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9.1 Introduction

] : .
CO l I | p u t a t I 0 n a I ; Most flows encountered in engineering practice are turbulent; they are char-

acterized by the following properties:

: — Turbulent flows are highly unsteady. A plot of the velocity as a function

of time would appear random to an observer unfamiliar with these flows.

e 0 S 0 r ! The word ‘chaotic’ could be used but it has been given another definition
i in recent years.

— They are three-dimensional. The time-averaged velocity may be a function
of only two coordinates, but the instantaneous field appears essentially

(] s v
— They contain a great deal of vorticity. Stretching of vortices is one of the

principal mechanisms by which the intensity of the turbulence is increased.

— Turbulence increases the rate at which conserved quantities are stirred.
That is, parcels of fluid with differing concentrations of the conserved prop-
erties are brought into contact. The actual mizing is accomplished by dif-
fusion. Nonetheless, this behavior is often called diffusive.

— By increasing the mixing of momentum, turbulence brings fluids of differing
momentum content into contact. The reduction of the velocity gradients
produced by the action of viscosity reduces the kinetic energy of the flow;
in other words, it is dissipative. The lost energy is irreversibly converted
into internal energy of the fluid.

— It has been shown in recent years that turbulent flows contain coherent
structures — repeatable and essentially deterministic events that are respon-
sible for a large part of the mixing. However, the random part of turbulent
flows causes these events to differ from each other in size, strength, and
time interval between occurrences, making study of them very difficult.

These properties are important. The effects produced by turbulence may
or may not be desirable. Intense mixing may be useful when chemical mixing
or heat transfer are needed. On the other hand, increased mixing of momen-
tum results in increased frictional forces, so the power required to pump the
fluid or the drag force on a vehicle is increased. The engineer needs to be able
to understand and predict these effects in order to achieve a good design. In
some cases, it is possible to control the turbulence, at least in part.
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In the past, the primary approach to studying turbulent flows has been ex-
perimental. Overall parameters such as the time-averaged drag or heat trans-
fer may be relatively easy to measure but as the required level of detail in-
creases, so does the difficulty of making measurements. To optimize a design,
it is often necessary to understand the source of the problem; this requires
detailed measurements that are costly and time-consuming. Some types of
measurements, for example, the fluctuating pressure within a flow, are almost
impossible to make at the present time. Others cannot be made with the re-
quired precision. As a result, numerical methods have an important role to
play.

Before proceeding, it is useful to introduce a classification scheme for
‘methods of predicting turbulent flows. According to Bardina et al. (1980)
there are six categories, each of which can be divided in sub-categories.

— The first involves the use of correlations such as the friction factor as a
function of the Reynolds number or the Nusselt number of heat transfer
as a function of the Reynolds and Prandtl numbers. This method, which
is usually taught in introductory courses, is very useful but is limited to
simple types of flows. As its use does not require the use of a computer, we
shall say no more about it here.

— The second uses integral equations which can be derived from the equations
of motion by integrating over one or more coordinates. Usually this reduces
the problem to one or more ordinary differential equations which are eas-
ily solved. The methods applied to these equations are those for ordinary
differential equations which are discussed in Chap. 6.

— The third is based on equations obtained by averaging the equations of
motion over time (if the flow is statistically steady), over a coordinate in
which the mean flow does not vary, or over an ensemble of realizations (an
imagined set of flows in which all controllable factors are kept fixed). This
approach is called one-point closure and leads to a set of partial differential
equations called the Reynolds averaged Navier-Stokes (or RANS) equa-
tions. As we shall see later, these equations do not form a closed set so this
method requires the introduction of approximations (turbulence models).
The problems associated with the numerical solution of equations contain-
ing turbulence models are discussed later in this chapter.

— The fourth set of methods are called two-point closures and use equations
for the correlation of the velocity components at two distinct points or,
more often, the Fourier transform of these equations. As these methods are
rarely used except for homogeneous turbulence, we shall not consider them
further. -

— The fifth is large eddy simulation (LES) and solves for the largest scale
motions of the flow while modeling only the small scale motions. It can be
regarded as a kind of compromise between one point methods (see above)
and direct numerical simulation (see below).
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— Finally, therg is direct numerical simulation (DNS) in which the Navier-
Stokes equations are solved for all of the motions in a turbulent flow.

As one progresses down this list, more and more of the turbulent motions
are computed and fewer are approximated. This makes the methods close to
the bottom more exact but the computation time is increased considerably.

All of the methods described in this chapter require the solution of sorr.le
form. of the conservation equations for mass, momentum, energy, or chemical
species. The major difficulty is that, in turbulent flows, there is a7 much wider
range o.f length and time scales than in laminar flows. So, even though they
are similar to the laminar flow equations, the equations for turbulent flows
are usually much more difficult and expensive to solve.

9.2 Direct Numerical Simulation (DNS)
The most exact approach to turbulence simulation is to solve the Navier-
Stokes equations without averaging or approximation other than the neces-
sary numerical discretizations whose errors can be estimated and controlled
Itc is also the simplest approach from the conceptual point of view. In sucﬁ
snn}ﬂations, all of the motions contained in the flow are resolved. The result is
eql{lvalent to a single realization'of a flow or a short-duration laboratory ex-
?Sg\lIrg)ent; as noted above, this approach is called direct numerical simulation
In a direct numerical simulation, the domain on which the computation is
performed must be at least as large as the largest turbulent eddy. A useful
measure of this scale is the integral scale (L) of the turbulence; the latter is
essen.tially the distance over which the fluctuating component 07f the velocity
remains correlated. Each linear dimension of the domain must be at least as
large as a few times the integral scale. A valid simulation must also capture
all of the kinetic energy dissipation. This occurs on the smallest scales, the
ones on which viscosity is active, so the size of the grid must be no la;rger
than a viscously determined scale, called the Kolmogoroff scale, 7. For ho-
mogeneous turbulence, the simplest type of turbulence, there is no reason
to use anything other than a uniform grid. In_ this case, the number of grid
points in each direction must be at least I, /m; it can be shown (Tennekes and

Lumley, 1976) that this ratio is proportional to Rei/ * Here Rer is a Reynolds
number based on the magnitude of the velocity fluctuations and the integral
scale; this parameter is typically about 0.01 times the macroscopic Reynolds
number engineers use to describe a flow. Since this number of points must
be employed in each of the three coordinate directions, and the time step is
relate'zd to the grid size, the cost of a simulation typically scales as Rei.
Smce the number of grid points in a computation is limited by the pro-
cessing speed and memory of the machine on which it is carried out, direct
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-numerical simulation is possible only at low Reynolds numbers. On present
machines, it is possible to make direct numerical simulations of homogeneous
flows at turbulent Reynolds numbers up to about 200. As noted in the preced-
ing paragraph, this corresponds to overall flow Reynolds numbers about two
orders of magnitude larger and allows DNS to reach the low end of the range
of Reynolds numbers of engineering interest, making it a useful method. For
further details about DNS, see Leonard (1995).

The results of a DNS contain very detailed information about the flow.
This can be very useful but, on the one hand, it is far more information than
any engineer needs and, on the other, DNS is too expensive to be employed
very often. To what uses can DNS be put? We can obtain detailed information
about the velocity, pressure, and any other variable of interest at a large
number of grid points. These results may be regarded as the equivalent of
experimental data and can be used to produce statistical information or to
create a ‘numerical flow visualization’. From the latter, one can learn a great
deal about whatever coherent structures may exist in the flow. This wealth
of information can then be used to develop a qualitative understanding of the
physics of the flow or to construct a quantitative model which will allow other,
similar, flows to be computed.

Some examples of the uses to which DNS has been put are:

— Understanding the mechanisms of turbulence production, energy transfer,
and dissipation in turbulent flows;

— Simulation of the production of aerodynamic noise;

— Understanding the effects of compressibility on turbulence;

— Understanding the interaction of combustion and turbulence;

— Controlling and reducing drag on a solid surface.

The increasing speed of computers has made it possible to carry out DNS
of simple flows at very low Reynolds numbers on workstations. By simple
flows, we mean any homogeneous turbulent flow (there are many), channel
flow, and a few others. On large parallel computers, it is possible to do DNS
with 5122 (~ 1.35 x 108) or more grid points; about one minute of computer
time is required per time step on an Intel Delta parallel computer. This means
that a complete simulation requires no less than ten and sometimes many
hundred hours. We expect that increasingly complex flows will be simulated.

A wide variety of numerical methods can be employed in direct numerical
simulation and large eddy simulation. Almost any method found in this book
can be used. Because these methods have been described in earlier chapters,
we shall not give a lot of detail here. Instead, a few issues peculiar to DNS
and LES will be discussed.

The most important requirements on numerical methods for DNS or LES
arise from the need to produce an accurate realization of a flow that contains
a wide range of length scales. Because a time history is required, techniques
designed for steady flows cannot be used without considerable modification.
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Accuracy requires the time step to be small and, of course, the time-advance
method must be stable for the time step selected. This condition is usually
met by explicit methods so there is no reason to incur the extra expense
associated with implicit methods; most simulations have used explicit time
ad'vance methods. Notable exceptions occur close to walls where very fine
grids must be used to resolve the flow structures. Here, instability may arise
from the viscous terms involving derivatives normal to the wall and these
terms may need to be treated implicitly. In complex geometries, it may be
necessary to treat still more terms implicitly. The time advance methods most
commonly used in DNS and LES are of second to fourth order accuracy;
Runge-Kutta methods have been used most commonly but others, such as,
Adams-Bashforth, leapfrog, and Crank-Nicolson (for the terms that’ must be
treated implicitly) have found application.

. However, most of these methods require storage of data at a number of
time steps (including intermediate time steps) and, as the amount of data
contained in a single velocity field is large, it is important to minimize the
storage requirements. Thus, Leonard and Wray (1982) presented a third order
Runge-Kutta method which requires less storage than the standard Runge-
Kutta method of that accuracy.

A further issue of importance in DNS is the need to handle a wide range
o.f leng'th scales; this-requires a change from the usual way of thinking about
discretization methods. The most common descriptor of the accuracy of a
spatial discretization method is its order, a number that describes the rate
at which the discretization error decreases when the grid size is reduced. To
see why this is not an appropriate indicator of accuracy in DNS or LES. it
is useful to think in terms of the Fourier decomposition of the velocity ﬁe,ld.
We saw earlier (Sect. 3.8) that, on a uniform grid, the velocity field can be
represented in terms of its Fourier components:

u(z) = (k) elke : (9.1)

The highest wavenumber k that can be resolved on a grid of size Az is 7/Ax
so we consider only 0 < k < 7/Az. The exact derivative of e'*® i, of - -
ike'**. A discrete approximation replaces this by ikegel*® where kog is the
effective wavenumber defined in Sect. 3.8. The plot of kg given in Fig. 3.4
shows that central differences are accurate only for k < /2Az, the first half
of the wavenumber range of interest. ,

The problem is that a turbulence spectrum (the distribution of its en-
ergy over wavenumber) covers a significant part of the wavenumber range
{0,7/Az}. The order of the method is no longer a good definition of accu-
racy. A better measure of error is:
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/ (k - korr) E(K) dk
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where E(k) is the energy spectrum of the turbulence and, in one dimension
is 1(k)4* (k)/2, where the asterisk indicates complex conjugation. Similar ex-
pressions can be given for the second derivative. Using the measure (9.2),
Cain et al. (1981) found that, for a spectrum typical of isotropic turbulence,
a fourth order method had half the error of a second order method, much
more than one would anticipate. ‘

The methods and step sizes in time and space need to be related. The
errors made in the spatial and temporal discretizations should be as nearly
equal as possible i.e. they should be balanced. This is not possible point-
by-point and for every time step but, if this condition is not satisfied in an
average sense, one is using too fine a step in one of the independent variables
and the simulation could be made at lower cost with little loss of accuracy.

Accuracy is difficult to measure in DNS and LES. The reason is inher-
ent in the nature of turbulent flows. A small change in the initial state of a
turbulent flow is amplified exponentially in time and, after a relatively short
time, the perturbed flow hardly resembles the original one. So, direct com-
parison of two solutions with the goal of determining the error is not possible.
Instead, one can repeat the simulation with a different grid (which should
differ considerably from the original one) and statistical properties of the two
solutions can be compared. From the difference, an estimate of the error can
be found. A simpler possibility, which has been used by most people who
compute simple turbulent flows, is to look at the spectrum of the turbulence.
If the energy in the smallest scales is sufficiently smaller than that at the peak
in the energy spectrum, it is probably safe to assume that the flow has been
well resolved.

The accuracy requirement makes use of spectral methods common in DNS
and LES. These methods were described earlier, in Sect. 3.8. In essence, they
use Fourier series as a means of obtaining derivatives. The use of Fourier
transforms is feasible only because the fast Fourier transform algorithm (Coo-
ley and Tukey, 1965) reduces this cost to n logy n operations. This algorithm is
available only for equi-spaced points and a few other special cases. A number
of specialized methods of this kind have been developed for solving the Navier-
Stokes equations; the reader interested in more details of spectral methods is
referred to the book by Canuto et al. (1987).

We briefly mention one special method. Rather than directly approximat-
ing the Navier-Stokes equations, one could multiply them by a sequence of

‘test functions’ and integrate over the entire domain; this is essentially the
basis of finite element methods. Functions which satisfy this form of the equa-
tions are known as ‘weak solutions’. One can represent the solution of the
Navier-Stokes equations in the form of a series of vector functions, each of

~ reader is referred to the paper by Leonard (1974)
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which has zero divergence. This choice removes the pressure from the integral
forrr(l of the equations, thereby reducing the number of dependent variakg)les
that need to be computed and stored. The set of dependent variables can be
further reduced by noting that, if a function has zero divergence, its third com-
ponent can be computed from the other two. The result is that, only two sets
of dependent variables need to be computed, reducing the memory require-
ment.s by half. As these methods are quite specialized and their development
requires considerable space, they are not given in detail here; the interested

. Another difficulty in DNS is that of generating initial and boundary condi-
thHS.. The former must contain all the details of the initial three dimensional
velocity field; the inflow conditions must contain the complete velocity field
on a plane of a turbulent flow at each time step. Since the effects of initial and
boundary conditions may be remembered by the flow for a considerable time
they can have a significant effect on the results. The details are flow dependentj
and so are not described here but we give a brief description of the idea. For
flows which do not vary (in the statistical sense) in a given direction onf; can
often use periodic boundary conditions; these are easy to use, fit e’speciall
well with spectral methods and provide conditions which are ’as realistic an)s]
possible. When periodic boundary conditions cannot be used, the best initial
and inflow conditions are obtained from the results of other ;imulations- For
example, if one requires the flow at the inlet to a curved channel, a éood
source might be a simulation of flow in a plane channel. In the p;ocess of
simulating plane channel flow, the velocity components on a plane normal to
the main flow direction are recorded; they provide the inflow to the curved
channel. Similarly, the initial conditions for strained homogeneous turbulence
are usually adopted from a simulation of isotropic turbulence.

Outflow boundaries are less difficult to handle. One possibility is to use

e?ctrapolation conditions which require the derivatives of all quant'ities in the
direction normal to the boundary be zero:

8¢
=0, (9.3)

where ¢ is any Pf the dependent variables. This condition is often used in
steady flows l?ut is not satisfactory in unsteady flows. For the latter, it is better
to replace this condition by an unsteady convective condition. A number of

such -conditions have been tried but the one that appears to work best is also
the simplest:

By o¢

wher.e U is a velocity that is independent of location on the outflow surface
and is chosen so that overall conservation is maintained i.e. it is the velocity
required to make the outflow mass flux equal to the incoming mass ﬂux.
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-This condition appears to avoid the problem caused by pressure waves being
reflected off the outflow boundary back to the interior of the domain.

On solid walls, no slip boundary conditions, which have been described in
Chaps. 7 and 8 may be used. One must bear in mind that at boundaries of
this type the turbulence tends to develop small but very important structures
(‘streaks’) that require very fine grids (especially in the direction normal to
both the wall and the principal flow direction.

Symmetry boundary conditions, which are often used in RANS computa-
tions to reduce the size of the domain are usually not applicable in DNS or
LES because, although the mean flow may be symmetric about some particu-
lar plane, the instantaneous flow is not and important physical effects may be
removed by application of conditions of this type. Symmetry conditions have,
however, been used to represent free surfaces.

Despite all attempts to make the initial and boundary conditions as re-
alistic as possible, a simulation must be run for some time before the flow
develops all of the correct characteristics of the physical flow. This situation
reflects the physics of turbulent flows so there is little one can do to speed
up the process; one possibility is mentioned below. The time scale for the
development of simple flows is the so-called eddy-turnover time which is the
ratio of the integral scale of the turbulence to a characteristic velocity asso-
ciated with the turbulence. In these flows, this time scale can be related to
a time scale characteristic of the flow as a whole i.e. a mean flow time scale,
but in separated flows, there are regions that communicate slowly with the
remainder of the flow and the development process can be very slow.

The best way to ascertain that flow development is complete is to monitor
some quantity, preferably one that is sensitive to the parts of the flow that
are slow to develop; the choice depends on the flow being simulated. As an
example, one might measure a spatial average of the skin friction in the re-
circulating region of a separated flow as a function of time. Initially, there is
usually a systematic increase or decrease of the monitored quantity; when the
flow is developed, the value will show statistical fluctuations with time. After
the flow is developed, statistical average results (for example, for the mean
velocity or its fluctuations) may be obtained by averaging over time and/or
any statistically homogeneous coordinate in the flow. In so doing it is impor-
tant to remember that, because turbulence is not purely random, the sample
size is not the same as the number of points used in the averaging process.
A conservative estimate is that each volume of diameter equal to the integral
scale (and each time period equal to the integral time scale) represents only
a single sample.

The development process can be sped up by using a coarser grid initially.
When the flow is developed on that grid, the finer grid can be introduced. If
this is done, some waiting is still necessary for the flow to develop on the fine
grid but it may be less than the time that would have been required had the
fine gird been used throughout the simulation.
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9.2.1 Example: Spatial Decay of Grid Turbulence

As an illustrative example of what DNS can accomplish, we shall take a de-
ceptively simple flow, the flow created by an oscillating grid in a large body
of quiescent fluid. The grid creates turbulence which decreases in intensity
with distance from the grid. This process is called turbulent diffusion and
its prediction is important in many flows. It is also surprisingly difficult to
model. Briggs et al. (1995) made simulations of these flows and obtained
good agreement with the experimentally determined rate of decay of the tur-
bulence with distance from the grid. The energy decays approximately as z~3;
determination of the exponent of decay is difficult both experimentally and
computationally because the rapid decay does not provide a large enough
region to compute its value accurately.

Distance from
the source

3

Flg 9:1. antpurs of the kinetic energy on one plane in the flow created by an
oscillating grid in a large body of quiescent fluid; from Briggs et al. (1995)

Using simulated visualizations of the flow, they were able to show that the
dominant mechanism of turbulent diffusion in this flow is the movement of
energetic parcels of fluid through the undisturbed fluid which seems simple
but is contrary to earlier proposals. Figure 9.1 shows the contours of the
kinetic energy on one plane in this flow. One sees that the large energetic
regions are of the same size throughout the flow but there are fewer of them
far from the grid. The reasons are that those that propagate parallel to the
grid do not move very far in the direction normal to the grid and that the
smaller ‘blobs’ of energetic fluid are quickly destroyed by the action of viscous
diffusion.

The results were used to test turbulence models. A typical example of
such a test is shown in Fig. 9.2 in which the profile to the flux of turbulent
kinetic energy is given and compared with the predictions of some commonly
used turbulence models. It is clear that the models do not work very well even
in a flow as simple as this one.

The simulation used a code that was originally designed for the simulation
of homogeneous turbulence (Rogallo, 1981). Periodic boundary conditions are
applied in all three directions; this implies that there is actually a periodic
array of grids but this causes no problem so long as the distance between
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Fig. 9.2. The profile of the flux of turbulent kinetic energy, q, compared with the
predictions of some commonly used turbulence models (Mellor and Yamada, 1977;
Hanjali¢ and Launder, 1976 and 1980); from Briggs et al. (1995)

subsequent grids is sufficiently greater than the distance required for the tur-
bulence to decay. The code uses the Fourier spectral method in all three
spatial directions and a third order Runge-Kutta method in time.

These results illustrate some important features of DNS. It is possible to
compute statistical quantities that are useful is assessing models and com-
paring with experiments and visualizations of the same flow. This is rarely
possible in the laboratory. The combination allows one to develop an under-
standing of the physics of the flow that can be very useful in modeling and
control of turbulence.

In direct numerical simulations, one can control the external variables in a
manner that is difficult or impossible to implement in the laboratory. There are
several cases in which the results of DNS disagreed with those of experiments
and in which the former turned out to be more nearly correct. One example
is the distribution of turbulent statistics near a wall; the results of Kim et
al. (1987) proved to be more accurate than the experiments when both were
repeated with more care. Another example was provided by Bardina et al.
(1980) which explained some apparently anomalous results in an experiment
on the effects of rotation on isotropic turbulence.

DNS makes it possible to investigate certain effects much more accurately
than would be otherwise possible. It is also possible to try methods of control
that cannot be realized experimentally. The point of doing so is to provide
insight into the physics of the flow and thus to indicate possibilities that may
be realizable (and to point the direction toward realizable approaches). An
example is the study of drag reduction and control on a flat plate conducted
by Choi et al. (1994). They showed that, by using controlled blowing and
suction through the wall (or pulsating wall surface), the turbulent drag of a
flat plate could be reduced by 30%.
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9.3 Large Eddy Simulation (LES)

As we have seen, turbulent flows contain a wide range of length and time
scales; the range of eddy sizes that might be found in a flow is shown schemat-
ically on the left hand side of Fig. 9.3. The right side of this figure shows a
typical velocity component at a point in the flow; the range of scales is obvi-

ous.

LES DNS u

t

Fig. 9.3. Schematic representation of turbulent motion (left) and the time depen-
dence of a velocity component at a point (right)

The large scale motions are generally much more energetic than the small
scale ones and their size and strength make them by far the most effective
transporters of the conserved properties. The small scales are usually much
weaker, and provide little transport of these properties. A simulation which
treats the large eddies more exactly than the small ones may make sense;
large eddy simulation is such an approach. Large eddy simulations are three
dimensional, time dependent and expensive but much less costly than a DNS
of the same flow. In general, because it is more accurate, DNS is to be preferred
whenever it is feasible. LES is the preferred method for flows in which the
Reynolds number is too high or the geometry is too complex for the application
of DNS.

It is essential to define the quantities to be computed precisely. We need a,
velocity field that contains only the large scale components of the total field.
This is best done by filtering (Leonard, 1974); the large or resolved scale field,
the one to be simulated, is essentially a local average of the complete field.
We shall use one-dimensional notation; the generalization to three dimensions
is straightforward. The filtered velocity is defined by:

&(z) = / Sl ade)d ; 9.5)
where G(z,z'"), the filter kernel, is a localized function. Filter kernels which

have been applied in LES include a Gaussian, a box filter (a simple local av-
erage) and a cutoff, a filter which eliminates all Fourier coefficients belonging
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. to wavenumbers above a cutoff. Every filter has associated with it, a length
scale, A. In a rough sense, eddies of size large than A are large eddies while
those smaller than A are small eddies, the ones that will need to be modeled.

When the Navier-Stokes equations for constant density (incompressible
flow) are filtered, one obtains a set of equations very similar in form to the
RANS equations:

O(pmi) | Opww;) __0p O [u (aﬁ" + aﬂ")] .

ot 89:]- - 8.’1)1 * a_.’IZ]_ 6.’1,‘]' 31‘2

(9.6)

Since the continuity equation is linear, filtering does not change it significantly:

0(pu;) _

oo =0 (9.7)

It is important to note that since:
Uy # Ui , (9-8)

and the quantity on the left side of the inequality is not easily computed,
a modeling approximation for the difference between the two sides of this
inequality,

73 = —p(Wil; — Uill;) (9.9)
must be introduced. In the context of LES, 73; is called the subgrid scale
Reynolds stress. The name ‘stress” stems from the way in which it is treated
rather than its physical nature. It is in fact the large scale momentum flux
caused by the action of the small or unresolved scales. The name ‘subgrid
scale’ is also somewhat of a misnomer. The width of the filter, A, need not
have anything to do with the grid size, h, other than the obvious condition

that A > h. Some authors (including many of the early ones) do make such a
* connection and the nomenclature they introduced has stuck. The models used
to approximate the SGS Reynolds stress (9.9) are called subgrid scale (SGS)
models.

The subgrid scale Reynolds stress is a local average of the small scale field
so models for it should be based on the local velocity field or, perhaps, on
the past history of the local fluid. The latter can be accomplished by using
a model that solves partial differential equations to obtain the parameters
needed to determine the SGS Reynolds stress.

9.3.1 Smagorinsky and Related Models

The most commonly used subgrid scale model is one proposed by Smagorin-
sky (1963). It is an eddy viscosity model which is based on the notion that the
effects of the SGS Reynolds stress are increased transport and dissipation. As
these are effects of viscosity in laminar flows, it seems reasonable to assume
that a reasonable model might be:

9.3 Large Eddy Simulation (LES) 259

1 ou; 6Uj —

Tl-sj = gTZk(sij = (a—x; + 5:1-:: = 2[11;51‘]' , (9.10)
where p; is the eddy viscosity. This model can be derived in a number of
ways including heuristic methods, for example, by equating production and
dissipation of subgrid scale turbulent kinetic energy, or via turbulence theo-
ries.

The form of the subgrid scale eddy viscosity can be derived by dimensional
arguments and is:

ws = C2pA?|S|, (9.11)

where Cs is the model parameter, A is the filter length scale, | S| = (S;;54;)/2.
This result can also be derived in a number of ways. Theories provide esti-
mates of the constant. Most of these are valid only for isotropic turbulence
but they agree that Cs =~ 0.2. However, Cs is not constant and may be a
function of Reynolds number and other non-dimensional parameters and may
be different in different flows.

The Smagorinsky model, although relatively successful, is not without
problems. For example, to simulate channel flow, several modifications are
required. The value of the parameter Cs in the bulk of the flow has to be
reduced from 0.2 to approximately 0.065, which reduces the eddy viscosity
by almost an order of magnitude. In regions close to surfaces, the value has to
be reduced even further. One successful recipe is the van Driest damping that
has long been used to reduce the near-wall eddy viscosity in RANS models:

Cs = Cso (1 - e""+/’4+)2 , (9.12)

where n™ is the distance from the wall in viscous wall units (n* = nu, /v,
where u, is the shear velocity, u, = \/7w/p, and 7, is the shear stress at the
wall) and At is a constant usually taken to be approximately 25. Although
this modification produces the desired results, it is difficult to justify in the
context of LES. The SGS model should depend solely on the local properties
of the flow and it is difficult to see how the distance from the wall qualifies in
this regard.

The purpose of the van Driest damping is to reduce the subgrid scale eddy
viscosity near the wall; s ~ n® in this region and models should respect this
property. An alternative is a subgrid scale model which reduces the eddy
viscosity when the subgrid scale Reynolds number, |S|A? /v, becomes small.
Models of this kind were suggested by McMillan and Ferziger (1980) and by
Yakhot and Orszag (1986); the latter used renormalization group theory to
derive their model.

A further problem is that, near a wall, the flow structure is very anisotropic.
Regions of low and high speed fluid (streaks) are created; they are approxi-
mately 1000 viscous units long and 30-50 viscous units wide in both the span-
wise and normal directions. Resolving the streaks requires a highly anisotropic
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. grid and the choice of length scale, A, to use in the SGS model is not obvi-
ous. The usual choice is (A; A3 A3)Y/3 but (A} + A3 + A2)!/2 is possible and
others are easily constructed; here A; it the width associated with the filter in
the ith coordinate direction. It is possible that, with a proper choice of length
scale, the damping (9.12) would become unnecessary. A fuller discussion of
this issue can be found in Piomelli et al. (1989).

In a stably stratified fluid, it is necessary to reduce the Smagorinsky pa-
rameter. This situation is common in geophysical flows; the practice is to make
the parameter a function of Richardson number, a non-dimensional parame-
ter that represents the relative importance of stratification and shear. Similar
effects occur in flows in which rotation and/or curvature play significant roles.

Thus there are many difficulties with the Smagorinsky model. If we wish
to simulate more complex and/or higher Reynolds number flows, it may be
important to have a more accurate model. Indeed, detailed tests based on

results derived from DNS data, show that the Smagorinsky model is quite -

poor.

The small scales of a simulation are similar in many ways to the still
smialler scales that are treated via the model. This idea leads to an alternative
subgrid scale model, the scale similarity model (Bardina et al., 1980). The
principal argument is that the important interactions between the resolved
and unresolved scales involve the smallest eddies of the former and the largest
eddies of the latter i.e., eddies that are a little larger or a little smaller than the
length scale, A, associated with the filter. This leads to the following model:

iy = =Pl — Wit;) , (9.13)
where the double overline indicates a quantity that has been filtered twice.
The constant is required to be unity in order to satisfy Galilean invariance.
This model correlates very well with the actual SGS Reynolds stress, but
hardly dissipates any energy and cannot serve as a ‘stand alone’ SGS model.
It transfers energy from the smallest resolved scales to larger scales, which
is useful. To correct for the lack of dissipation, it is necessary to combine the
Smagorinsky and scale similarity models to produce a ‘mixed’ model. This
model improves the quality of simulations. For further details, see Bardina et
al. (1980).

9.3.2 Dynamic Models

The concept underlying the scale similarity model, namely that the smallest
resolved scale motions and the largest subgrid scale motions are similar in
structure, can be taken a step further, leading to the dynamic model or pro-
cedure (Germano et al., 1990). It assumes that one of the models described
above is acceptable.

One way to understand the concept is the following. Suppose we do a
large eddy simulation on a fine grid. Let us, for the sake of argument, regard
the results as an exact representation of a velocity field. We can then use
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the following procedure to estimate the subgrid scale model parameter. The
velocity field @; can itself be filtered (using a filter broader than the one used
in the LES) to obtain a very large scale field u;; the corresponding subgrid
scale field can be obtained by subtraction of the two fields. By multiplication
and filtering, one can compute the subgrid scale Reynolds stress tensor. From
the large scale field, one can also construct the estimate of this field that the
model would produce. By comparing these two, we can test the quality of the
model in a direct way and, even more importantly, compute the value of the
model parameter. This can be done at every spatial point and every time step.
The value of the parameter can then be applied to the subgrid scale model of
the large eddy simulation itself. In this way, a kind of self-consistent subgrid
scale model is produced.

The actual procedure of Germano et al. is a bit more formal than what
we have just suggested but the result is the same; the model parameter can
be computed, at every spatial grid point and every time step, directly from
results of the LES itself. We shall not present the formal procedure here. The
interested reader is referred to the original paper of Germano et al. (1990) or
the review by Ferziger (1995).

This method of modeling the subgrid scale should be called a procedure
rather than a model as any model can be used as a basis for it. In any case,
it has been shown to produce excellent results. In particular, the dynamic
procedure removes many of the difficulties described earlier:

— In shear flows, the Smagorinsky model parameter needs to be much smaller
than in isotropic turbulence. The dynamic model captures this change au-
tomatically.

— The model parameter has to be reduced even further near walls. The dy-
namic model automatically decreases the parameter in the correct manner
near the wall.

— The definition of the length scale for anisotropic grids or filters is unclear.
This issue becomes moot with the dynamic model because the model com-
pensates by changing the value of the parameter.

Although it improves considerably on the Smagorinsky model, there are prob-
lems with the dynamic procedure. The model parameter it produces is a
rapidly varying function of the spatial coordinates and time so the eddy vis-
cosity takes on large values of both signs. Although negative eddy viscosity
may be considered as a way of representing energy transfer from the small
scales to the large ones, a process that is called backscatter, if the eddy viscos-
ity is negative over too large a spatial region or for too long a time, numerical
instability may and does occur. One cure is to set any eddy viscosity py < —pu,
the molecular viscosity, equal to —u. Another useful alternative is to employ
averaging in space or time. For details, the reader is referred to the papers
cited above. These techniques produce excellent results but are not completely
satisfactory; finding a more robust model for the subgrid scale is the subject
of current research.
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The arguments on which the dynamic model is based are not restricted
to the Smagorinsky model. One could, instead, use the mixed Smagorinsky—
scale-similarity model. The mixed model was used by Zang et al. (1993) and
Shah and Ferziger (1995) with considerable success.

The boundary conditions and numerical methods used for LES are essen-
tially the same as those used in DNS. The most important difference is that,
when LES is applied to flows in complex geometries, some numerical methods
(for example, spectral methods) become difficult to apply. In these cases, one
is forced to use finite difference or finite volume methods. In principle, any of
the methods described earlier in this book could be used, but it is important
to bear in mind that structures that challenge the resolution of the grid may
exist almost anywhere in the flow. For this reason, it is important to employ
methods of the highest accuracy possible.

In LES, it is possible to use wall functions of the kind used in RANS
modeling (see next section). This approach has been shown to work well for
attached flows (see Piomelli et al., 1989) but it is not yet known whether this
approach can be made to work for separated flows.

It is also important to note that, because LES and DNS require large
amounts of computer time, the programs used to make these kinds of simu-
lations are usually special purpose codes i.e., they are written for a specific
geometry and contain many special programming elements designed to obtain
the highest performance on a particular machine. This is also the reason why
the discretization methods are often particular to the problem being solved.

9.3.3 Example: Flow Over a Wall-Mounted Cube

As an example of the method, we shall use:the flow over a cube mounted on
one wall of a channel. The geometry is shown in Fig. 9.4. For the simulation
shown, which was made by Shah and Ferziger (1995), the Reynolds number
based on the maximum velocity at the inflow and the cube height is 3200.
The inflow is fully developed channel flow and was taken from a separate
simulation of that flow, the outlet condition was the convective condition given
above. Periodic boundary conditions were used in the spanwise direction and
no-slip conditions at all wall surfaces.

The LES used a grid of 240 x 128 x 128 control volumes with second order
accuracy. The time advancement method was of the fractional step type. The
convective terms were treated explicitly by a third order Runge-Kutta method
in time while the viscous terms were treated implicitly. In particular, the
method used for the latter was an approximate factorization of the Crank-
Nicolson method. The pressure was obtained by solving a Poisson equation
with the multigrid method.

Figure 9.5 gives the streamlines of the time-averaged flow in the region
close to the wall; a great deal of information about the flow can be discerned
from this plot. The incoming flow does not separate in the traditional sense
but reaches a stagnation or saddle point (marked by A on the figure) and
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Fig. 9.4. The solution domain for the flow over a cube mounted on a channel wall;
from Shah and Ferziger, (1995)
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Fig. 9.5. The streamlines in the region close to the lower wall of the flow over a
wall-mounted cube; from Shah and Ferziger (1995)

goes around the body. Some of the flow further above the lower wall hits the
front face of the cube; about half of it flows downwards and creates the region
of reversed flow in front of the body. As the flow down the front face of the
cube nears the lower wall, there is a secondary separation and a reattachment
line (marked by B in the figure) just ahead of the cube. To the sides of the
cube, one finds a region of converging streamlines (marked as C) and another
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of diverging streamlines (marked D); these are the traces of the horseshoe
vortex (about which more is said below). Behind the body one finds two
areas of swirling flow (marked E) which are the footprints of an arch vortex.
Finally, there is a reattachment line (marked H) further downstream of the
body.

1.00 2.00 3.00 4.00 5.00 6.00 7.00

Fig. 9.6. The streamlines in the vertical center plane of the flow over a wall-mounted
cube; from Shah and Ferziger (1995)

Figure 9.6 shows the streamlines of the time-averaged flow in the center
plane of the flow. Many of the features described above are clearly seen in-
cluding the separation zone in the upstream corner (F), the head of the arch
vortex (G), the reattachment line (H), and the recirculation zone (I) above
the body which does not reattach on the upper surface.

Finally, Fig. 9.7 gives a projection of the streamlines of the time-averaged
flow on a plane parallel to the back face of the cube just downstream of the
body. The horseshoe vortex (J) is clearly seen as are smaller corner vortices.

It is important to note that the instantaneous flow looks very different
than the time averaged flow. For example, the arch vortex does not exist in
an instantaneous sense; there are vortices in the flow but they are almost
always asymmetric on the two sides of the cube. Indeed, the near-symmetry
of Fig. 9.5 is an indication that the averaging time is (almost) long enough.

It is clear from these results that an LES (or DNS for simpler flows) pro-
vides a great deal of information about a flow. Performing such a simulation
has more in common with doing an experiment than it does to the types of
simulations described below.

9.4 RANS Models

Engineers are normally interested in knowing just a few quantitative proper-
ties of a turbulent flow, such as the average forces on a surface (and, perhaps,
its distribution), the degree of mixing between two incoming streams of fluid,
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Fig. 9.7. The projection of streamlines of the flow over a wall-mounted cube onto
a plane parallel to the back face, 0.1 step hight behind the cube; from Shah and
Ferziger (1995)

or the amount of a substance that has reacted. Using the methods described
above to compute these quantities is, to say the least, overkill. These meth-
ods should only be used as a last resort, when nothing else succeeds. In this
section, we shall describe an approach that produces less information, the
Reynolds-averaged method.

In Reynolds averaged approaches to turbulence, all of the unsteadiness
is averaged out i.e. all unsteadiness is regarded as part of the turbulence.
On averaging, the nonlinearity of the Navier-Stokes equations gives rise to
terms that must be modeled. The complexity of turbulence makes it unlikely
that any single model will be able to represent all turbulent flows so turbu-
lence models should be regarded as engineering approximations rather than
scientific laws.

9.4.1 Reynolds Averaged Navier-Stokes (RANS) Equations

In a statistically steady flow, every variable can be written as the sum of an
average value and a fluctuation about that value:

Bz, ) = B(z:) + & (2 1) (9.14)
where

_ ‘ 1 /T

Bai) = Jlim / B(zi, 1) dt (9.15)

Here ¢ is the time and T is the averaging interval. This interval must be large
compared to the typical time scale of the fluctuations; thus, 7' — oo, see Fig.
9.8. If T is large enough, ¢ does not depend on the time at which the averaging
is started.
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Fig. 9.8. Time averaging for a statistically steady flow (left) and ensemble averaging
for an unsteady flow (right)

If the flow is unsteady, time averaging cannot be used and must be replaced
by ensemble averaging, see Fig. 9.8:

N
a(xiv t) = 1\;E>noo % ngl ¢(mi7 t) ) (916)

where N is the number of members of the ensemble (an imagined set of flows
in which all controllable variables are identical) which must be large enough to
eliminate the effects of the fluctuations. This type of averaging can be applied
to any flow. We use the term Reynolds averaging to refer to any of these
averaging processes; the result of applying it to the Navier-Stokes equations
is the Reynolds-averaged Navier-Stokes (RANS) equations.

From Eq. (9.15), it follows that ¢’ = 0. Thus, averaging any linear term
in the conservation equations simply gives the identical term for the averaged
quantity. From a quadratic nonlinear term we get two terms, the product of
the average and a covariance:

uitp = (Ui +u) (@ + ¢') = Wi + ujd' . (9-17)
The last term is zero only if the two quantities are uncorrelated; this is rarely
the case and, as a result, the conservation equations contain terms such as
pujuy, called the Reynolds stresses, puld', known as the turbulent scalar fluz,
among others. These cannot be represented uniquely in terms of the mean
quantities.

The averaged continuity and momentum equations can, for incompress-
. ible flows without body forces, be written in tensor notation in Cartesian
coordinates as:

o(pm:i) _
——éE— =0, (9.18)
A(pu;) 0 — ——\ op aﬂ-j

6t + a:l}'] (PUzUJ + Puiuj) - _—azi + az] ) (919)
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where the 7;; are the mean viscous stress tensor components:

= ou; 6’(—.5]'
Tij = M (axj e azz) . (9.20)

Finally the equation for the mean of a scalar quantity can be written:

%t 0 (=3 w7) = 2 (r2
5+ T (b8 + @) = 5 (Faxj> . (9.21)

The presence of the Reynolds stresses and turbulent scalar flux in the
conservation equations means that the latter are not closed, that is to say,
they contain more variables than there are equations. Closure requires that
some approximations, which usually take the form of prescribing the Reynolds
stress tensor and turbulent scalar fluxes in terms of the mean quantities.

It is possible to derive equations for the higher order correlations e.g., for
the Reynolds stress tensor, but these contain still more unknown correlations
that require modeling approximations. These equations will be introduced
later but the important point is that it is impossible to derive a closed set of
exact equations. The approximations introduced are called turbulence models.

9.4.2 Simple Turbulence Models and their Application

To close the equations we must introduce a turbulence model. To see what
a reasonable model might be, we note, as we did in the preceding section,
that in laminar flows, energy dissipation and transport of mass, momentum,
and energy normal to the streamlines are mediated by the viscosity, so it
is natural to assume that the effect of turbulence can be represented as an
increased viscosity. This leads to the eddy viscosity model:

— ou; 0u; 2
—pulu! = d L) ii 103 22
puqu Kt (61,‘] + amz) 3 pézjk ) (9 )
S—

In Eq. (9.22), k is the turbulent kinetic energy:

k= %W = % (uhul, + ulul, + ulul) . (9.24)
The last term in Eq. (9.22) is required to guarantee that, when both sides
of the equation are contracted (the two indices are set equal and summed
over), equation remains correct. Although the eddy viscosity hypothesis is
not correct in detail, it is easy to implement and, with careful application,
can provide reasonably good results for many flows.
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In the simplest description, turbulence can be characterized by two pa-
rameters: its kinetic energy, k, or a velocity, ¢ = v/2k, and a length scale, L.
Dimensional analysis shows that:

m = CupqL, (9-25)

where C, is a dimensionless constant whose value will be given later.

In the simplest practical models, mixing length models, & is determined
from the mean velocity field using ¢ = L 0u/0y and L is a prescribed function
of the coordinates. Accurate prescription of L is possible for simple flows but
not for separated or highly three-dimensional flows. Mixing length models
can therefore be used only for relatively simple flows; they are also known as
zero-equation models.

The difficulty in prescribing the turbulence quantities suggests the use
of partial differential equations for their calculation. Since a velocity and a
length scale are needed, a model based on two such equations is a logical
choice. In almost all such models, an equation for the turbulent kinetic energy,
k, determines the velocity scale. The exact equation for this quantity is not
difficult to derive:

Olpk) , O(puzk) 8 ( Ok\ 0 (p———7 S\ _
5t T oz; 8z \Moz;) o (55wt + 7))
S0 | Ou; Ou;

- 79z F oy, 0zy, - (9.26)
The terms on the left side of this equation and the first term on the right need
no modeling. The last term represents the product of the density p and the
dissipation, €, for which we shall give an equation below. The second term on
the right represents turbulent diffusion of kinetic energy and is modeled by a
gradient diffusion assumption:

_gu;ugué +pu  — — (9.27)

where py is the eddy viscosity defined above and oy is a turbulent Prandtl
number whose value is approximately unity.

The third term of the right side of Eq. (9.26) represents the rate of produc-
tion of turbulent kinetic energy by the mean flow, a transfer of kinetic energy
from the mean flow to the turbulence. If we use the eddy viscosity hypothesis
(9.22) to estimate the Reynolds stress, it can be written:

—— 0, ou;  Ou;\ Ou;
= —pulu! —2 ~ 2 J d 9.28
P Ui oz, Ha <6:1:j + Bwi) Oz ( )

and the development of the turbulent kinetic energy equation is complete.
The choice of the length scale equation is less obvious. The most popular
model makes use of the fact that, in so-called equilibrium turbulent flows,
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i.e., ones in which the rates of production and destruction of turbulence are
in near-balance, the dissipation, €, and k and L are related by:
k‘3/2

N7 (9.29)

This allows one to use an equation for the dissipation as a means of ob-
taining both € and L. No constant is used in Eq. (9.29) because the constant
can be combined with others in the complete model. A number of other two-
equation models have been proposed; the interested reader is referred to the
book by Wilcox (1993).

Although an exact equation for the dissipation can be derived from the
Navier-Stokes equations, the modeling is so severe that it is best to regard
the entire equation as a model. We shall therefore make no attempt to derive
it. In its most usual form, this equation is:

d(pe)  O(puje) € e 0 [ Oe
——+—F—=Cq P~ —pCes—+ — | —=— ] . i
o | o kg T PY T Y 5 \ o 0 (6.30)
In this model, the eddy viscosity is expressed as:
kz
py = pCL,VEL = PCu— - (9.31)

The model based on Egs. (9.26) and (9.30) is called the k—¢ model and has
been widely used. This model contains five parameters; the most commonly
used values are:

C,=009 C,o=144; Cn=192; 0;=10;, o.=13. (9.32)

The implementation of this model is relatively simple. The RANS equa-
tions have the same form as the laminar equations provided the molecular
viscosity, u, is replaced by the effective viscosity peg = p + py. The most
important difference is that two new partial differential equations need to be
solved. This would cause no problem but, because the time scales associated
with the turbulence are much shorter than those connected with the mean
flow, the equations for the k — ¢ model (and essentially any other turbulence
model) are much stiffer than the laminar equations. Thus, there is little diffi-
culty in the discretization of these equations other than one to be discussed
below but the solution method has to take the stiffness into account.

For this reason, in the numerical solution procedure, one first performs an
outer iteration of the momentum and pressure correction equations in which
the value of the eddy viscosity is based on the values of k and e at the end
of the preceding iteration. After this has been completed, an outer iteration
of the turbulent kinetic energy and dissipation equations is made. Since these
equations are highly nonlinear, they have to be linearized prior to iteration.
After completing an iteration of the turbulence model equations, we are ready
to recalculate the eddy viscosity and start a new outer iteration.
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The stiffness is the reason why the mean flow and turbulence equations
are treated separately in the method just described; coupling the equations
would make convergence very difficult to obtain. Too large a time step (or its
equivalent in an iterative method) can lead to negative values of either k of
¢ and numerical instability. It is therefore necessary to use under-relaxation
in the iterative method for these quantities; the values are similar to the ones
used for the momentum equations (0.6-0.8).

The profiles of the turbulent kinetic energy and its dissipation are typically
much more peaked than the mean velocity profile. These peaks are difficult
to capture; one should probably use a finer grid for the turbulence quantities
than for the mean flow but this is rarely done. If the same grid is used for
all quantities, there is a chance that the solution may contain wiggles which
can, in turn, lead to negative values of the turbulence quantities locally. This
possibility can be avoided by locally blending the central difference scheme
with a low order upwind discretizations for the convective terms in the k
and e equations. This, of course, increases the error in the solution for these
quantities but is necessary if the same gird is used for all quantities.

Boundary conditions are needed for the model equations. These are gen-
erally similar to the conditions applied to any scalar equation. However, at
solid walls there may be significant differences. One possibility is to solve the
equations accurately right up to the wall. Then the conditions to be applied
are the standard no-slip ones for the velocity. In the k — £ model, it is appro-
priate to set k = 0 at the wall but the dissipation is not zero there; instead
one can use the conditions:

8 NS
55—0 or 5-,1;(—5—n—> , (9.33)

where v; is the velocity component tangential to the wall, see Sect. 8.10, and
n is the coordinate normal to wall. When this is done, it is generally necessary
to modify the model itself near the wall. It is argued that the effects that need
to be modeled are due to the low Reynolds number of the turbulence near the
wall and a number of low Reynolds number modifications of the & — £ model
were proposed; see Patel et al. (1985) and Wilcox (1993) for a review of some
of these modifications.

At high Reynolds number, the viscous sublayer of a boundary layer is so
thin that it is difficult to use enough grid points to resolve it. This problem
can be avoided by using wall functions, which rely on the existence of a
logarithmic region in the velocity profile; the velocity profile of a turbulent
boundary layer is shown in Fig. 9.9. In the logarithmic layer, the profile is:

wr=2lpati, 9.34)
ur K

where U; is the mean velocity parallel to the wall, u, is the shear velocity,
Ur = y/Tw/p, Tw is the shear stress at the wall, x is the so-called von Karman
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Fig. 9.9. The turbulent boundary layer: velocity profile as a function of distance
normal to the wall (dashed lines are from corresponding equations, solid line repre-
sents experimental data)

constant (x = 0.41), B is an empirical constant related to the thickness of

the viscous sublayer (B =~ 5.2 in a flat plate boundary layer) and nt is the

dimensionless distance from the wall:
at = PR

- (9.35)

It is often assumed that the flow is in local equilibrium, meaning the produc-
tion and dissipation are nearly equal. If this is the case, one can show:

ur = Ci/*Vk. (9.36)

From this equation and Eq. (9.34) we can derive an expression connecting the
velocity at the first grid point above the wall and the wall shear stress:

Ut

— 2 _ 1/4 A
Tw = pu; = pCy, \/'—Wn(mE).,

(9.37)

where E = e*B. The control volume nearest the wall has one face that lies
on the wall. In the equation for the momentum parallel to the wall for that
control volume, the shear stress at the wall is required. It may be taken
from Eq. (9.37) i.e. the boundary condition is used to obtain a closed set of
equations. :

When these ‘law of the wall’ type boundary conditions are used, the dif-
fusive flux of k£ through the wall is usually taken to be zero, yielding the
boundary condition that the normal derivative of & is zero.

The dissipation boundary condition is derived by assuming equilibrium i.e.
balance of production and dissipation in the near wall region. The production
in wall region is computed from:

O0v
Py~ 7y o (9.38)
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. which is an approximation to the dominant term of Eq. (9.28) that is valid
near the wall; it is valid because the shear stress is nearly constant in this
region. We need the dissipation (= production) at the midpoint of the control
volume closest to the wall. The velocity derivative required can be derived
from the logarithmic velocity profile (9.34):

(3@) _w GV (9.39)
P

on Knp Knp

which, together with Eq. (9.37), provides a second equation relating the wall
shear stress and the velocity at the first grid point. From these two equations,
both quantities may be computed.

When the above approximations are used, the equation for ¢ is not applied
in the control volume next to the wall; instead, € is at the CV center set equal
to:

3/4)3/2
ep = —F (9.40)
Knp
This expression is derived from Eq. (9.29) using the approximation for the
length scale

L= C—:ﬁn ~25n, (9.41)
M

which is valid near wall under the conditions used to derive the ‘law of the
wall’ model.

It should be noted that the above boundary conditions are valid when the
first grid point is within the logarithmic region, i.e. when nf; > 30. Problems
arise in separated flows; within the recirculation region and, especially, in the
separation and reattachment regions, the above conditions are not satisfied.
Usually the fact that wall functions are not valid in these regions is ignored
and they are applied everywhere. However, if the above conditions are violated
over a large portion of wall boundaries, serious modeling errors result. Low
Reynolds number versions of the models should be used in such regions but
their accuracy for a wide range of flows has not yet been demonstrated.

At computational boundaries far from walls, the following boundary con-
ditions can be used:

— If the surrounding flow is turbulent:

_0k Oe e?

Uoy = ¢ U— = —Cea—

— In a free stream:

(9.42)

k2
k=0; e=0; utzCup?zo. (9.43)
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At the inflow, k and & are often not known; if they are available, the known
values should, of course, be used. If k is not known, it is usually taken to
have some small value, say 10~ 2. The value of € should be selected so that
the length scale derived from Eq. (9.29) is approximately one-tenth of the
width of a shear layer or the domain size. If the Reynolds stresses and mean
velocities are measured at inlet, € can be estimated using the assumption of
local equilibrium; this leads to (in a cross-section z = const.):
~ e 44
€& —TUU ay (9.44)

A example of the application of the k — ¢ model is given below.

9.4.3 Example: Flow Around a Valve

We briefly present an application of the k¥ — & model. Valves in internal com-
bustion engines are usually optimized by performing experiments on steady
flows at several valve lifts. Lilek et al. (1991) reported the results of a com-
bined numerical and experimental investigation of one particular geometry.
The geometry was axisymmetric, so a 2D solution method using a boundary-
fitted grid was used. Second-order CDS discretization and three systematically
refined grids were used; the finest had 216 x 64 CVs. By comparing the so-
lutions on these three grids, the discretization error was estimated to be 3%
on the finest grid. Figure 9.10 shows portion of the second level grid.
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Fig. 9.10. Section of a grid (level two) used to calculate flow around a valve (from
Lilek et al., 1991)

The computations were done before the experimental data was available;
only the mass flow rate was prescribed. The inlet boundary was upstream
of the valve, where the profiles for fully-developed annular flow (calculated
separately for the same mass flow rate) were imposed. This is typical for a case
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in which the exact conditions at the inlet are not known. The outlet boundary
was placed in the exhaust pipe, one diameter downstream of the constriction,
see Fig. 9.11. Zero streamwise gradient of all variables was specified there. At
the walls, the wall functions described in the preceding sections were used.

The calculated streamlines and contours of the turbulent kinetic energy
are shown in Fig. 9.11. A small separation at the valve throat is seen; major
recirculation regions are found behind the valve and in the corner. The high-
speed flow around the valve forms an expanding annular jet which hits the
cylinder wall and flows along it toward the exit. High turbulence is created
at the edges of this jet and along walls.

Fig. 9.11. Calculated streamlines (above) and contours of the kinetic energy (below)
in flow around valve (from Lilek et al., 1991)

In Fig. 9.12 a comparison of calculated and measured axial and radial
mean velocity profiles is shown. The profiles have rather complex shape, which
is fairly well predicted; significant discrepancies between measurement and
computation exist in some cross-sections and are probably due to the inade-
quacy of the model although this is not definitively established.

The important question is: can such calculations be used for optimization
in engineering practice? The answer is yes, if care is taken. The authors were
told that, in a study conducted by one car maker, the valve seat geometry
found optimum by calculations using the method described above was also
found best in an experimental study conducted independently.

Similar conclusions were drawn by Bertram and Jansen (1994), who used
one commercial CFD code employing the k& — € turbulence model and wall
functions to calculate drag of three variants of a ship model. They found that
the computed drag coefficient was low by about 12%; however, the relative
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increase or reduction of the drag when the geometry was changed was pre-
dicted with the accuracy. of about 2%. The best hull form from the numerical
study was also the best in the towing tank.

N
N

Fig. 9.12. Comparison of calculated and measured axial (left) and radial (right)
velocity profiles in flow around valve (from Lilek et al., 1991)

A word of caution is necessary. New phenomena may appear in the flow
when the geometry is changed and may not be well represented by the tur-
bulence model. In such a case, computed results may not produce accurate
answers. An example is provided by a modification of the above example;
Lilek et al. (1991) reported poor agreement between predicted and measured
velocity profiles downstream of the valve for halved lift.

9.5 Reynolds Stress Models

Eddy viscosity models have significant deficiencies; some are consequences of
Eq. (9.22) not being valid. In three-dimensional flows, the Reynolds stress and
the strain rate may not be related in such a simple way. This means that the
eddy viscosity may no longer be a scalar; both measurements and simulations
show that it becomes a tensor quantity. Anisotropic (tensor) models based on
using the k and e equations have been proposed. They are relatively new and
untested so we shall not present them here; see Craft et al. (1995) for an
example.

The most complex models in common use today are Reynolds stress mod-
els which are based on dynamic equations for the Reynolds stress tensor it-
self. These equations can be derived from the Navier-Stokes equations and
are quite complicated. They contain triple correlations of the velocity fluctua-
tions (e.g., u;ujuy) as well as correlations of the velocity components and the

pressure (e.g., u}p'). These require modeling which can become rather com-
plicated. For this reason, we shall not describe or discuss these models here.
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The interested reader is referred to Launder (1989, 1990), Hanjali¢ (1994),
Launder and Li (1994) and Craft and Launder (1995).

In three dimensions, these models require the solution of seven partial
differential equations in addition to the equations for the mean flow. Still more
equations are needed when scalar quantities are present in the flow. These
equations are solved in a manner similar to that for the k — ¢ equations. The
only additional issue is that the equations with the Reynolds stress models are
even stiffer than those for the k — € equations and even more care is required
in their solution. :

While there is no doubt that these models have a larger potential to repre-
sent the turbulent flow features more correctly that the two-equation models,
their success so far has been moderate. Excellent results have been obtained
for some flows in which the k — € type of models are known to perform badly
(e.g., swirling flows, flows with strong curvature and with separation from
curved surfaces, etc.); however, in some flows their performance was not bet-
ter at all. A lot of research is going on in this field, and new models are
often being proposed. Which model is best for which kind of flows (none is
expected to be good for all flows) is not yet quite clear, partly due to the
fact that in many attempts to answer this question numerical errors played
a too important role so clear conclusions were not possible (Bradshaw et al.,
1994). In most workshops held so far on the subject of evaluation of turbu-
lence models, the differences between solutions produced by different authors
using supposedly the same model were as large if not larger than the differ-
ences between the results of the same author using different models. This is
one of the reasons why numerical accuracy is emphasized in this book; its
importance can not be overemphasized.
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