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Mass, Momentum, and Energy:
The Fundamental Quantities
of the Physical World

Objectives

Study of the physical world tends to be focused on the quantities known as mass, mo-
mentum, and energy. The behavior of the atmosphere is no exception to this rule. In
this chapter we will investigate the manner in which these quantities and their various
interactions serve to describe the building blocks of a dynamical understanding of
the atmosphere at middle latitudes. We must first consider the distribution of mass
in the atmosphere and the force balance that underlies this distribution. A number
of insights concerning the vertical structure of the atmosphere proceed directly from
this understanding.

Beginning with Newton’s second law, we will construct expressions for the con-
servation of momentum in the three Cartesian directions. These expressions are
commonly known as the equations of motion and will serve as the fundamental set
of physical relationships for all subsequent inquiry in this book. Scale analysis of
the horizontal equations of motion will reveal that a simple diagnostic relationship
between the mass and momentum fields, geostrophy, characterizes the mid-latitude
atmosphere on Earth. Finally, employing these equations of motion we will develop
expressions for the conservation of mass and the conservation of energy. We begin
by considering the distribution of mass in the atmosphere.

3.1 Mass in the Atmosphere
For our purposes, we shall define mass as the measure of the substance of an object

and make that measurement in kilograms (kg). Though it was not clear to ancient
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44 MASS, MOMENTUM, AND ENERGY

thinkers like Aristotle,! the atmosphere has mass. In fact the Earth’s atmosphere has a
mass of 5.265 x 10'8 kg! The pressure exerted by this object decreases with increasing
distance away from the surface as the depth of the fluid decreases. As a consequence,
there is a vertical pressure gradient force given by

PGE, i = —~ 2L (3.1)

p oz

which compels atmospheric fluid from higher pressure (near the surface) to lower
pressure (above the surface) and so is directed upward. The fact that the atmosphere
does not race away into space under this forcing is a consequence of the fact that there
is also the force of effective gravity acting on the fluid parcel, pulling it downwards.
This force is given by

Gravity = —gk. (3.2)
The sum of the vertical pressure gradient force and gravity is zero for an atmosphere
at rest. In mathematical terms

1 .
o= (-e-22)i
p oz

or, after rearranging the terms and dropping the k designation for notational
simplicity,

ap

dz
This expression is known as the hydrostatic equation and represents a fundamental
balance characteristic of the Earth’s atmosphere: namely, that the vertical pressure
gradient force is perfectly balanced by gravity. Though strictly true only for an at-
mosphere at rest (hence the static portion of the name), this hydrostatic balance is
obeyed to great accuracy under nearly all conditions in the Earth’s atmosphere.

In order to construct a vertical equation of motion we must take account of all the
forces with components in the local vertical direction. The vertical pressure gradient
force and gravity (combined in the hydrostatic balance) comprise the largest fraction
of these forces. Surely friction, slight though it may be, will also affect motions in
the vertical direction. Also, we have already shown that there is a vertical Coriolis
acceleration induced by zonal motions. Thus, we can write a first approximation to
the vertical equation of motion as

dw 1dp

AR e S SN O Te! . 3.4
I 0oz g+ + (2Qcosp)u (3.4)

_pg. (3.3)

! The theories of the ancient Greek natural philosopher Aristotle (384322 Bc) held sway in many disciplines
for nearly 2000 years! He reputedly conducted an experiment to determine the weight of air. Undoubtedly using
a crude scale, he ‘filled” a leather bag with air, weighed it, and then compared that measurement to the weight
of an ‘empty’ leather bag. Noting no difference between the two, he concluded that air had no weight.
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Figure 3.1 The amount of mass between any two isobaric surfaces is the same regardless of the
thickness of the layer

3.1.1 The hypsometric equation

Consider the unit area column of atmosphere contained between pressure levels
1000 and 500 hPa shown in Figure 3.1. Since pressure is defined as force per unit
area, we have isolated in that column an atmospheric mass sufficient to exert 500 hPa
of pressure. Such a slab of the atmosphere has a unique mass whether it extends
from 1000 to 500 hPa or from 812 to 312 hPa. In fact, the mass of this column can
be precisely calculated as

100 N m ™2
Mass = (500 hPa) x (7’%) x (1m?) x (

! = 5102.04 k
hPa s2) TERE

Though the mass of a 500 hPa, unit area slab of the atmosphere is unique, its depth
might be different from one day to the next. We will refer to this geometric depth as
the thickness between two isobaric surfaces. Clearly, if the thickness varies, then so
does the volume of the unit area slab. The variation of the volume of the slab dictates
that the density of the air contained within the slab varies as well: less (more) dense air
corresponding to a greater (smaller) thickness. By the ideal gas law, less (more) dense
air will correspond to a higher (lower) column average virtual temperature, T,.2
Thus, column average virtual temperature should have a bearing on the thickness
between two isobaric levels.

Combining the hydrostatic equation with the ideal gas law provides convincing
evidence to support this supposition. Recall that the ideal gas law can be written as
p = pRyT, where p is the pressure, p is the density, Ry is the gas constant for dry

2 See Appendix A for a discussion and derivation of virtual temperature, T,.
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air,® and T, is the virtual temperature. Using this expression, the hydrostatic equation
can be rewritten as

a
op = — P8 (3.5a)
0z RyT,
which can be rearranged into
R;T,
— 9 np = 9z (3.5b)

If we integrate this expression between pressure levels p; and p, (p; > p,) at which
the heights are z; and z, (z;, > z;) we get

P2

RiT, (
—/ d 81np=/82. (3.5¢)
P & z

Inverting the order of integration on the LHS of (3.5¢) yields

P 2
R;T,
/ d dlnp= / 0z
g
b2 2z

which can be integrated to give

R,T,
d In <&> =2 — 21 = Az (36)
8 P2

where T, is the pressure-weighted, column average virtual temperature, given by

P
[ T,0lnp
== 2
T, = "p—
Jolnp
P2
The foregoing expression is known as the hypsometric equation and it quantifies
and verifies our suspicion regarding the influence of column average temperature on
the thickness of an isobaric column.

We can express the hypsometric equation (and, therefore, the hydrostatic equation
also) in terms of a quantity called geopotential, ®. The geopotential is defined as the
work required to raise a unit mass a distance dzabove sea level. It quantifies the work
(per unit mass) that is done against gravity in doing so. Mathematically, therefore,
geopotential is given as d® = gdz. Employing this expression, we can rewrite the

3Ry has a value of 287Jkg 'K™! and is equal to the universal gas constant (R* = 8.3143 x
10° JK~! kmol™!) divided by the molecular weight of the atmospheric mixture (28.97 kgkmol~!). ‘Dry’ air
refers to the mixture without the variable water vapor included.
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hydrostatic equation as

9o RiT,
op=—pd® or —=—a=-— .
ap p
Correspondingly, the hypsometric equation can also be written as
R4T,In (ﬂ> =0, — ¢, =AQD.
2]

We will often refer to geopotential height (Z) in subsequent discussions. The geopo-
tential height is simply given by

7 = (3.7)

)
80
where g is the global average gravity at sea level (9.81 m s=2). Thus, geometric height
(z) and Z are just about equal in the troposphere.

There are several important applications of the hydrostatic and hypsometric equa-
tions that have a bearing on the analysis and understanding of mid-latitude weather
systems. One of the most common analysis products used to characterize and un-
derstand the weather is a sea level pressure map. This is a map on which isobars
of sea-level pressure are contoured in an attempt to identify and characterize the
major circulation systems in a given location at a given time. In geographical regions
characterized by high terrain, such as the Rocky Mountains of North America or
the high steppe of Mongolia, the elevation is so far above sea level that use of the
station pressure (i.e. the pressure actually measured with a barometer at the station)
does not effectively contribute to this goal. In such regions the hypsometric equation
can be used to calculate a reduced sea-level pressure (i.e. an estimate of what the
sea-level pressure would be were the surface elevation 0 m). Consider the following
example.

The station pressure at St Louis, Missouri (STL), a city close to sea level, on a certain
day is measured to be 995 hPa. Meanwhile, the station pressure at Denver, Colorado
(DEN), whose elevation is 1609 m above sea level, is measured at 825 hPa. There is
not a horizontal pressure difference of 180 hPa between STL and DEN. Most of the
observed pressure difference is a consequence of the vertical variation of pressure. By
reducing the station pressure to sea level at DEN, we attempt to discover how much
of the observed pressure difference actually is a horizontal pressure difference.

We begin with the hypsometric equation,

RyT,
d ln(ﬂ>:zz—zlez
g b2

with z, = zpgy and z; = 0 (the geometric height at sea level). Correspondingly,
P2 = Pstaapen (Observed station pressure) and p; = psrpa pey (the desired value we
will calculate as sea level pressure at DEN). Finally, T', represents the average column
temperature between sea level at DEN and the station elevation. This is clearly a
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fictitious quantity but we can estimate it by assuming the standard atmosphere lapse
rate (6.5Kkm™") throughout the fictitious column. Rearranging the hypsometric
equation using the given definitions we have

gZDEN —1In <pSLPutDEN) ' (3.82)
Rd Tv pSTA at DEN

Taking anti-logs of both sides yields

gZDiN
< Pstp atDEN) — o RiT,

PSTA at DEN

so that

8Zpex

PstpatDEN = PstaarpEn€ RaTv. (3.8b)

The above expression is known as the altimeter equation and is the standard ex-
pression for reducing station pressure to sea level. Supposing that the surface T,
at Denver is 20°C, we find that the reduced sea-level pressure at Denver would be
998.6 hPa. This value can be usefully compared to the sea-level pressure at St Louis
on a synoptic weather chart.

The hypsometric equation can also be used to gain insights into the large-scale
structure of mid-latitude weather systems. If, for instance, we consider the thickness
between 1000 and 500 hPa at a given station, then (3.6) becomes

Az =

R,T, 1000 R,T, —_
77 = 7 1n2) =203 T,. (3.9)
g 500 g

Thus, a change of 60 m in the 1000-500 hPa thickness corresponds to a 2.96°C mean
temperature change. This fact implies that pressure drops off more rapidly with
height in a cold column of air than in a warm column. The ramifications of this fact
are illustrated in Figure 3.2. in which a cold core cyclone is depicted in a vertical
cross-section. Since the air column in the middle of the cyclone is colder relative to
its surroundings at all levels, the thickness in that column is smaller than anywhere
else. Consequently, the horizontal pressure gradient force, directed inward toward
the center of the cyclone, increases in magnitude with increasing height. Thus, cold
core cyclones, like those that populate the mid-latitudes on Earth, intensify with
height. This characteristic of mid-latitude cyclones will prove to be a major influence
on the dynamics of the cyclone life cycle.

Now that we have acquired a perspective on the distribution of mass in the at-
mosphere, we turn to an investigation of the basic conservation laws that govern its
behavior. The atmosphere, like all physical systems, obeys the laws of conservation of
energy and mass, as well as the slightly more restrictive conservation of momentum.
We begin by considering the conservation of momentum.
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Figure 3.2 Vertical cross-section through a cold core cyclone. ‘Warm’ and ‘Cold’ refer to the column
average temperatures in the three columns. Solid lines are isobars, thin dashed lines are the 0.5 km and
5 km elevation lines. The thick arrows represent the PGF, which is much larger at the top black dots. ‘L’
is the location of the lowest sea-level pressure

3.2 Conservation of Momentum: The Equations of Motion

Newton’s second law is a statement of the conservation of momentum:
d (mV) = Forces Acti Parcel
—(mV) = orces Acting on a Parce
dt g ’

but it is strictly true, as we have already considered, only in an inertial frame of
reference. Since we will find it most convenient to use the x, y, and z coordinates
fixed to Earth for our descriptions of motions, and these coordinates are accelerat-
ing, we have to relate the Lagrangian derivative of a vector in an inertial frame to
the corresponding Lagrangian derivative in a rotating frame. Let Abean arbitrary
vector whose Cartesian components in an inertial frame are

A= Ad+ A+ Ak

and whose components in a coordinate frame rotating with an angular velocity
are
A= Ai+ A + AK.
Now, let d, A/ dt be the total derivative of A in the inertial (absolute) frame, ex-
pressed as
d,A dA.,  dA,, dA,,

dr dtlJr dthL dt
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Notice that in the inertial frame the coordinate directions 7, 7, and k are unchanging.
Taking the same derivative in the rotating frame, however, yields

d,A dA., dA, . dA. o di d) dk
dt= dt1+7]+?k+AxE+AyE+AZE
which can be rewritten as
d,A dA 4 dj dk
= A — 4 AL A (3.10)

given that
dA  dA,, dA, .,  dA ;
—_— l —_—
dt dt dt dt

where d A/dt represents the rate of change of A following the relative motion in the
rotating frame.

The derivatives di'/dt, dj' /dt,and dk’/dt on the RHS of (3.10) represent the rates
of change of the unit vectors e f ' and k' that arise because the coordinate system is
accelerating. It is important to note that each of these derivative terms describes only
the change in direction of the unit vectors since, by definition, the vector magnitudes
are always equal to one. Thus, full expressions for these derivatives are achieved upon
describing the change in direction experienced by each of the unit vectors as a result
of rotation of the Earth.

Figure 3.3(a) illustrates a view of the change of 1" as viewed from the North Pole.
The rotation vector, €2, points upward out of the page. By similar triangles, we find
that 87" = 1'56. Now, upon dividing both sides of this equality by the amount of
time (8¢) it takes to rotate through 80 degrees, and taking the limit of the resulting

8

Figure 3.3 (a) View from the North Pole of the change in the i unit vector (67) and (b) cross-sectional
view of the same vector, &7. 0 is the rotation vector
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Figure 3.4 View from the North Pole of the change in the j unit vector (6 f). 3 is the rotation vector

expression as 8t — 0, we get

di’
dt

81

m —
St
§t—0

., do
1 [
dt

2 2

li = = =i (3.11)

so the magnitude of the vector di'/dt is equal to |2|. It is clear from Figure 3.3(b),
however, that the vector di’/dt is directed inward toward the axis of rotation. Know-
ing that di’/dt is a vector that is both perpendicular to i and has magnitude |2, we
find that its full expression is given by

i -
— =Qx1. 3.12
o (3.12)
Similar relationships exist for d j'/dt and dk’/dt as can be seen in Figures 3.4 and
3.5. Consequently, we can rewrite the last three terms on the RHS of (3.10) as

’ dl/ A/ (Q f/) O (A/ ¢/)
—_— = X1)= X 1),
X dt X X
/ d_j/ A (Q /) _ é (A/ /) d
Y s X J)=8Rx(A,7) an
ak’ I - ,
A = AQ x K) = Q@ x (ALK,

so that

Al di + A dj + A dk QOx (AT +AJ+A)=0x A (3.13)

- - — = X 1 = X . .
*dt v dt zdt x iz z

As aresult, (3.10) can be rewritten as

=L axA (3.14)
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Figure 3.5 View from the North Pole of the change in the k unit vector (6k). € is the rotation vector

for any vector A. This expression describes the relationship between the total deriva-
tive of a vector in inertial coordinates and its associated derivative in a coordinate
system rotating with angular velocity Q.

Employing (3.14), let us now find a relationship between the absolute velocity of
an air parcel ( (7,1) and the velocity of the same air parcel relative to Earth ( (7). We can
do this by applying (3.14) to the position vector 7 (where 7 is a vector perpendicular
to the axis of rotation with magnitude equal to the distance from the surface of the
Earth to the axis of rotation), for a parcel of air on Earth:

il“: - % + O (3.15a)

By definition, d,7/dt = U, and d7/dt = U so the desired relationship is simply
Up=U+Qx7 (3.15b)

which states that the absolute velocity of an object on the rotating Earth is equal to

-

the sum of its velocity relative to the Earth (U) and the velocity of the rotating Earth
itself (Q x 7).
Now if we reapply the previous result to the vector U, we get
d,U, _dU,
e dt
Substituting (3.15b) for Ua above yields

+Qx U, (3.16a)

AU, d - = _ = -

1 :a(U—FerH—Qx(U—I—er)
AU - dF - - = .
ZE—I—QXE—FQXU—FQXQXK (3.16b)



3.2 CONSERVATION OF MOMENTUM 53

Since d7/dt = U and Q x § x 7 = —QZ7, this can be simplified to

U, dU - -
70— T 42Q x U— QF. 3.17
dr o odr X ’ (3.17)

Equation (3.17) states that the Lagrangian acceleration in an inertial system is equal to
the sum of (1) the Lagrangian change of relative U, plus (2) the Coriolis acceleration
from relative motion in the relative frame, plus (3) centripetal acceleration resulting
from the rotation of the coordinates. Recalling Newton’s second law and the fact that
we will consider the pressure gradient force, the frictional force, and gravitational
force as the only real forces acting on the atmospheric fluid, we find that

4. U, dU+2sz U— Q% v + ¢+ F
dr  dt P+
o1, upon rearranging terms,
dU 2 U vpsgtF (3.18)
- = — X — — .
o SVp+g

where the centripetal force has been combined with the gravitational force (¢*) in
the gravity term (g). This expression states that the acceleration following the relative
motion in a rotating reference frame is equal to the sum of (1) the Coriolis force,
(2) the pressure gradient force, (3) effective gravity, and (4) the friction force. Thisisa
major result but it remains in vectorial form only — a form not particularly amenable
to analysis. Since the Earth is nearly a sphere, it will turn out to be quite convenient
to recast this vector expression into spherical coordinates.

3.2.1 The equations of motion in spherical coordinates

Spherical coordinates treat the three dimensions in terms of longitude, latitude,
and geometric height above sea level (4, ¢, z) using unit vectors 1, ], and k in
the description of motions. The relative velocity vector becomes V= ui+ vj + wk
where the components are defined as
B di _ d¢ dz

U= acosq&a, y = QE’ and w= T
where a is the radius of the Earth.* Distances in the zonal and meridional directions
are given by dx = acos¢di and dy = ad¢, respectively. It is important to note
that this coordinate system is not a Cartesian system because the unit vectors are
not constant; they are, in fact, functions of position on Earth. A simple way of
conceptualizing this fact is to consider that all longitude lines converge at the pole.
Therefore, the direction ‘north’ is not pointed in the same absolute direction at every

4 Formally, a should be replaced with (r + a) where r is the distance above sea level and a is the radius of
the Earth. However, for all tropospheric, and nearly all atmospheric, applications, r < a so we simply use a.
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longitude on Earth. This position dependence must be taken into account when the
acceleration vector is expanded into its components
dv. du, dv, dw, di dj  dk
EZEI_'_dt +—k+ —+ dt+ TS (3.19)
We now must deternAline expressions for the last three terms on the RHS of (3.19).
Beginning with di/dt, we simply expand it like any other total derivative to get

u—+v—+w—. (3.20)

We know that 81/3t = 0 as there is no local change in the coordinate direction
(i.e. at any given location, east always points in the same direction). The { direction
experiences no change as one moves north or south along a given longitude line,
nor as one moves up or down in elevation so that 3i/dy and 81/dz are both zero.
However, as we saw already in Figure 3.3(a), the 7 direction does change as one moves
along a latitude circle so that (3.20) can be simplified to

di 81

— =u_—.

dt 5x
The problem becomes one of determining the magnitude and direction of 37/ x.

We can make this determination by considering a horizontal cross-section viewed
from the North Pole as shown in Figure 3.6. It is evident that §x = a cos ¢SA and

(3.21)

that |87] = |1|8A = 81 since 7 has unit magnitude. Therefore,
8i 82 1
ot _ - (3.22a)
§x acosgér  acos¢

with 81 directed toward the axis of rotation. Thus, we must split 87 into components
in order to determine the direction (in terms of X, ¢, z) of §1/5x. With the help

-

o
'

"

Figure 3.6 |lllustration of the derivative g—)’(



3.2 CONSERVATION OF MOMENTUM 55

-,
@ L .3-.;'. OF s
|,_-f': s
[ L 1

Figure 3.7 The northward and vertical components of 67

of Figure 3.7, we see that 87 has components in the j and —k directions. The ]
component is a function of sin ¢ while the —k component is a function of cos ¢. We
find, therefore, that

A

81 (singj — cos pk)

— (3.22b)
8x acos ¢
so that, taking the limit as §x — 0,
d_f _u(sin ¢f — cos ¢IA<). (3.220)

dt acos¢

Next we consider the component form of d j/dt. Once again, this term must be
expanded like any other Lagrangian derivative into
% =%+u§—i+v§—i+w§—]z. (3.23)
As was the case with 7, there is no local time derivative of j nor is there any change
in j resulting from a change in elevation. There are, however, changes in j that arise
from changing position in the x or y direction. Figure 3.8(a) illustrates the geometry
involved in determining 9 j/dx. The hypotenuse S of the lightly shaded triangle is
givenby B = a/tan ¢ sincesin ¢ = (a cos ¢)/B. Knowing this dimension, the darker
shaded triangle, shown independently in Figure 3.8(b), can be used to find 7/ x. It
is clear from Figure 3.8(b) that §x = (a/tan ¢)8« and that 8] = ]S« with 87 directed
in the —x direction. Thus,

3]
ox

tan ¢

a
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Figure 3.8 [lllustration of the x variation of the unit vector J. (a) A 3-D view of the plane on which j
sits (darker shading). Dark-shaded triangle in (a) is illustrated in (b)

or, taking the limit as §x — 0 and incorporating the direction,

(3.24)

dj _ tan¢
ax a

1.

Figure 3.9 illustrates the dependence of j on the y direction. We find that §y =
ad¢ and that |8 ]| = | j8¢| = 8¢. Thus, |8 j/8y| = 1/a with § j directed in the —k

Figure 3.9 The y-direction dependence of
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direction. Again, taking the limit of this expression as §y — 0 yields

37 1,
A - Tk (3.25)
ay a

which, combined with (3.23) and (3.24), results in an expression for d ] /dt:

dj —utang, v,
—=—1——k. 3.26
dt a a (3.26)
Finally, we turn to dk/dt and, recognizing that k has no local time derivative nor
any vertical derivative, obtain that

dk ok ok

— =u— —. 3.27
Ir uax—i-vay ( )

Figure 3.10 illustrates the x-direction dependence of k. Since the triangle of interest
represents a cross-section originating at the center of the Earth, we find that §x =
ad) and that |8k| = |ksA| = 81 directed in the positive x direction. Consequently,
|8k/8x| = 1/a which leads to the differential expression

ok 1,

— = —1. (3.28)

ox a
Using a cross-section like that shown in Figure 3.9, but concentrating on the change
in k over the distance 8y, yields the expression 3k/dy = (1/a) j. Thus, a complete
expression for dk/dt is given by

dk il (3.29)
—_— = —1 — 1. .
dt a a]

Figure 3.10 The x-direction dependence of the unit vector k
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Combining (3.22¢), (3.26), and (3.29) we can rewrite (3.19) in its fully expanded
component form as

av du uvtan¢+uw :y dv+u2tan¢+vw .
- = - - - 1 N - —
dt dt a a dt a a J

d 242
+<W ”+V)k. (3.30)

dt a
This expression describes only the spherical coordinate components of the La-
grangian derivative of the relative motion. Recall that our vector expression for
the equations of motion (3.18) included reference to the pressure gradient, Coriolis,
gravity, and friction forces. In order to obtain a complete component expansion of
the equations of motion in spherical coordinates we must expand the force terms as
well.

The Coriolis force term is given by —2Q x U. Figure 3.11 demonstrates that the
rotation vector, £, is perpendicular to the x direction and so has components only in
the positive  and positive k directions. Considering the trigonometry in Figure 3.11,
it is clear that the k component of € has magnitude Q sin ¢ while the 7 component
has magnitude €2 cos ¢. Thus, the component expansion of the Coriolis force term
can be determined by assessing the following determinant:

i j k
—2QxU=|0 —2Qcos¢p —2Qsing|=—(2Qcospw — 2Qsinpv)i
u v w
—295in¢uf+2§2cos¢ufc. (3.31)
ol
.
Ly
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o
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Figure 3.11 Partition of the rotation vector, ﬁ, into its vertical and meridional components
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The component form of the pressure gradient force is given by

1 1d9p, 1dp., 10p

_;Vp=_;£1_;8_y]_;£k' (3.32)
Gravity, which acts downward in the local vertical direction, is represented by
i =—gh (3.33)
while friction can be represented as
F=F.i+F,j+ Fk (3.34)

Combining (3.30), (3.31), (3.32), (3.33), and (3.34) and separating the component
expression we get the three component equations of motion for flow on the rotating
Earth:

d t 10
an_mwene an ¢ we_ 2% +2Qsingv — 2Q cospw + F, (3.35a)
dt a a pox

d 2t 10
dvjwtang vw 100 o singu+ F, (3.35b)
dt a a p oy

d 2 2 10
wo_uwty =———p—g+2§2cos¢u+ F,. (3.35¢)
dt a p 0z

The various terms in (3.35) involving 1/a arise from the non-flatness of the Earth
and are consequently known as curvature terms. Fach of the curvature terms is
quadratic in the dependent variables (#, v, w) and is thus non-linear and presents
difficulty in analysis. It will soon be demonstrated, however, that these curvature
termsare entirely negligible in any discussion of the dynamics of mid-latitude weather
systems. However, even in the absence of these particular non-linear terms, the
remaining elements of (3.35) also contain non-linear elements since, for instance, in
the expansion of du/dt we get

du du n ou N ou n ou
— =t u—+r—+w—.
dt ot dx dy 0z

The underlined terms are also clearly quadratic in (u, v, w). These terms are
known as the advective acceleration terms and they are comparable to the local
acceleration term (in this case, d1/0t). The presence of such non-linear advection
processes is one reason why dynamic meteorology is so fascinating (and difficult)!

The equations of motion (3.35) are a complicated set of expressions and it is
logical to inquire whether or not they can be simplified. The answer is yes and
we will use the method of scale analysis, introduced in Chapter 1, to accomplish
this simplification. In order to do so, we must first assign observationally based
characteristic values for the set of variables involved in the equations of motion.
Considering just the horizontal velocity, which appears in (3.35) as both u and v,
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Table 3.1 Characteristic scales of the various terms in the horizontal equations of motion

1 2 3 4 5 6 7
du uw uv tan 10

X equation — —2Qsin¢gv  2Qcos¢pw @ — — ¢ _1lop F,
dt a a pox

. dv . uv  Wtang 19p

y equation — 2Qsinpu — [ F,
dt a a pdy
v Uw U2 8 vU

Scales — fHU fow - - 2P el
L a a pL H?

Magnitude (ms™2) 107* 1073 10~ 1078 1073 1073 10712

we know from observations that characteristically the horizontal velocity at middle
latitudes is not as small as 1 ms™! nor is it as large as 100 ms~!. Therefore, a char-
acteristic scale for the horizontal velocity is something close to 10 ms™!. Performing
a similar analysis for the other variables in (3.35) results in the following reasonable
set of characteristic values for the relevant variables:

U~10ms™! characteristic horizontal velocity
W ~1lcms™! characteristic vertical velocity

L~ 10°m characteristic length scale of synoptic-scale features
H ~10*m characteristic depth (i.e. depth of the troposphere)
5p

— ~10°m*s™? characteristic horizontal pressure fluctuation

T ~10°s characteristic time scale.

Of the above values, the one that seems most foreign is the characteristic horizontal
pressure fluctuation. If the characteristic length scale of synoptic-scale features is
10° m, what this variable says is that the ratio of the pressure difference between
adjacent synoptic-scale features is characteristically of order 1000 Pa (10 mb).> The
density of the air is order 1kgm™, so the characteristic ratio across the size of a
typical synoptic-scale disturbance is ~1000 m? s~2. Given such characteristic values,
we are able to estimate the scale of all terms appearing in (3.35). Since our entire
analysis is designed to uncover a simplification of (3.35) that is valid for mid-latitude
synoptic-scale disturbances, we will assume a latitude (¢) of 45° implying that a
characteristic Coriolis parameter is given by fy = 2Qsin ¢y = 2Q cos ¢y = 107*s7 1,
Table 3.1 lists the approximate magnitude of each term in (3.35) based upon the
characteristic scales just described. Note that the friction term is represented by (2.7)
and so involves v, the kinematic viscosity coefficient, in its formulation. Recall that
this parameter has a value of ~1.5 x 107> m? s~ at sea level.

It is clear from Table 3.1 that with scaling appropriate for mid-latitude synoptic-
scale motions, only two terms in the horizontal equations of motion are of order

> This is consistent with synoptic experience in which the pressure difference between adjacent sea-level
high- and low-pressure centers is not as small as 1 hPa nor as large as 100 hPa!
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Figure 3.12 lllustration of the force balance resulting in the geostrophic wind, V,. Arrow PGF repre-
sents the pressure gradient force and arrow COR represents the Coriolis force. The thin dashed lines are
isobars and H and L represent regions of high and low pressure, respectively

1073 or larger: the pressure gradient force and Coriolis force terms. This result im-
plies that, as a first approximation to the full equations of motion (3.35), we can
consider the PGF and Coriolis force terms to be in approximate balance with one
another. This balance is known as the geostrophic balance and it represents the
fundamental diagnostic balance for mid-latitude synoptic-scale flow. What kind
of flow does this geostrophic balance describe? We can get some insight into this
question by considering the balance of forces involved. Consider the set of sea-level
isobars depicted in Figure 3.12. As we noted in Chapter 2, the PGF vector is al-
ways directed from high to low pressure, perpendicular to the isobars as depicted
in Figure 3.12. In order that there be a force balance between the pressure gradi-
ent and Coriolis forces, the Coriolis force vector must be equal and opposite to the
PGF vector as depicted. Since Figure 3.12 represents a hypothetical situation in the
northern hemisphere, we know that the Coriolis force must be directed perpen-
dicular to the motion of the air parcel and to the right. Consequently, as shown in
Figure 3.12, the resulting geostrophic wind flows parallel to the isobars. Were the
isobars more closely spaced in the horizontal, the magnitude of the PGF vector would
be larger and a correspondingly larger Coriolis force would be required to achieve
geostrophic balance. Therefore, the resulting geostrophic wind, though still oriented
parallel to the isobars, would be of larger magnitude as well. Thus, to a fairly high
degree of accuracy, the wind field (a vector quantity of great importance) can be
uniquely specified by a 2-D representation of the scalar quantity, pressure. The mid-
latitude atmosphere on Earth need not have been so accommodating to our desire
for simplicity, but it is! Let us now examine the mathematical expression for the
geostrophic wind.

Considering (3.35a) and (3.35b) we can write component expressions for the
geostrophic balance as

10p 1 dp

—fvg=——7 or v,=

= — 3.36
pox £ pfox (3:362)
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and

1dp 1 dp
Uy = ——— OF U, =———. (3.36b)
s pdy £ pfay

We see from (3.36) that the zonal (meridional) component of the geostrophic wind
depends on the corresponding meridional (zonal) gradient of pressure in accord
with our previous physical examination. In vector form, (3.36) becomes

- 1 9p., 1 dp . 1 .
% Pif — %0 " ixwp (3.37)

—— 1

— 4 S
T T ofay T ofox’ T pf

which clearly demonstrates that the geostrophic wind (\7g) must always be parallel
to the isobars (i.e. perpendicular to Vp) with a magnitude dependent on the inverse
of density, the inverse of the Coriolis parameter, as well as the magnitude of the
pressure gradient. Some other conclusions regarding the nature of the geostrophic
flow can also be determined from (3.37). For a given magnitude of pressure gradient,
the resulting geostrophic wind will be larger at lower latitude where the Coriolis
parameter is smaller. However, the geostrophic balance cannot be considered at the
equator (or very near it either) as at such low latitudes, the inverse of the Coriolis
parameter becomes very large and the resulting \7g no longer bears a resemblance to
the actual wind, V. For mid-latitude flow, however, the geostrophic wind is usually
within 10-15% of the observed wind. This observation does not imply that the mid-
latitude atmosphere has a predilection for this simple balance, it instead testifies to
the enormity of the two forces, PGF and COR, at middle latitudes.

Given that geostrophy is a balance between the PGF and Coriolis forces, we might
inquire under what conditions is geostrophic balance met? Note that in (3.36) there
is no reference to du/dt or dv/dt. As a consequence, the geostrophic wind is only
strictly valid in regions of zero wind acceleration. Since the wind is a vector quantity,
with magnitude and direction, if either of those properties is changed over time, the
wind has been accelerated. Thus, two broad categories of flow in the atmosphere
will violate the geostrophic balance: those characterized by (1) wind speed changes
along the flow, and/or (2) wind direction changes along the flow. Figure 3.13 is a
randomly selected northern hemisphere analysis of isobars and isotachs (lines of
constant wind speed) at 9 km elevation. It is immediately clear that regions of along-
flow speed variation and/or along-flow curvature are so numerous as to be the
rule rather than the exception. The along-flow speed changes are most prominent
in the vicinity of the local wind speed maxima known as jet streaks. Along-flow
direction changes are most obvious in the vicinity of troughs and ridges in the
pressure field. These locations, as we will show presently, are commonly associated
with sensible weather in the form of circulation systems, clouds, and precipitation.
The degree of departure from geostrophic balance that characterizes these regions
can be assessed by considering the difference between the actual wind at a location
and the calculated geostrophic wind at the same point. This difference is known as the
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Figure 3.13 Isobars and isotachs at 9 km elevation from the National Center for Environmental
Prediction’s Global Forecast System initialization at 0000 UTC 23 February 2004. The isobars are
labeled and contoured every 5 hPa and the isotachs are shaded every 10 ms—! starting at 30 ms!

ageostrophic wind, \7ag, and is defined mathematically as

Vo= V= V.

(3.38)

We can introduce some prognostic power to our simplified versions of (3.35) by
retaining the next largest order terms from Table 3.1: namely, du/dt and dv/dt. The

resulting expressions are

du 1dp
FTEREAGPFF:
1
ﬂ:—fu——a—p.
dt pay

If we now substitute (3.36) into (3.39) we get

du

dr

dv

fv=fvg=flv—vg) = frg

d_tz—fu—i— fug=—f(u—ug) =—fuy

(3.39a)

(3.39b)

(3.40a)

(3.40b)
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Table 3.2 Characteristic scales for the terms in the vertical equation of motion

1 2 3 4 5 6
dw —(u? +v?) 19dp
- @ wrv) 2%, F
it cospu . 9z g .
uw U? VW
Characteristic scales —— foU - P g Z
L a pH H?
Magnitudes (ms™2) 1077 1073 1073 10 100 107V

which can be written in vector form as

dv .
= fkx Vi (3.41)

This expression clearly shows that the ageostrophic flow is associated with regions
of Lagrangian acceleration of the wind. In the next section we will demonstrate why
this ageostrophic wind is of such vital importance to understanding the dynamics of
the mid-latitude atmosphere.

Given that geostrophic balance is such a strong constraint in the middle latitudes,
there are many settings in which the ageostrophic wind is a very small portion of the
actual wind. Therefore, it would be convenient if there were some easy way to charac-
terize a flow to determine if it is likely to be nearly in geostrophic balance. Physically,
a given flow will be nearly in geostrophic balance if the Lagrangian acceleration term
(du/dt or dv/dr) is small compared to the Coriolis force term, as suggested by our
scaling and Table 3.1. Recalling that the acceleration term is represented as U?/L
and the Coriolis force is scaled as fyU, then the ratio of these two accelerations is
given by

Lagrangian Accel. ~ U*/L U
Coriolis Accel. ~— foU — foL’

Notice that this ratio is non-dimensional (i.e. it is just a number without units)
and that if it is less than 0.1 for a given flow it testifies to the fact that the Coriolis
acceleration is atleast 10 times larger than the Lagrangian acceleration. In such a case,
itis quite reasonable to approximate the flow as nearly geostrophic. The ratio defined
in (3.42) is known as the Rossby number ( R), after the famous atmospheric/oceanic
scientist Carl Gustav Rossby.® We will hereafter often refer to flows that are nearly in
geostrophic balance as low-R flows. High- R, flows will, conversely, be characterized
as rather far from geostrophic balance.

Thus far we have discussed the results of a scaling of the horizontal equations of
motion. A similar exercise must now be performed on (3.35¢), the vertical equation
of motion. Table 3.2 shows the characteristic scales of the various terms in (3.35¢)

(3.42)

6 Carl Gustav Rossby (1898-1957) was a Swedish—American scientist who founded the first meteorology
department in the United States at the Massachusetts Institute of Technology (MIT) in 1928. Rossby uncovered
many of the basic principles of modern dynamical meteorology during the decades of the 1930s and 1940s.
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along with their usual magnitudes for mid-latitude weather systems. Even more
robustly than was the case for the horizontal equations, the vertical equation of
motion is dominated by two terms: the vertical PGF and gravity. We have already
seen that these two vertical forces are combined in the hydrostatic balance. Thus, a
formal scaling of the equations of motion for mid-latitude synoptic-scale motions
renders the following fundamental statement regarding the nature of the mid-latitude
atmosphere on Earth:

To a first order, the mid-latitude atmosphere on Earth is in hydrostatic
and geostrophic balance.

3.2.2 Conservation of mass

Imagine trying to fill a small basin with water from a hose. If there is a leak in the

basin then one needs to know both the inflow rate from the hose as well as the outflow

rate through the leak in order to accurately gauge the filling rate. If the inflow rate is

suddenly increased while the outflow rate remains the same it is simple to conclude

that the mass of water in the basin will increase. If we designate the mass of water in

the basin as M,,, then a simple expression of the mass continuity equation becomes
oM,

=7 = Inflow Rate — Outflow Rate.

We can think of a slightly more abstract representation of this idea, illustrated in
Figure 3.14, by considering an infinitesimal cube, fixed in space, through which air
flows. The x-direction mass flux (i.e. the product of the x-direction velocity and the
density of the fluid) at the center of the cube is given by pu. Upon expanding this

&
friffom i Chitilen
— - E—t—
A B
I.-'.l.
> 4l
7

Figure 3.14 Schematic of x-direction flow through a cube fixed in space. The rate of mass flux is given
by the product pu. Accumulation of mass at the center point occurs when the inflow rate exceeds the
outflow rate
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function in a Taylor series about the center point we find that the rate of mass inflow
through side A of the cube is given by

d 8x
pu— —(pu)— | 8ydz (3.43a)
ax 2

while the rate of mass outflow through side B of the cube is given by

0 é
|:pu+ —(pu)—xi| 8ydz. (3.43Db)
0x 2

Now, just as in our simple example above, the rate of accumulation of mass (as a
result of x-direction flow) inside the infinitesimal cube must be equal to the inflow
rate minus the outflow rate. Using (3.43) this is expressed as

a M,
at

8( )6x 58 L 8( )8x 58
=|pu— —(pu)— z — u+ —(pu)— z
pu——(pu)= |38y put ——(pu)= |3y
a
= ——(pu)dxdydz (3.44)
0x

where M, represents the rate of mass accumulation in the cube resulting from x-
direction mass flux divergence. Similar expressions representing the rates of mass
accumulation in the cube resulting from y- and z-direction mass flux divergences
are given by

oM, oM,

9 (pv)6xsysz and 9 pw)sxsys
—_— = —— V)oX Z an = —— w)ox z
ot 9y PYIOXY ot 9z PYIOXY

so that the net rate of mass accumulation in the cube is represented as

oM 9 9 9
— == — — 5x8y82. 3.45
Y [ax(pu)Jr ay(pV)Jr 8Z(/)W)] x8ydz (3.45)

By definition, the net mass accumulation rate per unit volume is equal to the Eulerian
rate of change of the density. Thus, dividing (3.45) by the volume of the cube (§ x5y 2)
yields

o _ |2 9 9 =V (pV
5 = [ax(pu)+8y(pv)+8z(pw):|_ V- (pV). (3.46)

The expression above is known as the mass divergence form of the mass continuity
equation. An alternative form of this expression arises by recalling that

V~(p‘7)=pv-\7+\7-v,o
so that (3.46) becomes

ap - - 1 dp >
— 4+ V.-Vp+pV- V=0 or ——+V.-V=0 (3.47)
ot p dt

which is known as the velocity divergence form of the mass continuity equation.
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This exact same relationship can be derived for a cube of fixed mass, M, but vary-
ing dimensions §x, 8y, and §z. Given that the mass in this example is fixed, then
d(M)/dt =0or

d(pSx8ydz) dp d(x) d(8y) d(8z)
—— " =0=—38x8y8 —8y8 —=5x6 §x8
I dtxyz—l—p a7 yoz+ p i x0z4+ p ; X0y
(3.48a)
by the chain rule. Now
d(x)
im =adu
§x—0 dt

with similar expressions applying for the last two time derivatives in (3.48a). There-
fore, dividing both sides of (3.48a) by the volume of cube gives

%+p%+pg—;+p%—t=%+pV~V= (3.48b)
which can be easily rearranged into (3.47).

It is instructive at this point to consider the implications of (3.47) for the fluid
atmosphere. A fluid in which individual parcels experience no change of density
following the motion (i.e. dp/dt = 0) is known as an incompressible fluid. Con-
versely, a compressible fluid is one in which the density can change along a parcel
trajectory. As you might guess, the atmosphere is a compressible fluid, but for many
atmospheric phenomena the compressibility is not a major physical consideration.
In such cases, the mass continuity equation becomes a statement of zero velocity
divergence. We will see later that choice of a different vertical coordinate will render
the continuity equation in a much simpler, unapproximated form.

3.3 Conservation of Energy: The Energy Equation

The law of conservation of energy states that the sum of all energies in the universe is
constant. This is a valuable piece of knowledge but there are many different kinds of
energies manifest in the atmosphere including kinetic energy, potential energy, latent
heat energy, and radiant energy to name a few. Of all these types, radiant energy from
the Sun is the source of nearly all of the total energy in the atmosphere/ocean system.
When solar radiation is absorbed at the Earth’s surface and in the atmosphere it
appears as internal energy, made manifest as a temperature change. Given the many
other kinds of energy involved in the atmosphere/ocean system, one of the major
problems in the atmospheric sciences is determining how this internal energy is
converted into the other forms of energy.

We can get some insights into the nature of the energies in the atmosphere by
taking the dot product of the acceleration vector, d V/dt, with the velocity vector,
V. This operation is the mathematical equivalent of multiplying the component
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equations of motion (3.35a, b, and ¢) by their respective component velocities (u, v,
and w). The resulting expressions are

1d(u?) wvtang u’w uadp
Z — + — =——— +2Qsin¢uv —2Qcospuw + uF,
2 dt a a pox
(3.49a)
1d(v? 2yt 2 0
Z (v)+uv an¢+ﬂz—1—p—295m¢uv—l—vF (3.49b)
2 dt a a pdy
1 d(w? 24,2
z (w?) _ W +v7) = —K—p —gw+2Qcospuw + wF,. (3.49¢)
2 dt a p 0z

Summing the component expressions (3.49) together we note that all of the Coriolis
and curvature terms sum to zero resulting in

2
i[w}:—lV~Vp—gw+\7-ﬁ. (3.50)
dt 2 0
The LHS term in (3.50) represents the rate of change of the total kinetic energy (per
unit mass) of the flow and so is a rate of work term. The first term on the RHS of (3.50)
is pressure advection divided by density. When the velocity vector is directed across
isobars from high to low (low to high) pressure, (3.50) shows that kinetic energy is
produced (consumed). Note that if the flow were purely geostrophic, V.V p would
vanish. This term is often referred to as the pressure work term and describes the
rate of work done by the ageostrophic flow across isobars.
By definition, w = dz/dt, so that —gw can be rewritten as

where ¢ is the geopotential, a measure of the work required to raise a unit mass a
distance, z, above sea level. It is instructive, therefore, to rewrite (3.50) as

d [ +v?+w?) N
dt 2

¢}=—l\7-vp+ V.F (3.51)
ol

where the LHS represents the sum of the kinetic and potential energies per unit mass
of an atmospheric parcel. The last term on the RHS of (3.51) represents the energy
dissipated by the action of the friction force (F ). Note that since V and F are almost
always opposite one another, the product V - F will be negative and the total kinetic
and potential energies of the parcel will decrease in the presence of friction in accord
with physical intuition.

Since (3.51) is derived from the equations of motion it deals only with mechanical
forms of energy and is therefore referred to as the mechanical energy equation. In
order to include thermal energy we must include the first law of thermodynamics in
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the form

. dT da
Q= CVE + pE (3.52)

where Q represents the diabatic heating rate, c, is the specific heat of dry air at
constant volume (717 Jkg™ ! K™1), and « is the specific volume. This expression
relates the important fact that absorption of solar radiation (represented by Q) can
be converted to both internal energy (in the form of a temperature increase) or
mechanical energy made manifest in expansion work (represented by the expansion
term, do/dt). By rearranging (3.51) as

_d [ 4y +w?)
S dt 2
we can add zero to both sides of (3.52) to yield

de d |:(u2+v2+w2)

1~ L
+¢}+—V-Vp—V-F
ol

0

. dr
Q:Cv_+p—+ B

1 - .
SV.Vp—V.E. (353
ar P T @ +¢i|+,0 p (3:53)

Noting that (1/;0)\7 - Vpisequal toa(dp/dt — dp/dt), and that

do dp d
we can regroup terms and rewrite (3.53) as
.d [+ v+ w?) ip = =
= | =TT T —aL —V.F 54
Q dt|: 3 +od+c +pai| @ (3.54)

which is known as the energy equation. This relationship implies that if the flow
is frictionless (F = 0), adiabatic (Q = 0), and steady state (dp/dt = 0), then the
quantity
(12 +v2 + w?)
2
is constant. This is a special case of Bernoulli’s’ equation for an incompressible flow
in which the quantity
(1> + v> + w?)
2
This relationship suggests that for an atmosphere at rest, any increase in elevation
results, unsurprisingly, in a decrease in the hydrostatic pressure. If the atmosphere is

in motion, however, a larger pressure difference will result over the same elevation
interval since the difference, in this case, is a difference in the dynamic pressure. For

+¢+c¢, T+ pa

+ ¢ + pa = Constant.

7 Daniel Bernoulli (1700-1782) was a Swiss mathematician and fluid dynamicist. Though from an illustrious
family of mathematicians, he studied medicine at his father’s insistence and discovered a means to measure blood
pressure that was used until the dawn of the twentieth century. When he was 25, Catherine the Great appointed
him Professor of Mathematics at the Imperial Academy of St Petersburg where Leonhard Euler became one of
his first students. He developed the fluid dynamical equation that bears his name at the age of 30.
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Figure 3.15 Flow over a hill illustrating the effect of dynamic pressure. Thin lines are streamlines of
the flow — the closer the streamlines in the vertical, the greater the flow speed. Since u, > 0, p; is less
than the hydrostatic pressure at height z

flow over the hill in Figure 3.15, as the air rises over the hill, the speed of the flow
increases. Thus, the pressure difference between the top and the bottom of the hill
(p2 — p1) must be larger than their hydrostatic pressure difference because the wind
speed is higher at the top than at the bottom of the hill (u, > u;).

Two additional relationships of meteorological consequence arise from further
consideration of aspects of the energy equation. First, an illuminating alternative
expression for the first law of thermodynamics arises from combining (3.52) and the
ideal gas law. Differentiating the gas law with respect to time yields

do N dp RdT

P 7% T Nar

Substituting for pda/dt (from (3.55a)) in (3.52), and recalling that ¢, = ¢, + R,
yields

(3.55a)

dT dp .

If we then divide (3.55b) by T, noting that«/ T = R/ p, we get

din T dlnp_Q
Cp T — R ST (3.55¢)

where Q/ T is known as the entropy. If the entropy is constant with time, then we
have an isentropic process and, consequently,

dinT Rdlnp
C — =
Pdr dt

Integration of (3.55d) froma given p and T to areference pressure, py,and areference
temperature, 0, defines what is known as the potential temperature. We begin by
noting that

0. (3.55d)

0 Po
/cpdlnTszdlnp
T p

which yields
cp(Inf —InT) = R(In py — In p).
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Rearranging the above expression and taking anti-logs results in

9 = <@> Toor 0=T (@>CP , (3.56)
T p p

known as the Poisson equation.

Physically, 6 is the temperature a parcel of air would have if it were adiabatically
compressed (or expanded) from its original pressure, p, to a reference pressure, py
(usually 1000 hPa). Every air parcel has a unique value of 6 and that value is conserved
for adiabatic processes (i.e. conditions in which the entropy does not change). For
this reason, lines of constant 0 are often referred to as isentropes and flow along
surfaces of constant potential temperature is known as isentropic flow.

Finally, if we take the log differential of (3.56) with respect to height (z) we get

dlndé 9dInT R (/91 ol
n _ n + = npO _ l'lp ) (3.573)
0z 0z Cp 0z 0z
Since py is a constant, its derivative is zero and (3.57a) can be rewritten as
100 10T R 9
SO R (3.57b)
00dz Toz «cypdz
Substituting for dp/dz from the hydrostatic equation yields
1060 19T R
- 2PE (3.57¢)

09z Tz  cpp

Finally, with the help of the gas law and some rearranging, (3.57¢) can be written as

Too 9T

SR 4 (3.57d)

00z 9z ¢
which yields an expression for the dry adiabatic lapse rate (I';). If 6 is constant
with height (i.e. the lapse rate is dry adiabatic), then —0T/dz=Ty=g/c, =
9.8°Ckm™!. When 96/dz is non-zero, the lapse rate (I' = —9 T/dz) is given by

r=ry———. (3.58)

Based upon (3.58), there are three conditions for stability that can be assessed. First,
when 96/0z > 0,thenI" < I'y which corresponds to a statically stable stratification.
In such an environment, a lifted parcel of dry air (which must cool at the dry adiabatic
rate) will always be cooler than its new environment. Second, when 06 /0z = 0, then
I' = I'; and the stratification is said to be neutral and a lifted parcel of dry air will
always have the same temperature as its new surroundings. Finally, when 90 /9z < 0,
then I" > T"; which corresponds to an absolutely unstable stratification. In such a
case, a lifted parcel of dry air will always be warmer than its new surroundings and
will, therefore, freely convect.

In the statically stable case just described, a lifted parcel, being colder than its
environment upon being lifted, will be forced back downward to its original level
once the impulse that forced it to rise is exhausted. A series of oscillations about that



72 MASS, MOMENTUM, AND ENERGY

original level will ensue. The frequency of these buoyancy oscillations is dependent
on the restoring force that compels them. In this case, the restoring force (per unit
volume) is the product of gravity and the density difference between the displaced
parcel and its environment.

If we let 8z be the vertical displacement of an air parcel about its original level,
then Newton’s second law tells us that

F, dw B d*(8z)
Mass  dt  df
Letting p (p’) and T (T’) be the density and temperature of the environment (parcel)
and assuming that the pressures of the parcel and the environment are always equal,
then the restoring force (per unit volume) for a displaced parcel is given by
F,
Volume

(3.59a)

=—(p' — 0)g. (3.59b)
Thus, the restoring force per unit mass for the displaced parcel can be written as

F. (P —p)g
Mass o

(3.59¢)

Employing the gas law allows this expression to be rewritten as

Foo (1 1\ T_T 3390
Mass . \r7 ~T)&8 T8\ ) '

Now we can say that (T — T”) is equal to (I'y — I')§z since the dry parcel cools
at the dry adiabatic lapse rate and must be compared to the environment whose
temperature changes at a rate described by I'. Therefore, the restoring force per unit
mass can be written as

F, g
=—=(Ty;—-T)é 3.59
Mass T( ¢ oz (3.55)
so that (3.59a) becomes a second-order, ordinary differential equation
d*(6z) g
=Ty —-T)sz=0 3.60
2 & - s (3.60)
whose solution describes a buoyancy oscillation with period 277/ N where
1,
8 h
N= [— r,—T ]
T( a—T)
or, substituting from (3.58),
Y
901>
N= |22, (3.61)
00z

Nisknown as the Brunt-Viisili frequency and has units of s ! Itis clear from (3.61)
that for the condition of neutrality alluded to earlier (i.e. 36/dz = 0), N =0 and
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there is no buoyancy oscillation physically consistent with a neutral displacement.
For the statically stable case (i.e. 39/9z > 0), N > 0 and buoyancy oscillations are
observed. For the absolutely unstable case (i.e. 36/dz < 0), N is imaginary and in
perturbation theory such a case corresponds to a growing disturbance. Physically,
this is consistent with the fact that in an absolutely unstable stratification, a lifted
parcel of dry air will always be warmer than its environment and therefore, according
to (3.59), experience an upward-directed buoyancy force without interruption. It is
important to note that instances of absolute instability are exceedingly rare and, even
when they do exist, are very short-lived as the atmosphere mixes rapidly toward
neutrality in such instances.

Selected References

Hess, Introduction to Theoretical Meteorology, offers an alternative perspective on accelerating
reference frames.

Holton, An Introduction to Dynamic Meteorology, provides discussion of many of the same issues.

Brown, Fluid Mechanics of the Atmosphere, provides illuminating discussion of the energy equation.

Acheson, Elementary Fluid Dynamics, discusses many of the same issues.

Problems

3.1. Assume that air flows over a broad building 10 m high. The flow is in steady state and
the density is constant (p = 1.3kgm™) through this depth of the atmosphere. The

observed speed at ground level is 5m s™! while on the rooftop itis 9ms™!.

(a) What is the pressure difference, in hPa, between the ground and roof level?

(b) How much of this pressure difference is purely hydrostatic?

(c) Whatis the magnitude and direction of the non-hydrostatic pressure gradient force
vector generated by these circumstances?

In all of the above, you may neglect the vertical variation in temperature.

3.2. (a) Prove that the divergence of the geostrophic wind is given by
V. \7g = —V,(cotp/a)

where a = radius of the earth and ¢ is latitude.

(b) Explain why (physically) this is true. (Hint: recall that the magnitude of the Coriolis
force depends on wind speed.)

(c) Calculate the divergence of the geostrophic wind at 43°N at a point where |v,| =
20ms~.

3.3. The perturbation ocean surface height (POSH) is defined as the height of the local ocean
surface above or below mean sea level (which is 0 meters). Suppose a sophisticated
satellite instrument is built that can measure the local POSH to an accuracy of 1 cm. A



