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Mass, Momentum, and Energy:
The Fundamental Quantities
of the Physical World

Objectives

Study of the physical world tends to be focused on the quantities known as mass, mo-

mentum, and energy. The behavior of the atmosphere is no exception to this rule. In

this chapter we will investigate the manner in which these quantities and their various

interactions serve to describe the building blocks of a dynamical understanding of

the atmosphere at middle latitudes. We must first consider the distribution of mass

in the atmosphere and the force balance that underlies this distribution. A number

of insights concerning the vertical structure of the atmosphere proceed directly from

this understanding.

Beginning with Newton’s second law, we will construct expressions for the con-

servation of momentum in the three Cartesian directions. These expressions are

commonly known as the equations of motion and will serve as the fundamental set

of physical relationships for all subsequent inquiry in this book. Scale analysis of

the horizontal equations of motion will reveal that a simple diagnostic relationship

between the mass and momentum fields, geostrophy, characterizes the mid-latitude

atmosphere on Earth. Finally, employing these equations of motion we will develop

expressions for the conservation of mass and the conservation of energy. We begin

by considering the distribution of mass in the atmosphere.

3.1 Mass in the Atmosphere

For our purposes, we shall define mass as the measure of the substance of an object

and make that measurement in kilograms (kg). Though it was not clear to ancient
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thinkers like Aristotle,1 the atmosphere has mass. In fact the Earth’s atmosphere has a

mass of 5.265 × 1018 kg! The pressure exerted by this object decreases with increasing

distance away from the surface as the depth of the fluid decreases. As a consequence,

there is a vertical pressure gradient force given by

PGFvertical = −
1

ρ

∂p

∂z
k̂ (3.1)

which compels atmospheric fluid from higher pressure (near the surface) to lower

pressure (above the surface) and so is directed upward. The fact that the atmosphere

does not race away into space under this forcing is a consequence of the fact that there

is also the force of effective gravity acting on the fluid parcel, pulling it downwards.

This force is given by

Gravity = −g k̂. (3.2)

The sum of the vertical pressure gradient force and gravity is zero for an atmosphere

at rest. In mathematical terms

0 =

(

−g −
1

ρ

∂p

∂z

)

k̂

or, after rearranging the terms and dropping the k̂ designation for notational

simplicity,

∂p

∂z
= −ρg . (3.3)

This expression is known as the hydrostatic equation and represents a fundamental

balance characteristic of the Earth’s atmosphere: namely, that the vertical pressure

gradient force is perfectly balanced by gravity. Though strictly true only for an at-

mosphere at rest (hence the static portion of the name), this hydrostatic balance is

obeyed to great accuracy under nearly all conditions in the Earth’s atmosphere.

In order to construct a vertical equation of motion we must take account of all the

forces with components in the local vertical direction. The vertical pressure gradient

force and gravity (combined in the hydrostatic balance) comprise the largest fraction

of these forces. Surely friction, slight though it may be, will also affect motions in

the vertical direction. Also, we have already shown that there is a vertical Coriolis

acceleration induced by zonal motions. Thus, we can write a first approximation to

the vertical equation of motion as

dw

dt
= −

1

ρ

∂p

∂z
− g + EF z + (2Ä cos φ)u. (3.4)

1 The theories of the ancient Greek natural philosopher Aristotle (384–322 bc) held sway in many disciplines
for nearly 2000 years! He reputedly conducted an experiment to determine the weight of air. Undoubtedly using
a crude scale, he ‘filled’ a leather bag with air, weighed it, and then compared that measurement to the weight
of an ‘empty’ leather bag. Noting no difference between the two, he concluded that air had no weight.
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Figure 3.1 The amount of mass between any two isobaric surfaces is the same regardless of the

thickness of the layer

3.1.1 The hypsometric equation

Consider the unit area column of atmosphere contained between pressure levels

1000 and 500 hPa shown in Figure 3.1. Since pressure is defined as force per unit

area, we have isolated in that column an atmospheric mass sufficient to exert 500 hPa

of pressure. Such a slab of the atmosphere has a unique mass whether it extends

from 1000 to 500 hPa or from 812 to 312 hPa. In fact, the mass of this column can

be precisely calculated as

Mass = (500 hPa) ×

(

100 N m−2

hPa

)

× (1 m2) ×

(

1

9.81 m s−2

)

= 5102.04 kg .

Though the mass of a 500 hPa, unit area slab of the atmosphere is unique, its depth

might be different from one day to the next. We will refer to this geometric depth as

the thickness between two isobaric surfaces. Clearly, if the thickness varies, then so

does the volume of the unit area slab. The variation of the volume of the slab dictates

that the density of the air contained within the slab varies as well: less (more) dense air

corresponding to a greater (smaller) thickness. By the ideal gas law, less (more) dense

air will correspond to a higher (lower) column average virtual temperature, T v .2

Thus, column average virtual temperature should have a bearing on the thickness

between two isobaric levels.

Combining the hydrostatic equation with the ideal gas law provides convincing

evidence to support this supposition. Recall that the ideal gas law can be written as

p = ρ Rd Tv where p is the pressure, ρ is the density, Rd is the gas constant for dry

2 See Appendix A for a discussion and derivation of virtual temperature, Tv .
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air,3 and Tv is the virtual temperature. Using this expression, the hydrostatic equation

can be rewritten as

∂p

∂z
= −

pg

Rd Tv

(3.5a)

which can be rearranged into

−
Rd Tv

g
∂ ln p = ∂z. (3.5b)

If we integrate this expression between pressure levels p1 and p2 ( p1 > p2) at which

the heights are z1 and z2 (z2 > z1) we get

−

p2
∫

p1

Rd Tv

g
∂ ln p =

z2
∫

z1

∂z. (3.5c)

Inverting the order of integration on the LHS of (3.5c) yields

p1
∫

p2

Rd Tv

g
∂ ln p =

z2
∫

z1

∂z

which can be integrated to give

Rd T v

g
ln

(

p1

p2

)

= z2 − z1 = 1z (3.6)

where T v is the pressure-weighted, column average virtual temperature, given by

T v =

p1
∫

p2

Tv∂ ln p

p1
∫

p2

∂ ln p

.

The foregoing expression is known as the hypsometric equation and it quantifies

and verifies our suspicion regarding the influence of column average temperature on

the thickness of an isobaric column.

We can express the hypsometric equation (and, therefore, the hydrostatic equation

also) in terms of a quantity called geopotential, 8. The geopotential is defined as the

work required to raise a unit mass a distance dz above sea level. It quantifies the work

(per unit mass) that is done against gravity in doing so. Mathematically, therefore,

geopotential is given as d8 = gdz. Employing this expression, we can rewrite the

3 Rd has a value of 287 J kg−1K−1 and is equal to the universal gas constant (R∗ = 8.3143 ×
103 J K−1 kmol−1) divided by the molecular weight of the atmospheric mixture (28.97 kg kmol−1). ‘Dry’ air
refers to the mixture without the variable water vapor included.
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hydrostatic equation as

∂p = −ρ∂8 or
∂8

∂p
= −α = −

Rd Tv

p
.

Correspondingly, the hypsometric equation can also be written as

Rd T v ln

(

p1

p2

)

= 82 − 81 = 18.

We will often refer to geopotential height (Z) in subsequent discussions. The geopo-

tential height is simply given by

Z =
8

g0

(3.7)

where g0 is the global average gravity at sea level (9.81 m s−2). Thus, geometric height

(z) and Z are just about equal in the troposphere.

There are several important applications of the hydrostatic and hypsometric equa-

tions that have a bearing on the analysis and understanding of mid-latitude weather

systems. One of the most common analysis products used to characterize and un-

derstand the weather is a sea level pressure map. This is a map on which isobars

of sea-level pressure are contoured in an attempt to identify and characterize the

major circulation systems in a given location at a given time. In geographical regions

characterized by high terrain, such as the Rocky Mountains of North America or

the high steppe of Mongolia, the elevation is so far above sea level that use of the

station pressure (i.e. the pressure actually measured with a barometer at the station)

does not effectively contribute to this goal. In such regions the hypsometric equation

can be used to calculate a reduced sea-level pressure (i.e. an estimate of what the

sea-level pressure would be were the surface elevation 0 m). Consider the following

example.

The station pressure at St Louis, Missouri (STL), a city close to sea level, on a certain

day is measured to be 995 hPa. Meanwhile, the station pressure at Denver, Colorado

(DEN), whose elevation is 1609 m above sea level, is measured at 825 hPa. There is

not a horizontal pressure difference of 180 hPa between STL and DEN. Most of the

observed pressure difference is a consequence of the vertical variation of pressure. By

reducing the station pressure to sea level at DEN, we attempt to discover how much

of the observed pressure difference actually is a horizontal pressure difference.

We begin with the hypsometric equation,

Rd T v

g
ln

(

p1

p2

)

= z2 − z1 = 1z

with z2 = zDEN and z1 = 0 (the geometric height at sea level). Correspondingly,

p2 = pSTA at DEN (observed station pressure) and p1 = pSLP at DEN (the desired value we

will calculate as sea level pressure at DEN). Finally, T v represents the average column

temperature between sea level at DEN and the station elevation. This is clearly a
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fictitious quantity but we can estimate it by assuming the standard atmosphere lapse

rate (6.5 K km−1) throughout the fictitious column. Rearranging the hypsometric

equation using the given definitions we have

g zDEN

Rd T v

= ln

(

pSLP at DEN

pSTA at DEN

)

. (3.8a)

Taking anti-logs of both sides yields

(

pSLP at DEN

pSTA at DEN

)

= e
g zDEN

Rd T v

so that

pSLP at DEN = pSTA at DEN e
g zDEN

Rd T v . (3.8b)

The above expression is known as the altimeter equation and is the standard ex-

pression for reducing station pressure to sea level. Supposing that the surface Tv

at Denver is 20◦C, we find that the reduced sea-level pressure at Denver would be

998.6 hPa. This value can be usefully compared to the sea-level pressure at St Louis

on a synoptic weather chart.

The hypsometric equation can also be used to gain insights into the large-scale

structure of mid-latitude weather systems. If, for instance, we consider the thickness

between 1000 and 500 hPa at a given station, then (3.6) becomes

1z =
Rd T v

g
ln

(

1000

500

)

=
Rd T v

g
ln(2) = 20.3 T v . (3.9)

Thus, a change of 60 m in the 1000–500 hPa thickness corresponds to a 2.96◦C mean

temperature change. This fact implies that pressure drops off more rapidly with

height in a cold column of air than in a warm column. The ramifications of this fact

are illustrated in Figure 3.2. in which a cold core cyclone is depicted in a vertical

cross-section. Since the air column in the middle of the cyclone is colder relative to

its surroundings at all levels, the thickness in that column is smaller than anywhere

else. Consequently, the horizontal pressure gradient force, directed inward toward

the center of the cyclone, increases in magnitude with increasing height. Thus, cold

core cyclones, like those that populate the mid-latitudes on Earth, intensify with

height. This characteristic of mid-latitude cyclones will prove to be a major influence

on the dynamics of the cyclone life cycle.

Now that we have acquired a perspective on the distribution of mass in the at-

mosphere, we turn to an investigation of the basic conservation laws that govern its

behavior. The atmosphere, like all physical systems, obeys the laws of conservation of

energy and mass, as well as the slightly more restrictive conservation of momentum.

We begin by considering the conservation of momentum.
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Figure 3.2 Vertical cross-section through a cold core cyclone. ‘Warm’ and ‘Cold’ refer to the column

average temperatures in the three columns. Solid lines are isobars, thin dashed lines are the 0.5 km and

5 km elevation lines. The thick arrows represent the PGF, which is much larger at the top black dots. ‘L’

is the location of the lowest sea-level pressure

3.2 Conservation of Momentum: The Equations of Motion

Newton’s second law is a statement of the conservation of momentum:

d

dt
(m EV) =

∑

Forces Acting on a Parcel,

but it is strictly true, as we have already considered, only in an inertial frame of

reference. Since we will find it most convenient to use the x , y, and z coordinates

fixed to Earth for our descriptions of motions, and these coordinates are accelerat-

ing, we have to relate the Lagrangian derivative of a vector in an inertial frame to

the corresponding Lagrangian derivative in a rotating frame. Let EA be an arbitrary

vector whose Cartesian components in an inertial frame are

EA = Ax î + Ay ĵ + Az k̂

and whose components in a coordinate frame rotating with an angular velocity EÄ
are

EA = A′
x î ′ + A′

y ĵ ′ + A′
z k̂′.

Now, let da
EA/dt be the total derivative of EA in the inertial (absolute) frame, ex-

pressed as

da
EA

dt
=

d Ax

dt
î +

d Ay

dt
ĵ +

d Az

dt
k̂.
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Notice that in the inertial frame the coordinate directions î , ĵ , and k̂ are unchanging.

Taking the same derivative in the rotating frame, however, yields

da
EA

dt
=

d A′
x

dt
î ′ +

d A′
y

dt
ĵ ′ +

d A′
z

dt
k̂′ + A′

x

dî ′

dt
+ A′

y

d ĵ ′

dt
+ A′

z

dk̂′

dt

which can be rewritten as

da
EA

dt
=

d EA

dt
+ A′

x

dî ′

dt
+ A′

y

d ĵ ′

dt
+ A′

z

dk̂′

dt
(3.10)

given that

d EA

dt
=

d A′
x

dt
î ′ +

d A′
y

dt
ĵ ′ +

d A′
z

dt
k̂′

where d EA/dt represents the rate of change of EA following the relative motion in the

rotating frame.

The derivatives dî ′/dt, dĵ ′/dt, and dk̂′/dt on the RHS of (3.10) represent the rates

of change of the unit vectors î ′, ĵ ′, and k̂′ that arise because the coordinate system is

accelerating. It is important to note that each of these derivative terms describes only

the change in direction of the unit vectors since, by definition, the vector magnitudes

are always equal to one. Thus, full expressions for these derivatives are achieved upon

describing the change in direction experienced by each of the unit vectors as a result

of rotation of the Earth.

Figure 3.3(a) illustrates a view of the change of î ′ as viewed from the North Pole.

The rotation vector, EÄ, points upward out of the page. By similar triangles, we find

that δî ′ = î ′δθ . Now, upon dividing both sides of this equality by the amount of

time (δt) it takes to rotate through δθ degrees, and taking the limit of the resulting

Figure 3.3 (a) View from the North Pole of the change in the î unit vector (δî ) and (b) cross-sectional

view of the same vector, δî . ~Ω is the rotation vector
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Figure 3.4 View from the North Pole of the change in the ĵ unit vector (δ ĵ ). ~Ω is the rotation vector

expression as δt → 0, we get

lim
δî ′

δt
δt→0

=

∣

∣

∣

∣

dî ′

dt

∣

∣

∣

∣

=

∣

∣

∣

∣

î ′ dθ

dt

∣

∣

∣

∣

=
∣

∣

∣
î ′ EÄ

∣

∣

∣
(3.11)

so the magnitude of the vector dî ′/dt is equal to | EÄ|. It is clear from Figure 3.3(b),

however, that the vector dî ′/dt is directed inward toward the axis of rotation. Know-

ing that dî ′/dt is a vector that is both perpendicular to î
′
and has magnitude | EÄ|, we

find that its full expression is given by

dî ′

dt
= EÄ × î ′. (3.12)

Similar relationships exist for d ĵ ′/dt and dk̂′/dt as can be seen in Figures 3.4 and

3.5. Consequently, we can rewrite the last three terms on the RHS of (3.10) as

A′
x

dî ′

dt
= A′

x ( EÄ × î ′) = EÄ × (A′
x î ′),

A′
y

d ĵ ′

dt
= A′

y( EÄ × ĵ ′) = EÄ × (A′
y ĵ ′), and

A′
z

dk̂′

dt
= A′

z( EÄ × k̂′) = EÄ × (A′
z k̂′),

so that

A′
x

dî ′

dt
+ A′

y

d ĵ ′

dt
+ A′

z

dk̂′

dt
= EÄ × (A′

x î ′ + A′
y ĵ ′ + A′

z k̂′) = EÄ × EA. (3.13)

As a result, (3.10) can be rewritten as

da
EA

dt
=

d EA

dt
+ EÄ × EA (3.14)
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Figure 3.5 View from the North Pole of the change in the k̂ unit vector (δk̂). ~Ω is the rotation vector

for any vector EA. This expression describes the relationship between the total deriva-

tive of a vector in inertial coordinates and its associated derivative in a coordinate

system rotating with angular velocity EÄ.

Employing (3.14), let us now find a relationship between the absolute velocity of

an air parcel ( EU a ) and the velocity of the same air parcel relative to Earth ( EU ). We can

do this by applying (3.14) to the position vector Er (where Er is a vector perpendicular

to the axis of rotation with magnitude equal to the distance from the surface of the

Earth to the axis of rotation), for a parcel of air on Earth:

daEr

dt
=

dEr

dt
+ EÄ × Er . (3.15a)

By definition, daEr/dt = EU a and dEr/dt = EU so the desired relationship is simply

EU a = EU + EÄ × Er (3.15b)

which states that the absolute velocity of an object on the rotating Earth is equal to

the sum of its velocity relative to the Earth ( EU ) and the velocity of the rotating Earth

itself ( EÄ × Er ).

Now if we reapply the previous result to the vector EU a we get

da
EU a

dt
=

d EU a

dt
+ EÄ × EU a . (3.16a)

Substituting (3.15b) for EU a above yields

da
EU a

dt
=

d

dt
( EU + EÄ × Er ) + EÄ × ( EU + EÄ × Er )

=
d EU

dt
+ EÄ ×

dEr

dt
+ EÄ × EU + EÄ × EÄ × Er . (3.16b)
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Since dEr/dt = EU and EÄ × EÄ × Er = −Ä2Er , this can be simplified to

da
EU a

dt
=

d EU

dt
+ 2 EÄ × EU − Ä2Er . (3.17)

Equation (3.17) states that the Lagrangian acceleration in an inertial system is equal to

the sum of (1) the Lagrangian change of relative EU , plus (2) the Coriolis acceleration

from relative motion in the relative frame, plus (3) centripetal acceleration resulting

from the rotation of the coordinates. Recalling Newton’s second law and the fact that

we will consider the pressure gradient force, the frictional force, and gravitational

force as the only real forces acting on the atmospheric fluid, we find that

da
EU a

dt
=

d EU

dt
+ 2 EÄ × EU − Ä2Er = −

1

ρ
∇ p + Eg ∗ + EF

or, upon rearranging terms,

d EU

dt
= −2 EÄ × EU −

1

ρ
∇ p + Eg + EF (3.18)

where the centripetal force has been combined with the gravitational force (Eg ∗) in

the gravity term (Eg ). This expression states that the acceleration following the relative

motion in a rotating reference frame is equal to the sum of (1) the Coriolis force,

(2) the pressure gradient force, (3) effective gravity, and (4) the friction force. This is a

major result but it remains in vectorial form only – a form not particularly amenable

to analysis. Since the Earth is nearly a sphere, it will turn out to be quite convenient

to recast this vector expression into spherical coordinates.

3.2.1 The equations of motion in spherical coordinates

Spherical coordinates treat the three dimensions in terms of longitude, latitude,

and geometric height above sea level (λ, φ, z) using unit vectors î , ĵ , and k̂ in

the description of motions. The relative velocity vector becomes EV = uî + v ĵ + wk̂

where the components are defined as

u ≡ a cos φ
dλ

dt
, v ≡ a

dφ

dt
, and w ≡

dz

dt

where a is the radius of the Earth.4 Distances in the zonal and meridional directions

are given by dx = a cos φdλ and dy = adφ, respectively. It is important to note

that this coordinate system is not a Cartesian system because the unit vectors are

not constant; they are, in fact, functions of position on Earth. A simple way of

conceptualizing this fact is to consider that all longitude lines converge at the pole.

Therefore, the direction ‘north’ is not pointed in the same absolute direction at every

4 Formally, a should be replaced with (r + a) where r is the distance above sea level and a is the radius of
the Earth. However, for all tropospheric, and nearly all atmospheric, applications, r ≪ a so we simply use a .
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longitude on Earth. This position dependence must be taken into account when the

acceleration vector is expanded into its components

d EV

dt
=

du

dt
î +

dv

dt
ĵ +

dw

dt
k̂ + u

dî

dt
+ v

d ĵ

dt
+ w

dk̂

dt
. (3.19)

We now must determine expressions for the last three terms on the RHS of (3.19).

Beginning with dî/dt, we simply expand it like any other total derivative to get

dî

dt
=

∂ î

∂t
+ u

∂ î

∂x
+ v

∂ î

∂y
+ w

∂ î

∂z
. (3.20)

We know that ∂ î/∂t = 0 as there is no local change in the coordinate direction

(i.e. at any given location, east always points in the same direction). The î direction

experiences no change as one moves north or south along a given longitude line,

nor as one moves up or down in elevation so that ∂ î/∂y and ∂ î/∂z are both zero.

However, as we saw already in Figure 3.3(a), the î direction does change as one moves

along a latitude circle so that (3.20) can be simplified to

dî

dt
= u

δî

δx
. (3.21)

The problem becomes one of determining the magnitude and direction of ∂ î/∂x .

We can make this determination by considering a horizontal cross-section viewed

from the North Pole as shown in Figure 3.6. It is evident that δx = a cos φδλ and

that |δî | = |î |δλ = δλ since î has unit magnitude. Therefore,
∣

∣

∣

∣

δî

δx

∣

∣

∣

∣

=
δλ

a cos φδλ
=

1

a cos φ
(3.22a)

with δî directed toward the axis of rotation. Thus, we must split δî into components

in order to determine the direction (in terms of λ, φ, z) of δî/δx . With the help

Figure 3.6 Illustration of the derivative δî
δx
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Figure 3.7 The northward and vertical components of δî

of Figure 3.7, we see that δî has components in the ĵ and −k̂ directions. The ĵ

component is a function of sin φ while the −k̂ component is a function of cos φ. We

find, therefore, that

δî

δx
=

(sin φ ĵ − cos φk̂)

a cos φ
(3.22b)

so that, taking the limit as δx → 0,

dî

dt
=

u(sin φ ĵ − cos φk̂)

a cos φ
. (3.22c)

Next we consider the component form of d ĵ/dt. Once again, this term must be

expanded like any other Lagrangian derivative into

dĵ

dt
=

∂ ĵ

∂t
+ u

∂ ĵ

∂x
+ v

∂ ĵ

∂y
+ w

∂ ĵ

∂z
. (3.23)

As was the case with î , there is no local time derivative of ĵ nor is there any change

in ĵ resulting from a change in elevation. There are, however, changes in ĵ that arise

from changing position in the x or y direction. Figure 3.8(a) illustrates the geometry

involved in determining ∂ ĵ/∂x . The hypotenuse β of the lightly shaded triangle is

given by β = a/tan φ since sin φ = (a cos φ)/β. Knowing this dimension, the darker

shaded triangle, shown independently in Figure 3.8(b), can be used to find ∂ ĵ/∂x . It

is clear from Figure 3.8(b) that δx = (a/tan φ)δα and that δĵ = ĵδα with δĵ directed

in the −x direction. Thus,
∣

∣

∣

∣

δ ĵ

δx

∣

∣

∣

∣

=
tan φ

a
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Figure 3.8 Illustration of the x variation of the unit vector ĵ . (a) A 3-D view of the plane on which ĵ

sits (darker shading). Dark-shaded triangle in (a) is illustrated in (b)

or, taking the limit as δx → 0 and incorporating the direction,

∂ ĵ

∂x
= −

tan φ

a
î . (3.24)

Figure 3.9 illustrates the dependence of ĵ on the y direction. We find that δy =
aδφ and that |δ ĵ | = | ĵδφ| = δφ. Thus, |δ ĵ/δy| = 1/a with δ ĵ directed in the −k̂

Figure 3.9 The y-direction dependence of ĵ
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direction. Again, taking the limit of this expression as δy → 0 yields

∂ ĵ

∂y
= −

1

a
k̂ (3.25)

which, combined with (3.23) and (3.24), results in an expression for dĵ/dt:

dĵ

dt
=

−u tan φ

a
î −

v

a
k̂. (3.26)

Finally, we turn to dk̂/dt and, recognizing that k̂ has no local time derivative nor

any vertical derivative, obtain that

dk̂

dt
= u

∂ k̂

∂x
+ v

∂ k̂

∂y
. (3.27)

Figure 3.10 illustrates the x-direction dependence of k̂. Since the triangle of interest

represents a cross-section originating at the center of the Earth, we find that δx =
aδλ and that |δk̂| = |k̂δλ| = δλ directed in the positive x direction. Consequently,

|δk̂/δx| = 1/a which leads to the differential expression

∂ k̂

∂x
=

1

a
î . (3.28)

Using a cross-section like that shown in Figure 3.9, but concentrating on the change

in k̂ over the distance δy, yields the expression ∂ k̂/∂y = (1/a) ĵ . Thus, a complete

expression for dk̂/dt is given by

dk̂

dt
=

u

a
î +

v

a
ĵ . (3.29)

Figure 3.10 The x -direction dependence of the unit vector k̂
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Combining (3.22c), (3.26), and (3.29) we can rewrite (3.19) in its fully expanded

component form as

d EV

dt
=

(

du

dt
−

uv tan φ

a
+

uw

a

)

î +

(

dv

dt
+

u2 tan φ

a
+

vw

a

)

ĵ

+

(

dw

dt
−

u2 + v2

a

)

k̂. (3.30)

This expression describes only the spherical coordinate components of the La-

grangian derivative of the relative motion. Recall that our vector expression for

the equations of motion (3.18) included reference to the pressure gradient, Coriolis,

gravity, and friction forces. In order to obtain a complete component expansion of

the equations of motion in spherical coordinates we must expand the force terms as

well.

The Coriolis force term is given by −2 EÄ × EU . Figure 3.11 demonstrates that the

rotation vector, EÄ, is perpendicular to the x direction and so has components only in

the positive ĵ and positive k̂ directions. Considering the trigonometry in Figure 3.11,

it is clear that the k̂ component of EÄ has magnitude Ä sin φ while the ĵ component

has magnitude Ä cos φ. Thus, the component expansion of the Coriolis force term

can be determined by assessing the following determinant:

−2 EÄ × EU =

∣

∣

∣

∣

∣

∣

î ĵ k̂

0 −2Ä cos φ −2Ä sin φ

u v w

∣

∣

∣

∣

∣

∣

= −(2Ä cos φw − 2Ä sin φv)î

− 2Ä sin φu ĵ + 2Ä cos φuk̂. (3.31)

Figure 3.11 Partition of the rotation vector, ~Ω, into its vertical and meridional components
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The component form of the pressure gradient force is given by

−
1

ρ
∇ p = −

1

ρ

∂p

∂x
î −

1

ρ

∂p

∂y
ĵ −

1

ρ

∂p

∂z
k̂. (3.32)

Gravity, which acts downward in the local vertical direction, is represented by

Eg = −g k̂ (3.33)

while friction can be represented as

EF = Fx î + Fy ĵ + Fz k̂. (3.34)

Combining (3.30), (3.31), (3.32), (3.33), and (3.34) and separating the component

expression we get the three component equations of motion for flow on the rotating

Earth:

du

dt
−

uv tan φ

a
+

uw

a
= −

1

ρ

∂p

∂x
+ 2Ä sin φv − 2Ä cos φw + Fx (3.35a)

dv

dt
+

u2 tan φ

a
+

vw

a
= −

1

ρ

∂p

∂y
− 2Ä sin φu + Fy (3.35b)

dw

dt
−

u2 + v2

a
= −

1

ρ

∂p

∂z
− g + 2Ä cos φu + Fz. (3.35c)

The various terms in (3.35) involving 1/a arise from the non-flatness of the Earth

and are consequently known as curvature terms. Each of the curvature terms is

quadratic in the dependent variables (u, v, w) and is thus non-linear and presents

difficulty in analysis. It will soon be demonstrated, however, that these curvature

terms are entirely negligible in any discussion of the dynamics of mid-latitude weather

systems. However, even in the absence of these particular non-linear terms, the

remaining elements of (3.35) also contain non-linear elements since, for instance, in

the expansion of du/dt we get

du

dt
=

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
.

The underlined terms are also clearly quadratic in (u, v, w). These terms are

known as the advective acceleration terms and they are comparable to the local

acceleration term (in this case, ∂u/∂t). The presence of such non-linear advection

processes is one reason why dynamic meteorology is so fascinating (and difficult)!

The equations of motion (3.35) are a complicated set of expressions and it is

logical to inquire whether or not they can be simplified. The answer is yes and

we will use the method of scale analysis, introduced in Chapter 1, to accomplish

this simplification. In order to do so, we must first assign observationally based

characteristic values for the set of variables involved in the equations of motion.

Considering just the horizontal velocity, which appears in (3.35) as both u and v ,
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Table 3.1 Characteristic scales of the various terms in the horizontal equations of motion

1 2 3 4 5 6 7

x equation
du

dt
−2Ä sin φv 2Ä cos φw

uw

a
−

uv tan φ

a
−

1

ρ

∂p

∂x
Fx

y equation
dv

dt
2Ä sin φu

uv

a

u2 tan φ

a
−

1

ρ

∂p

∂y
Fy

Scales
U 2

L
f0U f0W

U W

a

U 2

a

δp

ρL

νU

H2

Magnitude (m s−2) 10−4 10−3 10−6 10−8 10−5 10−3 10−12

we know from observations that characteristically the horizontal velocity at middle

latitudes is not as small as 1 m s−1 nor is it as large as 100 m s−1. Therefore, a char-

acteristic scale for the horizontal velocity is something close to 10 m s−1. Performing

a similar analysis for the other variables in (3.35) results in the following reasonable

set of characteristic values for the relevant variables:

U ∼ 10 m s−1 characteristic horizontal velocity

W ∼ 1 cm s−1 characteristic vertical velocity

L ∼ 106 m characteristic length scale of synoptic-scale features

H ∼ 104 m characteristic depth (i.e. depth of the troposphere)

δp

ρ
∼ 103 m2 s−2 characteristic horizontal pressure fluctuation

L

U
∼ 105 s characteristic time scale.

Of the above values, the one that seems most foreign is the characteristic horizontal

pressure fluctuation. If the characteristic length scale of synoptic-scale features is

106 m, what this variable says is that the ratio of the pressure difference between

adjacent synoptic-scale features is characteristically of order 1000 Pa (10 mb).5 The

density of the air is order 1 kg m−3, so the characteristic ratio across the size of a

typical synoptic-scale disturbance is ∼1000 m2 s−2. Given such characteristic values,

we are able to estimate the scale of all terms appearing in (3.35). Since our entire

analysis is designed to uncover a simplification of (3.35) that is valid for mid-latitude

synoptic-scale disturbances, we will assume a latitude (φ0) of 45◦ implying that a

characteristic Coriolis parameter is given by f0 = 2Ä sin φ0 = 2Ä cos φ0
∼= 10−4 s−1.

Table 3.1 lists the approximate magnitude of each term in (3.35) based upon the

characteristic scales just described. Note that the friction term is represented by (2.7)

and so involves ν, the kinematic viscosity coefficient, in its formulation. Recall that

this parameter has a value of ∼1.5 × 10−5 m2 s−1 at sea level.

It is clear from Table 3.1 that with scaling appropriate for mid-latitude synoptic-

scale motions, only two terms in the horizontal equations of motion are of order

5 This is consistent with synoptic experience in which the pressure difference between adjacent sea-level
high- and low-pressure centers is not as small as 1 hPa nor as large as 100 hPa!
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Figure 3.12 Illustration of the force balance resulting in the geostrophic wind, Vg . Arrow PGF repre-

sents the pressure gradient force and arrow COR represents the Coriolis force. The thin dashed lines are

isobars and H and L represent regions of high and low pressure, respectively

10−3 or larger: the pressure gradient force and Coriolis force terms. This result im-

plies that, as a first approximation to the full equations of motion (3.35), we can

consider the PGF and Coriolis force terms to be in approximate balance with one

another. This balance is known as the geostrophic balance and it represents the

fundamental diagnostic balance for mid-latitude synoptic-scale flow. What kind

of flow does this geostrophic balance describe? We can get some insight into this

question by considering the balance of forces involved. Consider the set of sea-level

isobars depicted in Figure 3.12. As we noted in Chapter 2, the PGF vector is al-

ways directed from high to low pressure, perpendicular to the isobars as depicted

in Figure 3.12. In order that there be a force balance between the pressure gradi-

ent and Coriolis forces, the Coriolis force vector must be equal and opposite to the

PGF vector as depicted. Since Figure 3.12 represents a hypothetical situation in the

northern hemisphere, we know that the Coriolis force must be directed perpen-

dicular to the motion of the air parcel and to the right. Consequently, as shown in

Figure 3.12, the resulting geostrophic wind flows parallel to the isobars. Were the

isobars more closely spaced in the horizontal, the magnitude of the PGF vector would

be larger and a correspondingly larger Coriolis force would be required to achieve

geostrophic balance. Therefore, the resulting geostrophic wind, though still oriented

parallel to the isobars, would be of larger magnitude as well. Thus, to a fairly high

degree of accuracy, the wind field (a vector quantity of great importance) can be

uniquely specified by a 2-D representation of the scalar quantity, pressure. The mid-

latitude atmosphere on Earth need not have been so accommodating to our desire

for simplicity, but it is! Let us now examine the mathematical expression for the

geostrophic wind.

Considering (3.35a) and (3.35b) we can write component expressions for the

geostrophic balance as

− f vg = −
1

ρ

∂p

∂x
or vg =

1

ρ f

∂p

∂x
(3.36a)
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and

f ug = −
1

ρ

∂p

∂y
or ug = −

1

ρ f

∂p

∂y
. (3.36b)

We see from (3.36) that the zonal (meridional) component of the geostrophic wind

depends on the corresponding meridional (zonal) gradient of pressure in accord

with our previous physical examination. In vector form, (3.36) becomes

EV g = −
1

ρ f

∂p

∂y
î +

1

ρ f

∂p

∂x
ĵ =

1

ρ f
k̂ × ∇p (3.37)

which clearly demonstrates that the geostrophic wind ( EV g ) must always be parallel

to the isobars (i.e. perpendicular to ∇p) with a magnitude dependent on the inverse

of density, the inverse of the Coriolis parameter, as well as the magnitude of the

pressure gradient. Some other conclusions regarding the nature of the geostrophic

flow can also be determined from (3.37). For a given magnitude of pressure gradient,

the resulting geostrophic wind will be larger at lower latitude where the Coriolis

parameter is smaller. However, the geostrophic balance cannot be considered at the

equator (or very near it either) as at such low latitudes, the inverse of the Coriolis

parameter becomes very large and the resulting EV g no longer bears a resemblance to

the actual wind, EV . For mid-latitude flow, however, the geostrophic wind is usually

within 10–15% of the observed wind. This observation does not imply that the mid-

latitude atmosphere has a predilection for this simple balance, it instead testifies to

the enormity of the two forces, PGF and COR, at middle latitudes.

Given that geostrophy is a balance between the PGF and Coriolis forces, we might

inquire under what conditions is geostrophic balance met? Note that in (3.36) there

is no reference to du/dt or dv/dt. As a consequence, the geostrophic wind is only

strictly valid in regions of zero wind acceleration. Since the wind is a vector quantity,

with magnitude and direction, if either of those properties is changed over time, the

wind has been accelerated. Thus, two broad categories of flow in the atmosphere

will violate the geostrophic balance: those characterized by (1) wind speed changes

along the flow, and/or (2) wind direction changes along the flow. Figure 3.13 is a

randomly selected northern hemisphere analysis of isobars and isotachs (lines of

constant wind speed) at 9 km elevation. It is immediately clear that regions of along-

flow speed variation and/or along-flow curvature are so numerous as to be the

rule rather than the exception. The along-flow speed changes are most prominent

in the vicinity of the local wind speed maxima known as jet streaks. Along-flow

direction changes are most obvious in the vicinity of troughs and ridges in the

pressure field. These locations, as we will show presently, are commonly associated

with sensible weather in the form of circulation systems, clouds, and precipitation.

The degree of departure from geostrophic balance that characterizes these regions

can be assessed by considering the difference between the actual wind at a location

and the calculated geostrophic wind at the same point. This difference is known as the
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Figure 3.13 Isobars and isotachs at 9 km elevation from the National Center for Environmental

Prediction’s Global Forecast System initialization at 0000 UTC 23 February 2004. The isobars are

labeled and contoured every 5 hPa and the isotachs are shaded every 10 m s−1 starting at 30 m s−1

ageostrophic wind, EV ag , and is defined mathematically as

EV ag = EV − EV g . (3.38)

We can introduce some prognostic power to our simplified versions of (3.35) by

retaining the next largest order terms from Table 3.1: namely, du/dt and dv/dt. The

resulting expressions are

du

dt
= f v −

1

ρ

∂p

∂x
(3.39a)

dv

dt
= − f u −

1

ρ

∂p

∂y
. (3.39b)

If we now substitute (3.36) into (3.39) we get

du

dt
= f v − f vg = f (v − vg ) = f vag (3.40a)

dv

dt
= − f u + f ug = − f (u − ug ) = − f uag (3.40b)
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Table 3.2 Characteristic scales for the terms in the vertical equation of motion

1 2 3 4 5 6

dw

dt
−2Ä cos φu

−(u2 + v2)

a
−

1

ρ

∂p

∂z
−g Fz

Characteristic scales
U W

L
f0U

U 2

a

p

ρH
g

νW

H2

Magnitudes (m s−2) 10−7 10−3 10−5 10 10 10−15

which can be written in vector form as

d EV

dt
= − f k̂ × EV ag . (3.41)

This expression clearly shows that the ageostrophic flow is associated with regions

of Lagrangian acceleration of the wind. In the next section we will demonstrate why

this ageostrophic wind is of such vital importance to understanding the dynamics of

the mid-latitude atmosphere.

Given that geostrophic balance is such a strong constraint in the middle latitudes,

there are many settings in which the ageostrophic wind is a very small portion of the

actual wind. Therefore, it would be convenient if there were some easy way to charac-

terize a flow to determine if it is likely to be nearly in geostrophic balance. Physically,

a given flow will be nearly in geostrophic balance if the Lagrangian acceleration term

(du/dt or dv/dt) is small compared to the Coriolis force term, as suggested by our

scaling and Table 3.1. Recalling that the acceleration term is represented as U 2/L

and the Coriolis force is scaled as f0U , then the ratio of these two accelerations is

given by

Lagrangian Accel.

Coriolis Accel.
=

U 2/L

f0U
=

U

f0 L
. (3.42)

Notice that this ratio is non-dimensional (i.e. it is just a number without units)

and that if it is less than 0.1 for a given flow it testifies to the fact that the Coriolis

acceleration is at least 10 times larger than the Lagrangian acceleration. In such a case,

it is quite reasonable to approximate the flow as nearly geostrophic. The ratio defined

in (3.42) is known as the Rossby number (R0), after the famous atmospheric/oceanic

scientist Carl Gustav Rossby.6 We will hereafter often refer to flows that are nearly in

geostrophic balance as low-R0 flows. High-R0 flows will, conversely, be characterized

as rather far from geostrophic balance.

Thus far we have discussed the results of a scaling of the horizontal equations of

motion. A similar exercise must now be performed on (3.35c), the vertical equation

of motion. Table 3.2 shows the characteristic scales of the various terms in (3.35c)

6 Carl Gustav Rossby (1898–1957) was a Swedish–American scientist who founded the first meteorology
department in the United States at the Massachusetts Institute of Technology (MIT) in 1928. Rossby uncovered
many of the basic principles of modern dynamical meteorology during the decades of the 1930s and 1940s.
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along with their usual magnitudes for mid-latitude weather systems. Even more

robustly than was the case for the horizontal equations, the vertical equation of

motion is dominated by two terms: the vertical PGF and gravity. We have already

seen that these two vertical forces are combined in the hydrostatic balance. Thus, a

formal scaling of the equations of motion for mid-latitude synoptic-scale motions

renders the following fundamental statement regarding the nature of the mid-latitude

atmosphere on Earth:

To a first order, the mid-latitude atmosphere on Earth is in hydrostatic

and geostrophic balance.

3.2.2 Conservation of mass

Imagine trying to fill a small basin with water from a hose. If there is a leak in the

basin then one needs to know both the inflow rate from the hose as well as the outflow

rate through the leak in order to accurately gauge the filling rate. If the inflow rate is

suddenly increased while the outflow rate remains the same it is simple to conclude

that the mass of water in the basin will increase. If we designate the mass of water in

the basin as Mw , then a simple expression of the mass continuity equation becomes

∂ Mw

∂t
= Inflow Rate − Outflow Rate.

We can think of a slightly more abstract representation of this idea, illustrated in

Figure 3.14, by considering an infinitesimal cube, fixed in space, through which air

flows. The x-direction mass flux (i.e. the product of the x-direction velocity and the

density of the fluid) at the center of the cube is given by ρu. Upon expanding this

Figure 3.14 Schematic of x-direction flow through a cube fixed in space. The rate of mass flux is given

by the product ρu . Accumulation of mass at the center point occurs when the inflow rate exceeds the

outflow rate
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function in a Taylor series about the center point we find that the rate of mass inflow

through side A of the cube is given by
[

ρu −
∂

∂x
(ρu)

δx

2

]

δyδz (3.43a)

while the rate of mass outflow through side B of the cube is given by
[

ρu +
∂

∂x
(ρu)

δx

2

]

δyδz. (3.43b)

Now, just as in our simple example above, the rate of accumulation of mass (as a

result of x-direction flow) inside the infinitesimal cube must be equal to the inflow

rate minus the outflow rate. Using (3.43) this is expressed as

∂ Mx

∂t
=

[

ρu −
∂

∂x
(ρu)

δx

2

]

δyδz −

[

ρu +
∂

∂x
(ρu)

δx

2

]

δyδz

= −
∂

∂x
(ρu)δxδyδz (3.44)

where Mx represents the rate of mass accumulation in the cube resulting from x-

direction mass flux divergence. Similar expressions representing the rates of mass

accumulation in the cube resulting from y- and z-direction mass flux divergences

are given by

∂ My

∂t
= −

∂

∂y
(ρv)δxδyδz and

∂ Mz

∂t
= −

∂

∂z
(ρw)δxδyδz

so that the net rate of mass accumulation in the cube is represented as

∂ M

∂t
= −

[

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw)

]

δxδyδz. (3.45)

By definition, the net mass accumulation rate per unit volume is equal to the Eulerian

rate of change of the density. Thus, dividing (3.45) by the volume of the cube (δxδyδz)

yields

∂ρ

∂t
= −

[

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw)

]

= −∇ · (ρ EV). (3.46)

The expression above is known as the mass divergence form of the mass continuity

equation. An alternative form of this expression arises by recalling that

∇ · (ρ EV) = ρ∇ · EV + EV · ∇ρ

so that (3.46) becomes

∂ρ

∂t
+ EV · ∇ρ + ρ∇ · EV = 0 or

1

ρ

dρ

dt
+ ∇ · EV = 0 (3.47)

which is known as the velocity divergence form of the mass continuity equation.
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This exact same relationship can be derived for a cube of fixed mass, δM, but vary-

ing dimensions δx, δy, and δz. Given that the mass in this example is fixed, then

d(δM)/dt = 0 or

d(ρδxδyδz)

dt
= 0 =

dρ

dt
δxδyδz + ρ

d(δx)

dt
δyδz + ρ

d(δy)

dt
δxδz + ρ

d(δz)

dt
δxδy

(3.48a)

by the chain rule. Now

lim
δx→0

d(δx)

dt
= ∂u

with similar expressions applying for the last two time derivatives in (3.48a). There-

fore, dividing both sides of (3.48a) by the volume of cube gives

dρ

dt
+ ρ

∂u

∂x
+ ρ

∂v

∂y
+ ρ

∂w

∂z
=

dρ

dt
+ ρ∇ · EV = 0 (3.48b)

which can be easily rearranged into (3.47).

It is instructive at this point to consider the implications of (3.47) for the fluid

atmosphere. A fluid in which individual parcels experience no change of density

following the motion (i.e. dρ/dt = 0) is known as an incompressible fluid. Con-

versely, a compressible fluid is one in which the density can change along a parcel

trajectory. As you might guess, the atmosphere is a compressible fluid, but for many

atmospheric phenomena the compressibility is not a major physical consideration.

In such cases, the mass continuity equation becomes a statement of zero velocity

divergence. We will see later that choice of a different vertical coordinate will render

the continuity equation in a much simpler, unapproximated form.

3.3 Conservation of Energy: The Energy Equation

The law of conservation of energy states that the sum of all energies in the universe is

constant. This is a valuable piece of knowledge but there are many different kinds of

energies manifest in the atmosphere including kinetic energy, potential energy, latent

heat energy, and radiant energy to name a few. Of all these types, radiant energy from

the Sun is the source of nearly all of the total energy in the atmosphere/ocean system.

When solar radiation is absorbed at the Earth’s surface and in the atmosphere it

appears as internal energy, made manifest as a temperature change. Given the many

other kinds of energy involved in the atmosphere/ocean system, one of the major

problems in the atmospheric sciences is determining how this internal energy is

converted into the other forms of energy.

We can get some insights into the nature of the energies in the atmosphere by

taking the dot product of the acceleration vector, d EV/dt, with the velocity vector,
EV . This operation is the mathematical equivalent of multiplying the component
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equations of motion (3.35a, b, and c) by their respective component velocities (u, v ,

and w). The resulting expressions are

1

2

d(u2)

dt
−

u2v tan φ

a
+

u2w

a
= −

u

ρ

∂p

∂x
+ 2Ä sin φuv − 2Ä cos φuw + uFx

(3.49a)

1

2

d(v2)

dt
+

u2v tan φ

a
+

v2w

a
= −

v

ρ

∂p

∂y
− 2Ä sin φuv + v Fy (3.49b)

1

2

d(w 2)

dt
−

w(u2 + v2)

a
= −

w

ρ

∂p

∂z
− g w + 2Ä cos φuw + w Fz. (3.49c)

Summing the component expressions (3.49) together we note that all of the Coriolis

and curvature terms sum to zero resulting in

d

dt

[

(u2 + v2 + w 2)

2

]

= −
1

ρ
EV · ∇ p − g w + EV · EF . (3.50)

The LHS term in (3.50) represents the rate of change of the total kinetic energy (per

unit mass) of the flow and so is a rate of work term. The first term on the RHS of (3.50)

is pressure advection divided by density. When the velocity vector is directed across

isobars from high to low (low to high) pressure, (3.50) shows that kinetic energy is

produced (consumed). Note that if the flow were purely geostrophic, EV · ∇ p would

vanish. This term is often referred to as the pressure work term and describes the

rate of work done by the ageostrophic flow across isobars.

By definition, w = dz/dt, so that −gw can be rewritten as

−g w = −g
dz

dt
= −

dφ

dt

where φ is the geopotential, a measure of the work required to raise a unit mass a

distance, z, above sea level. It is instructive, therefore, to rewrite (3.50) as

d

dt

[

(u2 + v2 + w 2)

2
+ φ

]

= −
1

ρ
EV · ∇ p + EV · EF (3.51)

where the LHS represents the sum of the kinetic and potential energies per unit mass

of an atmospheric parcel. The last term on the RHS of (3.51) represents the energy

dissipated by the action of the friction force ( EF ). Note that since EV and EF are almost

always opposite one another, the product EV · EF will be negative and the total kinetic

and potential energies of the parcel will decrease in the presence of friction in accord

with physical intuition.

Since (3.51) is derived from the equations of motion it deals only with mechanical

forms of energy and is therefore referred to as the mechanical energy equation. In

order to include thermal energy we must include the first law of thermodynamics in
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the form

Q̇ = cv

dT

dt
+ p

dα

dt
(3.52)

where Q̇ represents the diabatic heating rate, cv is the specific heat of dry air at

constant volume (717 J kg−1 K−1), and α is the specific volume. This expression

relates the important fact that absorption of solar radiation (represented by Q̇) can

be converted to both internal energy (in the form of a temperature increase) or

mechanical energy made manifest in expansion work (represented by the expansion

term, dα/dt). By rearranging (3.51) as

0 =
d

dt

[

(u2 + v2 + w 2)

2
+ φ

]

+
1

ρ
EV · ∇ p − EV · EF

we can add zero to both sides of (3.52) to yield

Q̇ = cv

dT

dt
+ p

dα

dt
+

d

dt

[

(u2 + v2 + w 2)

2
+ φ

]

+
1

ρ
EV · ∇ p − EV · EF . (3.53)

Noting that (1/ρ) EV · ∇ p is equal to α(dp/dt − ∂p/∂t), and that

p
dα

dt
+ α

dp

dt
=

d

dt
( pα),

we can regroup terms and rewrite (3.53) as

Q̇ =
d

dt

[

(u2 + v2 + w 2)

2
+ φ + cv T + pα

]

− α
∂p

∂t
− EV · EF (3.54)

which is known as the energy equation. This relationship implies that if the flow

is frictionless ( EF = 0), adiabatic (Q̇ = 0), and steady state (∂p/∂t = 0), then the

quantity

(u2 + v2 + w 2)

2
+ φ + cv T + pα

is constant. This is a special case of Bernoulli’s7 equation for an incompressible flow

in which the quantity

(u2 + v2 + w 2)

2
+ φ + pα = Constant.

This relationship suggests that for an atmosphere at rest, any increase in elevation

results, unsurprisingly, in a decrease in the hydrostatic pressure. If the atmosphere is

in motion, however, a larger pressure difference will result over the same elevation

interval since the difference, in this case, is a difference in the dynamic pressure. For

7 Daniel Bernoulli (1700–1782) was a Swiss mathematician and fluid dynamicist. Though from an illustrious
family of mathematicians, he studied medicine at his father’s insistence and discovered a means to measure blood
pressure that was used until the dawn of the twentieth century. When he was 25, Catherine the Great appointed
him Professor of Mathematics at the Imperial Academy of St Petersburg where Leonhard Euler became one of
his first students. He developed the fluid dynamical equation that bears his name at the age of 30.
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Figure 3.15 Flow over a hill illustrating the effect of dynamic pressure. Thin lines are streamlines of

the flow – the closer the streamlines in the vertical, the greater the flow speed. Since u2 > 0, p2 is less

than the hydrostatic pressure at height z

flow over the hill in Figure 3.15, as the air rises over the hill, the speed of the flow

increases. Thus, the pressure difference between the top and the bottom of the hill

( p2 − p1) must be larger than their hydrostatic pressure difference because the wind

speed is higher at the top than at the bottom of the hill (u2 > u1).

Two additional relationships of meteorological consequence arise from further

consideration of aspects of the energy equation. First, an illuminating alternative

expression for the first law of thermodynamics arises from combining (3.52) and the

ideal gas law. Differentiating the gas law with respect to time yields

p
dα

dt
+ α

dp

dt
= R

dT

dt
. (3.55a)

Substituting for pdα/dt (from (3.55a)) in (3.52), and recalling that c p = cv + R,

yields

c p

dT

dt
− α

dp

dt
= Q̇. (3.55b)

If we then divide (3.55b) by T , noting that α/T = R/p, we get

c p

d ln T

dt
− R

d ln p

dt
=

Q̇

T
(3.55c)

where Q̇/T is known as the entropy. If the entropy is constant with time, then we

have an isentropic process and, consequently,

c p

d ln T

dt
− R

d ln p

dt
= 0. (3.55d)

Integration of (3.55d) from a given p and T to a reference pressure, p0, and a reference

temperature, θ , defines what is known as the potential temperature. We begin by

noting that

θ
∫

T

c pd ln T =

p0
∫

p

Rd ln p

which yields

c p(ln θ − ln T) = R(ln p0 − ln p).
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Rearranging the above expression and taking anti-logs results in

θ

T
=

(

p0

p

)
R

c p

or θ = T

(

p0

p

)
R

c p

, (3.56)

known as the Poisson equation.

Physically, θ is the temperature a parcel of air would have if it were adiabatically

compressed (or expanded) from its original pressure, p, to a reference pressure, p0

(usually 1000 hPa). Every air parcel has a unique value of θ and that value is conserved

for adiabatic processes (i.e. conditions in which the entropy does not change). For

this reason, lines of constant θ are often referred to as isentropes and flow along

surfaces of constant potential temperature is known as isentropic flow.

Finally, if we take the log differential of (3.56) with respect to height (z) we get

∂ ln θ

∂z
=

∂ ln T

∂z
+

R

c p

(

∂ ln p0

∂z
−

∂ ln p

∂z

)

. (3.57a)

Since p0 is a constant, its derivative is zero and (3.57a) can be rewritten as

1

θ

∂θ

∂z
=

1

T

∂T

∂z
−

R

c p p

∂p

dz
. (3.57b)

Substituting for ∂p/dz from the hydrostatic equation yields

1

θ

∂θ

∂z
=

1

T

∂T

∂z
+

Rρg

c p p
. (3.57c)

Finally, with the help of the gas law and some rearranging, (3.57c) can be written as

T

θ

∂θ

∂z
=

∂T

∂z
+

g

c p

(3.57d)

which yields an expression for the dry adiabatic lapse rate (Ŵd ). If θ is constant

with height (i.e. the lapse rate is dry adiabatic), then −∂T/∂z = Ŵd = g/c p =
9.8◦C km−1. When ∂θ/∂z is non-zero, the lapse rate (Ŵ = −∂T/∂z) is given by

Ŵ = Ŵd −
T

θ

∂θ

∂z
. (3.58)

Based upon (3.58), there are three conditions for stability that can be assessed. First,

when ∂θ/∂z > 0, then Ŵ < Ŵd which corresponds to a statically stable stratification.

In such an environment, a lifted parcel of dry air (which must cool at the dry adiabatic

rate) will always be cooler than its new environment. Second, when ∂θ/∂z = 0, then

Ŵ = Ŵd and the stratification is said to be neutral and a lifted parcel of dry air will

always have the same temperature as its new surroundings. Finally, when ∂θ/∂z < 0,

then Ŵ > Ŵd which corresponds to an absolutely unstable stratification. In such a

case, a lifted parcel of dry air will always be warmer than its new surroundings and

will, therefore, freely convect.

In the statically stable case just described, a lifted parcel, being colder than its

environment upon being lifted, will be forced back downward to its original level

once the impulse that forced it to rise is exhausted. A series of oscillations about that



72 MASS, MOMENTUM, AND ENERGY

original level will ensue. The frequency of these buoyancy oscillations is dependent

on the restoring force that compels them. In this case, the restoring force (per unit

volume) is the product of gravity and the density difference between the displaced

parcel and its environment.

If we let δz be the vertical displacement of an air parcel about its original level,

then Newton’s second law tells us that

Fz

Mass
=

dw

dt
=

d2(δz)

dt2
. (3.59a)

Letting ρ (ρ ′) and T (T ′) be the density and temperature of the environment (parcel)

and assuming that the pressures of the parcel and the environment are always equal,

then the restoring force (per unit volume) for a displaced parcel is given by

Fz

Volume
= −(ρ ′ − ρ)g . (3.59b)

Thus, the restoring force per unit mass for the displaced parcel can be written as

Fz

Mass
= −

(ρ ′ − ρ)g

ρ ′
. (3.59c)

Employing the gas law allows this expression to be rewritten as

Fz

Mass
= −

(

1

T ′
−

1

T

)

g T ′ = −g

(

T − T ′

T

)

. (3.59d)

Now we can say that (T − T ′) is equal to (Ŵd − Ŵ)δz since the dry parcel cools

at the dry adiabatic lapse rate and must be compared to the environment whose

temperature changes at a rate described by Ŵ. Therefore, the restoring force per unit

mass can be written as

Fz

Mass
= −

g

T
(Ŵd − Ŵ)δz (3.59e)

so that (3.59a) becomes a second-order, ordinary differential equation

d2(δz)

dt2
+

g

T
(Ŵd − Ŵ)δz = 0 (3.60)

whose solution describes a buoyancy oscillation with period 2π/N where

N =
[ g

T
(Ŵd − Ŵ)

]1/2

or, substituting from (3.58),

N =

[

g

θ

∂θ

∂z

]1/2

. (3.61)

N is known as the Brunt–Väisälä frequency and has units of s−1. It is clear from (3.61)

that for the condition of neutrality alluded to earlier (i.e. ∂θ/∂z = 0), N = 0 and
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there is no buoyancy oscillation physically consistent with a neutral displacement.

For the statically stable case (i.e. ∂θ/∂z > 0), N > 0 and buoyancy oscillations are

observed. For the absolutely unstable case (i.e. ∂θ/∂z < 0), N is imaginary and in

perturbation theory such a case corresponds to a growing disturbance. Physically,

this is consistent with the fact that in an absolutely unstable stratification, a lifted

parcel of dry air will always be warmer than its environment and therefore, according

to (3.59), experience an upward-directed buoyancy force without interruption. It is

important to note that instances of absolute instability are exceedingly rare and, even

when they do exist, are very short-lived as the atmosphere mixes rapidly toward

neutrality in such instances.

Selected References

Hess, Introduction to Theoretical Meteorology, offers an alternative perspective on accelerating

reference frames.

Holton, An Introduction to Dynamic Meteorology, provides discussion of many of the same issues.

Brown, Fluid Mechanics of the Atmosphere, provides illuminating discussion of the energy equation.

Acheson, Elementary Fluid Dynamics, discusses many of the same issues.

Problems

3.1. Assume that air flows over a broad building 10 m high. The flow is in steady state and

the density is constant (ρ = 1.3 kg m−3) through this depth of the atmosphere. The

observed speed at ground level is 5 m s−1 while on the rooftop it is 9 m s−1.

(a) What is the pressure difference, in hPa, between the ground and roof level?

(b) How much of this pressure difference is purely hydrostatic?

(c) What is the magnitude and direction of the non-hydrostatic pressure gradient force

vector generated by these circumstances?

In all of the above, you may neglect the vertical variation in temperature.

3.2. (a) Prove that the divergence of the geostrophic wind is given by

∇ · EV g = −Vg (cot φ/a)

where a = radius of the earth and φ is latitude.

(b) Explain why (physically) this is true. (Hint: recall that the magnitude of the Coriolis

force depends on wind speed.)

(c) Calculate the divergence of the geostrophic wind at 43◦N at a point where |vg | =

20 m s−1.

3.3. The perturbation ocean surface height (POSH) is defined as the height of the local ocean

surface above or below mean sea level (which is 0 meters). Suppose a sophisticated

satellite instrument is built that can measure the local POSH to an accuracy of 1 cm. A


