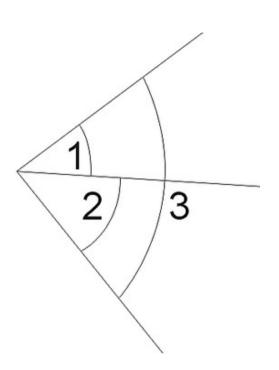
EPFL

Compensation conditionelle

Poser le problème ...

- Surdétermination
 - Nombre de conditions indépendantes : r
- Modèle fonctionnel
 - Choix des conditions : W
 - Linéarisation analytiques ou numérique : ${f B}$

$$\frac{\partial \varphi\left(\overline{\mathbf{I}}^{T}\right)}{\partial \overline{\mathbf{I}}^{T}}\bigg|_{\overline{\mathbf{I}}=\mathbf{I}} = \begin{pmatrix} \frac{\partial \varphi_{1}\left(\overline{\mathbf{I}}^{T}\right)}{\partial \overline{l}_{1}} & \frac{\partial \varphi_{1}\left(\overline{\mathbf{I}}^{T}\right)}{\partial \overline{l}_{2}} & \dots & \frac{\partial \varphi_{1}\left(\overline{\mathbf{I}}^{T}\right)}{\partial \overline{l}_{n}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial \varphi_{r}\left(\overline{\mathbf{I}}^{T}\right)}{\partial \overline{l}_{1}} & \frac{\partial \varphi_{r}\left(\overline{\mathbf{I}}^{T}\right)}{\partial \overline{l}_{2}} & \dots & \frac{\partial \varphi_{r}\left(\overline{\mathbf{I}}^{T}\right)}{\partial \overline{l}_{n}} \end{pmatrix}\bigg|_{\overline{\mathbf{I}}=\mathbf{I}}$$


- Modèle stochastique
 - Ecart-type *a priori* et cofacteurs : σ_0 , $\mathbf{Q}_{\ell\ell}$
 - Variances et corrélations : $\mathbf{K}_{\ell\ell}$

Méthodes d'estimation

Compensation conditionelle

Analyser les résultats ...

- Détecter une faute
 - Avant compensation: écart de fermeture w_i trop grand
 - Après: résidu compensé trop grand: $|\hat{v}_i/\sigma_{\ell_i}| >$ seuil
- Estimer la précision
 - Calcul des cofacteurs et de $\hat{\sigma}_0$ a posteriori
- Améliorer les valeurs mesurées
 - Cofacteurs des valeurs compensées plus faibles
- Evaluer les mesures et les modèles
 - Analyse globale: $\hat{\sigma}_0$ a posteriori / σ_0 a priori
 - Détection d'erreurs systématiques: tendances
 - Adaptation des modèles
 - Fonctionnel: autres conditions
 - Stochastique: autres variances et corrélations

