EPFL

Compensation paramétrique – Poser le problème

Surdetermination

- Nombre d'observations
- Nombre de paramètres
- $r = n u \ge 0$

$$\ell (n \times 1)$$

$$\mathbf{x}(u \times 1)$$

Modèle fonctionnel

- Choix du modèle paramétrique
- Choix des paramètres approchés
- Résidus approchés
- Linéarisation (analytique ou numérique)

Modèle stochastique

- Écart-type *a priori* σ_0 et cofacteurs $\mathbf{Q}_{\ell\ell}$
- Variances et covariances $\mathbf{K}_{\ell\ell}$

$$\mathbf{P} = \left(\mathbf{Q}_{\ell\ell}
ight)^{-1} \ \mathbf{P} = \left(\mathbf{K}_{\ell\ell}
ight)^{-1}$$

Aéthodes d'estimation

EPFL

Comp. paramétrique - Interpréter les résultats ...

Résidus

- Analyse globale: $\hat{\sigma}_0$ a posteriori / σ_0 a priori
- Analyse locale:
 - Détection de fautes: cas particuliers
 - Détection d'erreurs systématiques : tendances
- Adaptation des modèles
 - fonctionnel : autres paramètres
 - Stochastique : autres variances et corrélations

Cofacteurs

- Paramètres compensés
 - Précision du dispositif de mesure (variances)
 - Capacité de distinguer des paramètres (corrélations)
- Résidus compensés
 - Capacité de détecter des fautes (fiabilité)
- Observations compensés: précision des observations

