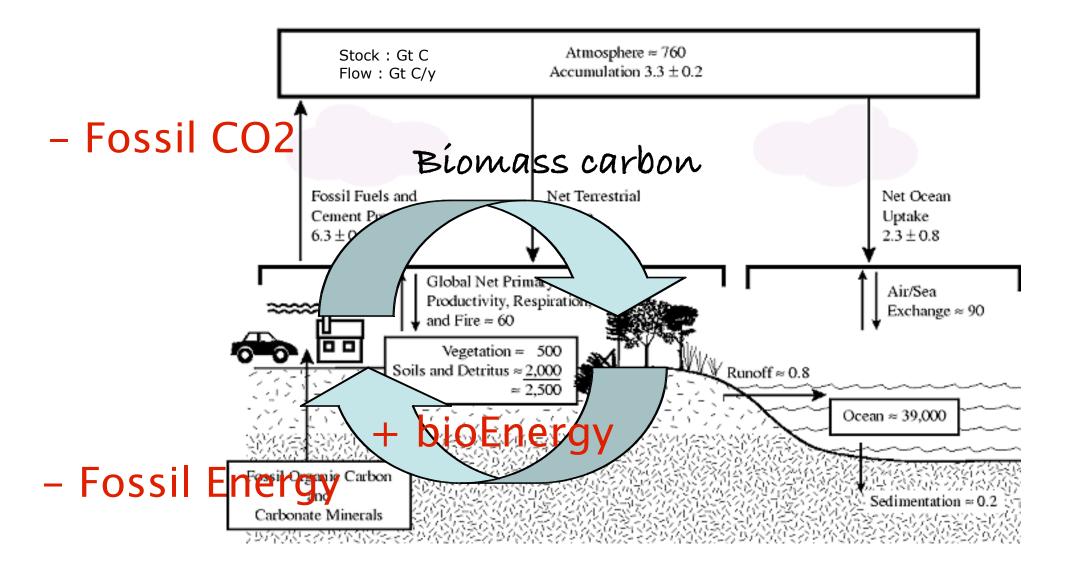
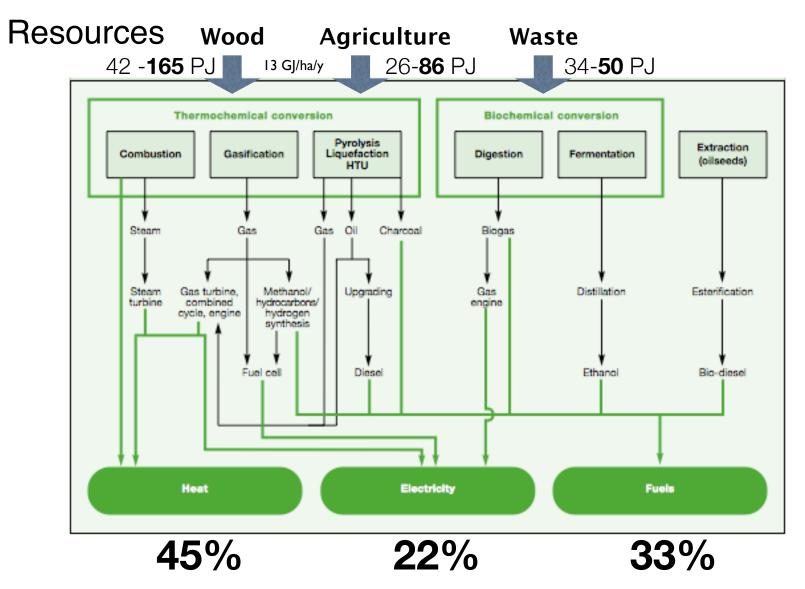

Thermochemical conversion of Biomass


Combustion

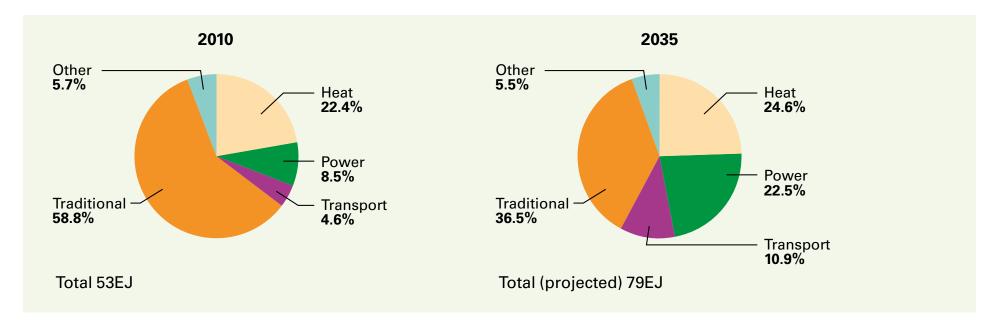
Prof. François Maréchal

IPESE
Industrial Process and Energy Systems Engineering
EPFL Valais-Wallis
CH - 1950 Sion


Biomass & Photosynthesis

Biomass conversion routes and production potential in Switzerland

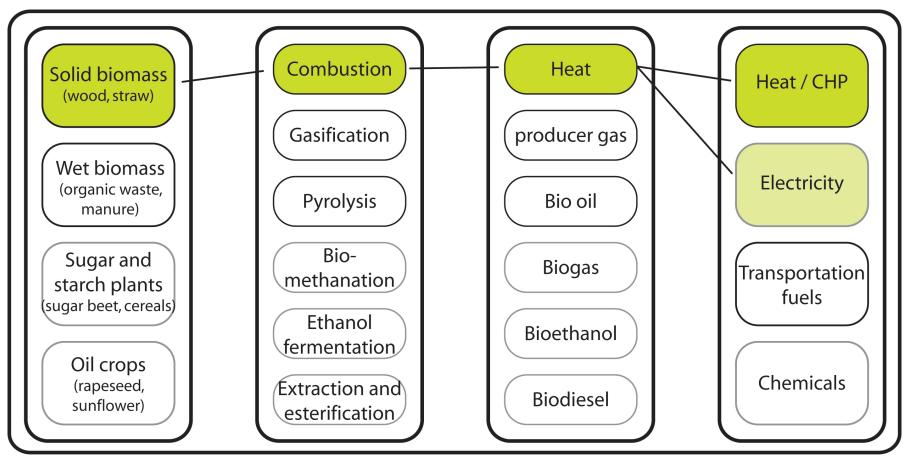
sustainable - **Technical** in PJ/year


Figures for Switzerland (sustainable potential:total = 82-301 PJ)

Source: world energy assessment: UNDP 2000

Bioenergy usage: projections

▼ Figure 1.5


Use of bioenergy by sector in 2010 and 2035 (projected by the IEA for conditions where new policies are implemented). Use is estimated to rise from 53EJ in 2010 to 79EJ in 2035. The proportion used for heat by traditional methods (heating and cooking) is projected to fall considerably; the proportion used for heat via modern methods of production remains almost unchanged; while proportions used for power and transport by modern methods make significant increases^[2].

Davis, S.C., Hay, W. & Pierce, J. (2014), Biomass in the energy industry: an introduction.

Biomass conversion

Combustion

adapted from Chemical Engineering 10 (2006)

- Higher heating value (20 MJ/kg_{dry})
 - Boie formula

$$HHV = 35.17c_C + 116.26c_H - 11.10c_O + 10.47C_S + 6.28c_N$$

- concentrations in (%mass)
- Lower heating value (17 MJ/kg_{dry})

$$LHV_{dry} = HHV - \frac{\tilde{m}_{H2O}}{2}c_H * \Delta h_{vap} \qquad \Delta h_{vap} = 2441[kJ/kg]$$

Humidity (2.5 MJ/kg_{steam})

$$LHV_{wet} = HHV - (\frac{\tilde{m}_{H2O}}{2}c_H + \frac{\phi}{1 - \phi}) * \Delta h_{vap}$$

$$\phi \quad in \quad \%mass$$

substance	humidity1	composition						HHV	LHV _{dry}	
name	ID in [4]		C	H	O	N	S	ash		
		%wt			%	wt			MJ/kg _{dry}	$MJ/kg_{\rm dry}$
municipal solid waste	1518	39	31.0	1.0	21.6	1.1	0.8	44.5	9.7	9.3
wet sewage sludge	2810	73	27.0	3.8	17.2	3.2	0.9	47.8	12.3	10.7
freshwater biomass	2319	84	54.6	6.7	23.4	6.7	0.4	8.2	24.9	23.3
fruit/vegetable waste	2811	7	46.5	6.1	38.5	0.7	0.5	7.7	19.2	17.8
cattle manure	1885	13	13.0	1.5	10.1	1.5	0.3	73.6	5.3	4.1
pig manure	1366	92	35.4	4.5	21.5	2.8		35.8	15.2	13.7
poultry manure	1872	4	35.9	5.0	27.4	3.6	0.8	27.4	15.7	14.2
sugarbeet	417	77	44.5	5.9	42.8	1.8	0.1	4.8	17.9	16.5
bagasse	894	10	48.6	5.9	42.8	0.2		2.4	19.2	17.9
grass	568	40	48.0	5.5	41.1	0.5	0.1	4.8	18.7	17.5
vine shoots	1253		46.9	5.9	44.2	0.8		2.2	18.4	17.1
straw	2129	14	47.7	5.9	41.0	0.7	0.2	4.5	19.1	17.7
wood	own data	50	50.7	5.7	42.7	0.2		0.7	19.8	18.5
lignin	2000	75	62.1	5.9	31.1	0.2	0.1	0.6	25.3	24.0
rapeseed	2156	5	58.7	8.6	23.5	3.7		5.5	28.3	26.3

^[4] Phyllis, database for biomass and waste. Energy research center of the Netherlands, http://ecn.nl/phyllis.

Compared with other fuels

	HHV [MJ/kg]	LHV [MJ/kg]
Hydrogen	141.8	121
Methane	55.5	50
Gasoline	47.3	44.4
Paraffin	46	41.5
Kerosene	46.2	43
Diesel	44.8	43.4
Coal (Anthracite)	27	
Coal (Lignite)	15	
Wood (MAF)	21.7	

Energy Densities of Various Fuels

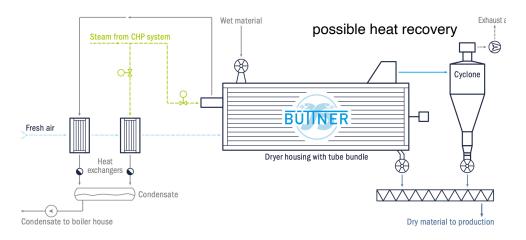
Fuel	Particle Density	Bulk Density	Energy Density	
	kg/m³	kg/m ³	GJ/m³ bulk product	
Crude oil		855	35.8	
Coal	1350	700	21	
Natural gas (80 bar)		57	2.9	
Biomass	450	230	3.7	
Bio-oil		1200	20	
Gasoline		760	35	
Methanol Source: Higgman		784	19	

Disadvantage in volume

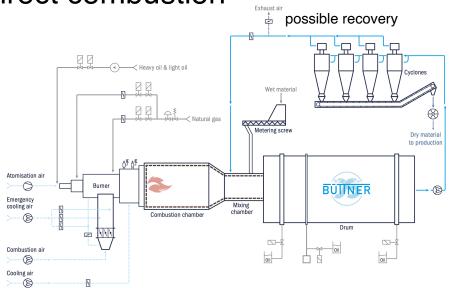
Wiki

	Ultimate Analysis					HHV			
	[% by	wt dry b	asis]	[% by wt dry basis]					[MJ/kg _{db}]
	FC	VM	ASH	С	Н	0	N	S	
Coal - 8 Anth	84.59	7.09	8.32	83.67	3.56	2.84	0.55	1.05	32.856
Woodchips	23.5	76.4	0.1	48.1	5.99	45.74	0.08	0	19.916
Eucalyptus	21.3	75.35	3.35	46.04	5.82	44.49	0.3	0	18.64
Wheat straw	23.5	63	13.5	45.5	5.1	34.1	1.8	_	17
Miscanthus	12.4	87.2	0.4		_		_	-	19.297

Parikh 2005


Life cycle emissions compared with other resources

Supply chain needs to be considered!


		Natural gas	Wood	Gasoline	Diesel
	kg/m3	700	240	800	800
LHV	MJ/kg	50	17.8	44.4	43.4
	GJ/m3	0.0359	5.3-9.6	35.5	34.7
CO2	g CO2/MJ	49.3	0	67	72
supply eq CO2	g CO2/MJ	11.6	1.6 - 2.9	16.7	13.4
	g CO2/MJ	60.9	1.6-2.9	83.7	85.4
		19%	-	20%	16%
Cost	cts/kWh	10	3 - 7.5	18.6	19.2
industry	cts/kWh	3.4			

Biomass drying

Indirectly heated dryer

Direct combustion

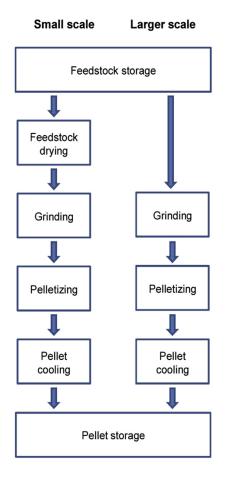
Equilibrium humidity of wood

$$\Phi_{wood} = 2.865 \cdot 10^{-2} \varphi_{air}^{1/2}
+ (2.307 \cdot 10^{-1} - 1.273 \cdot 10^{-3} (T - 273)) \varphi_{air}
- 2.519 \cdot 10^{-1} \varphi_{air}^{2}
+ (2.199 \cdot 10^{-1} + 8.630 \cdot 10^{-4} (T - 273)) \varphi_{air}^{3}$$
(2.7)

In this equation, Φ_{wood} terms the wood humidity in kg_{H2O} kg_{tot}^{-1} , φ_{air} the relative humidity of air in % and T the air temperature in K.

Relative humidity calculated by the partial pressure of saturation

$$P^{sat}[atm] = 0.001315 \cdot 10^{(8.07131 - \frac{1730.63}{233.426 + T[{}^{\circ}C]})}$$


Mass transfer modelled by partial pressure driving force

$$\frac{\dot{m}_{H2O,vap}}{\dot{m}_{air}} = U_p \Delta p_{lm} \qquad \text{with} \qquad \Delta p_{lm} = \frac{\Delta p_1 - \Delta p_2}{\ln(\Delta p_1/\Delta p_2)}$$

$$U_p = 11.0 \quad 10^{-3} [bar^{-1}]$$

Pellet production

- Consumes around 9% of the Heating Value
- Pellets are dried and uniform in sizes => easier to process and to transport

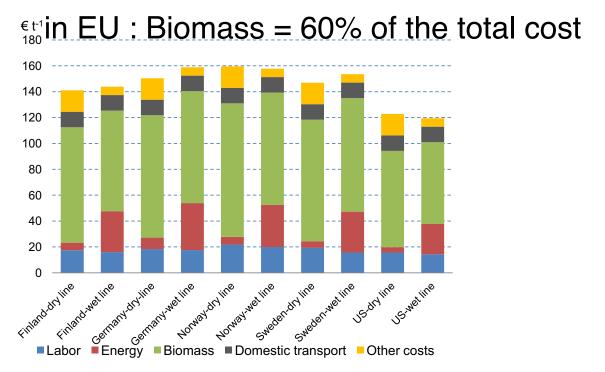


Fig. 2 – Cost structure of pellet production per country and technology, \in t⁻¹. Biomass costs are delivered pellet mill gate, domestic transport is costs for transport of pellets from mill gate to customer or harbor.

Torrefaction: Increase the energy density/reduce the humidity

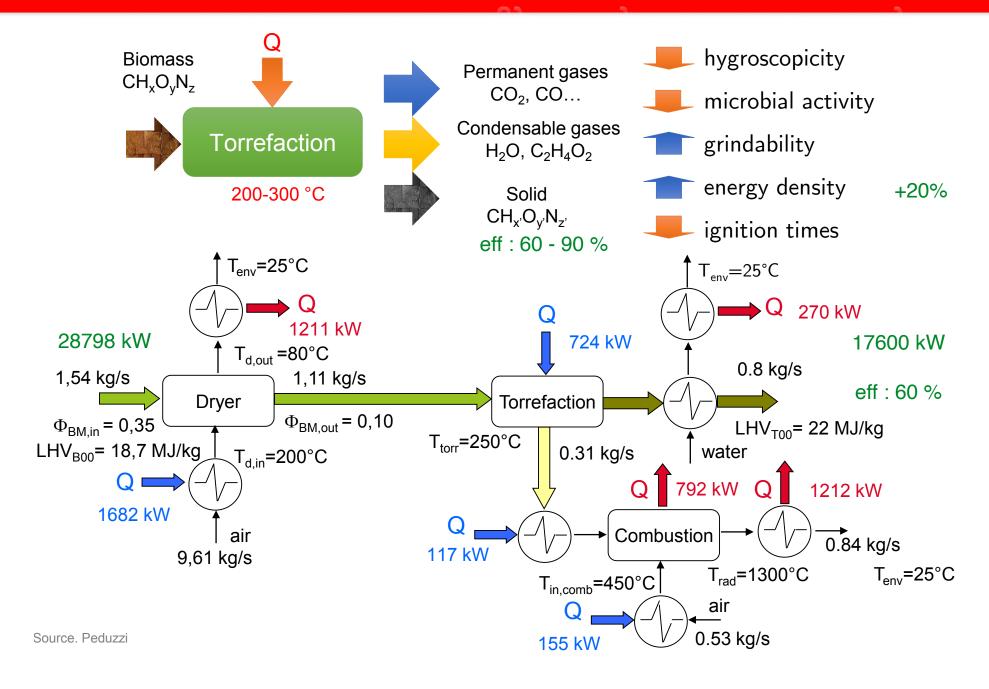
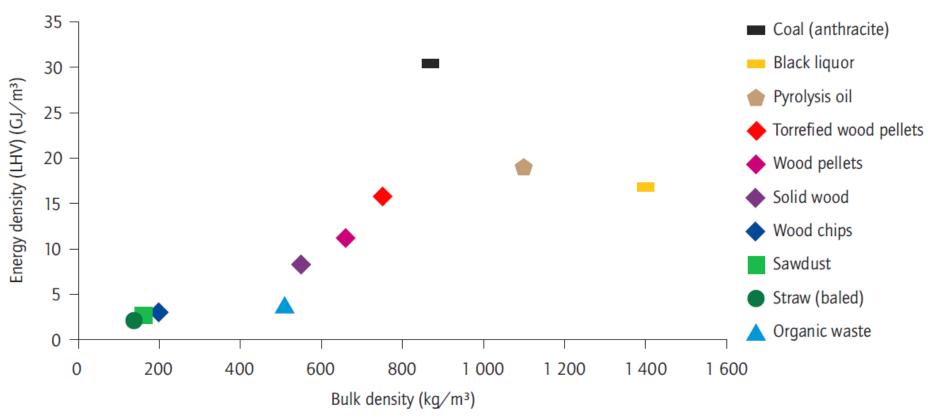
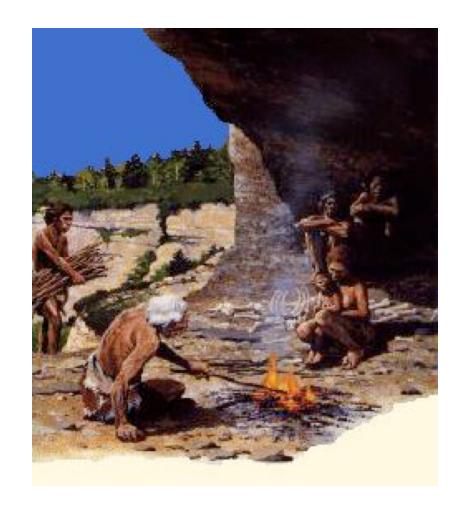
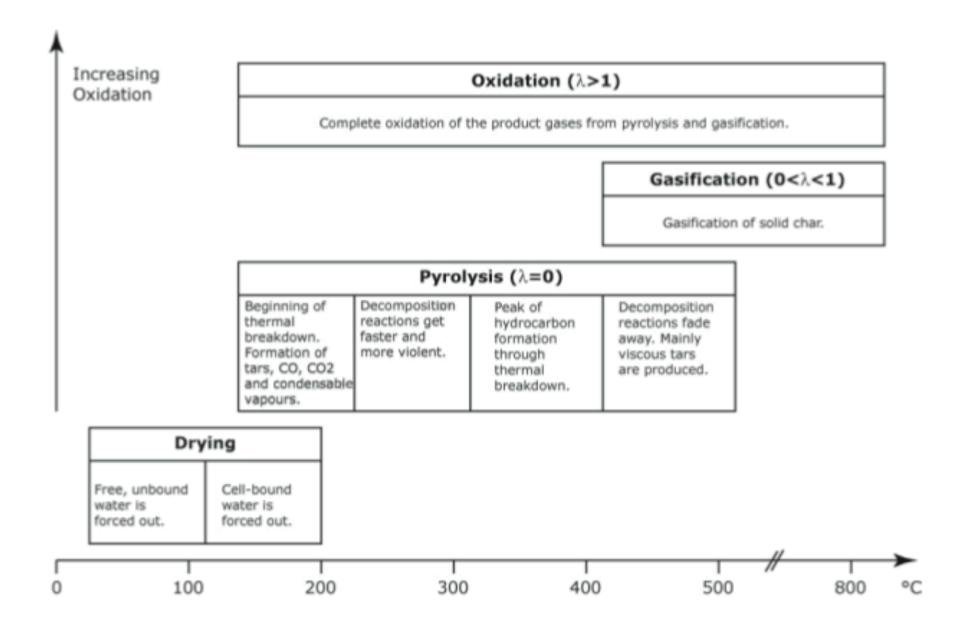



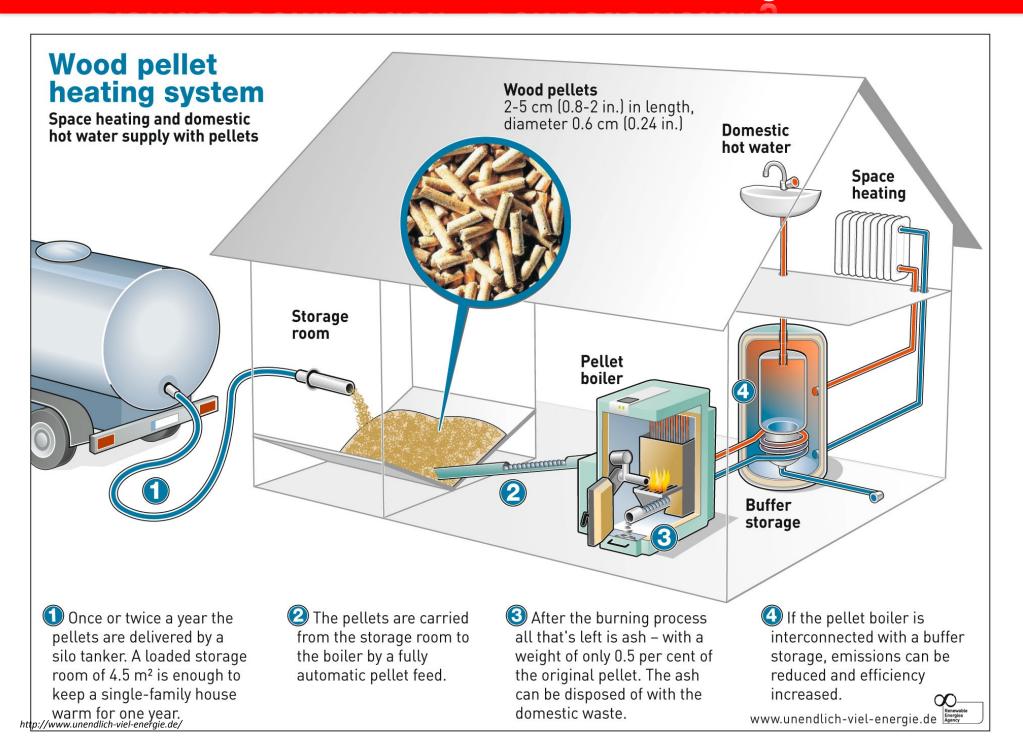
Figure 5: Comparison of bulk density and energy density of different biomass feedstocks


Source: IEA analysis based on DENA, 2011; FNR, 2011a; IEA Bioenergy, 2011; Kankkunen and Miikkulainen, 2003. For detailed data see Table 6 in Appendix I.

Combustion


Known since more than 400.000 years

1er law efficiency : 92% (LHV) 2nd law efficiency : 16% (T = 60°C)


Applications today
Domestic heating
District heating
Heat networks

Oxidation and temperature

Biomass Combustion – Domestic Heating

Exhaust Pellets feeder

Ash collector

Heat exchangers

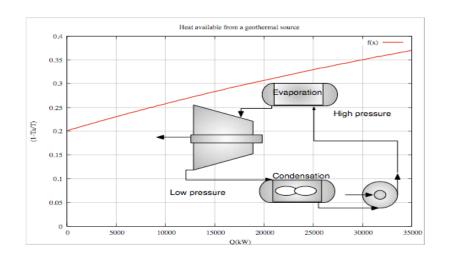
Combustion chamber

Wood Boilers emissions

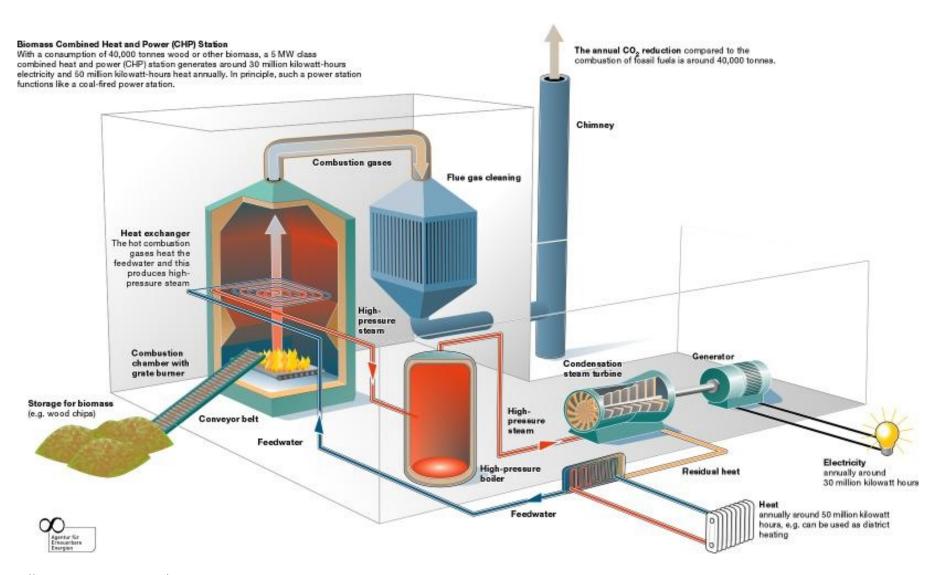
4188

L.S. Johansson et al. | Atmospheric Environment 38 (2004) 4183-4195

Table 3 CO_2 , CO, TOC, particles and NO_x emissions


	Case	CO ₂ (%)	CO	TOC	$\mathrm{CH_4}$	NMVOC	PAH	Particles	Particles (1/MJ)	NO_x
Old-type wood boilers	a	8.4	4100	660	- -			87	 ,	65
	b	4.7	5200	1300	<u> </u>			350		72
	c	6.8	4800	1100	610	270	14	89	17×10^{13}	71
	d	8.3	5900	1500	670	430	13	103	3.9×10^{13}	67
	e	6.9	16400	4800	4800	2000	64	2200	200×10^{13}	28
	f	5.6	8200	3000	<u> </u>	·	15	_	2.8×10^{13}	64
Modern wood boilers	g	12.2	707	14	1	1.9	0.21	27	4.5×10^{13}	125
	h	11.5	507	33	0.8	1.3	0.14	25	2.4×10^{13}	111
	i	5.1	3781	690	73	43	3.0	89	8.5×10^{13}	101
	j	10.3	1300	89	14	14	1.1	32	3.6×10^{13}	72
	k	9.1	770	63	9.2	7.8	0.44	23	6.4×10^{13}	81
	1	10.2	880	28	4.3	3.9	0.33	18	2.0×10^{13}	60
Pellet burners and boilers	m	9.5	36	4	0.76	1.2	0.32	22	1.4×10^{13}	68
	n	6.0	350	78	2.7	3.3	0.26	_	1.7×10^{13}	71
	o	4.8	290	31	<u> </u>	<u> </u>	0.12	28	1.3×10^{13}	68
	p	3.7	960	250	14	23	0.27	65	7.4×10^{13}	66
	q	13.0	120	3	< 0.55	0.95	0.06	16	0.8×10^{13}	70
	r	9.1	990	60	5.3	20	8.5	64	1.6×10^{13}	64
	S	8.6	120	10	< 0.84	1.7	0.55	15	0.8×10^{13}	67
	t	11.7	30	1		, 	_	13		· —
	u	6.8	380	2		_		12	0.1×10^{13}	62
	v	3.8	1100	92	-	· ,	_	51	0.2×10^{13}	62
	W	10.6	730	42	1.8	4.8	1.1	_	_	180
Oil	X	12.2	2	1	0.46	0.64	0.17	12	0.01×10^{13}	37
	у	10.6	9	32	0.52	0.38	0.006	6	0.1×10^{13}	41

Cogeneration: Organic Rankine Cycles (ORC)


- Conversion of heat into electricity
 - □ T medium
 - □ Carnot eff: 50%
- Applications
 - Wood heating
 - Biogas engine
 - Geothermal energy

$$\dot{E} = \eta_{Carnot} \cdot \dot{m} \cdot LHV \cdot (1 - \frac{T_0}{\tilde{T}_{gases}})$$

$$\tilde{T}_{gases} = \frac{T_{gases}^{add} - T_{gases}^{stack}}{ln(T_{gases}^{add}) - ln(T_{gases}^{stack})}$$

Biomass CHP – Steam Cycle

ORC Cycle with biomass

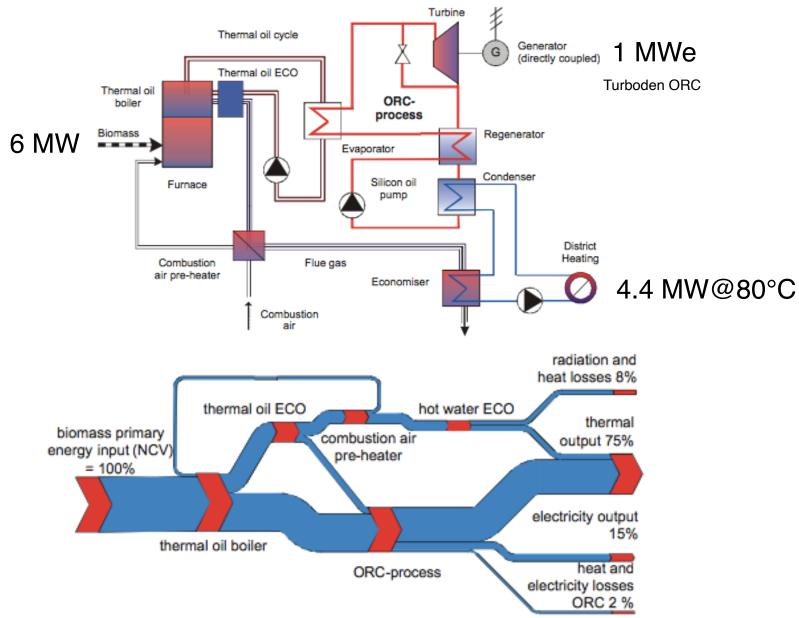


Figure 4. Energy balance of the biomass CHP plant in Lienz

Biomass and combustion

- By combustion biomass can be converted into heat
- Biomass drying to make it easier to burn
 - Dryers
 - Torrefaction
 - Pelletisation
- Biomass => particles and other emissions
- Biomass => ashes
- Combustion => CHP
 - Steam or Organic Rankine cycles
 - Typically used in district heating systems