ENV 407 – Atmospheric Processes: From Clouds to Global Scales Hydrostatic Equilibrium – Hypsometric Equation

1. Using the equation we derived for barometric pressure as a function of altitude calculate H for a dry atmosphere with an effective temperature of 273°K.

a) sure isothermal, dy atmosphere
$$\frac{dp}{dz} = -\frac{Pg}{R_{0}T} \Rightarrow lu\frac{P}{P_{0}} = -\frac{gz}{R_{0}T} \Rightarrow H = \frac{8.314}{9.81} = \frac{8.314}{9.81} = \frac{1.314}{9.81}$$

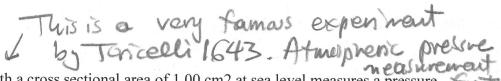
2. For the value of H calculated above determine the altitude where P = 0.5 atm.

3. For the value of H calculated above what is the air pressure in atmospheres at the top of Mt Everest (8.85km)?

$$l_{\frac{1}{1}} = -\frac{2}{4} = -\frac{8.85}{7.98} \Rightarrow P = P_0 \exp(-1.1) = P_0 0.33 = 0$$

4. On Mars the atmosphere is mainly CO2, the temperature is 220°K and the acceleration of gravity is 3.7 m/s2. What is the scale height of the Martian atmosphere? Compare the scale height to the Earth's atmosphere and explain why they scale heights are different.

Compare the scale height to the Earth's atmosphere and explain why they scale heights are different.


$$H = \frac{8.314}{44 \times 10^{-3}} = 11.24 \text{ km}$$

$$3.4$$

So P drops less with altitude for Mars

(H=11,24km) compared to Earth (7.98km).

That is mot likely because of the reduced grand of Mars, because it atmosphere has "heavier" molecules (cor vs N2/02).

5. A barometer with a cross sectional area of 1.00 cm2 at sea level measures a pressure of 76.0 cm of mercury. The pressure exerted by this column of mercury is equal to the pressure exerted all the air on 1 cm2 of earth's surface. Given the density of mercury of 13.6 g/cm3 and the average radius of the earth of 6371 km, calculate the total mass of the Earth's atmosphere in kilograms.

Surfave area 1cm²
= 13.6×103 kg m-3 × 0.76m × 9.81m s-2
= 1.014×105 Pa

So Matmosphere = 1.014 ×105 × [471 (6371×103)2] = 5.27 ×1018 kg

6. An air bubble with a radius of 1.5 cm at the bottom of a lake where the temperature is 8.4° C and the pressure is 2.8 atm rises to the surface, where the temperature is 25° C and the pressure is 1.0 atm. Calculate the radius of the bubble when it reaches the surface. Assume ideal gas behavior. The volume of a sphere is $(4/3)\pi r^3$ where r is the radius.

don't have to do this.