ENG-270 Project

"Develop and use a computational model (e.g., simulation) of a real or hypothetical system to study its behavior."

"All models are wrong, but some are useful."

- George E. P. Box*

Today's lecture

- Project deliverables
- What is a model
- The value of approximations and simple models
- Additional details

Deliverables

Project proposal

for your stakeholder to highlight any major concerns

Final report for technical but non-coding stakeholders

- what problem did you solve
- what model / modeling approach did you use
- what were your findings

Accompanying code repository for technical, coding stakeholders

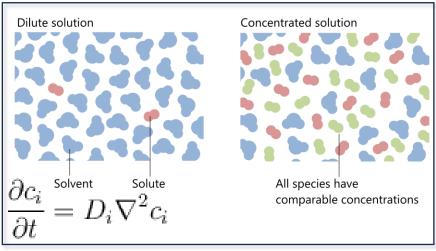
- code is well-documented
- automated
- reproduces your results

What is a model

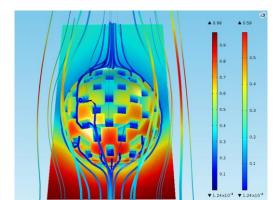
Physical model

physical replicas that capture main attributes

Mathematical model


 abstract description of a system using mathematical concepts

Numerical model


 Mathematical model implemented using numerical / computational methods

EPFL-LCH

COMSOL

COMSOL

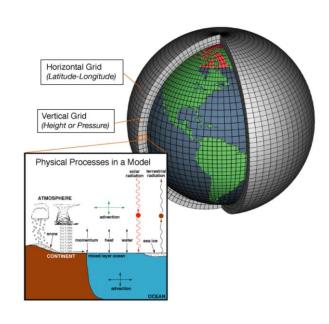
Models

Classifications

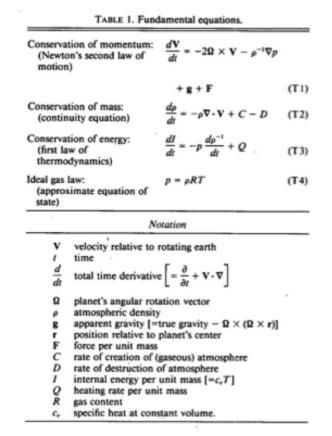
- Mechanistic / Statistical
- Deterministic / Stochastic
- Analytical / Computational

Reasons for modeling

- Prediction / Forecasting
- Understanding or inference / hypothesis testing


Application of computer methods (*iterative calculations*)

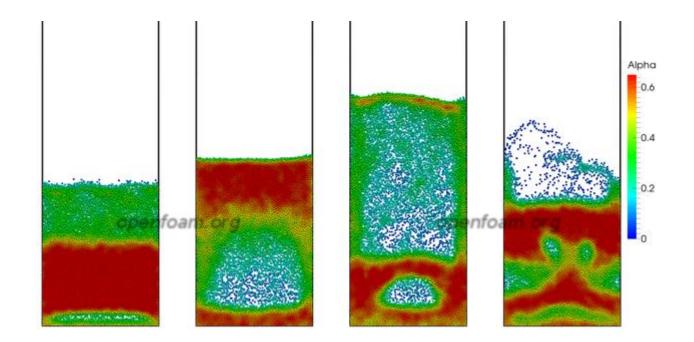
- Numerical integration (forward modeling)
- Parameter estimation (inverse modeling)
- Data analysis

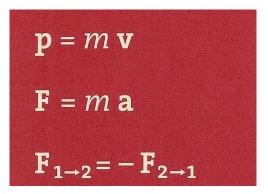

Examples

- Simulation → generate data
- Data analysis → reduce amount of data

Mechanistic models continuum models

source: NOAA

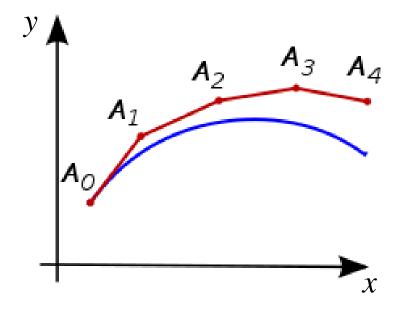



Hansen et al., 1983

Numerically integrate over time/space

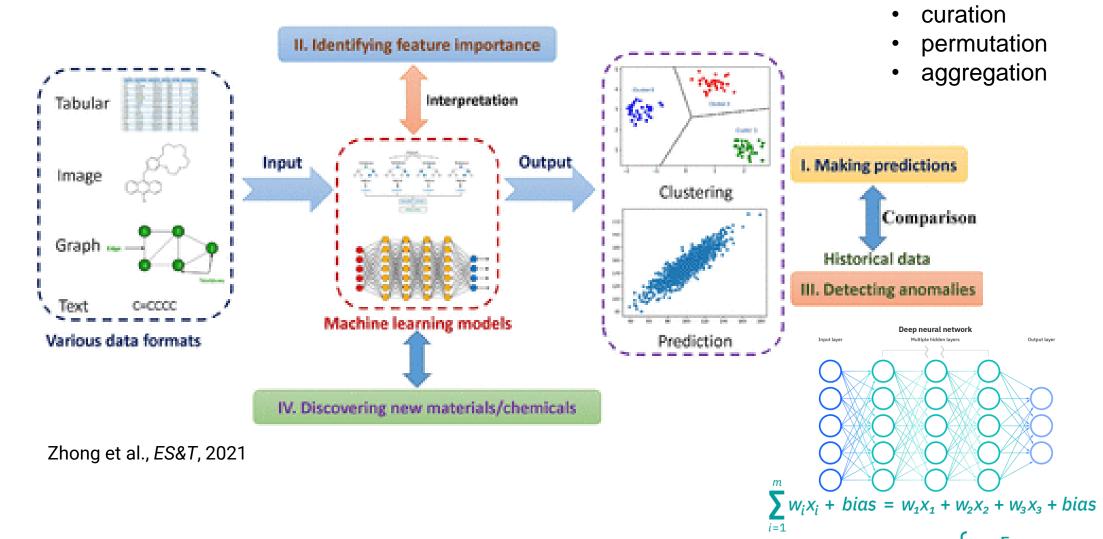
- Integration scheme
- Initial values
- Boundary values

Mechanistic models discrete models



source: Wikipedia

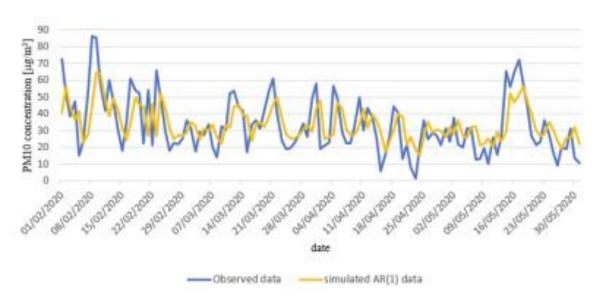
https://openfoam.org/


Numerical integration

$$y_{n+1} = y_n + h f(t_n, y_n).$$

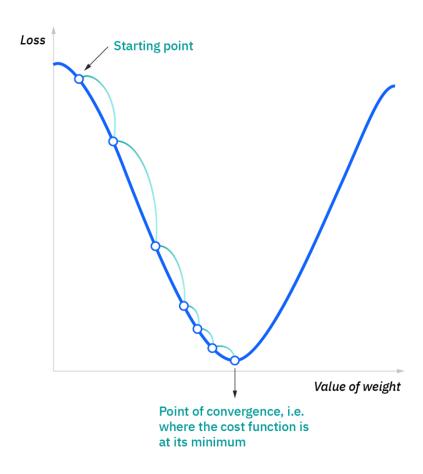
https://en.wikipedia.org/wiki/Euler_method

Statistical models


https://www.ibm.com/cloud/learn/neural-networks

Data preparation:

cleaning


Statistical time series forecasting

$$X_t = \varphi_0 + \varphi_1 X_{t-1} + \ldots + \varphi_p X_{t-p} + \varepsilon_t - \theta_1 \varepsilon_{t-1} - \ldots - \theta_q \varepsilon_{t-q}$$

Mancini et al., J. Phys.: Conf. Ser., 2022

Parameter estimation

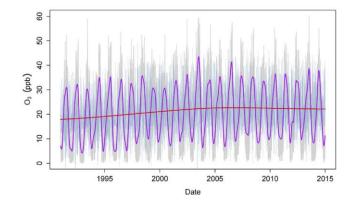
Atmos. Chem. Phys., 20, 9051–9066, 2020 https://doi.org/10.5194/acp-20-9051-2020
© Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

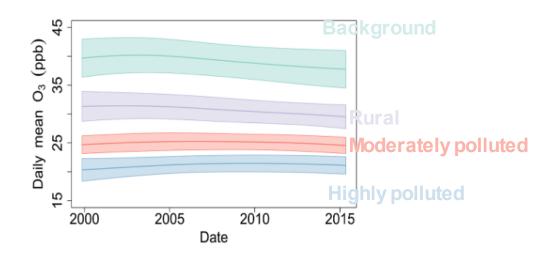
Temporal and spatial analysis of ozone concentrations in Europe based on timescale decomposition and a multi-clustering approach

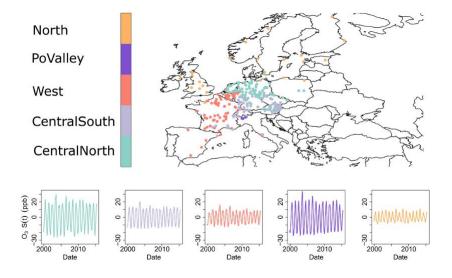
 $Eirini\ Boleti^{1,2}, Christoph\ Hueglin^1, Stuart\ K.\ Grange^{1,4}, Andr\'e\ S.\ H.\ Pr\'ev\^ot^3, and\ Satoshi\ Takahama^2$

¹Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland

²EPFL, École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015 Lausanne, Switzerland


³PSI, Paul Scherrer Institute, 5232 Villigen, Switzerland

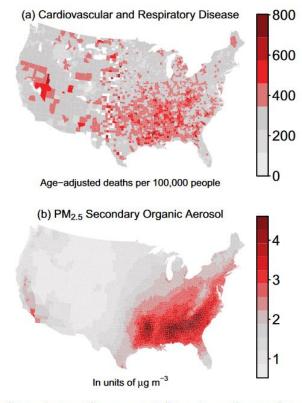

⁴Wolfson Atmospheric Chemistry Laboratories, University of York, York, YO10 5DD, UK


Correspondence: Christoph Hueglin (christoph.hueglin@empa.ch)

Received: 7 October 2019 - Discussion started: 30 October 2019

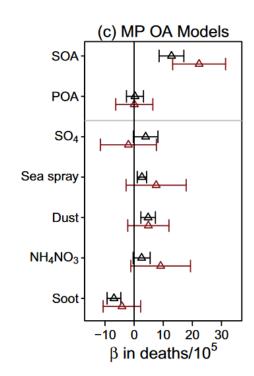
Revised: 16 March 2020 - Accepted: 30 March 2020 - Published: 30 July 2020

ARTICLE

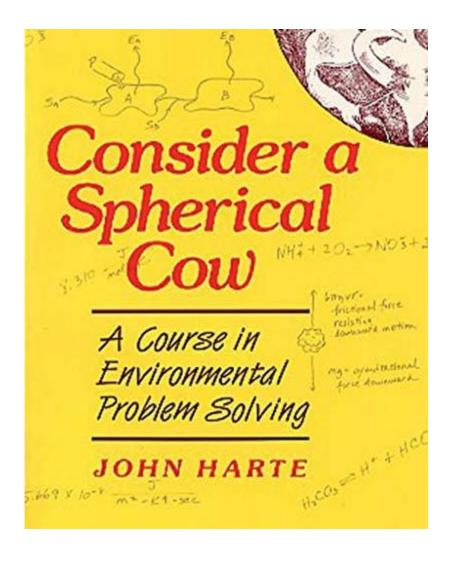

Check for updates

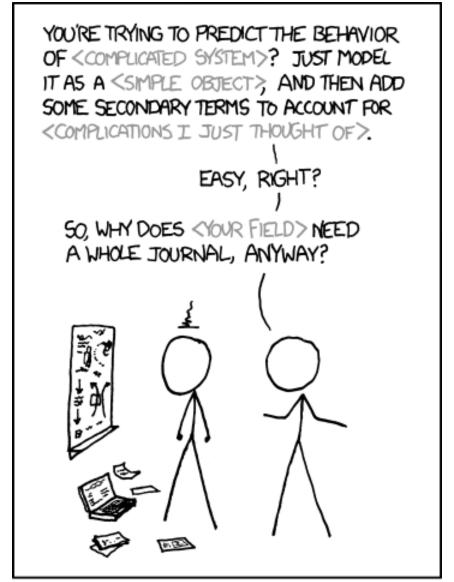
https://doi.org/10.1038/s41467-021-27484-1

OPEN


Secondary organic aerosol association with cardiorespiratory disease mortality in the United States

Havala O. T. Pye o 1™, Cavin K. Ward-Caviness o 2, Ben N. Murphy o 1, K. Wyat Appel & Karl M. Seltzer o 3




Fig. 1 Cardiorespiratory disease mortality rates and secondary organic aerosol concentrations. County-level, year 2016 (**a**) cardiovascular and respiratory disease age-adjusted death rates (per 100,000 in population) are from CDC and (**b**) PM_{2.5} secondary organic aerosol concentrations are predicted by CMAQ. White in (**a**) indicates no death rate data while light gray indicates low reported rates.

$$\begin{split} \mathbf{D} &= \beta_0 + \left\{\beta_1 \mathbf{PM_{SOA_{BVOC}}} + \beta_2 \mathbf{PM_{SOA_{AVOC}}} \right. \\ &+ \beta_3 \mathbf{PM_{POA}} \right\} + \beta_4 \mathbf{PM_{Seaspray}} + \beta_5 \mathbf{PM_{Soot}} \\ &+ \beta_6 \mathbf{PM_{NH_4NO_3}} + \beta_7 \mathbf{PM_{SO_4}} + \beta_8 \mathbf{PM_{Dust}} + \sum\limits_{j=1}^N \beta_j' \mathbf{C_j} \end{split}$$

The value of engineering approximations (and simple models)

LIBERAL-ARTS MAJORS MAY BE ANNOYING SOMETIMES, BUT THERE'S NOTHING MORE OBNOXIOUS THAN A PHYSICIST FIRST ENCOUNTERING A NEW SUBJECT,

Source: XKCD

Project ideas

You can propose a project based on your own interests

Past project ideas: https://sieprog.ch/#projet

Some ideas (should be approx. 1/2 semester – make simplifications if necessary) https://ch.mathworks.com/academia/students/project-ideas.html

Preparing the project proposal

- Is my topic okay? Yes
- You can change everything about your project once you start; only need to document reasons for change in the beginning of your report.
- The question/problem does not need to be novel, but the code should not already be readily available.
- How much data do I need?
 - depends on your project
 - for data-driven modeling, you need data
 - for a simulation-based study, it is not necessary to validate against real data sets but justify that the range of input and output values are physically plausible

User interfaces to models

- Graphical user interfaces and command-line interfaces will not be part of the project assessment.
- The model you build will not be used by your stakeholder you must be the user of the model to demonstrate its value in answering a question you propose.
- If you build a "general model", demonstrate its use for several case studies that you choose and report the significance of your findings.

Preparing the final report and code repository

Report

- Include deviations from project proposal
- Motivate the problem (don't refer to project proposal) and results

Approach

- Report: describe the model (some notion of model classification) and solution (numerical) approach but not the coding implementation
- Code repository: describe the coding implementation

Reproducibility

Code should be documented + automated, and reproduce the figures / tables / calculations in your report

Citations

Include proper attribution of others' work, including any images, ideas