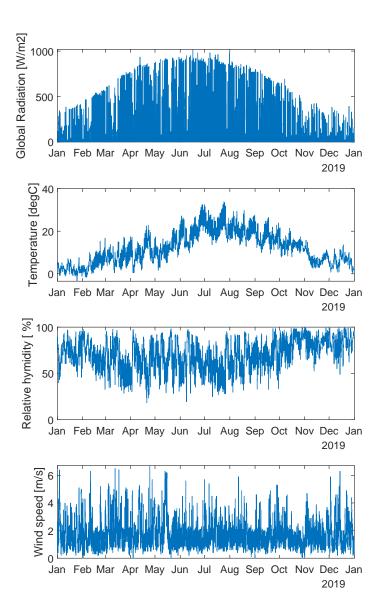
Exercise week 5 - Evapotranspiration

Exercise 1, on paper

- 1. Question: Which variables need to be computed before implementing the equation? Which measurements are needed? What are the units of the different terms? Solution: To implement the FAO-PM equations one needs to first compute: the net radiation R_n in $MJ/m^2/d$, the gradient of the saturated vapor pressure curve Δ in kPa/°C, the vapor pressure deficit VPD in kPa. To compute these terms and the FAO-PM equation, one needs measurement of: incoming radiation R_i (MJ/m²/d), wind speed at 2 meters u_2 (m/s), temperature T (°C), relative humidity R_h (-).
- 2. **Task:** Compute ET_0 for a hypothetical day where [...]


Solution: The formulas are:

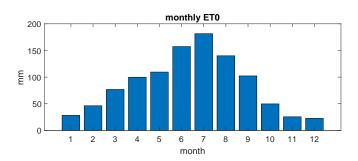
- $R_n [MJ/m^2/d] = 86400/10^6 R_n [W/m^2]$
- $e_{as} = 0.611 \exp(\frac{17.27 \, T}{237.3 + T})$ [kPa]
- $VPD = e_{as} (1 R_h) \text{ [kPa]}$
- $\Delta = 4098 \frac{e_{as}}{(T+237.3)^2} \text{ [kPa/°C]}$
- $ET_0 = \frac{0.408 \,\Delta R_n + \gamma \frac{900}{T + 273} \,u_2 \,VPD}{\Delta + \gamma (1 + 0.34 \,u_2)} \,\left[\text{kg/m}^2/\text{d}\right]$

Using the given data and the psychometric constant $\gamma = 0.066$ kPa/°C, one gets $R_n = 12.96$ MJ/m²/d, $e_{as} = 2.06$ kPa, VPD = 0.25 kPa, $\Delta = 0.13$ kPa/°C, $ET_0 = 3.29$ kg/m2/d (equivalent to mm/d)

Exercise 2, on a computer

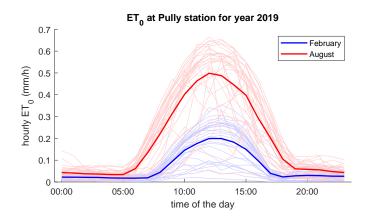
- 1. Task: Import the meteorological data downloaded from MeteoSwiss for year 2019
 - Solution: The data is described in the file meteo_pully_2019_legend.txt and in particular at lines 40-43.
- 2. Display meteorologic data in a plot

3. Task: Compute a simplified net radiation as [...]


Solution: The formula to compute R_n in MJ/m²/d starting from the data is $R_n = 0.9 R_g (1 - 0.23) 86400/10^6$, where again the term $86400/10^6$ is needed to convert W into MJ/d.

4. Task: Compute ET_0 in mm/h for the entire year 2019

Solution: Except for R_n , which is computed above, the formulas are the same as in the exercise on paper. Just note that the result is in mm/d so you need to divide by 24 to get ET_0 in mm/h.


5. Task: Compute the total ET₀ (in units of mm) for each month.

Solution: As for the exercise of week 1, you can take advantage of the function month applied to a datetime object. The monthly ET_0 is:

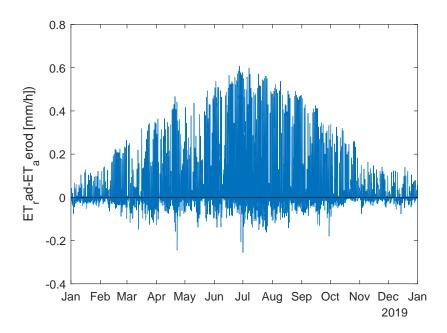
6. **Task:** Take the hourly ET_0 during February and August only. For each of these two months, plot the daily evolution of ET_0 during each day [...]

Solution: A possible graphical representation of the results is:

7. Question: What are the main differences in ET_0 between February and August? Why?

Solution: ET_0 in February has a lower magnitude and occurs over a shorter period of the day compared to August. This is because these two months have very different meteorologic conditions: February has lower incoming radiation and temperature and higher relative humidity. To be more presicse, one could make a plot to compare the meteorologic conditions during these two months.

8. **Optional Question:** ET can be seen as the sum of a radiation-induced ET and a turbulence-induced ET. Which component is stronger in this dataset?


3

Solution: The FAO-PM equation can be broken into two components:

•
$$ET_{0r} = \frac{0.408 \Delta R_n}{\Delta + \gamma (1 + 0.34 T)}$$
 radiation term

•
$$ET_{0a} = \frac{\gamma \frac{900}{T+273} u_2 VPD}{\Delta + \gamma (1+0.34T)}$$
 aerodynamic term

A plot with the difference $ET_{0r} - ET_{0a}$ shows that radiation dominates most of the times, but there are occasional times when the aerodynamic is larger (values lower than 0 in the plot)

