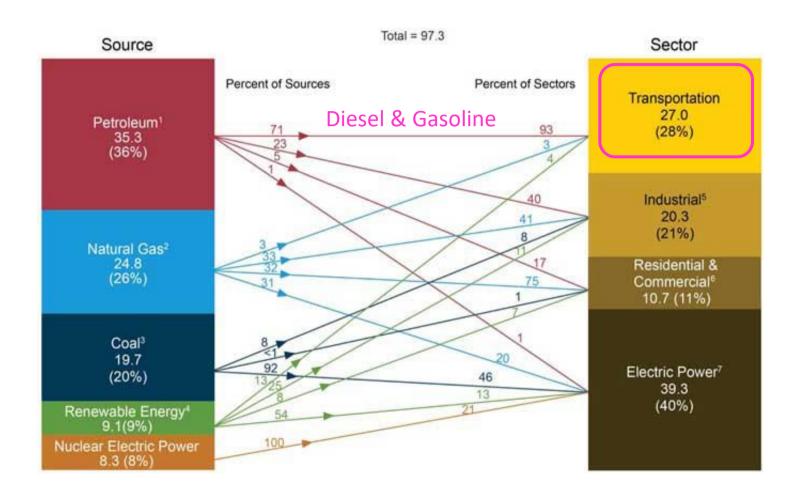
Biodiesel Production

Dr. Shivom Sharma
National University of Singapore
& IPESE, EPFL
shivom.sharma@epfl.ch

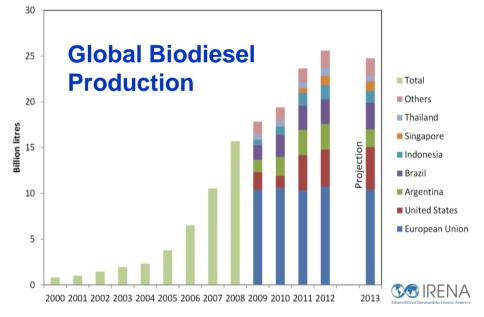
Content



- ✓ Introduction
- √ Feed stocks (vegetable oils)
- ✓ Oil extraction
- ✓ Biodiesel process
- ✓ Biodiesel process for WCO

Introduction

Primary energy consumption by source and sector in USA (2011)



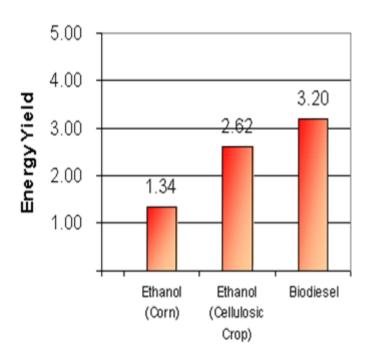
- ✓ Well developed refining and transportation infrastructures.
- ✓ Well developed engines.

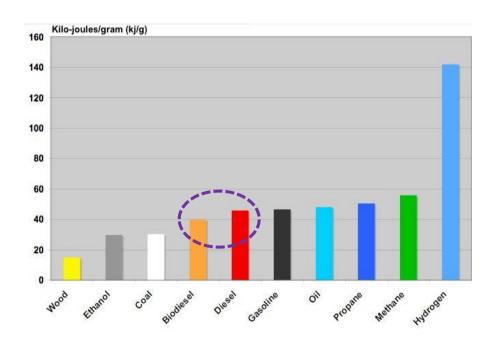
Introduction - Growth

- Bio-fuels have potential to replace fossil fuels.
- ❖ Biodiesel and bioethanol are two most common liquid bio-fuels.
- Biodiesel can be blended with diesel & bioethanol can be blended with gasoline.

World Ethanol Fuel Production in Million Litres									
	2006 2007 2008 2009 2010 2011								
Europe	1,627	1,882	2,814	3,683	4,615	5,467			
Africa	0	49	72	108	165	170			
Americas	35,625	45,467	60,393	66,368	77,800	79,005			
Asia/Pacific	1,940	2,142	2,743	2,888	3,183	4,077			
World	39,192	49,540	66,022	73,047	85,763	88,719			

Surec: Global Renewable Fuels Alliance

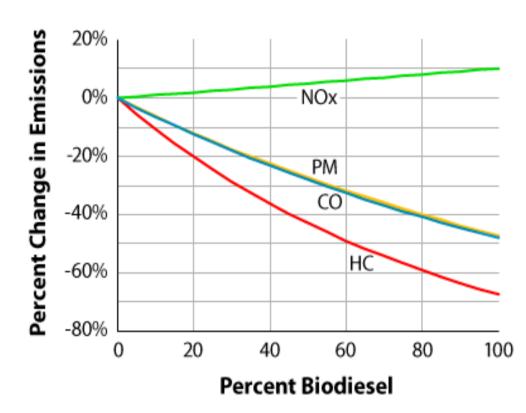

Introduction – Energy Content


What is biodiesel?

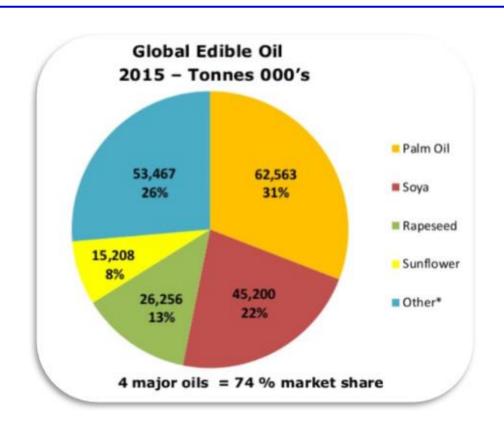
Fuel produced from vegetable oil or animal fat.

It can be blended in diesel, and then can be used in traditional engines.

Energy yield = amount of energy gained versus the amount of energy required to produce.

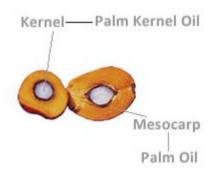

Specific energy = energy content per kg of fuel.

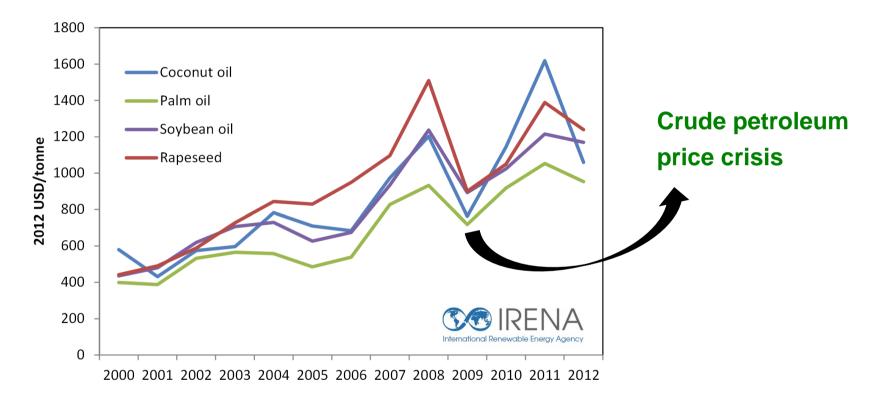
Introduction - Emissions


- ✓ Biodiesel is a cleaner burning replacement fuel made from renewable sources like new and used vegetable oils and animal fats.
- ✓ Low level blends (≤ 20%) can be used in almost any existing diesel engine.
- ✓ High level blends (> 20%) can be used in most new diesel engines → cold start (preheating).
- ✓ NOx emissions → fuel injection timing.

Average emission impacts of biodiesel for heavy duty vehicle

Fuel bound oxygen → NOx




Productivity of Various Major Oil Crops (2006/2007)

Oil Crop	Oilseeds yield (t ha ⁻¹ yr ⁻¹)	Oil Content (%)	Calculated oil yield (t ha ⁻¹ yr ⁻¹)		
Palm Oil (mesocarp)	19.03	20.1	3.82		
Palm Kernel	0.999	45.4	0.45		
Cottonseed	1.28	14.7	0.19		
Groundnut	1.04	43.2	0.45		
Sunflower	1.25	41.2	0.52		
Rapeseed	1.75	39.7	0.69		
Coconut	0.52	66.1	0.34		

- Feed stock cost contributes about 60-70% to biodiesel production cost.
- Soybean and other plant oils have long term price issues.

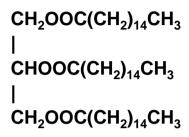
What type of oil is used for biodiesel production?
 Soybean oil in the USA
 Rapeseed oil in Europe

✓ Can we use vegetable oils in diesel engines?

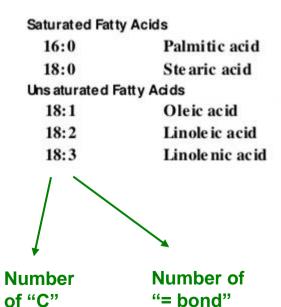
Vegetable oil	Kinematic vis- cosity at 38 °C (mm²/s)	Cetane no. (°C)	Heating value (MJ/kg)	Cloud point (°C)	Pour point (°C)	Flash point (°C)	Density (kg/l)
Corn	34.9	37.6	39.5	-1.1	-40.0	277	0.9095
Cottonseed	33.5	41.8	39.5	1.7	-15.0	234	0.9148
Crambe	53.6	44.6	40.5	10.0	-12.2	274	0.9048
Linseed	27.2	34.6	39.3	1.7	-15.0	241	0.9236
Peanut	39.6	41.8	39.8	12.8	-6.7	271	0.9026
Rapeseed	37.0	37.6	39.7	-3.9	-31.7	246	0.9115
Safflower	31.3	41.3	39.5	18.3	-6.7	260	0.9144
Sesame	35.5	40.2	39.3	-3.9	-9.4	260	0.9133
Soya bean	32.6	37.9	39.6	-3.9	-12.2	254	0.9138
Sunflower	33.9	37.1	39.6	7.2	-15.0	274	0.9161
Palm	39.6	42.0	_	31.0	_	267	0.9180
Babassu	30.3	38.0	_	20.0	_	150	0.9460
Diesel	3.06	50	43.8	_	- 16	76	0.855

- ✓ Kinematic viscosity
- ✓ Flash point

- ✓ Preheat the oil
- ✓ Process the oil



> Oil Compositions


Typical fatty acid composition (wt%) of selected vegetable oils and fats

	16:0	18:0	18:1	18:2	18:3
Cocoa butter	26	34	35	_	-
Corn	13	3	31	52	1
Cottonseed	23	2	17	56	-
Groundnut ^a	7-12	3	46-71	14-35	-
Linseed	6	3	17	14	60
Linola ^b			16	72	2
Olive	10	2	78	7	1
Palm	44	4	39	11	S-
Palm olein	41	4	31	12	-
Palm stearin	47-74	4-6	16-37	3-10	-
Palm mid-fraction	41-55	5-7	32-41	4-11	_
Rape (high erucic) ^c	3	1	16	14	10
Rape (low erucic)	4	2	62	22	10
Rice bran oil	20	2	42	32	-
Safflower (regular)	7	3	14	75	-
Safflower (high oleic)	6	2	74	16	-
Sesame	9	6	41	43	
Soybean	11	4	23	53	8
Sunflower (regular)	6	5	20	60	_
Sunflower (Sunola)	4	5	81	8	-
Sunflower (NuSun)	4	5	65	26	-

indicates values of 0-1.

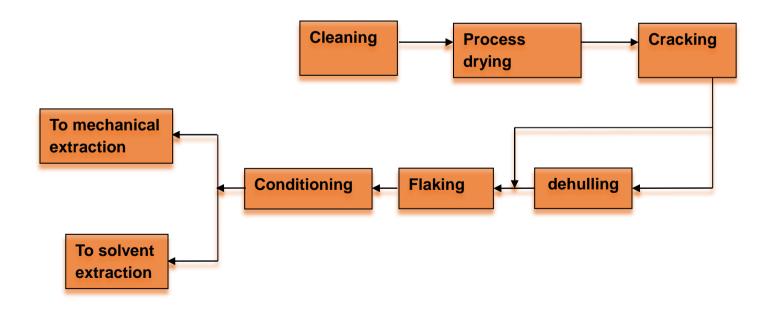
Palmitic Acid (16:0) - CH₃(CH₂)₁₄COOH

a also C20-C24 saturated and unsaturated acids 4-7%.

b also saturated acids 10%.

c also 20:1 6% and 22:1 50%.

Oil Extraction


Mechanical Extraction:

Typically used for facilities with daily capacities of less than 150 tons.

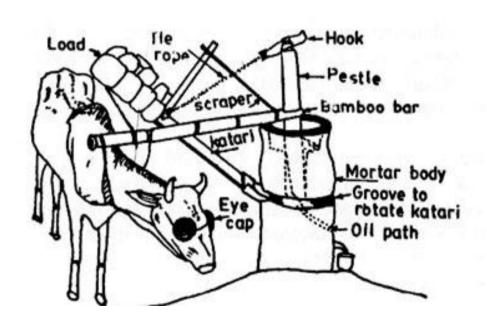
Solvent Extraction:

Typically used for facilities with daily capacities of greater than 300 tons.

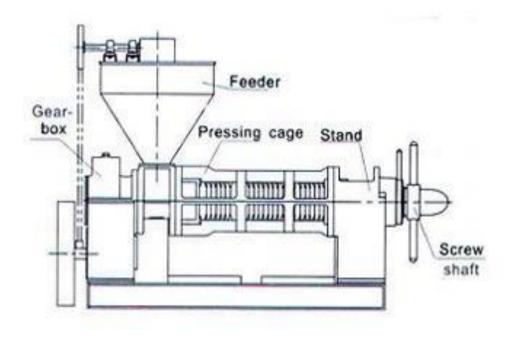
Commonly used after some type of mechanical extraction.

Oil Extraction

Seed Preparation


Removal of foreign objects.

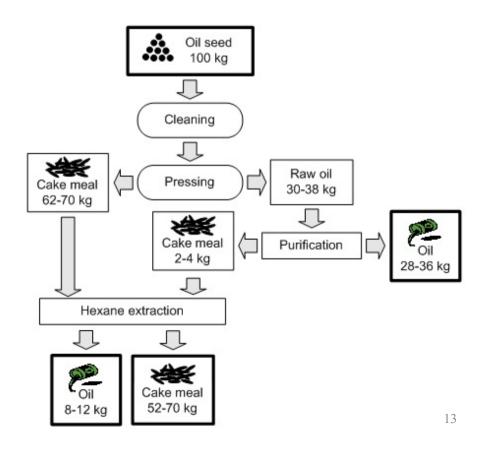
Removal of seed hulls or shells for some seeds.


Mechanical Extraction

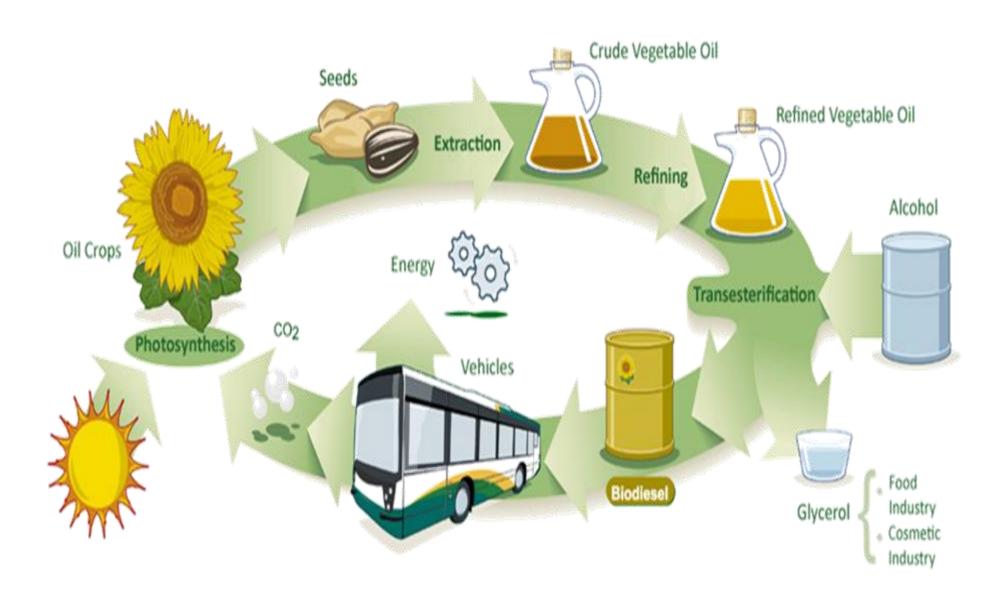
Seed is processed by a mechanical press.

Removes 65-80% of oil contained in the seed.

Animal driven oil expeller

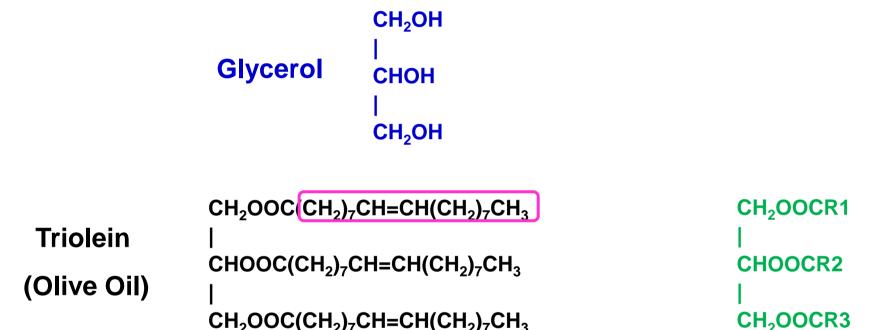

Screw Press

Oil Extraction



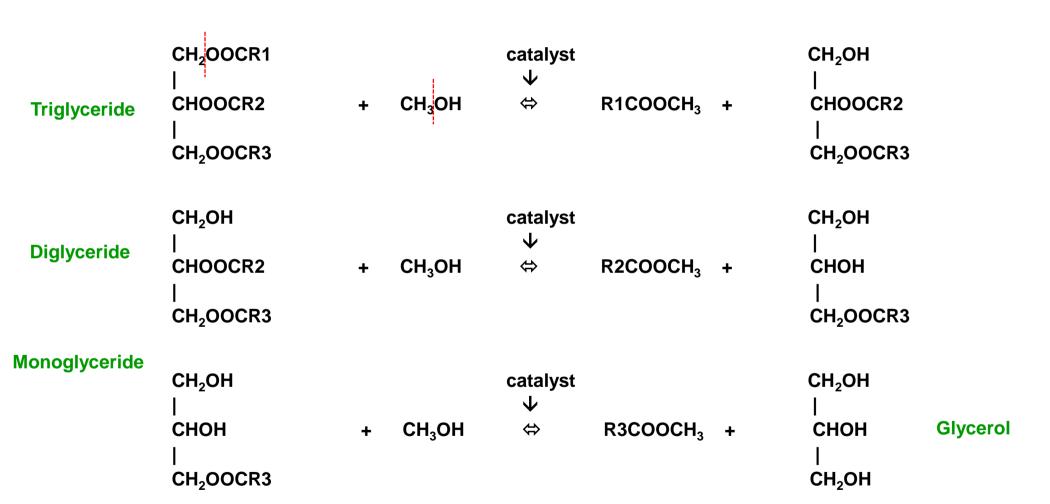
Solvent extraction

- ✓ Solvent (hexane) is applied to the pre-pressed material.
- ✓ The solvent bonds to the oil.
- ✓ Solvent and oil mixture is removed.
- ✓ The oil is then separated from the solvent which is reused in the process.
- ✓ Solvent extraction is capable of recovering ~99% of total oil content.
- ✓ Require large capital investment.



Biodiesel Process: Reactions

Oleic Acid (18:1): $CH_3(CH_2)_7CH=CH(CH_2)_7COOH$



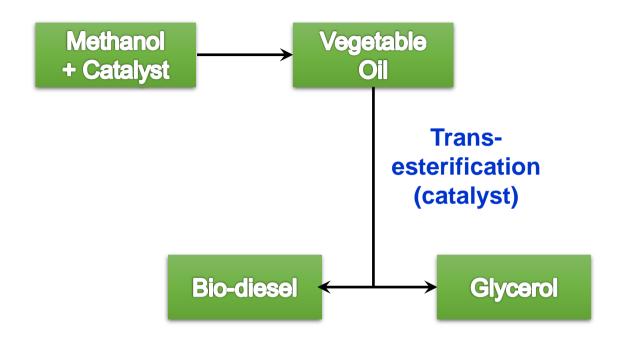
- ✓ R1, R2, and R3 are fatty acid alkyl groups.
- ✓ R1, R2 and R3 could be same or different.
- ✓ The fatty acids in oil determine the final properties of the biodiesel.

Biodiesel Process: Reactions

Transesterification of Oils

R1COOCH₃ = Fatty Acid Methyl Esters (FAME) or biodiesel

Biodiesel Process: Vegetable Oils



- 1. Acid catalyzed process (H₂SO₄)
- 2. Alkali catalyzed process (NaOH)
- 3. Heterogeneous acid catalyzed process (SnO)
- 4. Supercritical process

	Pre-treated alkali-catalyzed	Acid-catalyzed	Heterogeneous acid-catalyzed	Supercritical process
Transesterification				
Catalyst	H ₂ SO ₄ ^a /NaOH	H_2SO_4	SnO	N/A
Reactor type	CSTR ^a /CSTR	CSTR	Multiphase	CSTR
Temperature (°C)	70° /60	80	60	350
Pressure (kPa)	400 ^a /400	400	101.3	20×10^{3}
Alcohol-to-oil ratio	6:1 ^a /6:1	50:1	4.5:1	42:1
Residence time (h)	1 ^a /4	4	3	0.333
Conversion (%)	100°a/95	97	94	98

Biodiesel Process: Vegetable Oils

- Free fatty acid (i.e., fatty acid not attached to glycerol) content < 1 wt%.</p>
- Both acid or alkali catalysts can be used.
- Alkali catalyzed process is efficient for producing bio-diesel using pure vegetable oils.
- Industrial processes are using alkali catalyst.

Biodiesel Process: WCO

- ✓ Waste cooking oil is cheaper than pure vegetable oils.
- ✓ Significant impact on the environment if they are disposed without re-use.
- ✓ Their use to produce bio-diesel is attractive for both economic and environmental reasons.

- ❖ Waste cooking oils have higher content (> 5%) of free fatty acid (FFA).
- FFA produces soap and water by reacting with alkali catalyst.
- The waste cooking oils require pretreatment with acid catalyst.
- ❖ FFA < 1 wt% → alkali catalyzed process.</p>

Biodiesel Process: WCO

Esterification of Free Fatty Acid

Oleic Acid (18:1): $CH_3(CH_2)_7CH=CH(CH_2)_7COOH$: R1COOH

Acid Catalyst

 Ψ

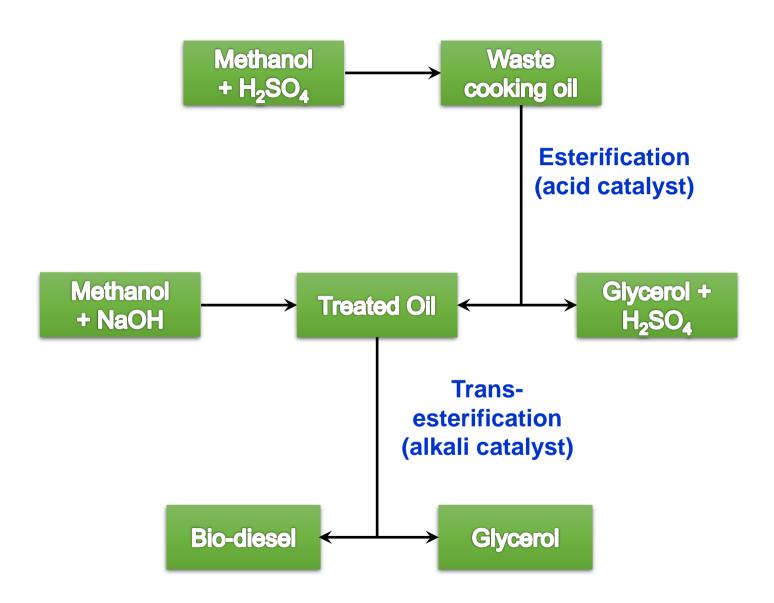
R1COOH + CH₃OH

⇔

R1COOCH₃ + H₂O (Biodiesel)

Alkali Catalyst (KOH)

 Ψ

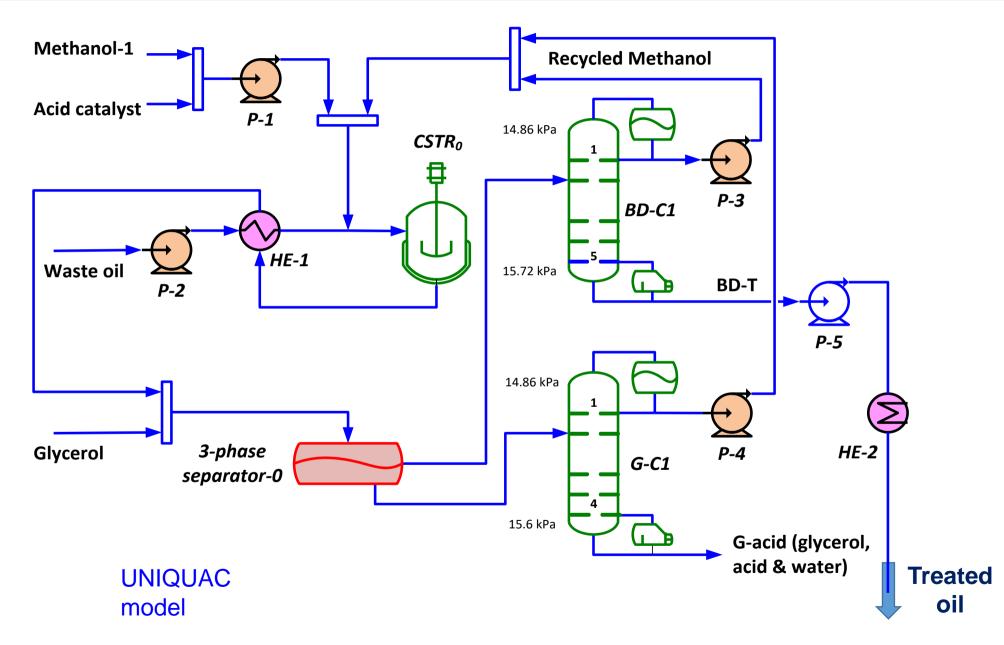

R1COOH + CH₃OH

 \Leftrightarrow

R1COOK + H_2O (Soap)

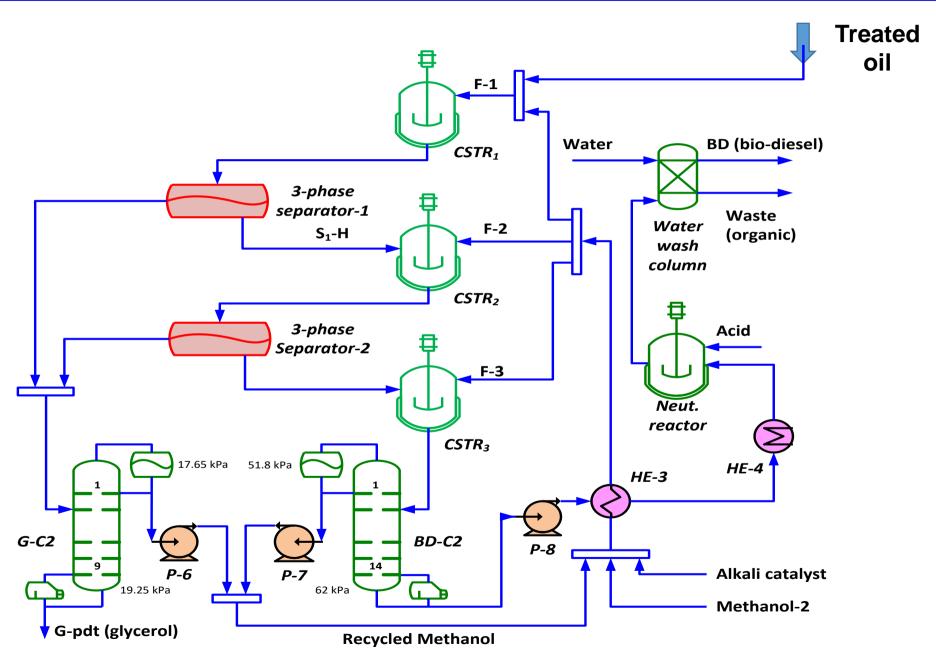
Biodiesel Process: WCO

Biodiesel Process: Simulation


- ✓ Aspen Hysys V 7.2
- ✓ UNIQUAC* thermodynamic model has been used.
- ✓ Triolein is used to represent triglycerides in waste cooking oils.
- ✓ Physical properties of mono-, di- and triolein are taken from Aspen Plus database.
- ✓ Feed waste cooking oil contains FFA (6 mole %) and triolein.

Average Plant Capacity (USA) ~ 24 million gallons per year

^{*} Franca et al., J. Chem. Eng. Data., 2009


Biodiesel Process: Pretreatment

Biodiesel Process: Main Process

Biodiesel Process: Cost

- ✓ Inputs: oil, methanol and catalyst (utilities: steam and water)
- ✓ Outputs: biodiesel and crude glycerin

Pre-reaction requirements

Oil storage tank

Alcohol storage tank

Catalyst storage

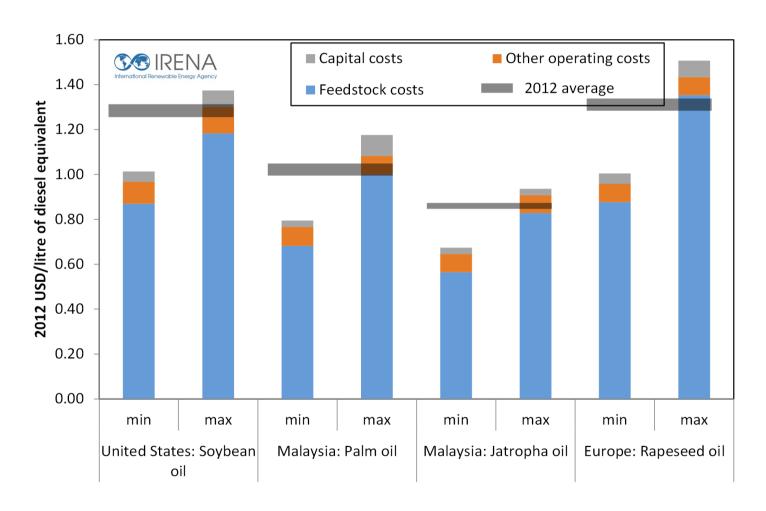
Biodiesel reactor

Post-reaction requirements

Settling tank

Separation column

Washing tank


Biodiesel storage tank

Glycerin storage tank

Biodiesel Process: Cost

Total production cost of biodiesel using different feed-stocks.

Feed stocks cost is the major contributor in the cost of biodiesel.

Biodiesel Standard & Properties

$International\ standard\ (EN\ 14214)\ requirements\ for\ biodiesel$

Biodiesel Standard

Property	Unit	Lower limit	Upper limit
Ester content	% (m/m)	96.5	_
Density	${ m Kg/m^3}$	860	900
Viscosity	$\mathrm{mm}^2/\mathrm{sec}$	3.5	5.0
Flash point	$^{\circ}\mathrm{C}$	>101	_
Sulphur content	mg/kg	_	10
Cetane number	_	51.0	_
Sulphated ash content	% (m/m)	_	0.02
Water content	mg/kg	_	500
Acid value	mg KOH/g	_	0.5
Methanol content	% (m/m)	_	0.2
Total glycerol	% (m/m)	_	0.25

Vegetable oil methyl esters (biodiesel)	Kinematic viscosity (mm ² /s)	Cetane no.	Lower heating value (MJ/kg)	Cloud point (°C)	Pour point (°C)	Flash point (°C)	Density (kg/l)
Peanut	4.9	54	33.6	5	-	176	0.883
Soya bean	4.5	45	33.5	1	-7	178	0.885
Babassu	3.6	63	31.8	4	-	127	0.875
Palm	5.7	62	33.5	13	-	164	0.880
Sunflower	4.6	49	33.5	1	-	183	0.860
Tallow	_	_	-	12	9	96	-
Diesel	3.06	50	43.8	-	- 16	76	0.855
20% biodiesel blend	3.2	51	43.2	-	-16	128	0.859

Properties of biodiesel produced from different oils

Glycerin Use

No ready market for crude glycerin

Quantity produced = 10% to 20% of biodiesel production

Contains methanol and catalyst

Possible Uses:

Fuel

Compost

Soap production

Refine to pharmaceutical grade glycerin

Further Studies

- http://costing.irena.org/charts/biodiesel.aspx
- Canakci M, Van Gerpen G. Bio-diesel production from oils and fats with high free fatty acids. Transactions of the ASAE 2001.
- West AH, Posarac D, Ellis N. Assessment of four bio-diesel production process using Hysys. Bioresource Technology 2008.
- Sharma S, Rangaiah GP, Multi-objective optimization of a bio-diesel production process, Fuel 2013.

Thank You

