Série d'exercices 3 : Modèle stochastique

Soupe

Lors de travaux de laboratoire, vous préparez deux émulsions à des concentrations différentes. Pour la première, vous ajoutez $\ell_1 = 140$ ml d'huile de pépins de courge à $\ell_2 = 1000$ ml d'eau. Pour le deuxième, vous ajoutez $\ell_3 = 80$ ml de résine d'eucalyptus à $\ell_4 = 1200$ ml d'eau. Vous mesurez le volume des deux substances huileuses avec la même pipette et les volumes d'eau avec le même gobelet gradué.

- Pour les mesures réalisées avec la pipette (ℓ_1 et ℓ_3), l'écart-type est $\sigma=0.3$ ml.
- Pour les mesures réalisées avec le gobelet gradué (ℓ_2 et ℓ_4), l'écart-type est $\sigma=2$ ml.
- Les mesures réalisées avec un même récipient sont corrélées avec un coefficient de 50%.
- 1. Comment expliquez-vous la corrélation entre ℓ_1 et ℓ_3 , ainsi qu'entre ℓ_2 et ℓ_4 ?
- 2. Formez la matrice de covariance $\mathbf{K}_{\ell\ell}$ des 4 mesures.

Triglay

Pour observer la déformation en hauteur (en rouge sur la Figure 1) d'un pont neuf sous l'effet d'une charge, Alice et Benjamin utilisent le nivellement trigonométrique (Polycopié ME, Sec. 1.3.3-4). Ils installent deux instruments perpendiculairement au pont, aux distances de 150 m pour Alice et 100 m pour Benjamin par rapport au Centre du pont. Ils effectuent simultanément deux observations $(y_{A,t}, y_{B,t})$ vers le Centre à 4 minutes d'intervalle.

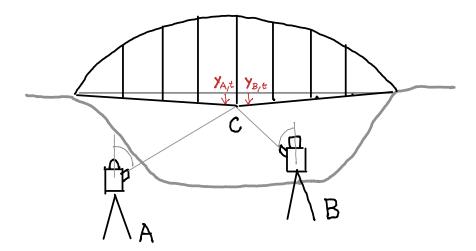


Figure 1: Déformation d'un pont sous charge (en rouge).

Alice fait les hypothèses suivantes :

- L'écart-type d'une déformation verticale au Centre du pont est de $0.5~\mathrm{cm} + 0.02~\%$ de la distance vers l'appareil d'observation.
- Les mesures entre 2 époques sont corrélées en fonction du temps écoulé suivant l'équation 1.

$$\rho_{ij} = \rho_{y_i y_j} = \frac{1}{1 + \frac{\Delta t \text{ (min)}}{2}} \tag{1}$$

1. Évaluez la pertinence des hypothèses d'Alice. Commentez!

Hypothèse 1 : Les écarts-types ...

Hypothèse 2 : Les corrélations ...

2. Formez la matrice de covariance correspondant au modèle stochastique selon Alice (dimensions, valeurs numériques et unités).

$$\mathbf{K}_{yy}^{A}=% \mathbf{K}_{yy}^{A}$$

Benjamin fait d'autres hypothèses, qui conduisent au modèle suivant :

$$\mathbf{K}_{yy}^{B} = \begin{bmatrix} 1 & -0.25 & 0 & 0 \\ -0.25 & 1 & -0.25 & 0 & 0 \\ -0.25 & -0.25 & -0.25 & 0 & -0.25 \\ -0.25 & 0.25 & -0.25 & -0.25 & 1 \end{bmatrix}$$

3. Explicitez les hypothèses de Benjamin et évaluez leur pertinence. Commentez!

Hypothèse 1 : Les écarts-types ...

Hypothèse 2 : Les corrélations ...

Kovac

Une matrice de covariance de dimension $n \times n$ requiert beaucoup de place en mémoire. Pour cette raison, il est parfois préférable de stocker :

- \bullet un vecteur de dimension n pour les écarts-types;
- un vecteur de dimension $(n-1) + (n-2) + \cdots + 2 + 1 = \frac{n(n-1)}{2}$ pour les corrélations. De plus, on peut exprimer les corrélations en pourcentages et les arrondir à un nombre entier.
- 1. Écrivez un code Python (comme une fonction¹) pour réaliser une telle conversion, quel que soit n.
- 2. Écrivez un code Python pour réaliser l'opération inverse, c'est-à-dire pour construire la matrice de covariance à partir du vecteur des écarts-types et du vecteur des corrélations en pourcentages.

Application numérique

- 3. Dans l'exercice "Triglav", prenez les valeurs de la matrice K_{yy}^A issue du modèle de Alice et effectuez la conversion à l'aide de votre premier code.
- 4. Effectuez la conversion réciproque à l'aide de votre second code.
- 5. Comparez la matrice de covariance obtenue avec l'originale. Commentez!

¹Nous allons utiliser cette fonction plus tard.