Solution Exercise week 14 – Analysis of discharge data for hydrologic design

1 On paper

1. Task: Write the general equation to estimate the annual maximal discharge $Q_{est}(T)$ that corresponds to a return period T according to the frequency factor approach. Then, write the frequency factor equation for the LP3 approach.

Solution: The frequency factor general equation is:

$$x_T = \bar{x} + K_T S_x \tag{1}$$

where x_T is the estimated value corresponding to a return period T, \bar{x} is the mean of the variable and S_x the standard deviation. K_T is the frequency factor, which depends on the return period and on the specifics of the particular probability distribution. The LP3 approach is based on equation 1 but with a transformed variable $y = log_{10}(Q)$ instead of x. Thus, the discharge is estimated as:

$$Q_{est} = 10^{\bar{y} + K_T S_y} \tag{2}$$

2. **Question:** Which terms of the equation depend on the return period? Which depend(s) on the observed discharge time series?

Solution: From equation 2 we see that \bar{y} and S_y only depend on the observed data. Then, the frequency factor K_T depends on both the return period and the data (in this case, through the skewness G_s) and so it can be expressed as $K(T, G_s)$.

3. **Task:** Estimate the discharge corresponding to a return period T=50 years, knowing that the mean and standard-deviation of the log-transformed discharge y are $\bar{y}=0.8$ and $S_y=0.1$ respectively, an that the skewness $G_s(y)=0.4$. Use tables 10.4.1abcd at slide 40-42 to obtain the frequency factor $K_T(T,Gs)$.

Solution: In this case, the equation takes the form: $Q_{est}(50) = 10^{\bar{y} + K_T(50, -0.4) S_y}$. By checking the table at slide 41 we find that $K_T(50, -0.4) = 1.834$. Thus, $Q_{est}(50) = 10^{0.8+1.834 \cdot 0.1} = 9.63 \ m^3/s$.

4. **Task:** Write a pseudo-code on paper to compute the estimated maximal discharges using the LP3 approach for an arbitrary number of return periods of interest.

Solution: A possible pseudocode is reported below:

- 1: $y \leftarrow \log 10(\text{discharge data})$
- 2: $\bar{y} \leftarrow \text{mean}(y)$
- 3: $S_y \leftarrow \text{standard deviation}(y)$
- 4: $G_s \leftarrow \text{skewness}(y)$
- 5: $T_{vec} \leftarrow \text{vector of return periods of interest}$
- 6: computeKTLP3 $(\tau, G_s) \leftarrow$ define a function that computes the frequency factor for the variable y, given a return period and a skewness
- 7: Initialize results vector Q_{est}

```
8: for i=1 to length of T_{vec} do

9: K_T \leftarrow \text{computeKTLP3}(G_s, T_{vec}(i))

10: log10Q_{est} \leftarrow \bar{y} + K_T \times S_y

11: Q_{est}(i) \leftarrow 10^{log10Q_{est}}

12: end for
```

2 Numerical application

1. Task: Check how the datafile 2371_Abfluss_Tagesmittel_[...].csv is formatted. Then, open the script compute_yearly_maxima.m and run it. [...].

Solution: The datafile has 8 lines of header and values are separated by a semicolon (;). There are various variables (in German): the year and the flow value (m³/s) are at columns 7 and 9. Note that the last data points are provisional (*provisorische Daten*). The data can be imported as a Matlab table with:

```
S = readtable(<input_fname>,'Delimiter',';','NumHeaderLines',8).

In the provided script, you can select a different year that will appear in the bottom plot.
```

2. Task: Now start a new script and import the yearly maxima from file annual_maxima_LeChenit.csv.

Solution: As usual, you can import the data into a Matlab table using the command readtable (for example,

```
S = readtable('annual_maxima_LeChenit.csv','Format','%f%f','NumHeaderLines',3).
```

3. Task: Implement the pseudo-code you have written on paper. It is very convenient that you create a function computeKTLP3 that takes the variables G_s and T as input, implements the frequency factor equation (see Appendix) and returns the frequency factor K_T for the LP3 distribution.

Solution: This is an example of function that computes the frequency factor for the LP3 distribution:

```
function KT = computeKTLP3(T,Gs)

F = 1-1/T; \% \text{ non-exceedance probability for return period T}
z = icdf('normal',F,0,1); \% \text{ inverse cumulative frequency for a standard normal distribution, evaluated in F}
b = Gs/6; \% \text{to simplify the equation}
KT = z + (z^2 - 1)*b + (1/3)*(z^3 - 6*z)*b^2 - (z^2 - 1)*b^3 + z*b^4 - (1/3)*(b)^5; \% \text{ frequency factor of the LP3}
```

4. **Task:** Test your function for a few values of T and G_s and check that they are similar to those reported in the tables at slides 40-41.

Solution: You can check that $K_T(T = 50, G_s = -0.4) = 1.8348$, which is very similar to the value provided in the table at slide 41.

5. **Task:** Run your code over a dense range of return periods so you can obtain a smooth function $Q_{est}(T)$, and then plot it. If you want, you can also plot the measured discharge Q against the empirical return period as computed from the Weibull plotting position formula (just like you did in assignment 1 for precipitation data).

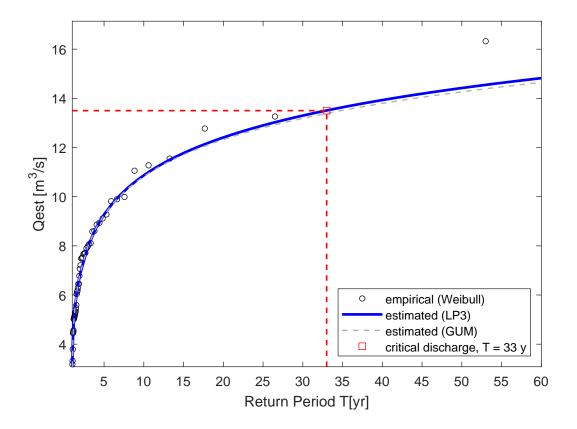


Figure 1: Estimated discharge as a function of return period

Solution: Figure 1 shows in blue the discharge Q_{est} computed for return periods in [0.1,60] (note that you cannot compute the frequency factor for T=1). The plot also shows the empirical return period of the discharge data according to the Weibull plotting position approach. As you can see, there was a large event (in 2018) whose return period is estimated to be >100 years.

6. **Question:** What is the probability that the bridge will be flooded during the 5-year mandate of the mayor (maire in french)?

Solution: The return period corresponding to a discharge of $13.5 \, m^3/s$ is approximately 33 years (see Figure 1). The probability that the bridge will be flooded during the president's mandate is therefore: P(flood in 5yr) = $1 - P(no flood in 5yr) = 1 - (1 - 1/33)^5 = 14.3\%$.

- 7. **Optional Task:** Use the Gumbel distribution, instead of the LP3 distribution, for the estimation of return periods and use it to provide another estimate of the flooding probability of the bridge during 5 years.
- 8. **Solution:** Using the method of moments, the parameters of the Gumbel distribution are $\alpha = 0.48$ and u = 6.13. The distribution is plotted in Figure 1 and it is visually very close to the LP3 estimate. According to the Gumbel estimate, the critical return period for the event $Q \ge 13.5$ is 35 years and so the flooding probability over 5 years is 13.5%.