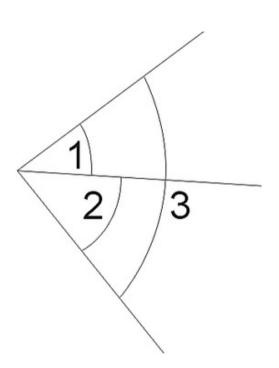
Compensation conditionelle

Poser le problème ...

- Surdétermination
 - Nombre de conditions indépendantes : r
- Modèle fonctionnel
 - Choix des conditions : w
 - Linéarisation analytiques ou numérique : B

$$\frac{\partial \varphi(\tilde{\ell}^T)}{\partial \tilde{\ell}^T} \Big|_{\tilde{\ell} = \ell} = \begin{pmatrix}
\frac{\partial \varphi_1(\tilde{\ell}^T)}{\partial \tilde{\ell}_1} & \frac{\partial \varphi_2(\tilde{\ell}^T)}{\partial \tilde{\ell}_2} & \dots & \frac{\partial \varphi_1(\tilde{\ell}^T)}{\partial \tilde{\ell}_n} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial \varphi_r(\tilde{\ell}^T)}{\partial \tilde{\ell}_1} & \frac{\partial \varphi_r(\tilde{\ell}^T)}{\partial \tilde{\ell}_2} & \dots & \frac{\partial \varphi_r(\tilde{\ell}^T)}{\partial \tilde{\ell}_n}
\end{pmatrix} \Big|_{\tilde{\ell} = \ell}$$


- Modèle stochastique
 - Ecart-type a priori et cofacteurs : σ_0 , $\mathbf{Q}_{\ell\ell}$
 - Variances et corrélations : $\mathbf{K}_{\ell\ell}$

Méthodes d'estimatic

Compensation conditionelle

Analyser les résultats ...

- Détecter une faute
 - Avant compensation: écart de fermeture w_i trop grand
 - Après: résidu compensé trop grand: $|\hat{v}_i/\sigma_{\ell_i}| >$ seuil
- Estimer la précision
 - Calcul des cofacteurs et de $\hat{\sigma}_0$ a posteriori
- Améliorer les valeurs mesurées
 - Cofacteurs des valeurs compensées plus faibles
- Evaluer les mesures et les modèles
 - Analyse globale: $\hat{\sigma}_0$ a posteriori / σ_0 a priori
 - Détection d'erreurs systématiques: tendances
 - Adaptation des modèles
 - Fonctionnel: autres conditions
 - Stochastique: autres variances et corrélations

