
Writing clear code

Good practices

• Informative variable and function names

• Minimize hard-coded variables

• Reduce code repetition

• Document code

• Cite sources

• Follow a particular style guide. There can be many style guides for the same
language.

Style guides

• Google Python Style Guide

• Numpy example

• C

• MATLAB

https://google.github.io/styleguide/pyguide.html#s3.8-comments-and-docstrings
https://numpydoc.readthedocs.io/en/latest/format.html
https://numpydoc.readthedocs.io/en/latest/example.html
https://stakahama.gitlab.io/sie-eng270/C_intro.html#org6301e98
https://ch.mathworks.com/matlabcentral/fileexchange/46056-matlab-style-guidelines-2-0

Informative variables and function names

Which is easier to read? Depends on

who you ask.

• Scientists/mathematicians – closer to

mathematical symbols and

expressions

• Software developers – (English) words

Minimize hard-coded variables

Suisse exercise

Cryptogramme exercise

Reduce code repetition

• Use functions to carry out common set of instructions

• Appropriate control structures

if you are doing a lot of copy-paste of code,

consider that there may be room for improvement

Documenting code

Why document code?

• Describe how to use the code

• Describe what the code does

• Describe why some decisions were taken

• Who to contact

Who is your audience?

• Team members

• Project manager

• Broader community

• Yourself 6 months from now

code is for the machine

documentation is for the human

How to document code

README file to provide project overview

In script/code files

• function “docstrings” (Python)

• comments (inline, comment blocks,
header)

• simple, “self-explanatory” code parts do
not need redundant documentation

Literate programming tools

• Jupyter notebooks / Quarto documents
(Python, R, Julia, GNU Octave, …C?)

• Live Editor (MATLAB)

Documented scripts vs. notebooks - which
to use?

• Code development: script/code files with
comments, docstrings

• Demonstration of code use (show
input/output) or juxtapose with LaTeX
equations: literate programming tools

https://realpython.com/documenting-python-code

https://realpython.com/documenting-python-code

README file

• What is the project about

• Project description
• what your program does
• choice of tools used
• existing features and those you wish to

add (or could have added)

• How to install and run the program

• Use cases for the program

• Credits

• README (with no extension) is a
plain text file (ASCII or Unicode)

• README.md is a Markdown file.

Markdown

• Lightweight markup language

• Used in README.md and Jupyter
notebooks/ Quarto documents

• Add formatting elements to plain text
documents

• Rendering generates formatted text

• Many different variants or flavors
• Pandoc

• GitHub

• CommonMark

• Markdown Extra

• …

https://rmarkdown.rstudio.com/lesson-8.html

https://www.markdownguide.org/getting-started/

Example of Pandoc Markdown

https://rmarkdown.rstudio.com/lesson-8.html
https://www.markdownguide.org/getting-started/

Markdown flavors

• README.md should be written in
GitHub Markdown

• Jupyter notebooks and Quarto
documents should be written in
Pandoc Mardown

• Pandoc Markdown offers greater
capabilities – e.g., including
automated generation of
bibliographies from citations

For simple documents, the two differ
mostly in the header

• GitHub Markdown:
Project Title

• Pandoc Markdown:

title: Project Title

Equations in Markdown

https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/writing-mathematical-expressions

or

renders

https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/writing-mathematical-expressions

Docstring examples

Some examples of well-documented code

• NumPy (Python, C), example

• Flask (Python), example

• OpenBSD (C), example

• Redis (C), example

• Also git, linux kernel, … (Python)

https://github.com/numpy/numpy/
https://github.com/numpy/numpy/blob/main/numpy/matlib.py
https://github.com/pallets/flask/
https://github.com/pallets/flask/blob/main/src/flask/sessions.py
https://github.com/openbsd/src/
https://github.com/openbsd/src/blob/master/bin/mv/mv.c
https://github.com/redis/redis
https://github.com/redis/redis/blob/unstable/src/functions.c
https://github.com/git/git
https://github.com/torvalds/linux

Jupyter notebooks

• Extension is .ipynb (originally:
Interactive Python Notebook)

• .ipynb are actually JSON files

• Originally interfaced through web
browser

• Now interfaces are available
through editors (VS Code,
JupyterLab Desktop)

.ipynb notebooks consist of two
types of cells:

1. text (markdown format).
markdown is a markup language

2. code (select Python “kernel”)

Work interactively (edit/run)

Export to multiple formats

• PDF

• HTML

https://code.visualstudio.com/docs/datascience/jupyter-notebooks

https://code.visualstudio.com/docs/datascience/jupyter-notebooks

Export options

RunEdit

Jupyter notebooks in VS Code

Install Jupyter Extension; Start New File → Jupyter notebook

An .ipynb file is just a JSON file

Quarto
new kid in town

• Plain text file, but
markdown rather than
JSON
→ better version control

• Uses Jupyter kernel like
Jupyter notebooks

• Export to slides, books,
etc.

https://quarto.org/docs/tools/vscode.html

https://quarto.org/docs/visual-editor/vscode/

https://quarto.org/docs/tools/vscode.html
https://quarto.org/docs/visual-editor/vscode/

An .qmd file is just a Markdown file

Testing

In software development,

• unit tests are written for functions to check that a certain output is
produced for a given input. (Important for large codebases where
someone else might add a feature or rewrite your function.)

• integration tests are written to check that components work with each other

https://realpython.com/python-testing/

Contrived example for testing builtin function sum()

https://realpython.com/python-testing/

“Test-driven development”

• Some software engineers are adamant about developing programs around functionality
that can be tested.

• May be suitable for large projects with multiple team members, or for code bases that are
expected to have a long lifetime.

• Writing tests is time consuming (considering multitudes of “edge cases”), and some
functions are hard to test. For simple programs, this is a typically a low priority.

• Results should be tested against intuition nonetheless (though this is no guarantee that
the program is functioning correctly).

• Testing will not be emphasized in this class, but you should be aware that formal
testing frameworks exist.

Other considerations – structuring your files

• Project directory structure
• data

• code (libraries and main code)

• documentation

• …

• Raw data should remain untouched, but imported and transformed into
outputs (results) by your code
• data at intermediate levels of processing can be saved if necessary

• See other lectures on automation

	Slide 1: Writing clear code
	Slide 2: Good practices
	Slide 3: Style guides
	Slide 4: Informative variables and function names
	Slide 5: Minimize hard-coded variables
	Slide 6
	Slide 7: Reduce code repetition
	Slide 8: Documenting code
	Slide 9: How to document code
	Slide 10: README file
	Slide 11: Markdown
	Slide 12: Markdown flavors
	Slide 13: Equations in Markdown
	Slide 14: Docstring examples
	Slide 15: Some examples of well-documented code
	Slide 16: Jupyter notebooks
	Slide 17: Jupyter notebooks in VS Code
	Slide 18
	Slide 19: Quarto new kid in town
	Slide 20
	Slide 21: Testing
	Slide 22: “Test-driven development”
	Slide 23: Other considerations – structuring your files

