Fundamental and Apparent Forces

Objectives

The fluid atmosphere is a physical object and its motion is therefore governed by
the laws of physics. From among these laws, Newton’s second law states that the rate
of change of momentum of an object (i.e. its acceleration) equals the sum of all the
forces acting on that object:

d (Momentum)
dt

This powerful statement is valid only for motions measured in a non-accelerating
coordinate system — one that is fixed in space. Such a coordinate system is known as
aninertial frame of reference. The most convenient x, y, and z coordinates by which
we measure motions on Earth refer to a grid based upon latitude and longitude (for
the x and y coordinate directions) and elevation above sea level (for the z coordinate
direction). Since the Earth rotates on its axis and revolves around the Sun, this
Earth-based x, y, and z coordinate system undergoes constant acceleration. This fact
is easily proven using a globe. After finding your location on the globe, consider the
fact that what you view at that location as the immutable direction east is, in fact,
constantly changing direction (to an observer fixed in space) as the Earth rotates on
its axis. Thus our Earth-based coordinates are non-inertial (i.e. accelerating). This
being the case, Newton’s second law can only be applied to the motion of objects on
Earth if we correct for the acceleration of our coordinate system.

The collection of forces required to adequately represent Newton’s second law on
the rotating Earth can therefore be split into two broad categories. The first of these
includes forces that would affect objects even in the absence of rotation, the so-called
fundamental forces. The most important of these fundamental forces are (1) the
pressure gradient force, (2) the gravitational force, and (3) the frictional force, all
of which we will investigate in this chapter. The other group of forces that we must
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26 FUNDAMENTAL AND APPARENT FORCES

consider in a full treatment of Newton’s second law arises from the need to correct
for the acceleration of our terrestrial coordinate system. We will refer to such forces
as apparent forces. Two important apparent forces to be investigated in this chapter
are (1) the centrifugal force and (2) the Coriolis force. We begin this examination by
considering the fundamental forces.

2.1 The Fundamental Forces

Understanding the fundamental forces is essential to gaining insight into the behavior
of the fluid atmosphere. Most people have a solid intuitive feel for the gravitational
and friction forces since both are so widely recognized as manifest in our daily
experience. As it turns out, the effects of the often less familiar pressure gradient
force are equally ubiquitous and readily detectable. We begin our examination of the
fundamental forces by considering the nature of this pressure gradient force.

2.1.1 The pressure gradient force

In order to examine the pressure gradient force (PGF) we will consider the pres-
sure exerted by the atmosphere on sides A and B of the infinitesimal fluid element
illustrated in Figure 2.1. The pressure exerted on sides A and B arises from the fact

Figure 2.1 The pressure forces acting on the sides of an infinitesimal fluid element. The sides A and
B are referenced in the text and the forces acting on those sides are indicated by the black arrows. The
forces on other sides are indicated by the gray arrows
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that random molecular motions compel molecules to strike the sides. Each time a
molecule strikes the side of the fluid element, a certain amount of momentum is
transferred to that side. The total momentum transfer is the sum of all the individ-
ual momentum transfers. The total momentum transferred each second defines the
force exerted by the atmosphere on the side of the fluid element. Dividing this total
force by the area of the side of the fluid element defines the pressure that is exerted
on that side. The volume of the fluid element is given by V' = 8x §y 8z and its mass is
given by M = péx 8y 8z where p is the density of the fluid. Let us define the pressure
at the center of the fluid element to be p(xo, ¥, z9) = po. Assuming the pressure
is continuous, we can use a Taylor series expansion to determine the pressure on
sides A and B:

0 1)
pa= po+ 8_P (;) + Higher Order Terms (2.1a)
x
d 1)
s = po— a_p (g) + Higher Order Terms. (2.1b)
x

Now, the x-direction pressure force acting on side A has magnitude py x
(Area of A) and is directed toward the center of the infinitesimal fluid element.
Thus, this force can be expressed as

ap s
Fy, =— po+_p_x dyéz. (2.2a)
ox 2
By similar reasoning, the x-direction pressure force acting on side B is given by
ap s
Fo. = (po— 22% ) sy52 (2.2b)
ax 2
so that the net x-direction pressure force acting on the fluid element is
ap
szFAX-I-FBX:—a—(Sx(SySZ. (2.3)
X
Thus, the net force per unit mass acting in the x direction on the fluid element is
F 19
x_ P (2.4)
M p 0x

Similar expressions can be derived in exactly the same way for the y- and z-direction
components of the pressure gradient force per unit mass. Therefore, the total pressure
gradient force per unit mass can be expressed as

; F . (2‘5 )
M [)

Newton’s law of universal gravitation says that any two elements of mass in the
universe attract each other with a force proportional to their masses and inversely
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Figure 2.2 Two masses, M and m, used to illustrate Newton’s law of universal gravitation. The vector
F is the position vector directed from the center of mass of M to the center of mass of m

proportional to the distance between their centers of mass. This is represented sym-
bolically, with the aid of the illustration in Figure 2.2, as

F,= _GMm (;) (2.6)

r2

where G = 6.673 x 107! N m? kg~ is the universal gravitational constant, and M
pulls m toward its center. For a fluid parcel of the atmosphere, M is the mass of the
Earth and m is the mass of the fluid parcel. Thus, we can express the gravitational
force per unit mass as

-

8 _ _G_M (Z) . (2.7)

m r2 \r

Many applications in atmospheric dynamics use height above sea level (Z) as the
vertical coordinate. This suggests that a parcel of air at a high elevation in the atmo-
sphere might experience a smaller gravitational force than one located at sea level
(i.e. nearer the center of gravity of the Earth). Though this conjecture is strictly true,
the difference is very small from the surface to any level in the troposphere (lowest
10-12 km of the atmosphere) and we use a constant value of the gravitational force,

g5, where
GM (7
& =—"—5 (;) (2.8)

with a being the radius of the Earth, as a consequence. It is left to the reader to
demonstrate that this is an entirely reasonable simplification.

2.1.3 The frictional force

Most of us have some conceptual understanding of friction and its effect on the
behavior of solids. A textbook, for instance, thatis pushed across a table feels the effect
of the friction between itself and the tabletop and begins to decelerate immediately.
In fact, the only reason the textbook does not continue to slide along the table for



2.1 THE FUNDAMENTAL FORCES 29

ever is that a force, the friction force, is applied opposite to its motion. The frictional
force in this simple example is quantified in terms of a coefficient of friction which
is a measure of the resistance to motion that results from pushing the book over
the table. This simplistic view of friction has to be modified when one considers the
frictional force acting on a fluid parcel. Fluids, being collections of discrete atoms
or molecules, are subject to internal friction among these particles which cause the
fluid to resist the tendency to flow. We will try to gain some insight into the nature
of this resistance and how to express the physics in mathematical terms.

Another analogy here may help set the stage for our more formal exploration of
friction in fluids. Nearly all of us have, at one time or another, experienced traffic on
a multi-lane highway. Generally cars in such traffic may pass other cars in a passing
lane (on the left in North America) while passing on the right (in the cruising lanes)
is discouraged. Occasionally, a driver who has just used the passing lane will decide
to move to the adjacent cruising lane, in which the average speed is lower. When
this happens, the passer’s car imports high momentum into the cruising lane, often
upsetting the smooth flow of traffic. A similar disruption occurs when a driver enters
the passing lane at an insufficient speed. In the worst case (i.e. when a number of
passers decide to change lanes simultaneously), the rapid flux of momentum from
the passing lane to the cruising lane can cause a slowdown of the entire flow of
traffic. If one considers the individual cars in this example as molecules in a fluid
flow, one can see that momentum transfer between layers of a fluid (accomplished by
molecules or clumps of molecules) may lie at the conceptual heart of fluid friction.

Consider, for instance, the situation depicted in Figure 2.3 in which a plate, moving
at speed 1, is placed atop a column of fluid with depth, I. The top layer of fluid moves
at the velocity of the plate while the fluid at the bottom of the column has zero motion.
Thus, a shearing stress exists in the fluid and a force must be exerted on the plate
in order that it be kept moving at speed 1 along the top surface of the fluid. The
requisite force is proportional to 1 since a greater force will be required for a greater
speed. Additionally, since molecules of fluid that reside at the bottom of the column
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Figure 2.3 Flow beneath a moving plate illustrating 1-D, steady-state, viscous shear flow. The top
plate, at height z=1, is moving across the top of the fluid with speed u, while the bottom plate is fixed.
The vertical shear of the flow speed is indicated with arrows between the plates
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can influence the movement of the plate through momentum transport in the fluid
column, the requisite force is also inversely proportional to the depth of the fluid. The
force is also proportional to the area of the plate since a larger plate makes contact
with more fluid than a smaller one. The actual force required to keep the plate moving
can therefore be writtenas F = p Aug/ I, where p is the dynamic viscosity coefficient
measured empirically and expressed in kg m~! s™!. If we represent the vertical shear
within the fluid as §u/8z = 1/ I, then the force can be expressed as

F=uA—. (2.9a)
8z

Here F represents the x-direction force required to overcome the viscous effect of the
vertical shear of the x-direction velocity component. Hence, as §z — 0, the shearing
stress, or viscous force per unit area, is given by

r=pon (2.95)

0z

where the subscript ‘zx’ indicates that this is the component of the shearing stress (in
the x direction) that arises from the vertical shear (z) of the x-direction (x) velocity
component. From the molecular viewpoint, a molecule moving to smaller z (i.e.
toward the bottom of the fluid column) transports high momentum that it acquired
from the motion of the plate to the surrounding fluid. Thus, there is a net downward
transport of x-direction momentum and this momentum transport per unit time
per unit area is the shearing stress, 7.

The prior example considered the steady movement of a plate across the top
of a fluid column. In nature, viscous forces result from non-steady shear flows. In
recognition of this fact, let us consider the volume element depicted in Figure 2.4
which represents the case of non-steady, 2-D shear flow in a fluid of constant den-
sity. Analogous to our treatment of the pressure gradient force, we expand the
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Figure 2.4 lllustration of the x component of the vertical shearing stress on a fluid element
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shearing stress in a Taylor series in order to determine its value at the top and bottom
(z-direction) facing sides of the volume element. The stress acting across the upper
boundary on the fluid below it can be approximated as

0T, 82
dz 2

while the stress acting across the bottom boundary on the fluid below it can be
approximated as

Tox + (2.10a)

0T, 62
dz 2

According to Newton’s third law, this stress must be equal and opposite to the stress
acting across the bottom boundary on the fluid above it. Since we are interested in
the net stress acting on the volume element in Figure 2.4, we want to sum the forces
that act on fluid within the volume element. Thus, we find that the net viscous force
on the volume element acting in the x direction is given by

8 ZX3 a sz a zx
<‘L’zx+ ‘ 72)5965)/—(1'”— ‘ —Z)8x5y= ar dxdydz. (2.11a)

(2.10b)

TZX

0z dz 2 z

Dividing this expression by the mass of volume element, p5x5y8z, we have the
viscous force per unit mass arising from the vertical shear of the x-direction motion:

107, 10 ou
— =——\u—. (2.11b)
p 0z p oz 0z
If w is constant, (2.11b) can be simplified to
10 u 0%u (2.12)
—— =) =v— .
p oz H 0z 022
where v = 1/ p is known as the kinematic viscosity coefficient and has an empiri-

cally determined value of 1.46 x 107> m* s~ .

Analogous derivations can be performed to determine the viscous stresses acting
in the other directions. The resulting frictional force components per unit mass in
the x, y, and z directions are

F 92u N 92u N 9%u
rx =V | T — —
ax?  dy* 97

P 3%y N 9% N 9%v (2.13)

=0 T8 T a2 ‘
F 3w N %w N %w
rz =V \| T 5 Ty - |-

ax*  dy* 97

For the lowest 100 km of the atmosphere, v is so small that molecular viscosity
is entirely negligible except within a few millimeter of the Earth’s surface where the
vertical shear is very large (on the order of 10° s™'!). Above about 10 mm we need
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an entirely separate treatment of fluid friction in which it is useful to conceptualize
eddies as discrete ‘blobs’ of fluid which move around like molecules and transfer
momentum toward or away from the surface of the Earth in a manner analogous
to molecules in molecular viscosity. A mixing length, defined as the average length
through which an eddy can travel before mixing out its momentum, can be defined
by analogy to the mean free path for molecular diffusion. With this adjustment, the
dissipative effects of small-scale turbulence can be represented by defining an eddy
viscosity coefficient so that

107, K82u

p 0z T2

(2.14)

where K is the eddy viscosity coefficient.

2.2 Apparent Forces

In expressing his first law, Sir Isaac Newton states: ‘Every body persists in its state
of rest or of uniform motion in a straight line unless it is compelled to change that
state by forces impressed on it. In other words, a mass in uniform motion relative
to a coordinate system fixed in space will remain in uniform motion in the absence
of any forces. Any motion relative to a coordinate system fixed in space is known as
inertial motion and the reference frame in which that motion is measured is known
as an inertial reference frame. Most of us live at a single location long enough to
become accustomed to thinking of north, south, east, and west as fixed directions. In
reality, however, the direction I call ‘north’ at Madison, Wisconsin is not the same, as
viewed from the perspective of a space traveler orbiting Earth, as the ‘north’ known
to a resident of Jakarta, Indonesia. If one considers the intersection of latitude and
longitude lines on a globe as the intersections of a Cartesian x and y grid describing
the Earth, then it is clear that since the Earth rotates, this coordinate system is
accelerating and thus provides us Earthlings with a non-inertial reference frame. It
might appear that given our non-inertial reference frame we are not able to apply
Newton’s laws of motion to motion relative to the Earth. Of course, this is not true,
but we do have to make some correction for the non-inertial nature of the reference
frame by which we measure all such motion. We will make the necessary corrections
by introducing the centrifugal and Coriolis forces, the so-called ‘apparent forces’.
But first, it is instructive to consider physically why the coordinate system matters
at all. We can do this by considering application of Newton’s laws to experiments
conducted inside a closed elevator car.

In the first case, let us imagine that the car is stationary or moving with a constant
velocity, V. Under such conditions imagine that a weight is dropped within the mov-
ing car. Upon making the appropriate measurements and calculations, you would
determine that the weight had fallen toward the floor of the car with a measurable,
constant acceleration of 9.81 m s—2. This acceleration would be observed relative to
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the walls and floor of the elevator car in a Cartesian coordinate system defined by the
dimensions of the elevator car. In such a case, an observer in the elevator car would
note complete agreement between the results of the experiment and Newton’s laws
of motion since the constant velocity elevator car provides an inertial reference frame
for this experiment.

In the second case, we remotely observe the elevator car falling freely through
the elevator shaft. If a similar weight is dropped within the car the weight appears
to remain suspended in mid-air, at a constant elevation above the floor of the car.
Measured relative to the coordinate frame of the car, the weight has zero accel-
eration even though to us remote observers it is clearly accelerating toward the
ground at a rate of 9.81 m s~2. Viewed from inside the car, Newton’s laws seem to fail
here, but this is because the coordinate system itself is accelerating and is therefore
non-inertial.

The latitude/longitude coordinate system on a rotating Earth is also accelerating
and so we have to take that acceleration into account in order to apply Newton’s laws
accurately to objects moving relative to that Earth-based coordinate system.

2.2.1 The centrifugal force

Each of us is located a certain distance from the axis of rotation of the Earth. De-
pending upon the exact distance, we are rotating around that axis at a very high,
but constant speed (at Madison, Wisconsin that speed is 330 ms™!!). Each of us
is, therefore, not unlike the ball on the end of the string depicted in Figure 2.5. The
speed of the ball is constant, equal to the rotation rate, , times the radius of rotation,
r (r = |7|). The direction of the ball changes continuously, however, and so, as viewed
from the perspective of the ball, there is a uniform acceleration directed toward the
axis of rotation equal to

dv
dt
This acceleration is called the centripetal acceleration and is caused by the force of
the string pulling on the ball. Suppose you are on the ball and rotating with it. From

= —w’r. (2.15)

.
1

Figure 2.5 The rotating ball on a string experiences an inward-directed centripetal acceleration,
indicated by the dark arrow. To the observer on the ball, a compensating centrifugal force, indicated by
the gray arrow, must be included to describe accurately motions on the ball itself
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Figure 2.6 Relationship between the centrifugal force, gravitation (g), and effective gravity (g). The
effect of the centrifugal force is to deform the Earth’s shape into an oblate spheroid on which the local
vertical direction is perpendicular to effective gravity as shown

your perspective the ball is stationary but, in reality, a centripetal acceleration is still
being exerted upon it. In order for a person on the ball to apply Newton’s laws under
this condition, an apparent force that exactly balances the true centripetal force must
be included in the physics; this apparent force is known as the centrifugal force.

In order to balance the centripetal acceleration, the centrifugal acceleration is
directed outward along the radius of rotation and is given by

CEN = w’r. (2.16)

As depicted in Figure 2.6, on a rotating Earth, the centrifugal force affects the vertical
force balance. When the centrifugal force and gravitational forces (¢*) are added, the
result is called effective gravity (g) and is given by

g=g*+§22§ (2.17)

where Q is the rotation rate of the Earth and R is the position vector from the
axis of rotation to the object in question. Note that effective gravity, thus defined, is
directed perpendicular to the local tangent of the surface of the Earth — not necessarily
toward the center of the Earth. In fact, since Q2R is directed away from the axis of
rotation, g is not directed toward the center of the Earth except at the poles and the
equator! Were the Earth a perfect sphere, this fact would result in the existence of
a horizontal, equatorward-directed component of gravity. The relatively malleable
crust of the Earth has long since responded to this circumstance and adopted its
oblate spheroidal shape with an equatorial radius some 21 km larger that its polar
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radius. Given such a slightly distorted shape, the local vertical direction everywhere
on Earth is defined parallel to g. The centrifugal force component of effective gravity
is an example of the effect of rotation on objects at restwith respect to the Earth-based
rotating frame of reference. In order to apply Newton’s laws accurately to the motion
of objects relative to that rotating frame an additional apparent force, the Coriolis
force, must be considered.

2.2.2 The Coriolis force

Consider a dynamics field experiment in which one student takes a position on
a merry-go-round and another student takes a position some distance above the
ground in an adjacent tree. The merry-go-round is set spinning and a ball is pushed
from the center of the merry-go-round toward the spinning student. From the van-
tage point of the tree, the motion of the ball appears as a straight line, as it should
since a uniform force was administered to it. But from the perspective of the rotating
frame, the ball appears to accelerate in a curved path, away from the observer in a
direction opposite to the direction of rotation. Upon consulting each other’s notes,
the students conclude that an apparent force, arising from the rotation of the merry-
go-round, deflects the ball from its path. This apparent force is the Coriolis force.
How can the Coriolis force be quantified on the rotating Earth?

Suppose a hockey puck is given an impulse in the eastward direction on a frozen,
frictionless Earth. Under these circumstances, the puck is rotating faster than the
solid Earth beneath it so that, for its latitude, the centrifugal force acting on the puck
will be increased to

UN2= = R R
CEN=(@+ ) R= @ R+2Qup + = (2.18)
where u/ R represents the incremental change in rotation rate resulting from the
eastward impulse. The first term on the RHS of (2.18) is the already familiar cen-
trifugal force, included in effective gravity. The second and third terms, however, are
deflecting forces acting outward along R (perpendicular to the axis of rotation). For
normal synoptic-scale motions on Earth, u < QR (remember, QR = 330ms~! at
Madison), allowing neglect of the third term to hardly compromise the result. The
remaining term, 22 uR / R (the excess centrifugal force), represents the Coriolis force
resulting from relative motion parallel to a latitude circle. This Coriolis force has two
components as suggested by Figure 2.7. The vertical and horizontal components are
given by

dw dv .

I =2Qucos¢ andE = —2Qusin ¢, (2.19)
respectively, where ¢ is the latitude. Using a shorthand in which f, the so-called
Coriolis parameter, is given by f = 2€2 sin ¢, we can rewrite the horizontal compo-
nent of the Coriolis force resulting from relative zonal motion as dv/dt = — fu. We see
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Figure 2.7 For east to west relative motions on Earth, the Coriolis force arises as excess centrifugal
force

that given an eastward (westward) directed impulse, the Coriolis force will deflect
the object to the south (north), or to the right of its original path, in the northern
hemisphere (where ¢ is positive by convention).

What happens if we consider the hockey puck moving equatorward relative to
the Earth? In the absence of applied forces, it must conserve angular momentum
(QR?). Upon being pushed equatorward in the northern hemisphere, the radius
of rotation of the puck begins to increase. Consequently, an anti-rotational relative
motion develops in order to conserve angular momentum. We can quantify this
simple physics by considering a balance between the initial angular momentum of
the puck and its angular momentum after displacement equatorward toward larger R.
(Note that displacement toward larger Ralso occurs if the puck is compelled to move
in the relative vertical direction.) If we let §u signify the induced westward motion
at the new radius of rotation, R + 8 R, then conservation of angular momentum is
given by

> u >
QR =(Q R+ 8R)%. 2.20
< + R SR) (R+3R) (2.20a)
Expansion of (2.20a) yields
QrR? = (g R® 4+ 2RSR + 8RY). 2.20b
( + R+ R)( + +8R%) ( )
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Since § R (and §u) are so small, we will neglect the products of such differential terms
so that (2.20b) becomes

> Su > >
QR*=(Q R*+2R4R 2.20
( b R) (R +2R6R) (2,200
or
52 52 5 R?
QR = QR +2QRJR 2.20d
+ + 2 IR ( )
which reduces to
- R28 - -
2QRSR = —— % or 2QR8R = — Réu. (2.20¢)
R+6R
In the end, we find that
Su= —2Q06R. (2.21)

The incremental zonal velocity §u can be induced by both meridional (i.e. north/
south) motion or by vertical motion as illustrated in Figure 2.8. The incremental
radius of rotation, § R, has components in the vertical and meridional directions. By
the similar triangles in Figure 2.8, we see that sin¢g = § R/—8y and cos¢ = §R/Sz.
Thus, for meridional motions,

du=—29(—38ysing) = 2Qsinp(8y). (2.22a)

Figure 2.8 Illustration of the effect of vertical and meridional motions on !he radius of rota!ion, R.
Upward and equatorward displacements produce an incremental increase in R, indicated by 6 R
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As can be seen in Figure 2.8, however, §y = ad¢, so (2.22a) can be rewritten as
du=2Qsingpadp. (2.22b)

If we divide both sides of (2.22b) by the incremental 8 and take the limit as §t — 0,
we get

du ) do
— =2Q — ). 2.2
7 sin ¢ <a dt) (2.23a)
Since ad¢/dt = v and f = 2Qsin ¢, (2.23a) can be rewritten as
du
— = . 2.23b
o fv ( )

It is clear from (2.23b) that equatorward motion in the northern hemisphere (v <0)
will induce a westward-directed zonal motion in accord with our physical intuition
in the face of angular momentum conservation. Such a circumstance implies that the
Coriolis force, in this instance, again compels an object to the right of its intended
path.

Considering Figure 2.8, and (2.21), we see that for vertical motions

du= —2Qcospdz. (2.24a)
Once again, dividing both sides by §¢ and taking the limit as §¢ — 0 results in
W ecos (P W Qcoss (2.24b)
— =— — ) or — =— . .
7 cosp | ) or — cos pw

Thus, the full expression for the Coriolis force arising from meridional motions is
given by

d
au_ fv —2Qcospw (2.25)
dt
while the full 3-D Coriolis force is given by
d
d—t; = fv —2Qcospw
dv
—_—=— 2.26
dt fu (2.26)
dw 29 cos b
— =2Qcos pu.
dt

The Coriolis parameter, f = 22 sin ¢, is worth some special consideration before
we leave this subject. The Coriolis parameter’s dependence on latitude squares with
our intuitive sense that the effect of rotation does indeed vary with latitude. We notice
that the Coriolis parameter is identically zero at the equator and is a maximum at
the poles. Since the Coriolis force is an apparent force arising from the acceleration
of our Earth-based coordinate system, assigning a value for €2, the rotation rate, is
rather more involved than you might think.
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Figure 2.9 lllustration of the rotation of Earth on its axis with respect to its revolution around the
Sun. The thick black line represents the Earth’s revolution while the curved thin arrow represents the
rotation. Gray shading is the plane of the ecliptic

The solar day represents the amount of time between successive local noontimes
(i.e. moments at which the Sun in highest in the sky at a given location) and is 24 h
long. As shown in Figure 2.9, the Earth revolves around the Sun in a counterclockwise
fashion as viewed from above the plane of the ecliptic. Even if the Earth were not
rotating on its axis, the revolution would provide one rotation each year — from east
to west! In addition, during the year the Earth rotates (from west to east) through
365.25 solar days. Thus, as viewed from the perspective of the distant, fixed stars, the
Earth must actually rotate 366.25 times (from west to east) on its axis in one year’s
time. Each rotation with respect to the fixed stars is therefore completed in

(365.25 solar days) x (24 - 3600 s solar dayfl)
366.25 rotations

= 86156.09 s rotation ",

the length of the sidereal day. In order to apply Newton’s laws accurately, we have to
correct for the acceleration of our Earth-based coordinate system as viewed from the
perspective of the fixed stars. Thus, €2 is determined using the length of the sidereal
day as

2

Q=—"_ =7292x10s""
86 156.09 s

Finally, it is important to note that since the Coriolis force always acts perpen-
dicular to the motion vector, it can do no work on the moving particle since work
is the scalar product of a force and a vector distance. Thus, the Coriolis force can
only change the direction of motion but cannot initiate motion in an object at rest.
We have now considered all the forces necessary to formulate the equations of mo-
tion on the rotating Earth from which we will investigate the fluid dynamics of the
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mid-latitude atmosphere. We will see in the next chapter that these equations are
simply an expression of the conservation of momentum in the fluid atmosphere.

Selected References

Holton, An Introduction to Dynamic Meteorology, provides a thorough discussion and derivation
of the fundamental and apparent forces.
Hess, Introduction to Theoretical Meteorology, offers similar material conveyed lucidly.

Problems

2.1. Solong as it is shallow, water is a fluid with constant density. Use this fact to help solve
the following problem.

(a) Develop a relationship for the horizontal pressure gradient force in terms of
depth (h) of water in a shallow container.

A cylindrical tank of water is set on a turntable. The radius of the tank is ry and
the depth of the water is z.

(b) The turntable is turned on (with rotation rate w) and the system is allowed to
equilibrate. Derive an expression for the height of the water surface, h, as a function
of radius.

(c) Express h(r) in terms of zy (Hint: consider the volume of fluid in the container.)

(d) Ifrp = 1 m, what rotation rate is required to raise the water level on the outer edge
of the tank to h = 2zy?

2.2. Abaseball player at 30°N latitude throws a ball northward a horizontal distance of 75 m
in 2's. In what direction, and by how much, is the ball deflected laterally as a result of

the rotation of the Earth?

2.3. Given the picture in Figure 2.1A, prove that o = .

a Cosg
Figure 2.1A '

2.4. While taking an eastbound train to work, a passenger of fixed mass finds that she weighs
542 N. On the way home she weighs herself again while the train is at full speed and
finds she weighs 543 N. If she works 50 km from home, how long is her commute if she
lives at 40°S? (You may assume that the average speed of the train is its full speed.)



