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Brain to machine interfaces (BMls)
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SENSING THE BRAIN
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Sensing technologies that can be used to observe neural activity, divided
by non-invasive vs. invasive, spatial and temporal resolution.
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Neural Signals - ECoG

* FElectrical activity on the surface of the brain
resulting from volume conduction of coherent
collective neural activity through the brain

* Recorded via surtace (disk) electrodes

* Amplitude as high as 5 mV and frequency
content up to 200 Hz

ETH... N. Thakor, JHU



Neural Signals - LFP

* Summation of pre and postsynaptic activities
from a population of neurons around the
electrode tip

e Recorded via microelectrodes or lower
impedance electrodes

* Amplitude as high as 1 mV and frequency
content up to 200 Hz

[= TN Thakor, JHU



Neural Signals - Spike

* Single unit firings
* Recorded via microelectrodes placed close
to the neuron cell body

* Amplitude as high as 500 uV and
frequency content up to 7 kHz
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Pre-motor and motor area of the cortex
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Extraction of 2D movements from M1
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Utah Array, Cyberkinetics
LTD

Schwartz and colleagues




Cortical control of robotic systems

BrainGate Pilot Clinical Trial
3D + Grasp Control of a Robotic Arm
Participant S3
Trial Day 1959 / 12 April 2011
Hochberg et al., 2012

Caution: Investigational Device. Limited by Federal Law to Investigational Use.




High-level CNP

* Recordings were made at points
along a major pathway for
visually guided movement which
begins in the extrastriate visual
cortex and passes through the
parietal reach region (PRR) and
area 5 to the dorsal premotor
cortex (PMd) and then to the
primary motor cortex

* Although PRR is specialized for
reaching movements, it
represents the goals of the reach
in visual coordinates

m Ziirich



High-level CNP

Estimating the Planned Reach Direction

5deg

PRR receptive fields span workspace.

Complete set of reaches: P(n|x)

Neuron 1
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For any given reach...

... measure spike trains: n

5 deg

Calculate probability of all reaches:

P(xIn) P(n) = P(nix) P(x)

Select most probable: max (P(x|n))




High-level CNP

Potential Advantages of
PRR Neurons for
Prosthetic Systems

PRR neurons encode:
* The plan to reach to a target
* The plan for the upcoming reach
* The plan with respect to the eyes

PRR neurons may:
* not encode muscle forces
» reorganize little following injury

» adapt quickly to calibrate the system
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High-level CNP

m Ziirich

@ Reach Task

“Fixate" “Target cue”  “Delay period” “Reach”
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Trial time
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LA reach goal

Record




High-level CNP

s sey
D
gt e—— :
f PR I?ll%' Supervisory Controller Man-Made | /7 7N EyeFrame  farget
- Decoding (=207, : — Scnsom : f ' &)
‘Algorithms: o(t) - _ \ )
; ; B - e Tool Frame
834‘) Q) <(t) Eve-tra»ker f ..:f.'-",s:;’b
Pre-motor cortex sngnals (0¥} | o\‘ J
or motor COI:IN —#  Trajectory Ggnerator Y
signals End-effector
I(t) D A < Be
- "4 P (t) q (1) 9
g4t W
Joint 1 Joint 2 IR Joint n J? int . : .
Controllers Artificial Sensors

Key variables
* intended reach location
* intentional and cognitive mind state
*external sensor variables
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Voluntary control of grasping aiter cervical spinal cord injury
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Restoring cortical control of functional movement
in a human with quadriplegia

Chad E. Bouton'f, Ammar Shaikhouni*?, Nicholas V. Annetta', Marcia A. Bockbrader®*, David A. Friedenberg?,
Dylan M. Nielson??, Gaurav Sharma', Per B. Sederberg?®, Bradley C. Glenn’, W. Jerry Mysiw?#, Austin G. Morgan',

Milind Deogaonkar?? & Ali R. Rezai®?




Brain-to-machine-to-brain interface
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Brain-to-machine-to-brain interface in a

quadriplegic subject

Medial array

A Middle (D3)
Ring (D4)

Index (D2)

Little (D5)




Brain-to-machine-to-brain interface in a
guadriplegic subject
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Hand prosthesese - Motivation

The loss of the upper limb is a traumatic event that changes the quality of life radically

Reduction of
e Ability in reaching, grasping and manipulation
e Ability in sensing through the sense of touch

* Gesture (communication)

Statistics
38% Transhumeral 1.7 million total number of amputees living in the U.S
31% Transradial 65,000 upper limb amputations in the U.S. each year
147% Partial hand 27,000 hand amputation below the wrist in the U.S. each year
5% Fingers 400 hand amputation below the wrist in Italy each year
Consequences

Few innovations in the past 50 years

Actual prostheses do not satisfy amputees’ requirements and are very different from
the natural model



What can an amputee get today:

Hand Prosthesis

[ Prosthetic Hands ]

| Passive | | Active ]

[ Cosmetic ] [ Body-powered ] [ Myoelectric




Mechatronic
Design issues: adaptability

Problem: It’s an hard task to design, actuate, and control a self-contained artificial hand
with a number of degrees of freedom (DoF) equal or close to those in the biological
human hand!

22 muscles .. +18 Possible solutions (to simplify the problem):

e Cut DoFs; Rigidly couple DoFs;

e Implement adaptable mechanisms.

T=0.0 5 =04 S 1=0.8 S =125

Adaptation also improves grasp stability as it
increases the contact areas while grasping

»

Hand adaptation mechanisms

Epidermis  Subcutis i 5
laver layer

Finger adaptation mechanisms

Phalanx adaptation

mechanisms .
Underactuated mechanisms




Mechatronic
Design issues: non back drivability

Mechanisms wherein motions generated by the input (motor) drive are
transmitted to the output (i.e. fingers) and wherein motions originated
from the output are blocked

Output

In a prosthesis it allows to maintain the grasp once the power supply is switched off
Non back drivable transmission = Power saving!= key in prosthetics!

Ce e

Gear heads with high Brakes/
reduction rate clutches



Case Study

The SmartHand prototype

The SmartHand at glance
Mechanical Spec

Weight 600 gr
Size Human inspired
Degrees of freedom 16
Degrees of actuation 4
Full flexion speed <1.55s
Tendon max active force 45N
Grasp force (Cyl, Lat, Lift) <30,<5,100 N
Sensory System
Position (digital encoder) 4
Position (Joint Hall sensors) 15
Position (Potentiometer) 2
Tension Sensors (strain gauges) 5
Limit switch (digital) 8
Electrical Spec
Power req. 12V [3A
Control loops Position and tension (1 kHz)
Reading delays <1ms
Total preset grasps 10 (programmable)

Communication RS232/USB




Case Study
The OpenHand prototype

Human finger-tips play a fundamental role during the action of fine manipulation
and precision grasping of objects

Nail Bone

| ‘ -
Multi-layers structure with different proprieties: ”
* Epidermis and subcutis layers - Compliant materials Epml‘m .
* Nail and inner bone - Stiff materials lver  layer
Nail
Sez. A-A Distal Bone A
Non-linear & time-dependent characteristic:
* Low forces - Large displacements ( ) @
* High forces — Small displacements (Stiff behavior)
* Energy dissipation ( ) g]unt:LLzyerr A
A Speed
Benefits of grasping and manipulation: Y
g

* Conformability;
* Large contact areas;
* Energy dissipation;

- >
Disnlacement

1. M. Controzzi, M. D’Alonzo, C. Peccia, C. Cipriani Design, simulation and development of a human inspired fingertip for robotic hand, to be submitted to the

Journal o Bioispiration and Biomimetics
2. M. Controzzi, C. Cipriani, M. D'Alonzo, C. Peccia and M. C. Carrozza Design of an Anthropomorphic Robotic Hand with Intrinsic Actuation and Compliant Fingers,

GNB 2012, Rome, Italy, June, 2012.
3. M. D'Alonzo, M. Controzzi, C. Peccia, C. Cipriani and M C. Carrozza. Design of biomimetic artificial fingertips and analysis of stiffness at the contact," GNB 2012,

Rome, Italy, June, 2012.




EPFL Hand prosthesis — Proportional control

= N antagonist muscles are used to control 1 degree of
freedom of the prosthesis (hand opening/closing). Often
biceps/triceps or wrist extension/flexion

= An increased number of required movements makes very
difficult to use this approach

EMG EMG Rectified Filtered EMG
Recording (2 channels) EMG (2-Hz lowpass) Control

_ i

al Signals and Signal Processing



EPFL Hand prosthesis — Pattern recognition

Prosthetic
Control

N
Classifier
Training/Testing
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Electrode
placement

= |In this case, the muscles naturally involved in the specific movement
(e.g. ECR for the extension of the wrist) are no more available

= For this reason, “not- homologous” voluntary movements of the
subject have to be coded as prosthesis movements (e.g. extension of
the elbow for the extension of the wrist)

= This approach requires a quite long training phase and makes very
difficult for the subject to easily control more than two degrees of

freedom

essing

B Neural Signals and Signal Proc



EPFL. EMG control — Muscle an

B Neural Signals and Signal Processing

TD Feature

Definition

References

Mean absolute value

N
MAV; = %3 Jai(k)|
=]

[46], [50]. [52]

Integrated absolute value TAV; = MA‘\C/i * N [53]
N
Variance VAR = %Y (@i(k) - 7)? [52], [54]
Mean absolute value slope MAVS; = Akll?w+1 — MAV; [46]
Willison amplitude WAMP; = Z fllzi(k) — zi(k+ 1)) [54]
with f(z) = ’iiilfz > 45, 0 otherwise
Zero crossing ZC; = XN: f(k) [46]
with F(R) = 1if wa(k)was(k+1) < 0 and fes(k) = z:(k+1)|
> T
N-1
Slope sign changes SSC; = Z fl(@i(k) — zi(k — 1)) * (xi (k) — zi(k + 1))] [55]
with /@) —1ifz > 2, 0 otherwise
=1
Waveform length WL; = Z(!zl(k) —zi(k+1)]) [46], [55]
TSD Feature I)eﬁnitio’;nz1 References

Autoregressive coefficients

zi(k) = Za]z'(k‘ — j), nt" order AR model
j=1

[53], [56]-{58]

i-1
k
c=-a; ¢i=-a;i— ) (1-=)anci—
1

Cepstral coefficients [52]
k=1
1 <k <n and a; are the AR coefficients
FD Feature Definition References
M M
Mean of signal frequencies FMN; = z(fjpj) /Z(p]-) 71
j=1 i=1
o 5 - — main(FFT(z;))
Frequency ratio FR; = 7:;2(1:1-‘7'(2.)) [71
TSC or TF Feature Definition References
N-1
Short-time Fourier transform STFT[k,m] = Z z[r)g[r — A.]e—j'l-zrmz/N m
where g, k, and m are the window function, the time sample,
and frequency bins, respectively.
Wavelet transform Continuous WT (CWT) produces a good frequency resolution [47], [51]

Af in long time windows (low frequencies) and a good time
localization At at high frequencies

CWTy(r,a) = % Jawyw(T)de

where t and a are the translation and scale parameters and ¥
is the mother wavelet function

Wavelet packet transform

WPT is a generalized version of the continuous and discrete
WT.

[471. [51]. [59]

d feature selection

PCA or similar could be
necessary to select few
more information muscles

Muscle-set_—

Ly Feature 7| Fuzzy classifier
a
@ 1 PCA module extraction construction
3
Selected
N movement
N GLR Test
Selected
muscle-set
(b) "| Feature "| Fuzzy classifier Identified
extraction discrimination movement
y
>
GLR Test

Part4



EPFL EMG control — Classifier selection

= Supervised learning classifier to link EMG signals (features)
to desired hand movements

= More or less anything has been tried (including majority
voting)

= Make a fair comparison!!

TABLE IV
SOME PATTERN RECOGNITION BASED CONTROL OF UPPER LIMB PROSTHESIS.
A = amputee subjects, H = healthy subjects, LD = limb deficiency subjects

Classifier EMG Classes | Features Subjects References
chan- involved
nels
MLP 2 4 MAYV, MAVS, 9H+6A Hudgins et al [46]
ZC, SSC, WL
Fuzzy 2 6 IAV,VAR,AR, 6H Park and Lee [52]
CC, adaptive
CcC
LDA,MLP 2 4 - 16H Englehart et al [51]
Fuzzy 2 4 MAYV, MAVS, 4H Chan et al [65]
7ZC, WL
PCA,LDA 24 4,6 - 11H Englehart et al [47]
PCA,LDA 4 6 STFT, WT, 12H Englehart et al [12]
WPT
- 34 34 Fuzzy 3H+1A+ILD Ajiboye and Weir [67]
HMM,MLP 4 6 - 12H Chan and Englehart [66]
o GMM,LDA ,MLP 4 6 TD, RMS, AR 12H Huang et al [68]
£ LDA,MLP 4 8 WPT 10H Chu et al [64]
4 SVm,GDA 3 8 AR, histogram 1H+2A Liu et al [70]
§ SVM,LDA ,MLP 4 5 single and multi | 11H Oskoei and Hu [49]
o TD/FD
gﬂ SVM 7 8 RMS 3H Shenoy et al [71]
a HMM,bayes 4 - 10H Chu and Lee [69]
2 MLP 12/32 12 MAYV, VAR, SH+1A Tenore et al [54]
s WL, W
2 LDA 12 10 MAV, ZC, WL, | 5A Li et al [72]
& SSC
(%]
e
]
=z
|

Part4
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EMG control — A little help?
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= Single finger decoding
using EMG signals

= One implanted patient from
UCSC - Loretana

= Two patients from
collaboration with hospitals
Chuv (Lausanne, CH) and
Villa Beretta (Lecco, Italy)
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EPFL EMG shared control

B Neural Signals and Signal Processing

FRACTION OF TRIALS

TARGET

COMPLIANCE
CONTROL

b
MAN A T L D S TAS
i
i ' "I
L_I Lo |
2 $3 $4  Total v; ,', -
MLP only Shared Control
WL
\ N
/‘\JV"/\K'( & \ l\.'/\~

Part4

Shared Control

When a hand is not contacting an object, the
user controls the robotic hand with the output
of EMG decoding

When the hand makes contact with an object,
the compliance controller automates hand
conformation around the object, allowing a
high degree of grasp stability



EPFL Intramuscular EMG (iIEMG) control

B Neural Signals and Signal Processing

= Clinically available myoelectric control strategies do not allow simultaneous
movement of multiple degrees of freedom (DOFs)

= The use of implantable devices that record intramuscular EMG signals could

overcome this constraint

= Intramuscular EMG signals can be recorded using percutaneous fine wire
electrodes inserted using needles

= The use of iEMG can allow to use proportional control (but of course also
pattern recognition)

Smith et al., 2014

Wrist Rotation

PT

EMG amplitude EMG amplitude

SUP

| Wrist Flexion/Extension

: ECRL :
i EMG amplitude EMG amplitude

Hand Open/Close

FDP EDC
EMG amplitude EMG amplitude

Amplify and Amplify and Amplify and Amplify and Amplify and Amplify and
Threshold Threshold Threshold Threshold Threshold Threshold
= e L =y ¥ =y o
Wrist Rotation Wrist Flexion/ Hand Open/Close

Velocity Extension Velocity Velocity

Part4



EPFL Intramuscular EMG (iIEMG) control

essing

B Neural Signals and Signal Proc

» Sense myoelectric signal at its source, so it acts as an
amplifier of the neural command.

e Use inductive coupling to pass power into devices and
signal out of device w/o breaking the skin

Multifunction Prosthesis Control Using
Implanted MyoElectric Sensors (IMES)

lh'llflhililulion ot
% Institute of TRANSMITTER IMPLANTS //

Chicago

RF BION® Package

TELEMETRY

CONTROLLER . ___——Electrode Caps

.
Ny
10 mm ™

..... ik .

. 5

| : TH - PROSTHETIC 4 N
HAND CONTROLLER LIMB (SOCKET)

rt4



EPFL Targeted muscle reinnervation (TMR)

EMG electrodes

\_ -/

= A surgical technique called targeted muscle reinnervation (TMR)
transfers residual arm nerves to alternative muscle sites

= After reinnervation, these target muscles produce
electromyogram (EMG) signals on the surface of the skin that
can be measured and used to control prosthetic arms

essing

Kuiken et al., 2007

B Neural Signals and Signal Proc



EPFL Targeted muscle reinnervation (TMR)

[E1|Patient S1

Hargrove et al., 2017

B Neural Signals and Signal Processing  —=

Part4

Subjects showed statistically better performance in the

Southampton Hand Assessment Procedure (p=0.04) and
the Clothespin relocation task (p=0.02)

Notably, these tests required movements along 3
degrees of freedom.

Seven of 8 subjects preferred pattern recognition control
over direct control

Results demonstrate that pattern recognition is a viable
optlonland has functional advantages over direct
control.

AN Pre-Home Trial [] Post-Home Trial

c { o= *
s | W | Vekrme | Reapraon oo | S50 § 20
s1 41 15 7 PR c c
2 280.1 301.6 39 PR T 20 I T 20
s3 196.8 183.6 73 PR G I G
S4 254.6 366.9 56 PR 310 310
S5 91.4 85.1 10 PR 2 E
6 54.9 27.9 20 DC o
s7 157.7 1285 18 PR Direct Pattern
S8 33.2 73.0 38 PR Control Recognition

Table 2. Wear time, recalibration and control preference. SHAP Score



EPFL High density electrodes

essing

B Neural Signals and Signal Proc

= The identification of action potentials belonging to individual motor

units provides information about the motor output from the spinal
cord because of the one-to-one association between the action
potentials generated in the axon and those in the innervated muscle

fibers

Intramuscular recordings have been used for about 80 years and are
the classic means for investigating the properties of individual motor

units

The possibility to achieve similar results with surface EMG electrodes
would be quite interesting

The recording of surface EMG in multiple locations (spatial sampling)
enhances the capacity to discriminate the action potentials of
separate motor units)

This is accomplished by multi-channel systems providing many
recordings of motor unit activity along the length of a muscle or over
its surface area

rt4



EPFL High density electrodes

= During voluntary contractions, the action potentials from
several motor units superimpose to form a complex
interference pattern

= The characteristics of the multi-channel interference pattern
can be associated to the level of muscle activation using
topographical EMG representations, i.e. maps of electric
potential

= The number of identifiable motor units increases substantially
with the number of channels used for the discrimination

a b c
Origo (0,0)

Cranial (ﬂ
Alo000O0

Oo0OO0O0O0
Oo0O0O0O0
Oo0o0OO0O0
Oo0O0OO0O0
Oo0oo0oo0O
oOo0oo0oo0oO0
Oo0o0O0O0
O O0OO0O0O0
0Oo0oo0oo0O0

essing

y-axis

Oo0o0O0O
OO0OO0O0O0
OO0O0O0O0

Caudalr

B Neural Signals and Signal Proc

>
Medial X-axis Lateral
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EPFL Wearable HD-EMG interface

B Neural Signals and Signal Processing

Wearable MyoNeuro Interface

Active neurons
Cc5/C6 IF L i
o & .‘.'.

Level of lesion

[

Inactive neurons

200pv|'
‘ 1s

D ; E
IngexExtonsion Individual Finger Trial (5 total)

v

Movement Block (8 total)

Wrist Extension

‘ flIfl 1F] [F] |F FFFFF‘
LB N ]
>
2 , gl |e] [g] [g] |e EEEEE‘
0

S 2sec

Part4

A wearable electrode array and machine
learning methods were used to record and
decode EMG signals and motor unit firing
in paralyzed muscles of a person with
motor complete tetraplegia

The myoelectric activity and motor unit
firing rates were task specific, even in the
absence of visible motion, enabling
accurate classification of attempted sigle
digit movements

This wearable system has the potential
to enable people with tetraplegia to
control assistive devices through
movement intent.

Ting et al., 2021



EPFL Wearable HD-EMG interface
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ePFL New technologies for HD-EMG interface

= Soft bioelectronic interfaces for mapping and modulating excitable networks

at high resolution and at large scale can enable paradigm-shifting diagnostics,
monitoring, and treatment strategies .

iy it Ry A A e A,
TSNS 0 | N AL R A A A
FIF iiiii \l mz \\\ ECJ\/ _Stﬁﬁljj\ﬁ:f}afr{\df/\“r/\“r/“r/\/\r/\\

Driscoll et al., 2021

B Neural Signals anc
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tPFL. TMR and HD-EMG

Part4

PRy P P e
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Neural drive
to the muscles
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e

Wrist supination

1

LT a2

= The motor-neuron behaviour is identified by deconvolution of the electrical

activity of muscles reinnervated by nerves of a missing limb in patients with
amputation at the shoulder or humeral level

= We mapped the series of motor-neuron discharges into control commands
across multiple degrees of freedom via the offline application of direct
proportional control, pattern recognition and musculoskeletal modelling

= A series of experiments#oerformed on six patients reveal that the man/machine
interface has superior offline performance compared with conventional direct

electromyographic control applied after targeted muscle innervation Faring ot al.. 2017

B Neural Signals and Signal Processing



Peripheral implantable electrodes

" e :
invasiveness

intraneural

== | |ntrafascicular
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= microelectrodes)
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cutan

(surface electrode)

>
selectivity

< Micera et al., IEEE T-NSRE, 2008



SBIISIII‘ fﬂﬂl"lﬂﬁl(
e

Real-time, and natural feedback from the hand prosthesis to the user is
essential in order to enhance the control and functional impact of
prosthetic hands in daily activities, prompting their full acceptance by the
usSers |

e

Use the remaining nerves Move the nerves Stimulate the brain

Electrical leads from the Re-routed nerves grow new Sensory signals are routed
prosthetic’s sensors endings into muscle and around a severed spinal cord
stimulate nerves in the skin, where external devices and into the brain, where they
person's stump that translate signals going to produce sensations by direct
once served the real limb. and from the prosthesis. stimulation of the cortex.

Kwok, Nature, 2013
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) Tﬂl‘;&lﬂﬂ Muscle nelllllﬂl‘\lallllll

e, e

A Clavicle
Musculocutaneous N. Deltoid
Pe;;taoj;arlls Ulnar N.
(Clavicular Head)
Pectoralis
Median N. Minor
Pectoralis ' :
Maior ‘ Radial N.
(Sternal Head)
B Ulnar N. Clavicle
Pectoralis Musculocutaneous N.
Major .
(Clavicular Head) Deltoid
i Intercostobrachial
Supraclavicular
Ct':taneous N. (Cutaneous) N.
Median N. Distal
Pectoralis Radial N.
My Serratus
(Sternal Head) Antadlor

’.”'. Strong sensation localized to palmar side
[7] Diftuse sensation localzed to palmar side
I Strong sensation localized to dorsal side
[7] Diffuse sensation locakized to dorsal side

KT

Bl Median [l Uinar [ Radial [ll Musculocutaneous

I Ty X I R Kuiken et al., 2007, 2008 sstasamel sy
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A

/ @ o paf | 1cm

v f Strong sensation

1 <{ of an “edge”
e '- Strong sensation D Diffuse sensation
a localized to palm localized to palm

 Very interesting solution but more
suitable for proximal (shoulder)
amputations

« Sensory feedback is possible
but difficult to be daily usable
(i L35 Lasar | Agt20. 21048

Strong sensation Diffuse sensation
unable to lecalize [T unable to localize
specifically to palm specifically to palm
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Real-time, and natural feedback from the hand prosthesis to the user is
essential in order to enhance the control and functional impact of
prosthetic hands in daily activities, prompting their full acceptance by the
usSers |

e

Use the remaining nerves Move the nerves Stimulate the brain

Electrical leads from the Re-routed nerves grow new Sensory signals are routed
prosthetic’s sensors endings into muscle and around a severed spinal cord
stimulate nerves in the skin, where external devices and into the brain, where they
person's stump that translate signals going to produce sensations by direct
once served the real limb. and from the prosthesis. stimulation of the cortex.
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First intraneural experiment
e

B e

N 55@70
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First intraneural experiment
e
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Sensory feedback using FINE
electrodes

Spring and pin
CONNactorns

D ' ) Median E ;o =
100%
200 +IM4
3 4 5 ] 7 8 MS
: ' ) ) " Ulnar g 1o
\_ |
5 2 N 3 § 100
3 4 5 6 7 8
Radial 50
° " A e
3 4 5 6 7 8 10 20 30 40 S0 60 70
Weeks post-op Weeks post-op



Sensory feedback usmg FINE
electrodes
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SENSOry
feedback

c Cherries, sighted, feedback off D Cherries, sighted, feedback on.
3000 : 3000
S 2000 : B 2000 } 4
8 : 8
9 (I f &
1000 | T ﬂ"‘ ] [' l LJ 1 1000 | 1
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} Sensory feedback
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e

P.M. Rossini S. Raspopovic M. Capogrosso M. Bonizzato

«35 year old man, from Denmark
«trans-radial amputation in 2004 (fireworks
accident during family celebration)

*Subjects resistant to pharmacological therapy
and with no neuropathies (evaluated by
Electroneurography) or other systemic diseases
affecting brain/spinal cord/nerves ’

* Subjects with no neuropsychiatric disorders,
evaluated by neuropsychological and
psychiatric tests (WAIS-R, CES-D, MMPI-2)

*FOUR week implant
Ll LSS Lausanne | August 30, 2013
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= Nerves to implant:
v Median nerve
v" Ulnar nerve

=  Number of electrodes:
v' 2 for each nerve

TIME-3 implantation procedure
i

i

2 =Surgical technique:

m v'General anesthesia
® v'skin incision (medial edge of the biceps muscle-15 cm)
v'Exposition of the ulnar and median nerves
m v'epineural microdissection
@ v'TIME electrodes inserted under surgical microscope using a guiding
needle

/ v'8-0 suture used to fix the electrodes to the epineurium
| v'Subcutaneous pockets
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0 sensory feedhack

Glosed-loop control hased on g |
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* Test the possibility for the subject [: R
to use the sensory information e himiEass

Nerve stimulation
. -

during closed-loop control and

manipulation experiments {

| | I 1
" \ian
( S Imax \ A
15 p
Current saturation I Fine force control
Imin IS
75
o

Robotic hand sensors readingJ 2

(S — Sis)
I= Imax — Imin) - 5—5— + Imin
( ) (S75 — S1s)
\ Current/Sensor relationship j

M

@

Azzurra dexterous hand
(Prensilia srl)
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EMG-based control of the |Iillll|)ll’0$l|lﬂ$l$
e

/ Hand motion control \

(" Forearm EMGactivity ) ‘
M—
DRUUSREIN | WapPes 0 N
% /ﬂ*\ e
—— o=
\ 100msw|_n>dow - Sy,
* 4 Ni '\

( Features extraction >

¥ 3

P

N
_/

MLP network

- g Outputs:
WD ~() = 1. Rest
* e 5 = HMM filter 2. Palmar grasp
7 3. Pinch
OB £ ~_r) § 4. Ulnar grasp
N —. — & 5.Open hand
e 2% 8
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selection oi/grasym/g force levels
e

a Index finger Little finger
: | staircasetask | high 1low |medium | staircasetask | low |high Imedium
- o
g2 | | | |,
o)
o& |l | |
0] | | 0] |
S 1
g | | | L,
: | | | | |
= 0] | 0
é% l | | 'R | |
E 3 | | L | Aliﬂ /_\ l/-\_
“ 0 30 60 0 | 130 1 | 60
time (s) time (s)
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Mmlulauon oigras/pmg Iorce
e A e,

e e s

C Staircase task
v 1
7
O
ol
(v -
2, The artificial sensory
O 0 Time (s) 30 feedback allowed the user to

Healthy hand with visual -
=== Robotic hand with visual feedback / no tactile achieve performance close to

=== Robotic hand with tactile feedback / no visual ~ the natural ones

2
Healthy — -4, :
Bl Robotic = ol
visual 9 - i
O - :
Bl Robotic o 4 4
tactile

PC2(21.3%) -4 PC1 (41.6%)
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mpliance recognition
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Compliance recognition task Decoded hand

Hard I Medium I Soft control:

S ,:? B Palmar grasp
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8 g | : .
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(normalized) .
] Tactile traces pr0pe rtIeS
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i —Sensor
> readouts
= M | /\r«,\_ |1 == Current
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0 Time (s) 30 —d I /dt
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B Task accuracy
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©
: X
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Shape recognition
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Decoded hand Shape recognition task
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: : c £ — \ 1
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Shape recognition Compliance recognition

Index finger
05l /

Little finger

05

Normalized finger sensors readout

05t

0 |
0 Time (s) 3
0

—  Soft —  Medium —  Hard

Normalized finger sensors readouts

1 ]
80 85 90 95 100
Hand range (%)

—_ Spherical object —  Cylindrical object

Different force profiles were provided to the users using the afferent stimulation
—> this is NOT on-off sensation!
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estoration of proprioception and
actile feedbac

Multimodal intraneural sensory feedback

Electrode 2
Active site 6
100 ys

Stimulation through TIME nerve implant

—» current (UA)
prop. to
force readout

Proprioceptive feedack
sensory remapping

Finger position readout Example stimulation parameters = 3\ § =100 Median nerve
Electrode 1

Active site 4
120 ps

current (LA)

prop. to
position readout

Tactile feedack
somatotopic

Ulnar nerve

Finger force readout Example stimulation parameters

— Position

\4 and force

sensors

nal p
of electrode

- s o 5 Transversal portion g
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Motor control loop
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Motor command l<—[ Decoding
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Restoration of proprioception and

tactile feedback

a Experimental setup

vs — very small s — small
Y -
A . A
| —large vl —very large

;
™ >
“ "

100%

50%

0%

Subject’s answer

Task performance with proprioception only (n=2)

100~ * * * *
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2
w
S
9
'*qé) 40 -
75 S L.
g 20} 25%
82 S ok
1 | 1 1
Vs s I vl Vs s I vl
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Overall performance: 78% correct



Restoration of proprioception and
tactile feedback

a Experimental setup b Task performance with touch and proprioception (n=2)
* *
ss —small soft  sh—small hard N - 100 3
o —
- lh 73 )
g % S 8o0f
2.8 o8 . >~ 80 [
i ‘ I . ‘\ q;) .9
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- S 20
S,
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| [ ] 1 \
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LJ - Object presented Object feature

Overall performance: 75.5% correct



Subject’s answer

Restoration of proprioception and
tactile feedback

SS

size compliance

Proprioception only control condition (n=1) e Touch only control condition (n=1)
1] 100
S 80 I g 80
2 . 2
o
§e] = e
= 60 = 8 b= 60
L === - 50% S 2
€ 40} = € 40
) O ()
2 2 °
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§ 20 CID) § 20
Q S
O ok O o
1 1
sh Is Ih size compliance ss sh Is ™
Object presented Object feature Object presented

Overall performance: 41.3% correct

100%

50%

0%

Multi-joint proprioception task (n=1)
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&
— [2]
2 5
Z 2 60
S ks
) =
P c 40P
3 he
5 e e
a §-_; 20 25%
S
O o
1 1 1 1
ss sl Is I
Object presented Object presented

Overall performance: 93.7% correct

Object feature



Restoration of proprioception and
tactile feedback

a Verbal fluency task and task performance (n=1) b Cognitive loading and object size task (n=1)

___________

e u | v ve [y | )
Object presented Object presented

Overall performance: 71% correct
d Cognitive loading and multi-joint proprioception (n=1)

o [

___________
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Embodiment

Neurotactile
stimulation
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O. Blanke G. Rognini

[llumination and virtual
stimuli as shown on HMD

,,e’
/" Hand

illumination

Patient 1
(artificial hand)

Patient 2
(prosthetic hand)



Embodiment

During Stimulation
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Biomimetic encoding strategy

We identified electrode active site which elicits sensations in the locations corresponding to the fingertip. Then, we simulated a mechanical skin
indentation using the biomimetic model. The model outcomes were the firing population activity generated by the combination of all the fibers

(SA,RA PC) response and the number of sensory fibers recruited during the skin indentation. We also generated the stimulation amplitudes
following a proportional relationship with the mechanical stimulus as used in (16).

Biomimetic indentation model

Sensation characterization

Sensation charactertzation Intarfaca (\ M ,
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Biomimetic encoding strategy 1

C D

at contact  at receptor |

f
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Fig. 1. Overview of the model. (A) Receptors are distributed across the skin given the known innervation densities of SA1, RA, and PC afferents. (B) The
stimulus—in this case, a vibrating embossed letter A scanned across the skin—is defined as the time-varying depth at which each small patch of skin (here
dubbed a pin) is indented (with a spatial resolution of 0.1 mm). The traces in Lower show the time-varying depth at the three locations on the skin indicated
by the red dots in Upper. (C) The mechanics model relies on two parts: (Upper) modeling the distribution of stresses using a quasistatic elastic model and
(Lower) modeling dynamic pressure and surface wave propagation. Left shows the surface deformation of the skin, and Right shows the resulting pattern
of stresses at the location of the receptors. (D) The spiking responses are determined by leaky IF models using different sets of up to 13 parameters (marked
in red numbers) for individual SA1, RA, and PC afferents fit based on peripheral recordings to skin vibrations. Adapted from ref. 71. (E) The output of the
model is the spike train of each afferent in the population. Raster of the response of the afferent population sampled as in A to the stimulus shown in
B (only active afferents are included). Note that the SA1s (in contact) only encode the spatial aspect of the stimulus, that the PCs encode from the whole
finger phase-lock with the 200-Hz vibration, and that the RAs show mixed spatial and vibration responses.



Biomimetic encoding strategy

Different encoding strategies in which only one stimulation feature is modulated (Single feature) or both frequency and amplitude of the
stimuli are simultaneuosly modulated (Hybrid). We converted the firing population rate generated by the biomimetic model in the frequency
of the intraneural stimulation (FNM, HNM-1 and HNM-2). The stimulation amplitude was converted using the mechanical stimulus (ANM
and HNM-1) or the fibers recruitment (HNM-2).The pulse-width was always fixed to 60 ps.
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Biomimetic encoding strategy

b Perceived naturalness among different encoding strategies N=16
10
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8
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6
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Biomimetic encoding strategy
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Restoring perception of real textures
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Effects of cognitive load

Sensory modulation

s Imx B Induced sensations
& stimulation parameters

A Stimulation train

Imin S
0 Sensor output Intraneural sensory Feedback (IF)

uA
L
af”
Current (uA)

o= TIME sensation type vibration

active sites on

both sides
ﬂ) ’ sensation intensity Sue=1+Sma=8

electrode position proximal part of ulnar
nerve above elbow

used object:
(breaks at 1.2N)

fascicles l Transversal insertion

Surface

. electrode / amplitude A, =200 pA, A_ =300 uA
- implant pulse-width 80 ps
O M
frequency 50 Hz

Superficial sensory Feedback (SF)

sensation type electricity
sensation intensity Seun= 11 Sma=8
electrode position on the skin of the left arm
amplitude A,,=100 yA, A =500 yA
pulse-width 200 ps
frequency 50 Hz




Effects of cognitive load
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Cognitive Dual Task (Span Digit Forward Test during Virtual Eggs Test)

Memory span
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