represents the vector

sum, EA + EB (Figure 1.2c).

If we know the component forms of both EA and EB , then their sum is given by

EA + EB = (Ax + Bx )î + (Ay + By) ĵ + (Az + Bz)k̂. (1.3a)

Thus, the sum of EA and EB is found by simply adding like components together. It is

clear from considering the component form of vector addition that addition of vectors

is commutative ( EA + EB = EB + EA) and associative (( EA + EB) + EC = EA + ( EB + EC )).

Subtraction is simply the opposite of addition so EB can be subtracted from EA by

simply adding − EB to EA. Graphical subtraction of EB from EA is illustrated in Figure 1.3.

Notice that EA − EB = EA + (− EB) results in a vector directed from the head of EB to the

head of EA (the lighter dashed arrow in Figure 1.3). Component subtraction involves

Figure 1.3 Graphical subtraction of vector EB from vector EA
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Figure 1.4 (a) Vectors EA and EB with an angle α between them. (b) Illustration of the relationship

between vectors EA and EB (gray arrows) and their cross-product, EA × EB (bold arrow). Note that EA × EB
is perpendicular to both EA and EB

subtracting like components and is given by

EA − EB = (Ax − Bx )î + (Ay − By) ĵ + (Az − Bz)k̂. (1.3b)

Vector quantities may also be multiplied in a variety of ways. The simplest vector

multiplication involves the product of a vector, EA, and a scalar, F . The resulting

expression for F EA is given by

F EA = F Ax î + F Ay ĵ + F Az k̂, (1.4)

a vector with direction identical to the original vector, EA, but with a magnitude F

times larger than the original magnitude.

It is also possible to multiply two vectors together. In fact, there are two different

vector multiplication operations. One such method renders a scalar as the product

of the vector multiplication and is thus known as the scalar (or dot) product. The

dot product of the vectors EA and EB shown in Figure 1.4(a) is given by

EA · EB = |A| |B | cos α (1.5)

where α is the angle between EA and EB . Clearly this product is a scalar. Using this

formula, we can determine a less mystical form of the dot product of EA and EB . Given

that EA = Ax î + Ay ĵ + Az k̂ and EB = Bx î + By ĵ + Bz k̂, the dot product is given by

EA · EB = (Ax î + Ay ĵ + Az k̂) · (Bx î + By ĵ + Bz k̂) (1.6)

which expands to the following nine terms:

EA · EB = Ax Bx (î · î) + Ax By(î · ĵ ) + Ax Bz(î · k̂)

+Ay Bx ( ĵ · î) + Ay By( ĵ · ĵ ) + Ay Bz( ĵ · k̂)

+Az Bx (k̂ · î) + Az By(k̂ · ĵ ) + Az Bz(k̂ · k̂).

Now, according to (1.5), î · î = ĵ · ĵ = k̂ · k̂ =1 since the angle between like unit

vectors is 0◦. However, the dot products of all other combinations of the unit vectors

are zero since the unit vectors are mutually orthogonal. Thus, only three terms survive

out of the nine-term expansion of EA · EB to yield

EA · EB = Ax Bx + Ay By + Az Bz. (1.7)
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Given this result, it is easy to show that the dot product is commutative ( EA · EB =
EB · EA) and distributive ( EA · ( EB + EC) = EA · EB + EA · EC).

Two vectors can also be multiplied together to produce another vector. This vector

multiplication operation is known as the vector (or cross-)product and is signified

EA × EB .

The magnitude of the resultant vector is given by

|A| |B | sin α (1.8)

where α is the angle between the vectors. Note that since the resultant of the cross-

product is a vector, there is also a direction to be discerned. The resultant vector is in

a plane that is perpendicular to the plane that contains EA and EB (Figure 1.4b). The

direction in that plane can be determined by using the right hand rule. Upon curling

the fingers of one’s right hand in the direction from EA to EB , the thumb points in

the direction of the resultant vector, EA × EB , as shown in Figure 1.4(b). Because the

resultant direction depends upon the order of multiplication, the cross-product has

different properties than the dot product. It is not commutative ( EA × EB 6= EB × EA;

instead EA × EB = − EB × EA) and it is not associative ( EA × ( EB × EC ) 6= ( EA × EB) × EC )

but it is distributive ( EA × ( EB + EC ) = EA × EB + EA × EC ).

Given the vectors EA and EB in their component forms, the cross-product can be

calculated by first setting up a 3 × 3 determinant using the unit vectors as the first

row, the components of EA as the second row, and the components of EB as the third

row:

EA × EB =

∣

∣

∣

∣

∣

∣

î ĵ k̂

Ax Ay Az

Bx By Bz

∣

∣

∣

∣

∣

∣

. (1.9a)

Evaluating this determinant involves evaluating three 2 × 2 determinants, each one

corresponding to a unit vector î , ĵ , or k̂. For the î component of the resultant

vector, only the components of EA and EB in the ĵ and k̂ columns are considered.

Multiplying the components along the diagonal (upper left to lower right) first, and

then subtracting from that result the product of the terms along the anti-diagonal

(lower left to upper right) yields the î component of the vector EA × EB , which equals

(Ay Bz − Az By)î . The same operation done for the k̂ component yields (Ax By −
Ay Bx )k̂. For the ĵ component, the first and third columns are used to form the

2 × 2 determinant and since the columns are non-consecutive, the result must

be multiplied by –1 to yield −(Ax Bz − Az Bx ) ĵ . Adding these three components

together yields

EA × EB = (Ay Bz − Az By)î + (Az Bx − Ax Bz) ĵ + (Ax By − Ay Bx )k̂. (1.9b)

Vectors, just like scalar functions, can be differentiated as long as the rules of vector

addition and multiplication are obeyed. One simple example is Newton’s second law
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(which we will see again soon) that states that an object’s momentum will not change

unless a force is applied to the object. In mathematical terms,

EF =
d

dt
(m EV) (1.10)

where m is the object’s mass and EV is its velocity. Using the chain rule of differentiation

on the right hand side of (1.10) renders

EF = m
d EV

dt
+ EV

dm

dt
or EF = m EA + EV

dm

dt
(1.11)

where EA is the object’s acceleration. Exploitation of the second term of this expansion

is what made Einstein famous!

Let us consider a more general example. Consider a velocity vector defined as
EV = uî + v ĵ + wk̂. In such a case, the acceleration will be given by

d EV

dt
=

du

dt
î + u

dî

dt
+

dv

dt
ĵ + v

d ĵ

dt
+

dw

dt
k̂ + w

dk̂

dt
. (1.12)

The terms involving derivatives of the unit vectors may seem like mathematical

baggage but they will be extremely important in our subsequent studies. Physically,

such terms will be non-zero only when the coordinate axes used to reference motion

are not fixed in space. Our reference frame on a rotating Earth is clearly not fixed and

so we will eventually have to make some accommodation for the acceleration of our

rotating reference frame. Thus, all six terms in the above expansion will be relevant

in our examination of the mid-latitude atmosphere.

The last stop on the review of vector calculus is perhaps the most important one

and will examine a tool that is extremely useful in fluid dynamics. We will often

need to describe both the magnitude and direction of the derivative of a scalar field.

In order to do so we employ a mathematical operator known as the del operator,

defined as

∇ =
∂

∂x
î +

∂

∂y
ĵ +

∂

∂z
k̂. (1.13)

If we apply this partial differential del operator to a scalar function or field, the

result is a vector that is known as the gradient of that scalar. Consider the 2-D

plan view of an isolated hill in an otherwise flat landscape. If the elevation at each

point in the landscape is represented on a 2-D projection, a set of elevation con-

tours results as shown in Figure 1.5. Such contours are lines of equal height above

sea level, Z. Given such information, we can determine the gradient of elevation,

∇ Z , as

∇ Z =
∂ Z

∂x
î +

∂ Z

∂y
ĵ .

Note that the gradient vector, ∇ Z, points up the hill from low values of elevation

to high values. At the top of the hill, the derivatives of Z in both the x and y
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Figure 1.5 The 2-D plan view of an isolated hill in a flat landscape. Solid lines are contours of elevation

(Z ) at 50m intervals. Note that the gradient of Z points from low to high values of the scalar Z

directions are zero so there is no gradient vector there. Thus the gradient, ∇ Z,

not only measures magnitude of the elevation difference but assigns that magnitude

a direction as well. Any scalar quantity, 8, is transformed into a vector quantity, ∇8,

by the del operator. In subsequent chapters in this book we will concern ourselves

with the gradients of a number of scalar variables, among them temperature and

pressure.

The del operator may also be applied to vector quantities. The dot product of ∇
with the vector EA is written as

∇ · EA =

(

∂

∂x
î +

∂

∂y
ĵ +

∂

∂z
k̂

)

· (Ax î + Ay ĵ + Az k̂)

∇ · EA =

(

∂ Ax

∂x
+

∂ Ay

∂y
+

∂ Az

∂z

)

(1.14)

which is a scalar quantity known as the divergence of EA. Positive divergence physically

describes the tendency for a vector field to be directed away from a point whereas

negative divergence (also known as convergence) describes the tendency for a vector

field to be directed toward a point. Regions of convergence and divergence in the

atmospheric fluid are extremely important in determining its behavior.

The cross-product of ∇ with the vector EA is given by

∇ × EA =

(

∂

∂x
î +

∂

∂y
ĵ +

∂

∂z
k̂

)

× (Ax î + Ay ĵ + Az k̂). (1.15a)
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The resulting vector can be calculated using the determinant form we have seen

previously,

∇ × EA =

∣

∣

∣

∣

∣

∣

∣

∣

î ĵ k̂

∂

∂x

∂

∂y

∂

∂z
Ax Ay Az

∣

∣

∣

∣

∣

∣

∣

∣

(1.15b)

where the second row of the 3 × 3 determinant is filled by the components of ∇ and

the third row is filled by the components of EA. This vector is known as the curl of EA.

The curl of the velocity vector, EV , will be used to define a quantity called vorticity

which is a measure of the rotation of a fluid.

Quite often in a study of the dynamics of the atmosphere, we will encounter

second-order partial differential equations. Some of these equations will contain

a mathematical operator (which will operate on scalar quantities) known as the

Laplacian operator. The Laplacian is the divergence of the gradient and so takes the

form

Laplacian = ∇ · (∇F ) = ∇2 F =

(

∂2 F

∂x2
+

∂2 F

∂y2
+

∂2 F

∂z2

)

. (1.16)

It is also possible to combine the vector EA with the del operator to form a new

operator that takes the form

EA · ∇ = Ax

∂

∂x
+ Ay

∂

∂y
+ Az

∂

∂z

and is known as the scalar invariant operator. This operator, which can be used with

both vector and scalar quantities, is important because it is used to describe a process

known as advection, a ubiquitous topic in the study of fluids.

1.2.2 The Taylor series expansion

It is sometimes convenient to estimate the value of a continuous function, f (x),

about the point x = 0 with a power series of the form

f (x) =
∞

∑

n=0

anxn = a0 + a1x + a2x2 + · · · + anxn. (1.17)

The fact that this can actually be done might appear to be an assumption so we

must identify conditions for which this assumption is true. These conditions are

that (1) the polynomial expression (1.17) passes through the point (0, f (0)) and

(2) its first n derivatives match the first n derivatives of f (x) at x = 0. Implicit in

this second condition is the fact that f (x) is differentiable at x = 0. In order for

these conditions to be met, the coefficients a0, a1,. . . , an must be chosen properly.

Substituting x = 0 into (1.17) we find that f (0) = a0. Taking the first derivative of
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(1.17) with respect to x and substituting x = 0 into the resulting expression we get

f ′(0) = a1. Taking the second derivative of (1.17) with respect to x and substituting

x = 0 into the result leaves f ′′(0) = 2a2, or f ′′(0)/2 = a2. If we continue to take

higher order derivatives of (1.17) and evaluate each of them at x = 0 we find that, in

order that the n derivatives of (1.17) match the n derivatives of f (x), the coefficients,

an, of the polynomial expression (1.17) must take the general form

an =
f n(0)

n!
.

Thus, the value of the function f (x) at x = 0 can be expressed as

f (x) = f (0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · · +

f n(0)

n!
xn. (1.18)

Now, if we want to determine the value of f (x) near the point x = x0, the above

expression can be generalized into what is known as the Taylor series expansion of

f (x) about x = x0, given by

f (x) = f (x0) + f ′(x0)(x − x0) +
f ′′(x0)

2!
(x − x0)2 + · · · +

f n(x0)

n!
(x − x0)n.

(1.19)

Since the dependent variables that describe the behavior of the atmosphere are all

continuous variables, use of the Taylor series to approximate the values of those

variables will prove to be a nifty little trick that we will exploit in our subsequent

analyses. Most often we consider Taylor series expansions in which the quantity

(x − x0) is very small in order that all terms of order 2 and higher in (1.19), the

so-called higher order terms, can be effectively neglected. In such cases, we will

approximate the given functions as

f (x) ≈ f (x0) + f ′(x0)(x − x0).

1.2.3 Centered difference approximations to derivatives

Though the atmosphere is a continuous fluid and its observed state at any time

could theoretically be represented by a continuous function, the reality is that actual

observations of the atmosphere are only available at discrete points in space and

time. Given that much of the subsequent development in this book will arise from

consideration of the spatial and temporal variation of observable quantities, we must

consider a method of approximating derivative quantities from discrete data. One

such method is known as centered differencing3 and it follows directly from the

prior discussion of the Taylor series expansion.

3 Centered differencing is a subset of a broader category of such approximations known as finite differenc-
ing.
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Figure 1.6 Points x1 and x2 defined with respect to a central point x0

Consider the two points x1 and x2 in the near vicinity of a central point, x0, as

illustrated in Figure 1.6. We can apply (1.19) at both points to yield

f (x1) = f (x0 − 1x) = f (x0) + f ′(x0)(−1x) +
f ′′(x0)

2!
(−1x)2 + · · ·

+
f n(x0)

n!
(−1x)n (1.20a)

and

f (x2) = f (x0 + 1x) = f (x0) + f ′(x0)(1x) +
f ′′(x0)

2!
(1x)2 + · · ·

+
f n(x0)

n!
(1x)n. (1.20b)

Subtracting (1.20a) from (1.20b) produces

f (x0 + 1x) − f (x0 − 1x) = 2 f ′(x0)(1x) + 2 f ′′′(x0)
(1x)3

6
+ · · ·. (1.21)

Isolating the expression for f ′(x0) on one side then leaves

f ′(x0) =
f (x0 + 1x) − f (x0 − 1x)

21x
− f ′′′(x0)

(1x)2

6
− · · ·

which, upon neglecting terms of second order and higher in1x , can be approximated

as

f ′(x0) ≈
f (x0 + 1x) − f (x0 − 1x)

21x
. (1.22)

The foregoing expression represents the centered difference approximation to f ′(x)

at x0 accurate to second order (i.e. the neglected terms are at least quadratic in 1x).

Adding (1.20a) to (1.20b) gives a similarly approximated expression for the second

derivative as

f ′′(x0) ≈
f (x0 + 1x) − 2 f (x0) + f (x0 − 1x)

1x2
. (1.23)

Such expressions will prove quite useful in evaluating a number of relationships we

will encounter later.
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1.2.4 Temporal changes of a continuous variable

The fluid atmosphere is an ever evolving medium and so the fundamental vari-

ables discussed in Section 1.1 are ceaselessly subject to temporal changes. But what

does it really mean to say ‘The temperature has changed in the last hour’? In the

broadest sense this statement could have two meanings. It could mean that the

temperature of an individual air parcel, moving past the thermometer on my back

porch, is changing as it migrates through space. In this case, we would be con-

sidering the change in temperature experienced while moving with a parcel of air.

However, the statement could also mean that the temperature of the air parcels

currently in contact with my thermometer is lower than that of air parcels that

used to reside there but have since been replaced by the importation of these colder

ones. In this case we would be considering the changes in temperature as mea-

sured at a fixed geographic point. These two notions of temporal change are clearly

not the same, but one might wonder if and how they are physically and mathe-

matically related. We will consider a not so uncommon example to illustrate this

relationship.

Imagine a winter day in Madison, Wisconsin characterized by biting northwest-

erly winds which are importing cold arctic air southward out of central Canada.

From the fixed geographical point of my back porch, the temperature (or poten-

tial temperature) drops with the passage of time. If, however, I could ride along

with the flow of the air, I would likely find that the temperature does not change

over the passage of time. In other words, a parcel with T = 270◦K passing my

porch at 8 a.m. still has T = 270◦K at 2 p.m. even though it has traveled nearly

to Chicago, Illinois by that time. Therefore, the steady drop in temperature I observe

at my porch is a result of the continuous importation of colder air parcels from Canada.

Phenomenologically, therefore, we can write an expression for this relationship we’ve

developed:

Change with Time Change with Time Rate of Importation

Following an Air = at a Fixed − of Temperature by

Parcel Location Movement of Air.

(1.24)

This relationship can be made mathematically rigorous. Doing so will assist us later in

the development of the equations of motion that govern the mid-latitude atmosphere.

The change following the air parcel is called the Lagrangian rate of change while

the change at a fixed point is called the Eulerian rate of change. We can quantify the

relationship between these two different views of temporal change by considering an

arbitrary scalar (or vector) quantity that we will call Q. If Q is a function of space

and time, then

Q = Q(x, y, z, t)
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and, from the differential calculus, the total differential of Q is

d Q =

(

∂ Q

∂x

)

y,z,t

dx +

(

∂ Q

∂y

)

x,z,t

dy +

(

∂ Q

∂z

)

x,y,t

dz +

(

∂ Q

∂t

)

x,y,z

dt

(1.25)

where the subscripts refer to the independent variables that are held constant

whilst taking the indicated partial derivatives. Upon dividing both sides of (1.25)

by dt, the total differential of t which represents a time increment, the resulting

expression is

d Q

dt
=

(

∂ Q

∂t

)

dt

dt
+

(

∂ Q

∂x

)

dx

dt
+

(

∂ Q

∂y

)

dy

dt
+

(

∂ Q

∂z

)

dz

dt
(1.26)

where the subscripts on the partial derivatives have been dropped for convenience.

The rates of change of x , y, or z with respect to time are simply the component

velocities in the x , y, or z directions. We will refer to these velocities as u, v , and w and

define them as u = dx/dt, v = dy/dt, and w = dz/dt, respectively. Substituting

these expressions into (1.26) yields

d Q

dt
=

(

∂ Q

∂t

)

+ u

(

∂ Q

∂x

)

+ v

(

∂ Q

∂y

)

+ w

(

∂ Q

∂z

)

(1.27)

which can be rewritten in vector notation as

d Q

dt
=

(

∂ Q

∂t

)

+ EV · ∇ Q (1.28)

where EV = uî + v ĵ + wk̂ is the 3-D vector wind. The three terms in (1.27) involving

the component winds and derivatives of Q physically represent the horizontal and

vertical transport of Q by the flow. Thus, we see that d Q/dt corresponds to the

Lagrangian rate of change noted in (1.24). The Eulerian rate of change is represented

by ∂ Q/∂t. The rate of importation by the flow (recall it was subtracted from the

Eulerian change on the RHS of (1.24)) is represented by − EV · ∇ Q (minus the dot

product of the velocity vector and the gradient of Q). In subsequent discussions in

this book, − EV · ∇ Q will be referred to as advection ofQ. Next we show that the

mathematical expression − EV · ∇ Q actually describes the rate of importation of Q

by the flow.

Consider the isotherms (lines of constant temperature) and wind vector shown

in Figure 1.7. The gradient of temperature (∇T) is a vector that always points from

lowest temperatures to highest temperatures as indicated. The wind vector, clearly

drawn in Figure 1.7 so as to transport warmer air toward point A, is directed opposite

to ∇T . Recall that the dot product is given by EV · ∇T = | EV ||∇T | cos α where α is

the angle between the vectors EV and ∇T . Given that the angle between EV and ∇T

is 180◦ in Figure 1.7, the dot product EV · ∇T returns a negative value. Therefore,

the sign of EV · ∇T does not accurately reflect the reality of the physical situation de-

picted in Figure 1.7 – that is, that importation of warmer air is occurring at point A.
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Figure 1.7 Isotherms (dashed lines) and wind vector EV (filled arrow) surrounding point A. The thin

black arrow is the horizontal temperature gradient vector

Thus, we define temperature advection, a measure of the rate (and sign) of im-

portation of temperature to point A, as − EV · ∇T . The physical situation depicted in

Figure 1.7, therefore, is said to be characterized by positive temperature (or warm air)

advection.

To round out this discussion, we now return to the example that motivated the

mathematical development: measuring the temperature change on my back porch.

Rearranging (1.28) and substituting T (temperature) for Q we get

(

∂T

∂t

)

=
dT

dt
− EV · ∇T

which shows that the Eulerian (fixed location) change is equal to the sum of the

Lagrangian (parcel following) change and advection. In the prior example we imag-

ined a temperature drop at my back porch. We also surmised that the temperature

of individual air parcels did not undergo any change as the day wore on. Thus, the

advective change at the porch must be negative – there must be negative temperature

advection, or cold air advection (i.e. − EV · ∇T < 0), occurring in Madison on this

day. Clearly, the situation of northwesterly winds importing cold air southward out

of Canada fits the bill.

1.3 Estimating with Scale Analysis

In many fluid dynamical problems, it is convenient and insightful to estimate which

physical terms are likely to contribute most to a particular process under study. For

instance, in assessing the threat to coastal property in Hawaii in the face of a major

tsunami, it is not likely that the ambient wind speed will figure into the problem in

any significant way. In the development of the equations of motion in subsequent

chapters, a variety of physical processes will be confronted, each of which has some

bearing on the behavior of the fluid atmosphere. At many junctures, however, we will

attempt to simplify those equations by estimating the magnitude of the mathematical

terms that comprise them. A formal process known as scale analysis is employed in


