

EPFL Feuille de route « Traitements des ERUs »

				Valeurs relevées après			
Catégorie	Paramètres	Unité	ERU	DP (2h)	BA(C)	BA(N)	π
Solides	MES	mg/L	250	109	< 15		15
Pollution	DBO ₅	mgO ₂ /L	230	151	< 15		15
organique	DCO	mgO ₂ /L	500	327	< 45		45
	NTK	mgC/L	30	27	20,8		3
Dollution ozotóa	NH ₄ +	mg/L	20	20	13,8		2
Pollution azotée	NO ₂ -	mg/L	0	0	0		0,3
	NO ₃ -	mg/L	0	0	0		-
Pollution phosphorée	Ptot	mg/L	6	5,4	4		0,8
Micropolluants	Micropolluant	%	-	< 10	< 20		80

DP : Décantation primaire | BA : boues activées | TT : Traitement tertiaire

EPFL Approches de dimensionnement

APPROCHE 1 | BASÉE SUR LE TEMPS DE SÉJOUR HYDRAULIQUE (t_{SH}) empirique $V_{BA} = Q \times t_{SH}$

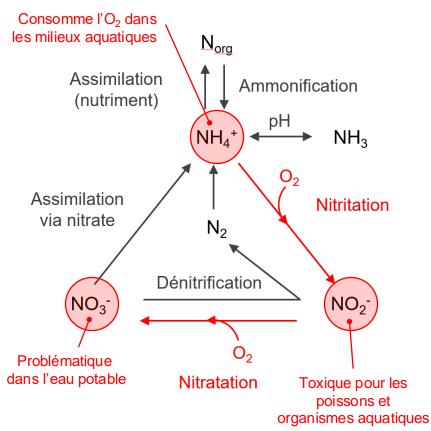
APPROCHE 2 | BASÉE SUR LA CHARGE VOLUMIQUE EN DBO $_5$ ($C_{v, DBO5}$) empirique $V_{BA} = Q \times [DBO_5] / C_{v, DBO5}$

APPROCHE 3 | BASÉE SUR LA CHARGE MASSIQUE (C_m) empirique $V_{BA} = Q \times [DBO_5] / ([MES]_{BA} \times C_m)$

APPROCHE 4 | BASÉE SUR L'ÂGE DE BOUES (θ_x) théorique – connaissance cinétiques bact. $V_{BA} = \theta_{x,dim} \times P_{x,T} / X_T$

APPROCHE 5 | MODÉLISATION ET OPTIMISATION DYNAMIQUE théoriqueMéthode utilisée par les bureaux d'ingénieurs permettant d'optimiser le bassin à BA

EPFL Pourquoi dimensionner avec l'âge de boue (θ_x) ?



Parce que la croissance des bactéries varient en fonction des souches bactériennes, en fonction des conditions de croissance (e.g., temperature, pH, etc.)

Pour laisser le temps aux bactéries les plus lentes (i.e., nitrifiantes) de croître sans les lessiver du système

Parce que si les bactéries nitrifiantes sont lessivées du système trop rapidement, la nitrification est moins bonne, voire impossible

EPFL Cycle simplifié de l'azote dans l'eau

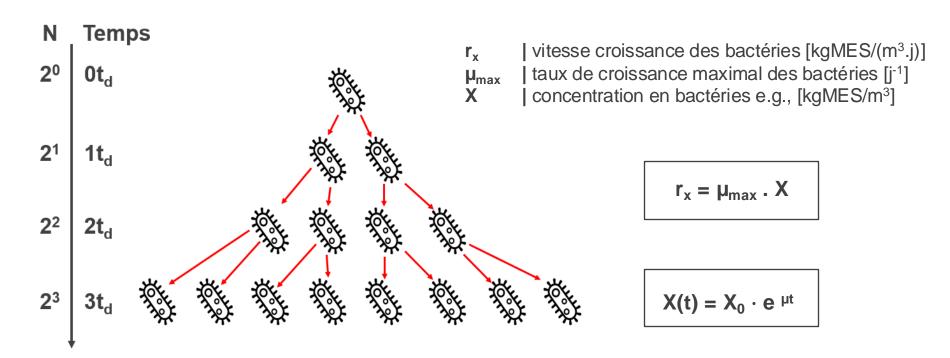
NITRITATION | bactéries oxydant l'ammonium (AOB)

$$NH_4^+ + 1,5 O_2 \rightarrow NO_2^- + 2 H^+ + H_2O + \text{énergie}$$

NITRATATION | bactéries oxydant les nitrites (NOB)

$$NO_2^- + 0.5 O_2 \longrightarrow NO_3^- + \text{énergie}$$

NITRIFICATION | réaction complète

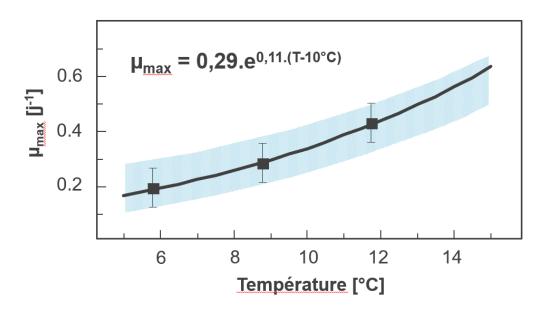

$$NH_4^+ + 2O_2 \rightarrow NO_3^- + 2H^+ + H_2O + \text{énergie}$$

La source de carbone utilisée pour la croissance bactérienne est du carbone minéral (CO₂) avec pour conséquence une vitesse de croissance très lente

Le relargage de proton (H⁺) peut diminuer la force tampon des eaux usées et inhiber l'activité microbiologique

EPFL Aspect cinétique de la croissance bactérienne

X(t) | nombre de bactéries à t [e.g., # / mL ou kgMES/m³]
X₀ | nombre de bactéries à t = 0 [e.g., # / mL ou kgMES/m³]


EPFL Taux de croissance des bactéries

		Tempéra ture (°C)	Taux de croissan ce μ (j ⁻¹)	Temps de division (h)
Escherichia Coli	Bactérie intestinale	37°C	30	0,5
Bactéries	Élimination	20°C	6	3
hétérotrophes	DBO ₅	10	3	6
Bactéries Élimination de		20	0,8	21
nitrifiantes	l'azote	10	0,3	55

Source: Siedlungswasserwirtschaft (Gujer). Technical Report on ASM1-2-3 (Henze et al.)

EPFL Taux de croissance des bactéries nitrifiantes

Influence des conditions environnementales de croissance

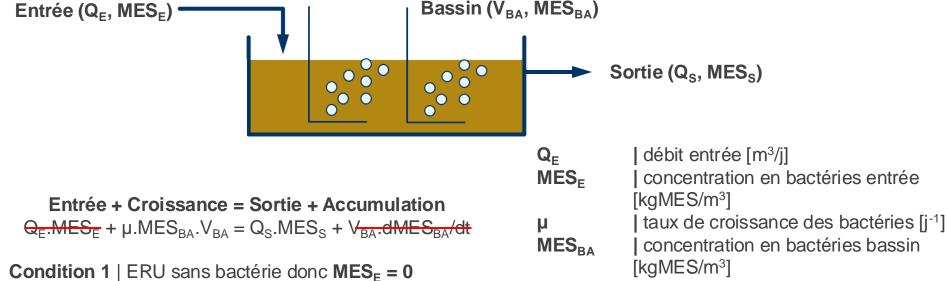
La croissance des bactéries nitrifiantes est le paramètre limitant dans un bassin à boue activée traitant le carbone et l'azote.

Elle est qui plus est fortement impactée par les températures froides.

Source: Siedlungswasserwirtschaft (Gujer)

Principe de base du dimensionnement

 Les bactéries nitrifiantes croient à une certaine vitesse de croissance, fonction de leur taux spécifique de croissance μ.


 Les bactéries nitrifiantes vont « sortir » de la STEP a une certaine vitesse de purge (purge des boues, effluent de sortie)

 PRINCIPE DE BASE: si on purge les bactéries plus vite qu'elles ne peuvent croître, cela entraîne leur lessivage et donc des problèmes ou absence totale de nitrification.

EPFL

Croissance bactérienne réacteur sans recirculation

(chemostat)

 $\mu = Q_S / V_{BA}$ donc $\mu = 1 / t_{SH}$ (avec $t_{SH} = \theta_X$)

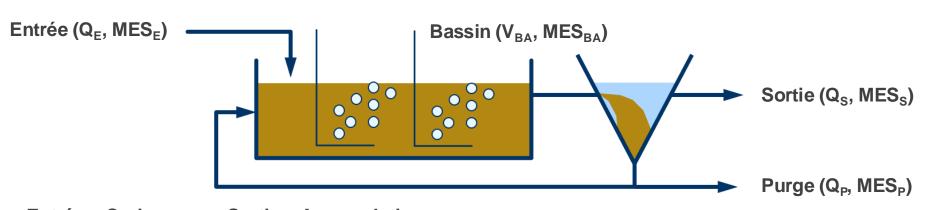
Condition 3 | pas de recirculation donc $MES_s = MES_{RA}$

Condition 2 | état stationnaire donc dMES_{RA}/dt= 0

μ | taux de croissance des bactéries [j

MES_{BA} | concentration en bactéries bassin
[kgMES/m³]

V_{BA} | volume bassin à boue activée [m³]
Q_S | débit sortie [m³/j]


MES_S | concentration en bactéries sortie
[kgMES/m³]

EPFL EXERCICE 1. Chemostat et nitrification

On souhaite faire une nitrification de l'ammonium dans un bassin à boue activée sans recirculation type « Chemostat ». Le débit à traiter (Q_E) est de 10'000 m³/j et la température de l'eau est de 10°C

- Q1. Calculer l'âge de boue minimum (θ_{min}) pour maintenir une bonne nitrification
- Q2. Calculer le volume du bassin à boue activée (V_{BA}). Commenter.

EPFL Croissance bactérienne réacteur avec recirculation

Entrée + Croissance = Sortie + Accumulation
$$\frac{Q_E.MES_E}{Q_E.MES_BA} + \mu.MES_{BA}.V_{BA} = Q_S.MES_S + Q_p.MES_p + \frac{V_{BA}.dMES_{BA}/dt}{V_{BA}}$$

Condition 1 | ERU sans bactéries donc $MES_E = 0$ Condition 2 | état stationnaire donc $dMES_{BA}/dt = 0$

$$\mu = (Q_S.MES_S + Q_p.MES_p) / (MES_{BA}.V_{BA})$$

et
$$\mu = 1 / \theta_{X,système}$$

Q_E | débit entrée [m³/j]

μ | taux de croissance des bactéries [j-1]

MES_{BA} | concentration en bactéries bassin [kgMES/m³]

volume bassin à boue activée [m³]

Q_s | débit sortie [m³/j]

MES_s | concentration en bactéries sortie [kgMES/m³]

Q_P | débit purge [m³/j]

MES_P | concentration en bactéries purge [kgMES/m³]

MES_F

 V_{BA}

Réacteur avec recirulation des boues \rightarrow découplage θ_X et t_{SH} !!!

concentration en bactéries entrée [kgMES/m³]

EPFL Âge de boue (θ_x) Le paramètre du dimensionnement!

$$\theta_{x,système} = \frac{\text{masse de boues}}{\text{quantité de boues purgées}} = \frac{[\text{MES}]_{BA}.V_{BA}}{Q_{S}.[\text{MES}]_{S} + Q_{P}.[\text{MES}]_{P}} = \frac{[\text{MES}]_{BA}.V_{BA}}{P_{x}}$$

```
\begin{array}{lll} \pmb{\theta_{x,dim}} & | \text{ âge de boue du système [j]} & (\pmb{\theta_{x,dim}} > \pmb{\theta_{x,min}}) \\ \pmb{[MES]_{BA}} & | \text{ concentration en MES dans le bassin à boue activée [kgMES/m³]} \\ \pmb{V_{BA}} & | \text{ volume du bassin à boue activée [m³]} \\ \pmb{Q_S} & | \text{ débit de sortie [m³/j]} \\ \pmb{[MES]_S} & | \text{ concentration en MES en sortie [kgMES/m³]} \\ \pmb{Q_P} & | \text{ débit de purge [m³/j]} \\ \pmb{[MES]_P} & | \text{ concentration en MES dans la purge [kgMES/m³]} \\ \pmb{P_x} & | \text{ production de boues [kgMES/j]} \\ \end{array}
```


Masse de boue dans le décanteur secondaire est négligée. Valable uniquement pour des valeurs élevées de $Q_{recirculation}$ (~1:1 par rapport à $Q_{entrée}$) et pour $\theta_x > 3j$)

EPFL Facteur de sureté (FS) Valeurs typiques

$$FS > F_{NH4,max} / F_{NH4,moy}$$
 Soit $\mu_{max} / \mu > F_{NH4,max} / F_{NH4,moy}$

```
 \begin{array}{ll} \textbf{FS} & | \text{ facteur de sureté [-]} \\ \textbf{$\mu_{max}$} & | \text{ taux de croissance maximal des bactéries [j-1]} \\ \textbf{$\theta_{x,dim}$} & | \text{ âge de boue du système [j]} \\ \end{array}
```

$$FS \cdot \theta_{X,min} = \theta_X$$

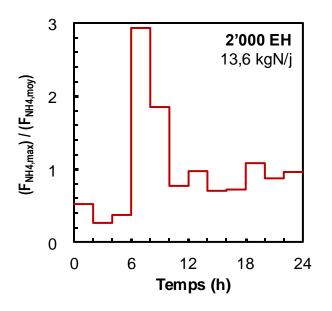
$$FS = \theta_{X,dim} / \theta_{X,min}$$

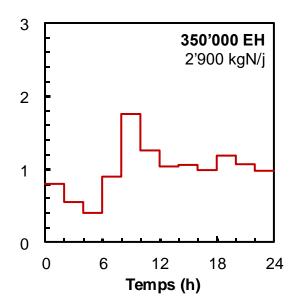
$$FS = \mu_{max} . \theta_{X,dim}$$

```
Éviter le lessivage des nitrifiantes | FS = 1 |

Petite STEP (\leq 5000 EH) | FS = 3 |

Moyenne STEP (5'000 - 50'000 EH) | FS = 2,5 |

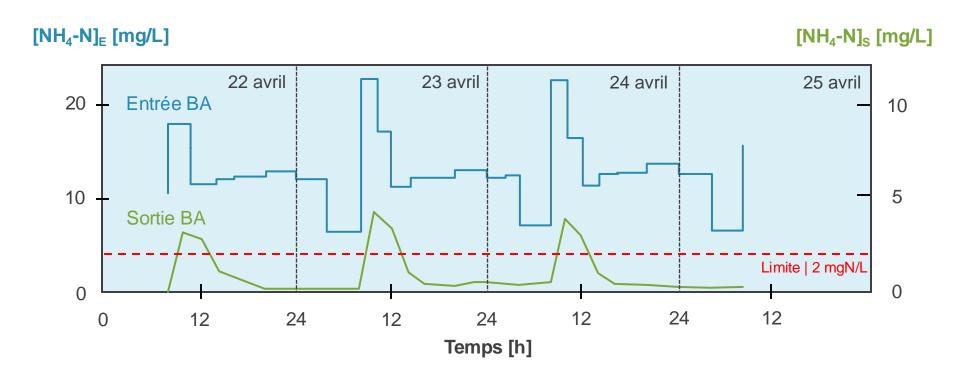

Grande STEP (> 50'000) | FS = 2 |
```



Le facteur de sureté diminue généralement lorsque la taille du réseau d'assainissement augmente.

EPFL Facteur de sureté (FS) Définition

Choix de la valeur de FS: réduire l'effet de la CHARGE VARIABLE sur les concentrations d'effluents



 $FS > F_{NH4,max} / F_{NH4,moy}$

Le facteur de sureté diminue généralement lorsque la taille du réseau d'assainissement augmente.

EPFL Facteur de sureté (FS) Ça sert à quoi ?

 $FS = 2 \rightarrow d\acute{e}$ passement limites ammonium en sortie de STEP $F_{NH4,max}/F_{NH4moy} = 2,2 \rightarrow aurait permis d'éviter le pic d'ammonium observés en sortie$

EPFL La nitrification Dimensionnement

- Étape 1 | Identifier le taux de croissance (μ) des bactéries les plus « lentes » (e.g., nitrifiantes)
- **Étape 2** | Calculer l'âge de boue minimum ($\theta_{x,dim}$ = FS / μ) à maintenir pour permettre aux bactéries de se développer et d'absorber la charge polluante maximale ($\theta_{x,dim} > \theta_{x,min}$)
- **Étape 3** | Calculer la production de boue (P_x)
- Étape 4 | Choisir une concentration de boue dans le bassin de boue activée [MES]BA
- Étape 5 | Calculer le volume du bassin de boue activée (V_{BA})
- Étape 6 | Vérifier le temps de séjour hydraulique (t_{SH}) et la charge massique appliquée

EPFL EXERCICE 2. STEP avec nitrification

L'eau usée d'une STEP de 40'000 EH présente les caractéristiques suivantes :

- $Q = 15'000 \text{ m}^3/\text{j}$
- F_{DBO5} après décantation = 2'250 kgDBO₅/j
- $T = 10^{\circ}C$

La STEP est équipée avec un décanteur primaire. Il n'y a pas de précipitation chimique du phosphore.

Q1. Dimensionner le bassin à boue activée avec nitrification

EPFL CORRECTION 2. STEP avec nitrification

1. Déterminer le taux de croissance (μ_{max}) des bactéries nitrifiantes

$$\mu_{\text{max}}$$
 @ 10°C = 0,29 j⁻¹

2. Déterminer l'âge de boue $(\theta_{x,dim})$

$$\theta_{x,dim} = FS / \mu_{max} = 9 j$$

3. Calculer la production de boue (P_x)

$$P_x = a_m.F_{DBO5} = 0.8 \times 2'250 = 1'800 \text{ kgMES/j}$$

4. Choisir une concentration en boue activée ([MES]_{BA})

$$[MES]_{BA} = 3 \text{ kgMES/m}^3$$

5. Calculer le volume du bassin à boue activée (V_{BA})

$$V_{BA} = \theta_{x \text{ dim}} P_x / [MES]_{BA} = 9 \times 1'800 / 3 = 5'400 \text{ m}^3$$

6. Calculer le temps de séjour hydraulique (t_{SH})

$$t_{SH} = V_{BA}/Q = 5'400 / 15'000 = 8,6 h (> 8h donc OK)$$

7. Calculer le coefficient de charge massique (C_m)

$$C_m = X_{DBO5}/V_{BA}.[MES]_{BA} = 2'250 / 5'400 x 3 = 0,14 kgDBO_5/(kgMES.j)$$

Le coefficient de charge massique permet une bonne nitrification

EPFL Demande en oxygène (DO) Dimensionnement

$$DO = DO_{DBO5} + DO_{nitrif} = (a_{O2}.Q.[DBO_5]_{\text{éliminée}}.f_{DBO5}) + (4,3.Q.[NO_3]_{\text{formé}}.f_N)$$

```
DO
                  Demande en oxygène total [kgO<sub>2</sub>/j]
DO_{DBO5}
                  Demande en oxygène pour oxyder la DBO<sub>5</sub> [kgO<sub>2</sub>/j]
                   Demande en oxygène pour former NO<sub>3</sub>- [gN/m<sup>3</sup>]
DO<sub>nitrif</sub>
                   Coefficient spécifique de besoin en oxygène [kgO<sub>2</sub>/kg<sub>DBO5</sub>]
a_{02}
Q
                  | Débit d'eau usée [m³/j]
[DBO<sub>5</sub>]<sub>élim</sub>
                 | Concentration éliminée en DBO<sub>5</sub> dans l'eau usée [kgDBO<sub>5</sub>/m<sup>3</sup>]
                  Coefficient de sécurité prenant en compte les variations journalière [-]
f_{DBO5}
[NO<sub>3</sub>-]<sub>formé</sub>
                 | Concentration en NO<sub>3</sub>- formé dans l'eau usée [kgN/m<sup>3</sup>]
                 | Facteur d'impact pour le cycle quotidien de nitrification [-]
f_N
```


EPFL Attention à l'alcalinité !!!

NITRIFICATION | réaction

$$NH_4^+ + 2 O_2 \longrightarrow NO_3^- + 2 H^+ + H_2O + \text{énergie}$$

Réaction en tenant compte de l'alcalinité

$$NH_4^+ + 2 O_2 + 2 HCO_3^- \longrightarrow NO_3^- + 2 CO_2 + 3 H_2O$$

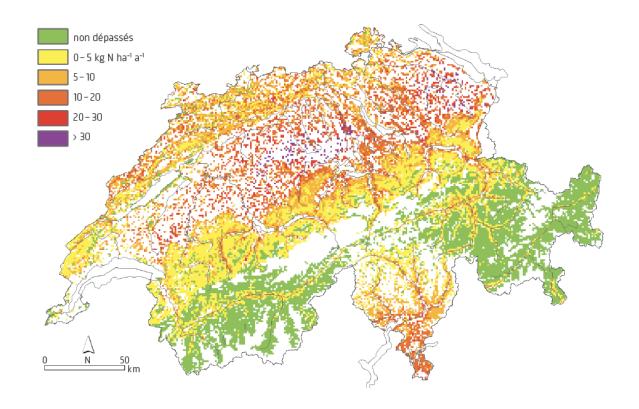
2 moles de HCO₃⁻ /mole de NO₃⁻ produite La nitrification « consomme » de l'alcalinité et diminue le pH

EPFL Feuille de route « Traitements des ERUs »

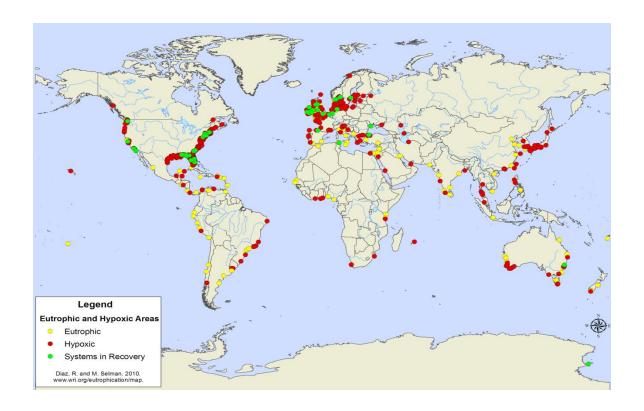
				Valeurs relevées après			
Catégorie	Paramètres	Unité	ERU	DP (2h)	BA(C)	BA(N)	π
Solides	MES	mg/L	250	109	< 15	< 15	15
Pollution	DBO ₅	mgO ₂ /L	230	151	< 15	< 15	15
organique	DCO	mgO ₂ /L	500	327	< 45	< 45	45
	NTK	mg/L	30	27	20,8	< 3	3
Dollution ozotóa	NH ₄ +	mg/L	20	20	13,8	< 2	2
Pollution azotée	NO ₂ -	mg/L	0	0	0	< 0,3	0,3
	NO ₃ -	mg/L	0	0	0	?	-
Pollution phosphorée	Ptot	mg/L	6	5,4	4	4	0,8
Micropolluants	Micropolluant	%	-	< 10	< 20	< 20	80

DP : Décantation primaire | BA : boues activées | TT : Traitement tertiaire

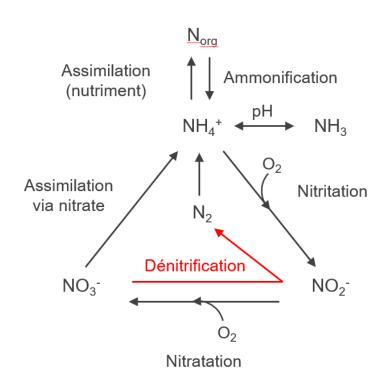
EPFL Nitrate en sortie du bassin à boue activée


	Bilan sur l'azote				
	Unité Entrée Sortie				
NTK	mgN/L	27	3		
NO ₂ -N	mgN/L	0	0,3		
NO ₃ -N	mgN/L	0	17,5		
Assimilation	mgN/L	-	6,2		
N _{tot}	mgN/L	27	27		

4,5% de la [DBO₅]_{élim} = 0,045 x (151 - 15)


EPFL Feuille de route « Traitements des ERUs »

				Valeurs relevées après			
Catégorie	Paramètres	Unité	ERU	DP (2h)	BA(C)	BA(N)	π
Solides	MES	mg/L	250	109	< 15	< 15	< 15
Pollution	DBO ₅	mgO ₂ /L	230	151	< 15	< 15	< 15
organique	DCO	mgO ₂ /L	500	327	< 45	< 45	< 45
	NTK	mgC/L	30	27	20,8	< 3	< 3
Dollution ozotóa	NH ₄ +	mg/L	20	20	13,8	< 2	< 2
Pollution azotée	NO ₂ -	mg/L	0	0	0	< 0,3	< 0,3
	NO ₃ -	mg/L	0	0	0	17,5 —	
Pollution phosphorée	Ptot	mg/L	6	5,4	4	4	< 0,8
Micropolluants	Micropolluant	%	-	< 10	< 20	< 20	> 80


EPFL Dépassement des apports d'azote en Suisse en 2015

EPFL Eutrophisation des estuaires marins

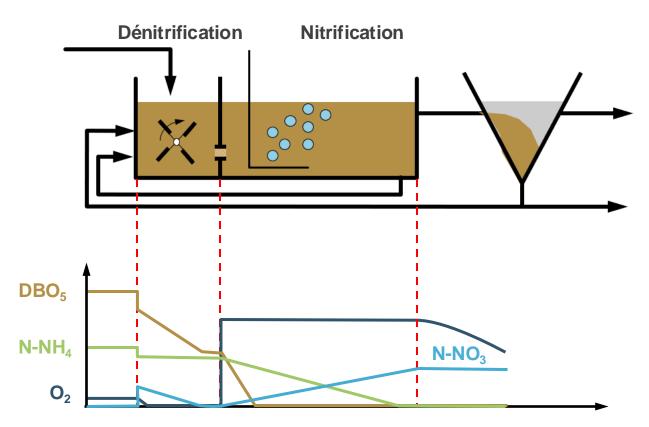
EPFL Cycle simplifié de l'azote dans l'eau

DÉNITRIFICATION | bactéries hétérotrophes anoxiques

$$5 \text{ CH}_2\text{O} + 4 \text{ NO}_3^- + 4 \text{ H}^+ \longrightarrow 5 \text{ CO}_2 + 2 \text{ N}_2 + 7 \text{ H}_2\text{O} + \text{énergie}$$

TRAITEMENT C (rappel) | bactéries hétérotrophes aérobies

$$CH_2O + O_2 \rightarrow CO_2 + H_2O + \text{énergie}$$


EPFL Dénitrification

Production de N₂ pendant la dénitrification peut amener les boues à flotter

EPFL Bassin à boue activée Nitrification/Dénitrification

EPFL Bassin à boue activée Nitrification/Dénitrification

EPFL Attention à l'agitation / aération dans le bassin anoxique!

EPFL Bassin dénitrification Dimensionnement

Capacité de dénitrification γ _D @ 10 – 12°C	Ratio V _{ANOX} /V _{BA}	Âge de boue θ _x @ 10°C [j]
0,11	0,2	10 – 12
0,13	0,3	11 – 14
0,14	0,4	13 – 17
0,15	0,5	16 – 20

 $\begin{array}{lll} \textbf{V}_{\textbf{D}} & | \; \text{Capacit\'e de d\'enitrification [gN-NO}_3/\text{gDBO}_{5,\text{entr\'ee}}] \\ \textbf{V}_{\textbf{ANOX}} & | \; \text{Volume du bassin anoxique pour la d\'enitrification [m}^3] \\ \textbf{V}_{\textbf{BA}} & | \; \text{Volume du bassin de boues activ\'ees a\'erobie [m}^3] \\ \textbf{\theta}_{\textbf{x}} & | \; \hat{\textbf{Age de boue [j]}} \end{array}$

EPFL EXERCICE 1. Bassin de nitrification et dénitrification

On veut dimensionner les bassins biologiques d'une STEP de **10'000 EH** traitant le carbone et l'azote (nitrification + dénitrification). L'eau en entrée des bassins biologiques présente les caractéristiques suivantes :

- $Q = 3'000 \text{ m}^3/\text{j}$
- $[DBO_5]_E = 150 \text{ gDBO}_5/\text{m}^3$
- $[NTK]_F = 33 \text{ gN/m}^3$
- $T = 10^{\circ}C$

A noter que l'objectif pour la STEP est d'éliminer 2/3 de l'azote entrant. On considèrera pour ça que la nitrification est totale.

- Q1. Calculer le volume du bassin aérobie avec nitrification (V_{BA})
- Q2. Calculer le volume du bassin anoxique pour la dénitrification (V_{ANOX})

EPFL CORRECTION 1. Bassin de nitrification et dénitrification

1. Déterminer le taux de croissance (μ_{max}) des bactéries nitrifiantes

$$\mu_{\text{max}}$$
 @ 10°C = 0,29 j⁻¹

2. Déterminer l'âge de boue $(\theta_{x,dim})$

$$\theta_{x,dim} = FS / \mu_{max} = 2.5 / 0.29 = 9 j$$

3. Calculer la production de boue (P_x)

$$P_x = a_m \cdot X_{DBO5} = 0.8 \times 0.150 \times 3'000 = 360 \text{ kgMES/j}$$

4. Choisir une concentration en boue activée ([MES]_{BA})

$$[MES]_{BA} = 3 \text{ kgMES/m}^3$$

5. Calculer le volume du bassin à boue activée (V_{BA})

$$V_{BA} = \theta_{x,dim}.P_x/[MES]_{BA} = 9 \times 360 / 3 = 1'080 \text{ m}^3$$

6. Calculer le temps de séjour hydraulique (t_{SH})

$$t_{SH} = V_{BA}/Q = 1'080 / 3'000 = 0.33 j ou 8.6 h (> 8h donc OK)$$

7. Calculer le coefficient de charge massique (C_m)

$$C_m = X_{DBO5}/V_{BA}.[MES]_{BA} = 0.150 \times 3'000 / (1'080 \times 3) = 0.14 \text{ kgDBO}_5/(\text{kgMES.j})$$

Le coefficient de charge massique permet une bonne nitrification

EPFL CORRECTION 1. Bassin de nitrification et dénitrification

8. Déterminer la quantité d'azote dénitrifiée (N_{DENIT})

$$[N_{tot}]_E = [N]_{ASS} + [N]_{DENIT} + [N]_S$$

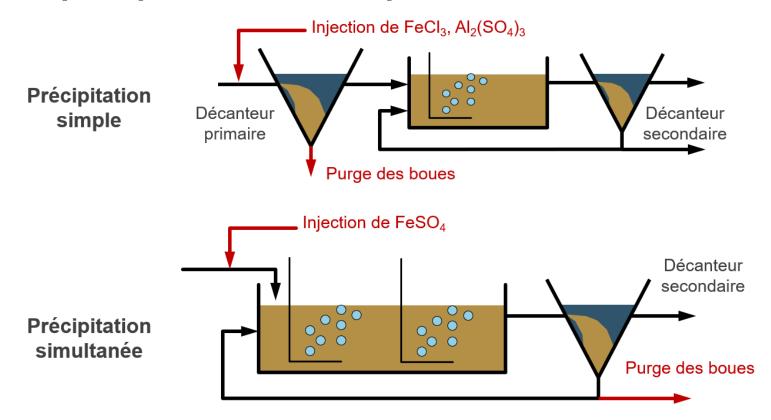
$$[N_{tot}]_E = [NTK]_E \text{ car pas de nitrate et nitrite en entrée du bassin biologique}$$

$$[N]_{ASS} = 0.045.[DBO_5] = 0.045 \times 150 = 6.8 \text{ gN/m}^3$$

$$[N]_S = [N-NO_3]_S = [N]_{NON-DENIT} = 1/3 [N_{tot}]_E = 1/3 \times 33 = 11 \text{ gN/m}^3$$

$$[N]_S = [N-NO_3]_S = [N]_{NON-DENIT} = 1/3 [N_{tot}]_E = 1/3 \times 33 = 11 \text{ gN/m}^3$$

$$[N]_{DENIT} = 33 - 11 - 6.8 = 15.2 \text{ gN/m}^3$$


9. Déterminer le volume du bassin anoxique (V_{ANOX})

$$\gamma_D = 15.2 / 150 = 0.1 \text{ gN/gDBO}_5$$
 $V_{ANOX}/V_{BA} = 0.2$
 $V_{ANOX} = 1080 \text{ x } 0.2 = 216 \text{ m}^3$

EPFL Synthèse des besoins des traitements biologiques

	Élimination de la DBO ₅	Nitrification	Dénitrification
O ₂	X	Χ	Inhibiteur
DCO/DBO ₅	X	-	X
Bactéries hétérotrophes	X	-	X
Bactéries autotrophes	-	Χ	-
N-NH ₄	-	X	-
N-NO ₃	-	Production	X
Alcalinité (HCO ₃ -)	-	Χ	Production
Âge de boue	< 5 j	7 – 10 j	12 – 18 j

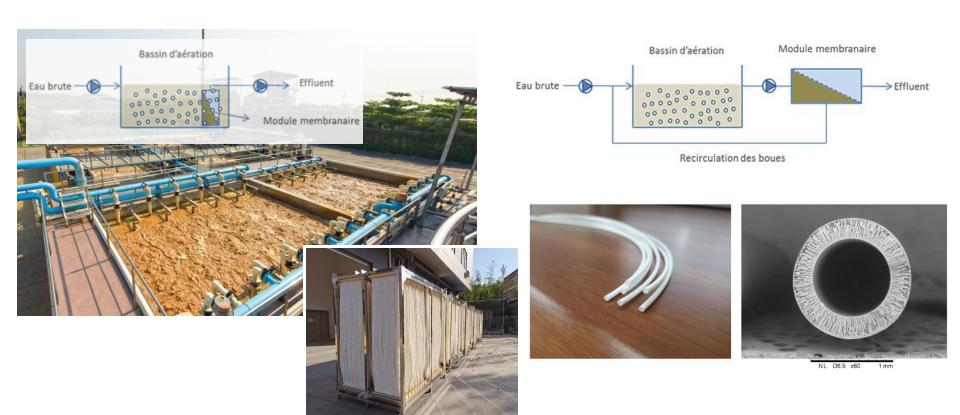
EPFL Déphosphatation chimique dans le bassin à BA

EPFL Déphosphatation chimique dans le bassin à BA

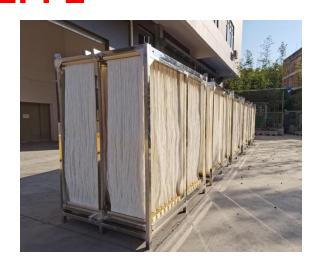
DÉPHOSPHATATION AU SULFATE DE FER (FeSO₄)

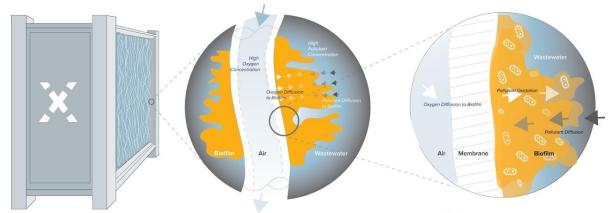
FeSO₄
$$\longrightarrow$$
 Fe²⁺ + SO₄²⁻

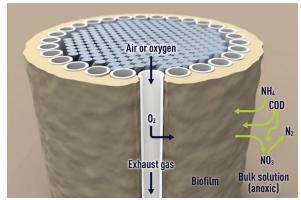
3 Fe²⁺ + O₂ + 4 H⁺ \longrightarrow 2 Fe³⁺ + 2 H₂O

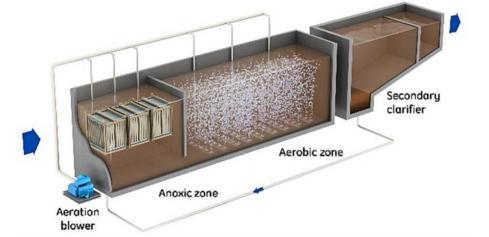

Fe³⁺ + PO₄³⁻ \longrightarrow FePO₄

Production de MES minérales dans les boues (1,4 gMES + β x 3,5 gMES) pour 1 gP précipité

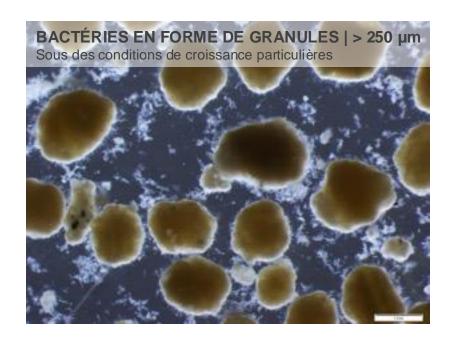

Il faut donc au minimum 1 mole de Fe³⁺ pour précipité 1 mole de PO₄³⁻ (ratio appelé β)


En général, β est compris entre 1,2 et 2,5 mole Fe³+/mole P pour être certain de précipiter tous les phosphates malgré la formation de Fe(OH)₃


EPFL Autres procédés biologiques Bioréacteur à membrane

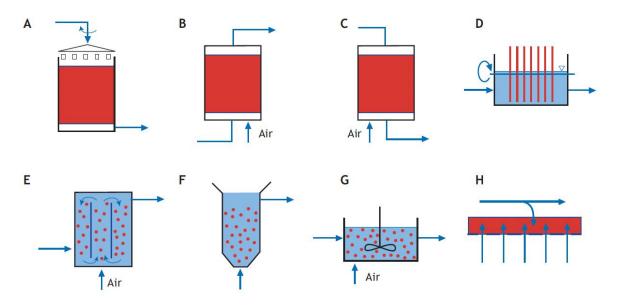
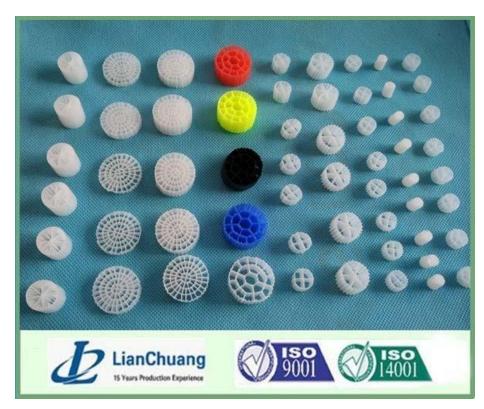


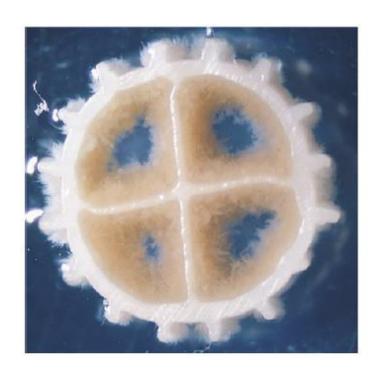
EPFL Membrane Aerated Biofilm Reactor



EPFL Autres procédés biologiques Boues granulaires

EPFL Réacteurs de type biofilm

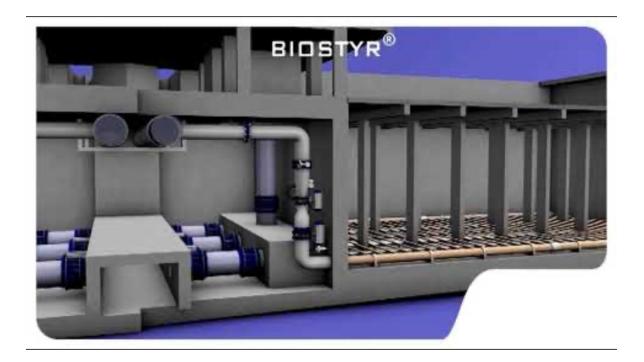



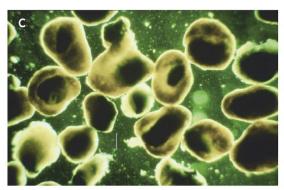

Figure 18.2 Types of biofilm reactors: (A) trickling filter (TF), (B) submerged fixed-bed biofilm reactor operated as upflow or (C) downflow, (D) rotating biological contactors (RBC), and (E) suspended biofilm reactor including an air lift reactor, (F) fluidized-bed reactor, (G) moving-bed biofilm reactor (MBBR) and aerobic granular sludge (AGS), and (H) membrane-attached biofilm reactors (modified from Wanner et al., 2006).

EPFL

Autres procédés biologiques MBBR

Moving Bed Biofilm Reactor




EPFL Autres procédés biologiques Moving Bed Biofilm Reactor

EPFL Autres procédés biologiques Biofiltres

Figure 18.7 (A) Biofor® and (B) BioStyr® support media in submerged fixed-bed biofilm reactors. (C). Sand or basalt can be used as support medium in fluidized reactors. Diameter of the support medium in (A) and (B) is 4 mm and in (C) is 1 mm (photos: E. Morgenroth, Veolia, and M.C.M. van Loosdrecht, respectively).

EPFL

Réacteurs de type biofilm

Table 18.1 Specific carrier surface area for different types of media and biofilm reactors.

•		••		
Type of reactor	Carrier material	Size of material,	Specific carrier	Reference
		mm st	urface area (a _F), m ² /	m^3
Trickling filter	Rock	40-80	50-100	ATV-DVWK, 2001
	Plastic	-	100-200	ATV-DVWK, 2001
Rotating biological contactor (RBC)	Plastic	-	100-200	ATV-DVWK, 2001
Moving-bed biofilm	Plastic (K ₁) (60% fill volume)	7-9	300	Rusten et al., 2006
reactor (MBBR)	Plastic (K ₅) (60% fill volume)	3.5-25	480	Dezotti et al., 2018
Submerged biofilter	Porous clay	1.3-8	1,000-1,400	ATV, 1997
	Porous slate	2-8	1,200-1,400	ATV, 1997
	Polystyrene	3-6	1,100	ATV, 1997
	Anthracite	2.5-3.5	1,900	ATV, 1997
	Quartz sand	0.7-2.2	3,000	ATV, 1997
	Basalt	1.4-2.2	3,600	ATV, 1997
Granular sludge	-	-	200-2,000	
Fluidized bed	Sand or basalt	0.2-0.8	3,000-4,000	Nicolella et al., 2000

[«] Biological WW treatment: principles, design and modelling » 2nd Edtition.