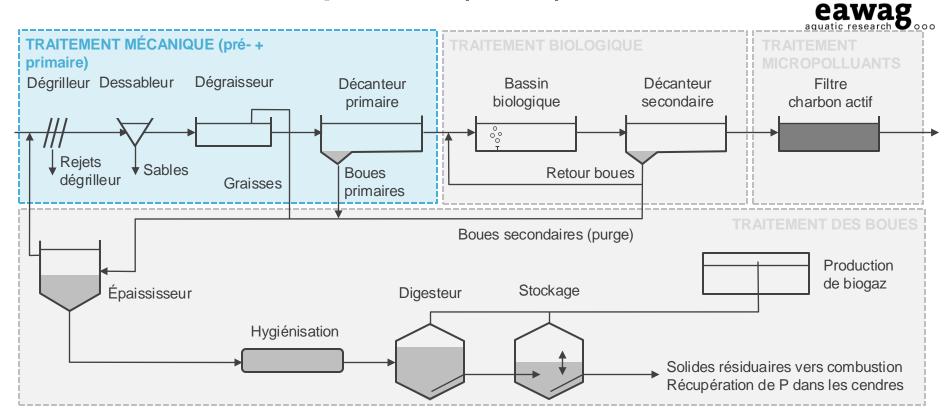


Objectifs du cours Traitement Mécanique

Eawag


Swiss Federal Institute of Aquatic Science and Technology

- Connaissance de la chaîne de traitement globale et des différentes étapes du traitement mécanique (ou traitement primaire)
- Objectifs de traitement et efficacité du traitement mécanique (élimination MES, etc.)
- Connaitre les approches de dimensionnement
 - Déssableur
 - Décanteur primaire
- Nouvelles technologies (micro-tamisage)

Swiss Federal Institute of Aquatic Science and Technology

EPFL La station d'épuration (STEP)

EPFL Un siècle de traitement des ERU

Eawag

Swiss Federal Institute of Aquatic Science and Technology

TRAITEMEN	ΙT
MÉCANIQU	ΙE

	Année	Polluant ciblé	Impact sur l'environnement	
	1920	MES	Consommateur d'oxygène, sédimentation	
Γ :	1950	DBO ₅	Consommateur d'oxygène	
	1965	Phosphore	Eutrophisation	← Si combiné
	1975	Ammonium	Toxicité pour poissons	avec traitement
	1980	Métaux lourds	Accumulation dans les sols	physico- chimique
	1990	Nitrates	Eutrophisation dans la mer du Nord	
	2004	Prions	Présence dans les boues de STEP	
	2010	Micropolluants	Traitement tertiaire	

Relevage des ERUs

Vis d'Archimède

Source: www.zase.ch

EPFL Le dégrillage Pourquoi et comment ?

Eawag
Swiss Federal Institute of Aquatic

Objectif | Éliminer les matières solides les plus grosses qui pourraient :

- (1) Endommager / boucher les autres unités de traitement (obstruction conduites...)
- (2) Diminuer les performances globales / fiabilité du traitement
- (3) Contaminer l'eau

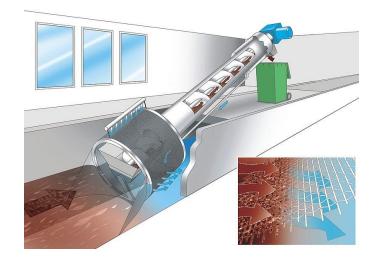
Types de dégrilleurs

- Pré-dégrillage : > 40 mm
- Dégrillage moyen : 10 à 40 mm
- Dégrillage fin : 6 à 10 mm
- Tamisage: 0,5 à 6 mm

Gestion des produits de dégrillage | pressage puis incinération

Dégrilleurs

Dégrilleur à barreaux avec râteau de nettoyage (entrefer: 20mm)


Source: www.picatech.ch

Dégrilleurs

Type dégrilleur fin rotatif (Rotamat de Huber)

Intégration optimisée (dégrillage, lavage, , transport et compactage)

Source: www.picatech.ch

Produits de dégrillage (grossier)

roches,
branches,
morceaux de
bois, feuilles,
papier, racines
d'arbres,
plastiques,
bouteilles, boîtes
de conserve,
chiffons, etc.

Source: SIAAP

Lingettes

Lingette, fléau des réseaux d'assainissement / STEP

"Le 10 octobre 2021, un problème au niveau de la pompe de relevage de la station d'épuration des Argoulets avait été à l'origine d'une **pollution** qui avait causé la mort de dizaines de poissons."

Source: actu.fr

...mais
aussi des
"produits"
plus
exotiques

Source: collection privée Nico Derlon

Le dégrillage - dimensionnement

Points importants

Principe | Choisir un écartement des barreaux permettant d'enlever un maximum de déchets solides sans pour autant provoquer un colmatage excessif (→ réduire les interventions manuelles)

Vitesse de passage entre les barreaux | 0,5 à 1 m/s (1,2 m/s au débit max.) (applicable à la section vide des barreaux, i.e., section non-colmatée)

Sécurité et santé des exploitants | Prévoir un système de gestion des déchets permettant d'éviter la prolifération de bactéries pathogènes, d'insectes et la propagation excessive d'odeurs

Le dégrillage

Importance du pressage avant incinération

Technologie	Écartement (mm)	Production spécifique (m³ EH-1 a-1)	
de séparation		Avant presse (8% MS)	Après presse (25% MS)
Dégrillage grossier	50	0,003	0,001
Dégrillage fin	15	0,012	0,004
Tamisage	3	0,022	0,007

Siccité (%) = matières sèches. Exprimée en % (masse / masse)

EPFL

EXERCICE 1. Coût déchets issus du dégrillage

La STEP de Sihltal (capacité : **30'000 EH**) est équipée d'un système de **dégrillage à 15 mm** dont les refus (siccité de 8%) partent vers une presse permettant d'atteindre une **siccité de 30%**. Un équivalent habitant produit env. 1,2 kg_{MS}/an/EH de refus > 15 mm.

Q1. Calculer le volume de déchets avant et après pressage

Q2. Calculer les coûts associés au traitement de ces refus (pour la STEP et par EH)?

Donnée: 600 CHF / tonne de refus

EPFL EXERCICE 1. Coût déchets issus du dégrillage

Production (masse) de refus / an /EH: 1,2 kgMS / an / EH

36 tonnes / an pour 30 000 EH

Production de refus / an / EH: 15 kg / an / EH

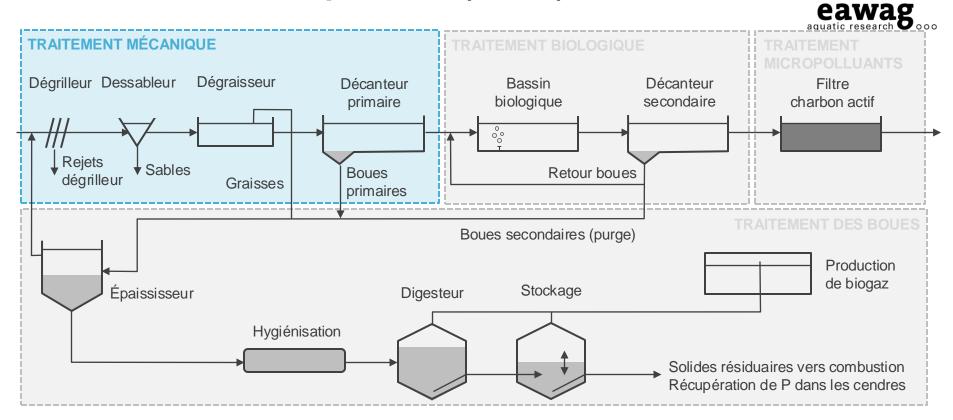
(8% de siccité) 450 tonnes / an pour 30 000 EH

Production de refus / an / EH: 4 kg / an / EH

(30% de siccité) 120 tonnes / an pour 30 000 EH

Coûts:

Sans presse 9 CHF / an / EH

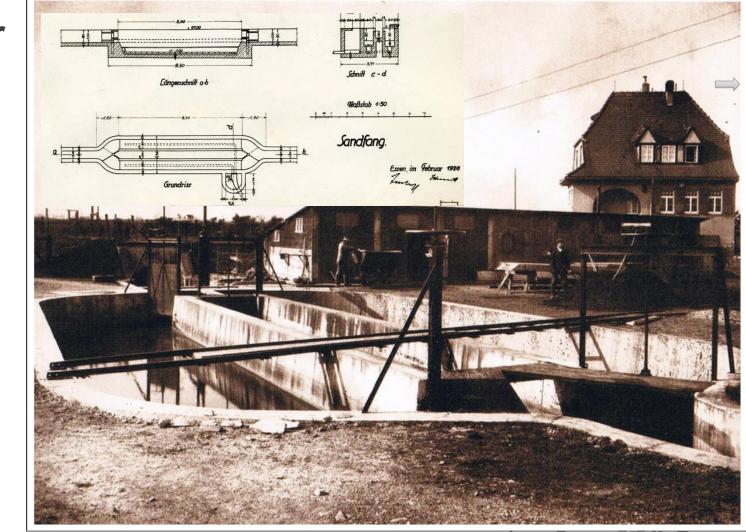

270 000 CHF / an pour 30 000 EH

Avec presse 2,4 CHF / an / EH

72 000 CHF / an pour 30 000 EH

Swiss Federal Institute of Aquatic Science and Technology

EPFL La station d'épuration (STEP)


Dessableur Empire Romain Metz, FR

ENDUIT COUPE EN TRAVERS __ Sortie Réservoir carré et profond ENBUIT. Surverse BASSIN D'ARS SUR MOSELLE BATREE METRES

Entrée

Source: www.romanaqued ucts.info

Dessableur

*Source:

http://www.pumpenha us-erfurt.de/zapsportgaststaette/zap-

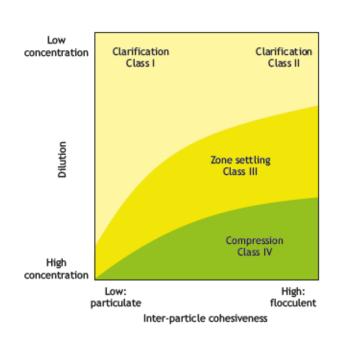
geschichte.html

Objectif | Extraire les graviers, sables et particules minérales plus ou moins fines par décantation (sans extraire les matières organiques) pour :

- (1) Minimiser l'encrassement des canalisations
- (2) Éviter l'abrasion des pompes
- (3) Minimiser les matières minérales dans les boues primaires

Dimensionnement | 100% de rétention du sable (vitesse de sédimentation $v_s > 0.01$ m/s) et 100% de passage de particules organiques à travers le dessableur (vitesse d'écoulement $v_e = 0.3$ m/s. TSH: env. 1 min.)

Domaine d'application | Se limite généralement aux particules > 200 μm


Efficacité | rendement d'élimination des sables > 95%

EPFL Différents régimes de sédimentation

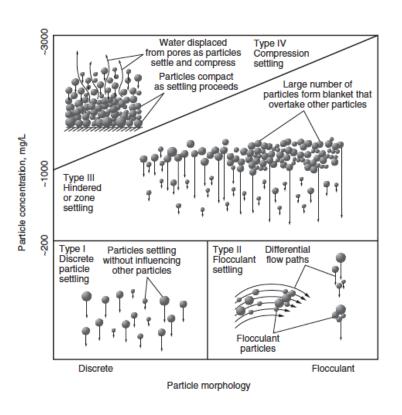
Swiss Federal Institute of Aquatic Science and Technology

influence sur la nature des particules et donc leur sédimentation

Type I: discrete particle settling sédimentation de particules individuelles sans interactions entre elles

Type II: flocculant settling sédimentation de particules floculées – interactions entre particules

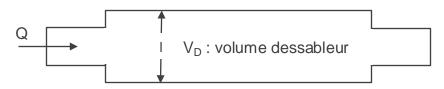
Type III: hindered settling concentration élevée en particules floculées, qui forment un lit de boue, celui-ci interceptant d'autres particules


Type IV: compression settling compaction du lit de boue, entrainant le déplacement ascendant du surnageant)

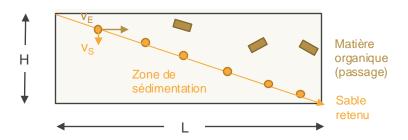
Source: Ekama et al. 1997.

Différents régimes de sédimentation

Source: ouvrage "Principles of water treatment". MWH. Kerry Howe et al.


EPFL Le dessablage

Dimensionnement



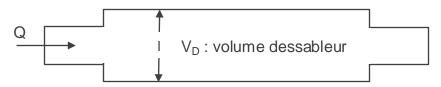
Comment déterminer les dimensions d'un dessableur (L x I x H)?

Vue de dessus

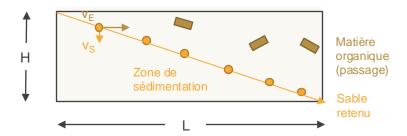
Vue en coupe

HYPOTHÈSES

- écoulement de type piston
- vitesse d'écoulement constante sur l'horizontale
- Solides répartis uniformément sur la section d'écoulement
- Solides sphériques / pas de floculation (sédimentation particules individuelles)
- Solides sédimentés ne sont pas remis en suspension.


EPFL Le dessablage

Dimensionnement



Comment déterminer les dimensions d'un dessableur (L x I x H) ?

Vue de dessus

Vue en coupe

Condition #1 Temps de sédimentation (t_S) inférieur ou égal au temps de séjour hydraulique (t_{SH})

$$t_S \le t_{SH}$$
 et $v_S = 0.01$ m/s

$$t_{SH} = \frac{L \times I \times H}{Q}$$
 et $t_S = \frac{H_0}{v_S}$ \longrightarrow $v_S \ge \frac{Q}{L \times I} = v_0$

 v_0 : vitesse seuil de sédimentation (pour qu'une particule qui arrive à la hauteur H_0 soit retenue juste avant sa sortie du décanteur = H_0 / t_{SH} = charge surfacique dessableur | $m^3/(m^2.h)$

Condition #2 Vitesse d'écoulement $(v_F) = 0.3 \text{ m/s}$

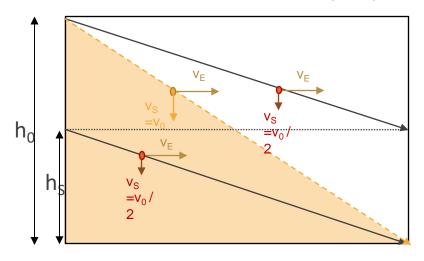
$$V_E = \frac{Q}{1 \times H} = 0.3 \text{ m/s}$$

Condition #3 Ratio entre la longueur et la largeur

$$L = 10 I$$

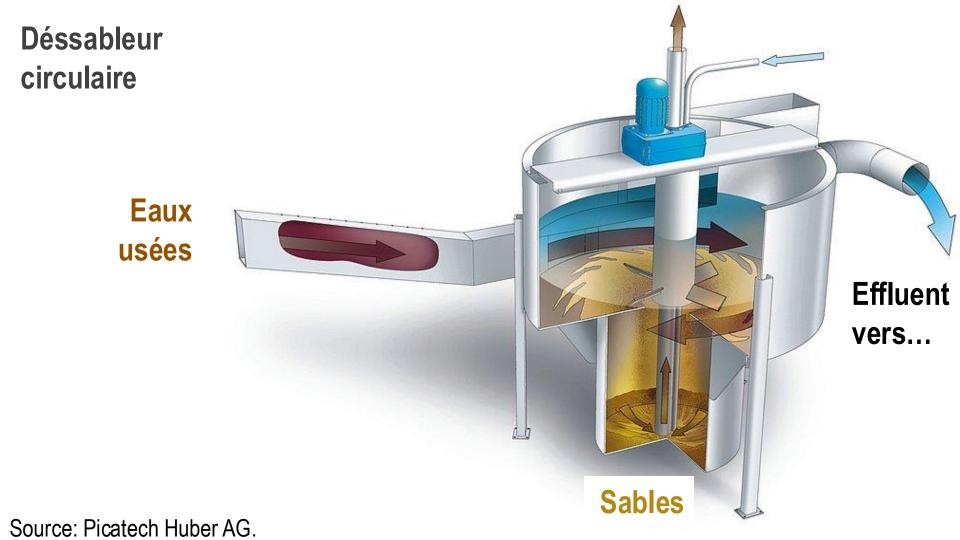
EPFL QUESTION

Un dessableur est dimensionné pour une vitesse seuil V_C.


Quelle est l'efficacité de dessablage d'une eau usée contenant des particules minérales caractérisées par une vitesse de sédimentation $V_S = V_C / 2$?

- **0**%
- **50%**
- **1**00%

EPFL Le dessablage Dimensionnement

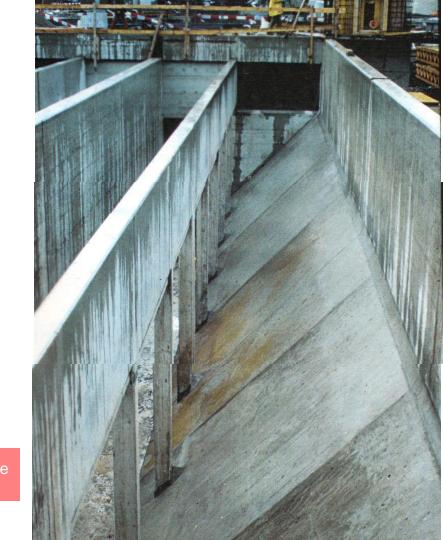


Example pour particules avec $V_S = V_0 / 2$:

Fraction éliminée (total) =
$$\frac{\sum_{i=1}^{n} \frac{V_{n_i}}{V_0}(n_i)}{\sum_{i=1}^{n} n_i}$$

Avec V_{n_i} la vitesse moyenne de sédimentation dans la classe de vitesse i n_i le nombre de particules dans la classe i

Déssableur circulaire

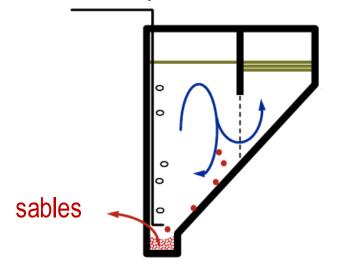


Source: Prof. Morgenr

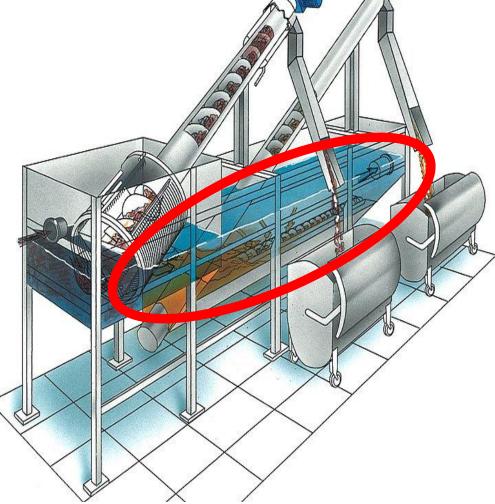
Déssableurdégraisseur

Aération pour stimuler la circulation Graisses (flottaison) Zone calme sables Oxygénation → dégradation de

BOD₅



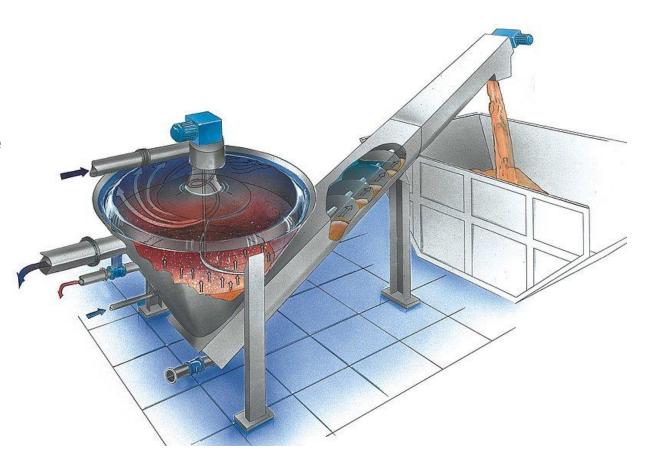
Source: Gujer. 2007. Siedlungswasserwirtschaft



Dégrilleur-Déssableurdégraisseur

Aération pour stimuler la circulation

Graisses (flottaison)


Source: Prof. Morgenroth, ETHZ and Huber

Nettoyage des sables

élimination de la matière organique piégée

éviter odeurs, éviter d'attirer insects / rongeurs

Atteindre une faible concentration en MVS

Nettoyage des sables

Nettoyage des sables

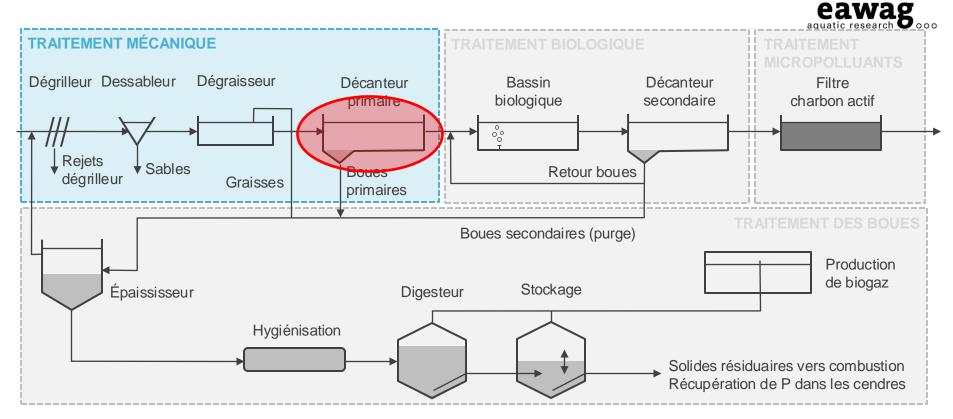
Nettoyage des sables

EPFL Le dessablage

Valorisation des sables

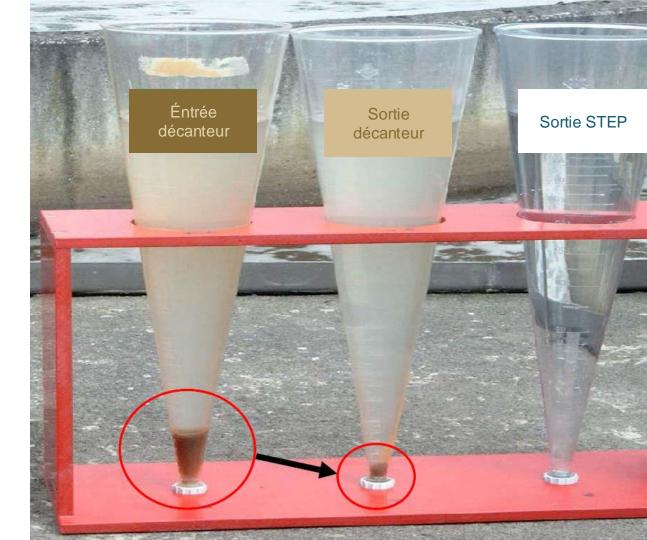
awag

Swiss Federal Institute of Aquatic Science and Technology


Sables avec une teneur en matières organiques inférieures à 3%

0,1 - 3 kg / EH / an

STEP 250 000 EH aux Pays-Bas: 840 tonnes de sables / an (source: STOWA)



EPFL La station d'épuration (STEP)

Le décanteur primaire

Pourquoi et comment ?

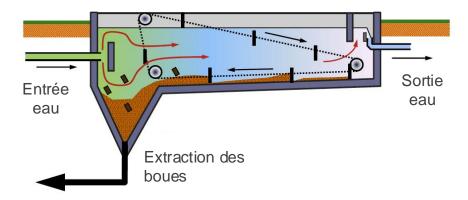
Source : M. Deneke Uni. Duisburg

Le décanteur primaire

Pourquoi et comment ?

Objectif | Éliminer les matières facilement décantables pour :

- (1) Minimiser les disfonctionnements causés par les matières particulaires
- (2) réduire la consommation d'O₂ lors du traitement biologique
- (3) augmenter la production de biogaz en retirant un maximum de matières organiques
- (4) Ne pas avoir une élimination trop poussée Sédimentation des boues secondaires (boues biologiques) Dénitrification


Conditions recommandées | décanteur circulaire avec une vitesse de sédimentation (v_s) entre 1,5 et 2 m/h en vitesse moyenne et 4 m/h en vitesse de pointe avec un temps de séjour hydraulique de 0,5 à 2,5 h (valeur typique 1,5 m/h)

EPFL Le décanteur primaire

Le décanteur rectangulaire

Décanteur primaire avec racleur à chaines

Avantage : surface au sol plus faible et meilleure intégration à la chaine de traitement

Inconvénient : moins économiques

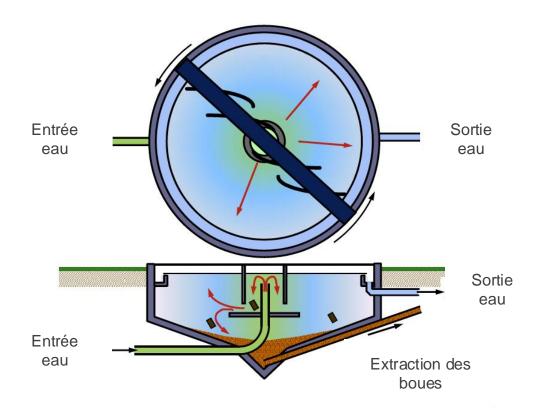
Eawag

Swiss Federal Institute of Aquatic Science and Technology

Eawag

Swiss Federal Institute of Aquatic Science and Technology

eawag


EPFL Le décanteur primaire Le décanteur rectangulaire

EPFL Le décanteur primaire

Le décanteur circulaire

awag

Swiss Federal Institute of Aquatic Science and Technology

Décanteur primaire rectangulaire

Etape #1 Déterminer la profondeur (H)

- A. Sélectionner une charge surfacique (v₀) adaptée et calculer l'aire du bassin de décantation
- B. Sélection un temps de séjour hydraulique (t_{SH}) adapté et calculer la profondeur du bassin de décantation (H)

$$V_S > V_0$$
 et $V_0 = \frac{Q}{A_D}$

$$t_{SH} = \frac{A_D H}{Q}$$

Sans autres informations, on utilisera le percentile 80% pour déterminer le débit de dimensionnement (Q)

Etape #2 Déterminer la largeur (I)

Sélectionner une vitesse d'écoulement adaptée (v_F)

$$V_E = \frac{Q_{MAX}}{I \times H} \le 0.05 \text{ m/s}$$

Pour rappel 0,3 m/s pour les sables

Etape #3 Déterminer la longueur (L)

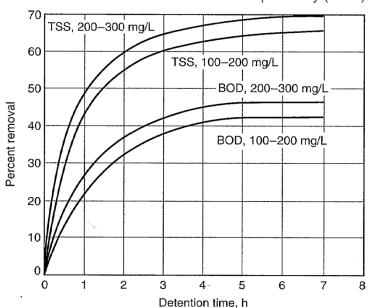
Utiliser l'aire du décanteur (A_D) et la largeur (I) et vérifier que $L \ge 8 I$

Ajuster v_F pour avoir un ratio L/I supérieur à 8

EPFL Le décanteur primaire Valeurs de dimensionnement

Swiss Federal Institute of Aquatic Science and Technology

Décanteur primaire rectangulaire


	Unité	Gamme	Typiquement
Temps de séjour hydraulique t _{SH}	Н	1,5 – 2,5	2,0
Charge surfacique v ₀	$m^3/(m^2/h)$	1,3 – 2,1	1,7
Charge surfacique limite v _L	m ³ /(m ² /h)	5 – 20	10
Vitesse d'écoulement v _E	m/s	0,01-0,02	0,015
Profondeur H	m	3 – 4,9	4,3
Longueur L	m	15 – 90	24 – 90
Largeur I	m	3 – 24	4,9 - 9,8

Swiss Federal Institute of Aquatic Science and Technology

Elimination des MES et de la DBO₅

Dépendance du temps de séjour hydraulique et de la concentration dans l'ERU | Greeley (1938)

Calcul empirique de l'élimination des MES et de la ${\rm DBO}_5$

Equation de Crites et Tchobanoglous | 1998

% élimination =
$$\frac{t_{SH}}{a + b * t_{SH}}$$

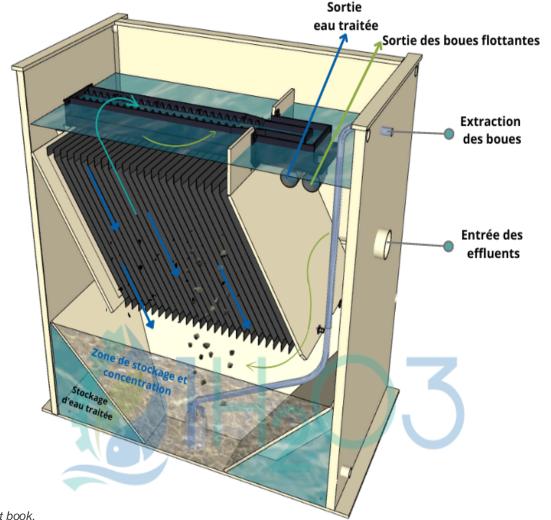
MES |
$$a = 0.0075$$
 et $b = 0.014$ **DBO5** | $a = 0.018$ et $b = 0.020$

L'élimination de l'azote Kjehldal (NTK) et du **phosphore total** (P_{tot}) est estimé à **10**% quel que soit le temps de séjour hydraulique

Swiss Federal Institute of Aquatic Science and Technology

eawag

EPFL Feuille de route « Traitements des ERUs »


				Valeurs relevées après			aquatic research
Catégorie	Paramètres	Unité	ERU	DP (2h)	BA (3 j)	BA (10 j)	π
Solides	MES	mg/L	250	109			15
Pollution organique	DBO ₅	mgO ₂ /L	230	151			15
	DCO	mgO ₂ /L	500	327			45
Pollution azotée	NTK	mgN/L	30	27			3
	NH ₄ ⁺	mgN/L	20	20			2
	NO ₂ -	mgN/L	0	0			0,3
	NO ₃ -	mgN/L	0	0			-
Pollution phosphorée	Ptot	mgP/L	6	5,4			0,8
Micropolluants	Micropolluant	%	-	< 10 %			80

Augmenter la taille de particules (floculation)

Diminuer la hauteur de sédimentation

V0: 3,8-7,5 m/h

Source: Représentation 1H2O3. VO: MWH Principles of water treatment book.

Décantation primaire + pré-traitement chimiques

Objectifs: augmenter la séparation des solides (MES) et la précipitation du phosphore.

Ajout de coagulants/floculants (souvent des sels de fer ou d'aluminium, éventuellement polymères pétro- ou bio-sourcés)

Coagulant: réaction rapide dans réacteur très agité Floculant: réaction lente dans réacteur peu agité

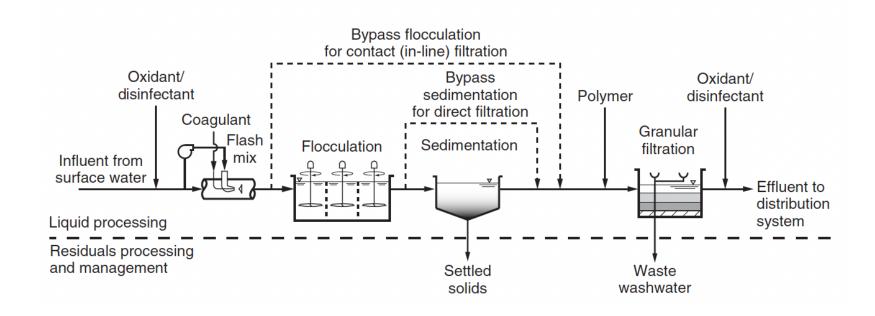
Décanteur primaire similaire à décanteur primaire sans ajout de coag./floc.

Flottation à air dissous

Pourquoi et comment ?

Eawag
Swiss Federal Institute of Aquatic

Objectif | Augmenter les rendements d'élimination des particules ayant une faible vitesse de décantation en ajoutant de l'air dissous et en faisant flotter les MES


Implications techniques | Nécessite l'injection de 30 L d'air dissous @ 1 bar par m³ d'eau à traiter

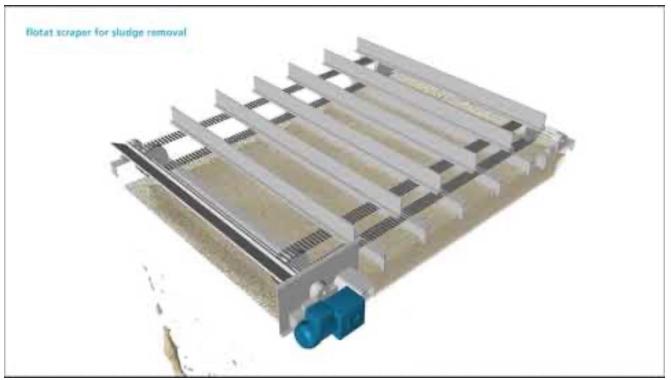
Problématique | Peut oxyder certaines matières

Décantation primaire + pré-traitement chimiques

Prétraitement chimique

Conditions et efficacité

Eawag
Swiss Federal Institute of Aquatic
Science and Technology


Efficacité d'élimination [%]					Dosage	Concentration boues
MES	DCO	DBO ₅	N_{tot}	P_{tot}	[mg/L]	[g/L]
80 - 90	55 - 75	40 - 80	10 -20	60 - 80	20 – 60 (coagulant) 0,2 – 2 (floculant)	1,3 – 2,1

EPFL Flottation à air dissous

Eawag

Swiss Federal Institute of Aquatic Science and Technology

Lien vidéo: https://www.youtube.com/watch?v=2uQdjMq5wkk

EPFL Flottation à air dissous Conditions et efficacité

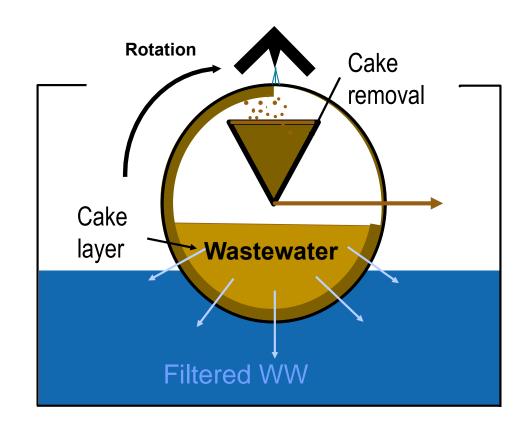
Eawag

Swiss Federal Institute of Aquation Science and Technology

Docado coaquiant	Efficacité d'élimination [%]					Concentration boues
Dosage coagulant	MES	DCO	DBO ₅	N_{tot}	P_{tot}	[g/L]
sans	32 - 82	71	51	44	53	-
avec	80 - 90	30 - 84	-	-	92 - 96	environ 6,5

STEP de **Sihltal** (Zürich) pas d'espace! Comment faire?

Microtamisage



Source: huber.de

Micro-tamisage des eaux usées

Empreinte au sol micro-tamis

Exemple de la STEP de Tomasjord, Norvège

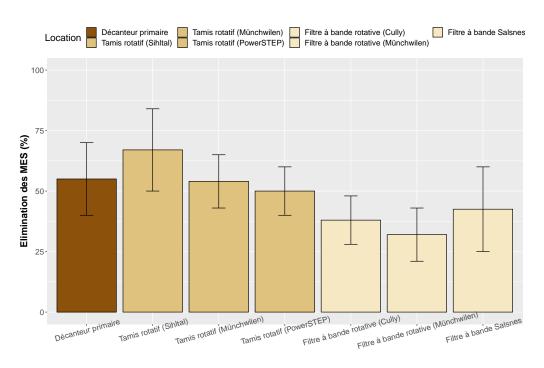
2 décanteurs primaires vs 3 filtres à bandes SF6000 Salsnes®

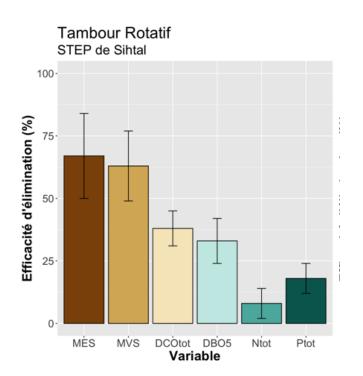
Débit moyen: 1650 m³/h

Surface:

- Décanteur primaires: env.
 1900 m² → 0.9 m³/m²/h
- Filtres à bande: env. 150
 m² →11 m³/m²/h

Charge hydraulique **10-20 fois supérieure** à celle d'un décanteur primaire: 1-2 m³/m²·h.


Sources: Salsnes



Micro-tamis

eawa8

Performances

Location

Sources: Salsnes

Micro-tamis Intégration

STEP de Sihltal (Zürich)

EPFL valoriser la cellulose directement

Procédés IntenSieve + CellCap® (CirTec)

Tamisage et séparation cellulose/autres résidus (cheveux, graines, etc.)

Cellulose après séchage

Réutilisation de la cellulose

Asphalte, optimisation de séchage des boues, production de bioplastiques

Sources: CirTec. www.cirtec.nl.