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▪ Researcher at CNRS (France) during 32 years

▪ Specialized in past climate and greenhouse
gases (ice core analyses)

▪ Director of the French polar Institute IPEV 
between 2018 and 2022

▪ Professor at EPFL since ~2 years ; head of 
SENSE research unit

▪ Development of sensors for aquatic
environments
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Digging a snow trench at Concordia station, 

Antarctica. Photo: O. Alemany



▪ 1st part

• What scientific challenges at the poles ?

• How engineering can contribute ?

▪ Pause of 15 min

▪ 2nd part

• A more detailed illustration through ice
core studies

• What future for such science and for the 
icy memory of the planet ?

Outline of the 
introduction
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MOSAiC expedition: the Polarstern icebreaker

in Arctic winter. Photo: J. Stroeve



Who already crossed the Arctic or the Antarctic Circle ? 

Photo: British Antarctic Survey



Who already saw a polar bear in its environment ? 

Photo: Caters News Agency
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Source: NASA visualization studio. 

AMSR-E and MODIS satellite imagery



▪ Climate: glaciers, sea ice and snow
reflect a large part of the incoming solar
radiation

▪ Atmosphere: a specific chemistry (ozone 
hole, Arctic haze)

▪ Oceans: large impact on global ocean
circulation

▪ Land: lots of organic matter stored in 
frozen soils

▪ Sea level: huge ice bodies lying on 
bedrock

▪ Biology: endemic species, resources

▪ A planetary memory: ice cores

The poles : Kingdom of the cryosphere
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→ Julia Schmale, Nov. 25th

→ Hendrik Huwald, Sept. 25th

→ Stay tuned ! In one hour



Main science disciplines at the poles
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Geosciences: 

▪ Climate science

▪ Glaciology

▪ Oceanography

▪ Atmospheric physics and chemistry

▪ Biogeochemistry (cycle of main elements)

▪ Geology and resources (energy, minerals)

Credit: IPEV

Credit: IPEV

Credit: IPEV Credit: IPEV



Main science disciplines at the poles
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Life sciences: 

▪ Biodiversity

▪ Ecology

▪ Dynamics of ecosystems

▪ Impact of acidification/pollutions

▪ Adaptability

▪ Resources (fishing,…)

Credit: IPEV

Credit: IPEV

Credit: IPEV Credit: IPEV



Main science disciplines at the poles
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Human and social sciences: 

▪ Impact and adaptation to climate and environmental

changes

▪ Human health

▪ Anthropology

▪ Economy

▪ Geopolitics

Other: Engineering, astronomy/astrophysics, biomedecine

Credit: IPEV

Credit: IPEV

Credit: IPEV Credit: IPEV
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What future sea level ?

▪ Antarctica: potential for ~60 m of sea-
level increase

▪ «Short term»: Thwaites and Pine Island 
glaciers ; potential of ~3 m in a few 
centuries

▪ Greenland: potential of ~7 m
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Source: European Space Agency

Compared volumes of icy freshwater on Earth

Antarctica

Arctic

Other glaciers

Snow

▪ United Nations expect
~1 billion people 
leaving in low-lying
coastal regions by 2050

Antarctic ice thickness
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Source : 
JB Sallée, Oceanography 2018
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Potential

of 3 m

Key mechanism: Interactions between

the Austral ocean and floating ice shelves

Change in ice thickness as measured by 

satellites between 2003 and 2019

What future sea level ?

Source : 
Smith et al., Science 2020



Polar oceans: Energy and carbon traps
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Trapping of excess energy

Arctic

70%

20%

10%
Austral ocean

▪ 90% of the excess energy in the 
atmosphere/land/ocean system due to 
anthropogenic activities is stored in the 
oceans

▪ Out of these 90%, 70% is stored in the 
Austral ocean surrounding Antarctica

Source : 
Frölicher et al., J. of Climate 2015

1022 J



Polar oceans: Energy and carbon traps
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Trapping of excess CO2

10% Arctic

40%

50% Austral ocean

▪ About 25 to 30% of excess CO2 due to 
human activities are absorbed by the 
oceans (a number equivalent to the 
continental biosphere)

▪ Out of these 25 to 30%, 40% are stored
in the Austral ocean surrounding
Antarctica

Source : 
Frölicher et al., J. of Climate 2015

Pg C



« The day after tomorrow »: 
fiction or reality ?
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▪ Increased freshwater fluxes in the 

Arctic (from rivers and Greenland

melting) could increase ocean

stratification and reduce heat

transfer in the North Atlantic

▪ Regional cooling

▪ Models do not agree on timing 

and strength of the phenomenon: 

could be a reduction of 6 to 8 Sv*

in the coming centuries, 

compared with a flux of ~30 Sv 

today

Source : Spilhaus projection,
M. Meredith, 2019

Source : The Daily Digest* 1 Sv (Sverdrup) = 1 million m3 of water flow / sec

Surface ocean circulation

Deep ocean circulation



Carbon release from permafrost

• Include twice the amount of carbon of the atmosphere

• Increased melting + forest wildfires

• Can generate additional greenhouse gases CO2 or CH4

(depending on local hydrology)

• Even with a mean global warming of +1,5°C, one 
expects 100 to 200 Gigatons* of extra CO2 in the 
atmosphere from this process

Source : Abbott et al., Front. Environ. Sci. 2022Source : US Geological Survey

* Current anthropogenic emissions : ~40 Gt of CO2 / year

16



Climate tipping points: the poles do matter…
In

tr
o

 t
o

 e
n

v
ir
o

n
m

e
n

ta
l
e

n
g

in
e

e
ri
n
g

J
. 

C
h

a
p

p
e

lla
z
 

17

Source:

Armstrong McKay et al., Science 2022



Pressure on biodiversity
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▪ Due to overuse of resources (fishing), to pollution 

(air, land, water), to land use (Arctic), to climate

change

▪ Example: Many colonies of Emperor penguins

could disappear by 2100

IPCC scenarios (future of Antarctic sea ice)

Projection of Emperor

penguin colonies for 2100

Source : Jenouvrier et al., Nature 2014

Photo: IPEV



▪ 1st part

• What scientific challenges at the poles ?

• How engineering can contribute ?

▪ Pause of 15 min

▪ 2nd part

• A more detailed illustration through ice
core studies

• What future for such science and for the 
icy memory of the planet ?

Outline of the 
introduction

In
tr

o
 t

o
 e

n
v
ir
o

n
m

e
n

ta
l
e

n
g

in
e

e
ri
n
g

J
. 

C
h

a
p

p
e

lla
z

19

MOSAiC expedition: the Polarstern icebreaker

in Arctic winter. Photo: J. Stroeve



• Science at the poles is largely a science 
of observation

• Satellites are great but not enough: one 
needs ground-truthing

• Sensors to document the physics, 
chemistry and biology of the polar 
environments

• Vectors to move around the sensors

• AI and machine-learning to get the 
maximum out of data

• Toward more citizen science (in the Arctic)

How engineering can 
contribute ?
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Photo: J. Chappellaz, GreenFjord expedition 2024



Robotics : example of Saildrone
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Robotics : example of Saildrone
In

tr
o

 t
o

 e
n

v
ir
o

n
m

e
n

ta
l
e

n
g

in
e

e
ri
n
g

J
. 

C
h

a
p

p
e

lla
z
 

22

Source : NOAA PMEL Carbon Program

CO2 fluxes in the Austral ocean

over 196 days of self-navigation



How to document processes below ice shelves ?

▪ Need for autonomous submarines with sensors which can be recovered…



How to document processes below ice shelves ?

▪ Need for autonomous submarines with sensors which can be recovered…



Animal-borne telemetry : double-win (oceano & ecology)
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Source: Harcourt et al., Frontiers in Marine Science 2019

▪ Make profit of marine mammals and 

seabirds

▪ Get important data in the ocean while

better understanding their behavior



Animal-borne telemetry
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Elephant seals

▪ Mean Diving Depth: 500m 

(max 2000 m)

▪ Mean Diving Duration: 21 mn

▪ Mean Surface Interval: 2-3 mn

Kerguelen

Antarctic

coast

Ocean temperature

Source: CEBC / CNRS

A typical diving day !

▪ A remarkable source of marine 

information in the Austral ocean !



Animal-borne telemetry
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Kerguelen

Antarctic

coast

Ocean temperature

Source: CEBC / CNRS

▪ A remarkable source of marine 

information in the Austral ocean !

▪ 80% of oceanographic profiles South 

of 60°S

▪ 98% of oceanographic profiles under

Antarctic sea-ice !

Source: MEMO Observatory, CNRS



Animal-borne telemetry : what’snext ?
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• Depth (1Hz)

• Temperature (1Hz)

• Salinity (1Hz)

• Fluorescence, (1Hz 4/profiles per day)

• Dissolved oxygen (1 Hz, 4 profiles per day)

• Light (1 Hz)

• Accelerometer (12Hz)

Biologging : Archived (the tag 

needs to be recovered)

• Depth

• Temperature

• Salinity (1Hz)

• (Fluorescence)

• Dissolved oxygen

Biotelemetry : Argos Transmitted

(2-4 profiles/day), Real time

Constraints:

• Size

• Limited energy supply

• Cold environment

• Pressure

Optimization of data acquisition, 

processing and transfertWhat is measured today by these tags ?

Source: University of St Andrews, Scotland



Animal-borne telemetry : what’snext ?
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Loggers on albatross:

• Track radar signals from

unsignaled boats

• Combined with GPS, help to 

localize illegal fishing

• Next: e.g., document Dimethyl

sulfide concentration in 

marine boundary layer ?!

Photo: A. Corbeau, CEBC, CNRS

Source: US National Marine Sanctuaries





Photo: C. Guinet, CEBC, CNRS Photo: J.B. Pons, CEBC, CNRS



• Working in polar regions is challenging and has a significant environmental impact

• Engineering needs for cleaner research stations and logistics

How engineering can contribute to 
greening polar science ?
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Source: Elshout, Chappellaz et al., European Polar Board Report
DOI: 10.5281/zenodo.7907235 
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Today’s science in Antarctica
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• 68 operational stations

• 40 working all-year round

• Population:

▪ ~1000 in winter

▪ ~5000 in summer

Source: Secretariat of the Antarctic Treaty
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▪ This evening !

▪ 18h30 to 20h00

▪ Room CO 2

Recipients together of the 

2023 Belgica Medal !

Belgian Academy of 

Sciences



More sustainability : automated stations
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From J. Eager, COMNAP Meeting 2019

Example : Halley VI winter-over station in Antarctica

Fully automated station built by the British Antarctic Survey

Containerised Capstone C30 Micro-turbine

Automated ozone measurements

Space weather, atm. chemistry, meteorology, GPS stations



Clean and mobile energy : A Swiss startup
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Courtesy : Rolf Luchsinger, co-founder



Clean and mobile energy : A Swiss startup
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Courtesy : Rolf Luchsinger, co-founder



• Science in polar regions matters a lot for 
society: future climate, sea level, ocean
circulation, carbon cycle, biodiversity, 
Indigenous People and knowledge

• One needs more observations in these
demanding environments, through smarter
sensors and vectors

• One needs greener science at the poles

• There is an exciting future for engineers
motivated by such extreme (and fascinating !) 
environments

Take-home messages
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MOSAiC expedition: the Polarstern icebreaker

in Arctic winter. Photo: J. Stroeve
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PAUSE of 15 minutes !
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Who already heard about ice cores ? 

Photo: Ricardo Selvatico



Who already had a chance to visit an ice core lab ? 

Photo: Sarah Del Ben
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18’000-year old ice from Nevado 

Illimani, Bolivia

Source: Sarah Del Ben

Ice from glaciers: a unique memory of the planet
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Sept 2018 - 45

BACTERIA ?

VIRUS ?

OTHER ?

CLIMATE
δ18O and δD of H2O, 
CH4 , CO2, N2O, δ15N in 
NO3

-

BIOMASS BURNING
Black Carbon, K+, organic
acids, sugars …

INDUSTRIAL 
POLLUTION
SO4

2-, NO3
- trace metals, 

radioactivity, S-N-O isotopes 
…

CONTINENTAL DUST, 

DRY EVENTS
Dust, ions, trace metals …

VOLCANISM
SO4

2-, pH, particles,
Δ33S & Δ17O in SO4

2-

Earth and human history recorded in ice cores
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Global water cycle:

▪ Ocean evaporation followed by atmospheric 

transport

▪ The colder the air, the less water vapor content

▪ Progressive depletion of heavy isotopologues

(H
2

18O, HD16O) during consecutive precipitation 

events (phase change)

▪ This so-called “Rayleigh distillation” leads to a 

linear relationship between the snow/ice isotopic 

composition and surface air temperature

How polar glaciers record past temperature changes ?

Source: Masson-Delmotte et al., Journal of Climate, 2008

Antarctica

HD16O H
2

18O

Source: Pekar and Lear, USGS Report, 2007
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Air bubbles in polar ice: a reliable recorder of past atmospheres

Photo: Peter Neff

• Air molecules diffuse through
the porous snow and firn

• Get trapped into bubbles when
firn transforms into ice

• 1 kg of ice contains ~100 cm3

of air

Source: J. Aagaard, 2015

Atmosphere J
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Photo: Peter Neff

Photo: Rob Mulvaney

• Glaciers are made of 
consecutive snow falls

• Ice flow is zero at domes: only
vertical component (thinning)

• Thick glacier + small annual
snow accumulation rate

→ Ancient ice

• Oldest ice core drilled so far: 
European drilling EPICA at 
Concordia station (Antarctica):

→ 800’000 years

Going back in time: ice flow and ice core drilling

Source: Ruddiman, 2001
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20 years of deep drilling operations in Antarctica and Greenland

Source: Johnson et al., 

The Cryosphere, 2021 Source: Nagler et al., 

Remote Sensing, 2015

Photo: Todd Sowers
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20 years of deep drilling operations in Antarctica and Greenland

Source: Johnson et al., 

The Cryosphere, 2021 Source: Nagler et al., 

Remote Sensing, 2015

Photo: Todd Sowers
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Station Concordia, Antarctique:

Carottage profond européen EPICA 1996-2004

European Project for Ice Coring in Antarctica (EPICA)

Concordia Station - Dome C

75º06‘S 123º23‘E 
3233 m of altitude

Mean Tº= minus 55ºC
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Greenhouse gases: Swiss and French analytical breakthrough in the 1980s
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Delmas et al., 1980

Barnola et al., 1987

Stauffer et al., 1988

Raynaud et al., 1988

Stauffer et al., 1988

Chappellaz et al., 1993
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EPICA project : 800,000 years of greenhouse gas history
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Antarctic temperature

CO2

CH4

N2O

Jouzel et al., Science 2007 

Lüthi et al., Nature 2008 

Loulergue et al., Nature 2008 

Schilt et al., EPSL 2010

3200 m 
of depth



Ice cores + climate models: deciphering past climate dynamics
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Source: 

https://www.cyclostratigraphy.org

Quaternary climate change:

▪ Solar radiation redistribution with seasons and latitudes (pacemaker at high northern latitudes)

▪ +2.6 ± 0.5 W/m2 between glacial and interglacial periods from the combined effect of CO2, CH4 and N2O

▪ +3.5 ± 1 W/m2 from the albedo effect (snow, ice and vegetation)

▪ +0.5 ± 1 W/m2 from dust and aerosols

https://www.cyclostratigraphy.org/


An important contribution to IPCC reports since 1990
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Some engineering work: improving sample throughput and precision
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1988
2 ice samples / day

1995
7 ice samples / day

2001
11 to 22 ice samples /day

Photos: J. Chappellaz



Rapid climate change and atmospheric methane : a time resolution problem

J
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Source: Wolff, Chappellaz et al., 

Quaternary Science Reviews 2010

Source: Rahmstorf, Nature 2002

Greenland climate

Atmospheric CH4

▪ CH4 covaries with Greenland temperature
swings during the last glaciation

▪ What amplitude ?
▪ What timing with respect to Greenland T° ?
▪ What speed of change ?

10,000 

years

ago

80,000 

years

ago



New technological approach : laser spectroscopy + membrane extraction
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DFB diode laser

PDsignal

PZ
T

LD

translation
Variable
attenuator

PDref

current ramp

O.F.

Source: Morville et al., Patent 2005

● Optical Feedback Cavity Enhanced Absorption 

Spectroscopy (OF-CEAS)
● Sensitivity of ~10-9 per cm !
● Small optical cavity (~ 10 cm3), small sample size
● Custom-made interface to continuously extract 

air bubbles from a 32x32 mm ice slice



New technological approach : laser spectroscopy + membrane extraction
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DFB diode laser

PDsignal
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translation
Variable
attenuator
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current ramp

O.F.

Source: Morville et al., Patent 2005

● Optical Feedback Cavity Enhanced Absorption 

Spectroscopy (OF-CEAS)
● Sensitivity of ~10-9 per cm !
● Small optical cavity (~ 10 cm3), small sample size
● Custom-made interface to continuously extract 

air bubbles from a 32x32 mm ice slice

Source: Chappellaz et al., CP 2013



Laser spectroscopy applied to CH4 measurements in ice
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Source: Chappellaz et al., CP 2013

▪ June-July 2010 at the NEEM camp : One million data points over 900 m of freshly drilled ice core !

▪ Sensitivity of the CH4 cycle: 5 to 18 ppb increase of CH4 per °C
▪ Rate of change up to 2.5 ppb per year (~ direct atmospheric observations between 2000 and 2005)



▪ 1st part

• What scientific challenges at the poles ?

• How engineering can contribute ?

▪ Pause of 15 min

▪ 2nd part

• A more detailed illustration through ice
core studies

• What future for such science and for 
the icy memory of the planet ?

Outline of the 
introduction
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MOSAiC expedition: the Polarstern icebreaker

in Arctic winter. Photo: J. Stroeve



What’snext in ice core science ?

▪ New tracers of physical, chemical and biological processes on land, ocean, atmosphere

▪ Recent example: CF4 in air bubbles could be a tracer of global continental weathering

▪ Access to isotopic fingerprint for source/sink appointment: question of sensitivity

▪ Example: 17O of carbon monoxide may track changes of the oxidative capacity of the 
atmosphere (its self-cleansing ability). But today, need for 100s of kg of ice !
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Photo: T. Vergoz

J
. 

C
h

a
p

p
e

lla
z
 



An example: Krypton-81 and ice core dating

▪ Krypton-81 is produced by cosmic rays in the upper atmosphere

▪ It is incorporated in air bubbles in ice together with other Krypton isotopes

▪ Radioactive (Beta decay). Half-life of Krypton-81: 229,000 years → good dating 
potential in the 50,000 to 1,500,000 year range

▪ Krypton concentration in the atmosphere: 1 ppm (parts per million)

▪ Krypton-81 abundance: 5.10-13 of the 1 ppm ! → counting Krypton atoms !

▪ 1988: 10 tons of ice for one measurement

▪ Today : Atom Trace Trap Analysis ATTA brings sample size down to 50 kg !
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Photo: Argonne

National Labs



What’snext in ice core science ?

▪ New tracers of physical, chemical and biological processes on land, ocean, atmosphere

▪ Recent example: CF4 in air bubbles could be a tracer of global continental weathering

▪ Access to isotopic fingerprint for source/sink appointment: question of sensitivity

▪ Example: 17O of carbon monoxide may track changes of the oxidative capacity of the 
atmosphere (its self-cleansing ability). But today, need for 100s of kg of ice !

▪ There is ample work for engineering development !

65

Photo: T. Vergoz
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But the library is burning…
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Aletsch Glacier

Switzerland

1865 2021



But the library is burning…
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Source: Hugonnet et al., Nature, 2021

Altitude loss of glaciers between 2000 and 2019



Sept 2018 - 68

Illustration with atmospheric 

lead (Pb) in the Alps:

Colle Gnifetti (Monte Rosa, 

Switzerland) ice core record 

over the last 2000 years
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68Mountain glaciers are important for regional information

Source: More et al., GeoHealth, 2017

Log scale…



Preserve
the Ice Memory
for future generations



Ice Memory objective: 
Collect ice cores from 20 endangered glaciers in 20 years
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Photo: Sarah del Ben

Drilling at Nevado 

Illimani, Bolivia

6300 m of altitude



Ice Memory objective: 
Create a dedicated sanctuary in Antarctica for generations to come
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Photos: Rocco Ascione

The best 

natural freezer 

in the world !



Ice Memory: success so far, but more to come 72
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• Glaciers are a memory book of our planet

• Those in polar regions provide fundamental
information about natural climate changes 
and their mechanisms on long time scales

• Those from mountains (shorter time scale) 
complement the regional information, in 
particular for tracers having a short 
atmospheric lifetime: key to constrain, e.g., the 
amplitude of anthropogenic pollutions

• Glaciers (including at the poles) are under
threat and we will loose forever this unique 
environmental memory book

• We need a new generation of scientists and 
engineers to develop the analytical
methodologies of tomorrow

Take-home messages
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Photo: British Antarctic Survey



Thank you for your attention !

Photo: X. Faïn, Taylor Glacier, Antarctica



IIE / ALPOLE  and  Antarctica

CRYOS (Michi Lehning) :

• atmosphere / snow physical processes, surface 

mass balance

• SNOWPACK model coupled to climate models

ECEO (Devis Tuia) :

• Location of Antarctic blue ice areas

• Multi-sensor satellite observations and deep 

learning algorithm
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EERL (Julia Schmale) :

• Atmospheric physical and chemical processes

• ACE circum-Antarctic expedition 2016-2017

• ORACLES project (2023-2028) Swiss NSF : role 

of cloud particles on Antarctic surface 

temperature warming

RIVER (Tom Battin) :

• Organic carbon storage under the Antarctic ice 

sheet and its loss through glacier calving

IIE / ALPOLE  and  Antarctica
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MACE (Ianina Altshuler) :

• Microbial communities of Antarctic 

nunataks, as analogs of past environmental 

conditions on Mars

SENSE (Jérôme Chappellaz) :

• Ice Memory initiative to safeguard ice cores in 

Antarctica, from vanishing glaciers worldwide 

(endorsed by UNESCO)

IIE / ALPOLE  and  Antarctica
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ENAC / IIE  and  Antarctica

LTE (Alexis Berne) :

• ERC Synergy Grant AWACA (2021-2026) : 

Antarctic precipitation

• Autonomous stations inland for in-situ 

observations
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ENAC / IIE  and  Antarctica

LAPI (Athanasios Nenes) :

• Ice crystal nucleation in summer clouds along 

the Antarctic coast :

• Flights in the Weddell Sea

• Measurements of alkylamines from seawater 

and in the atmosphere along the Antarctic 

peninsula
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