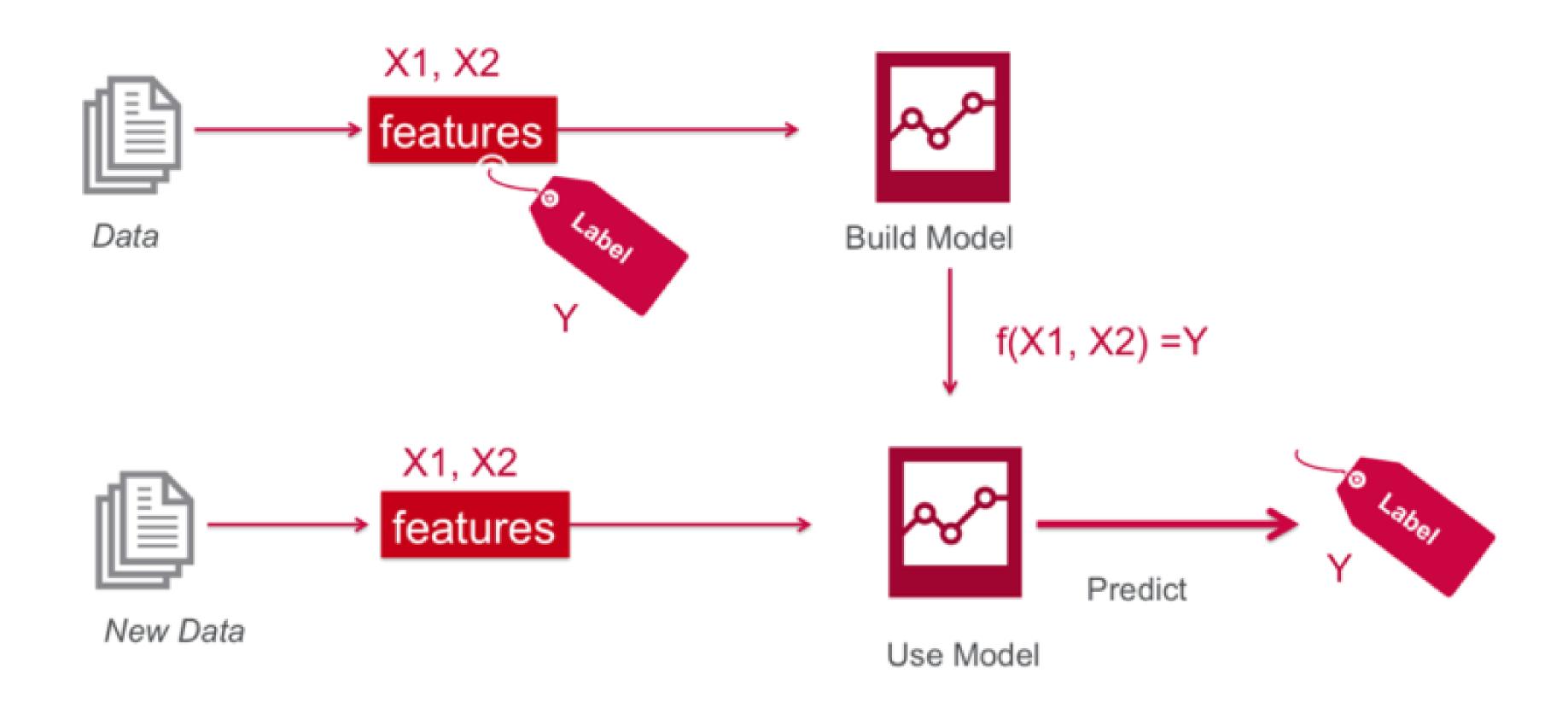


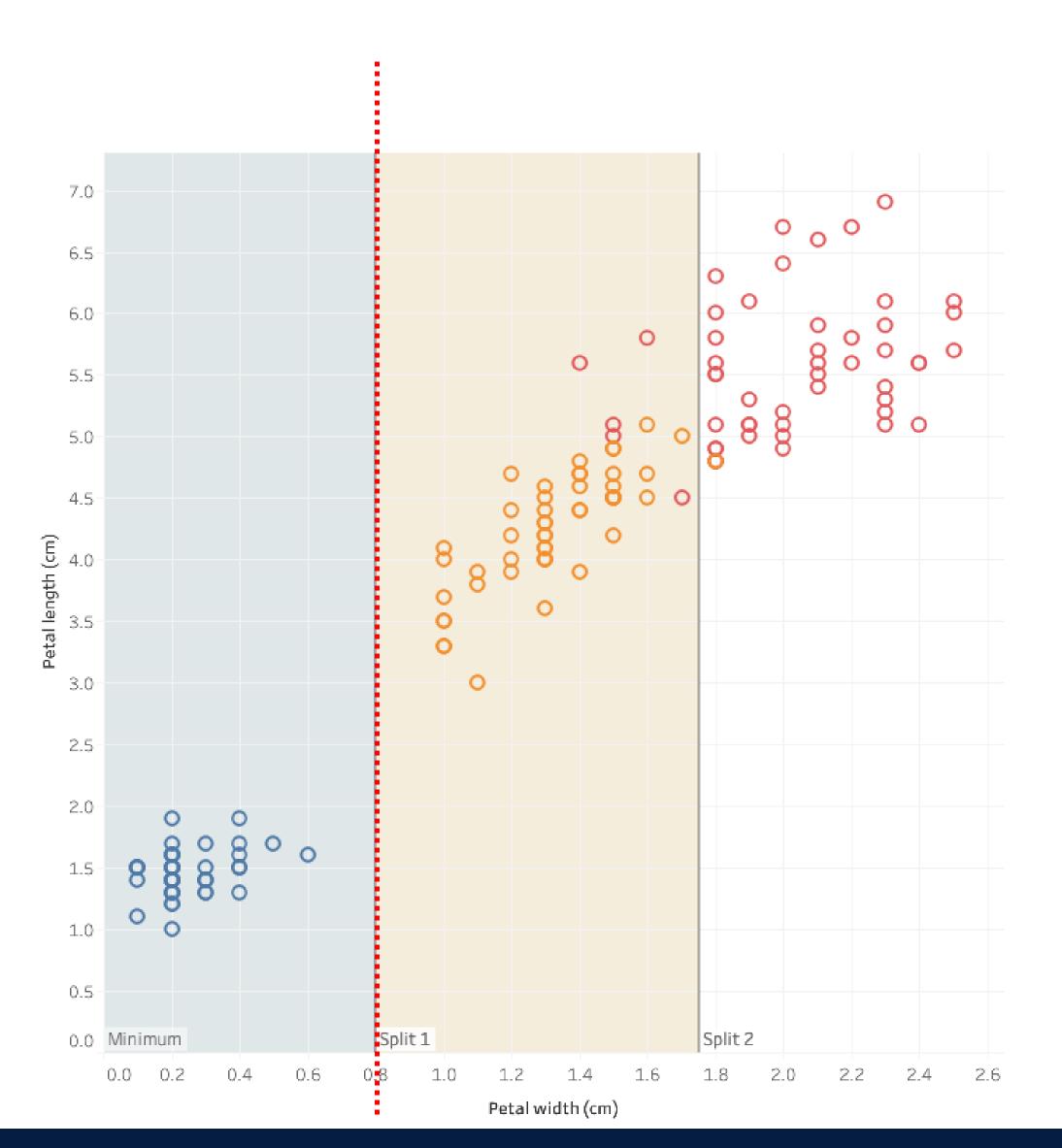
Supervised learning



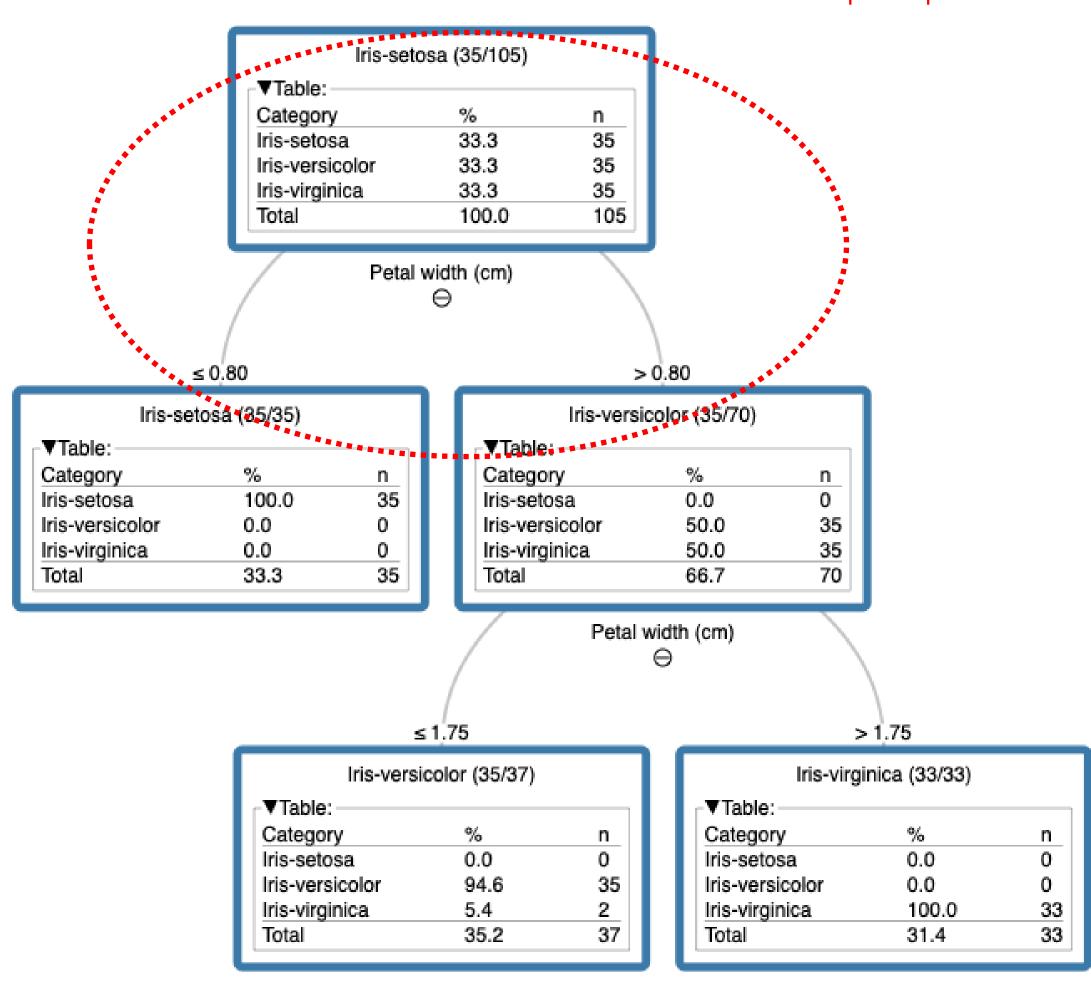
Demo in Tableau & KNIME

4

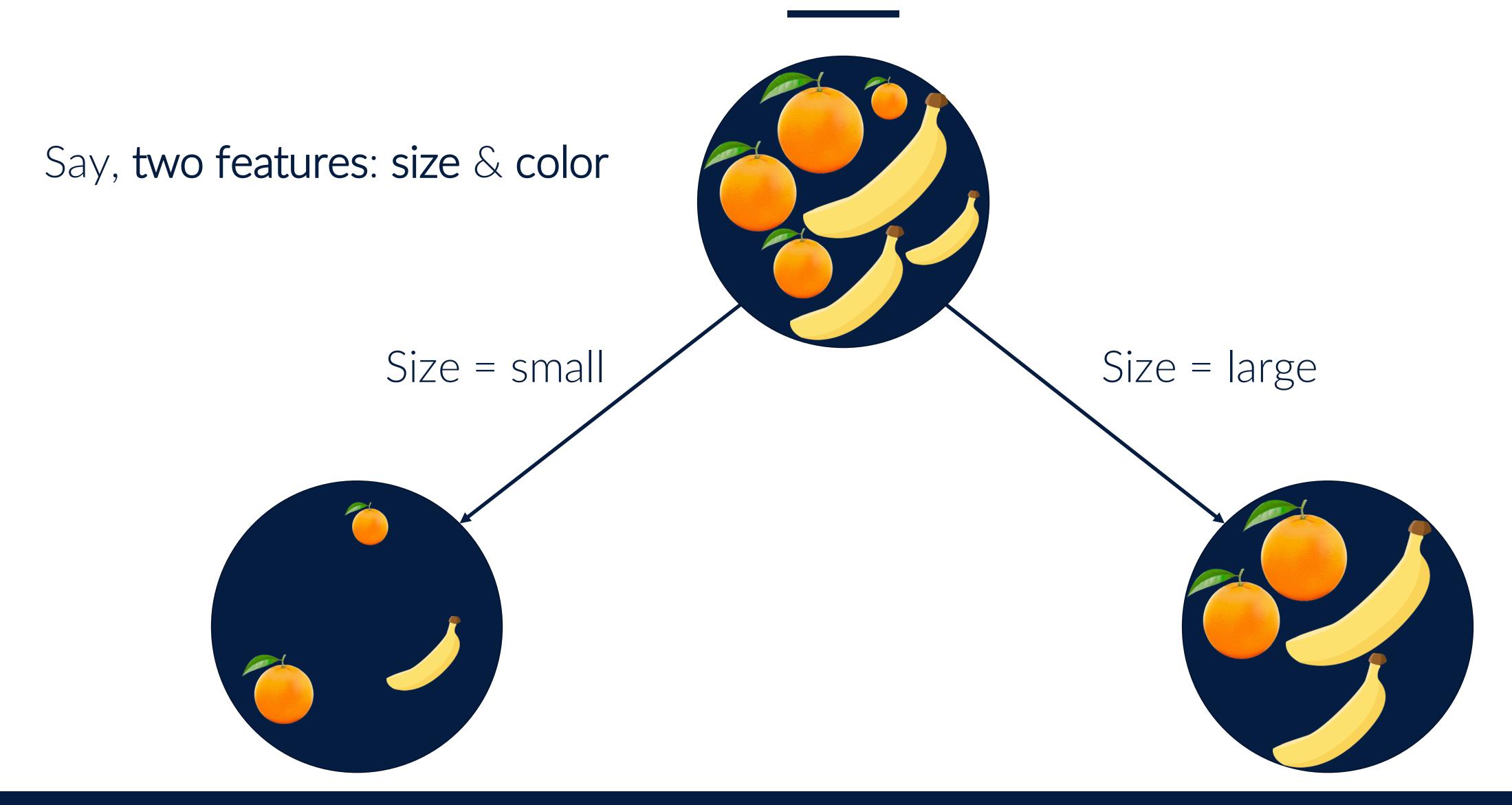
Back to our Iris example



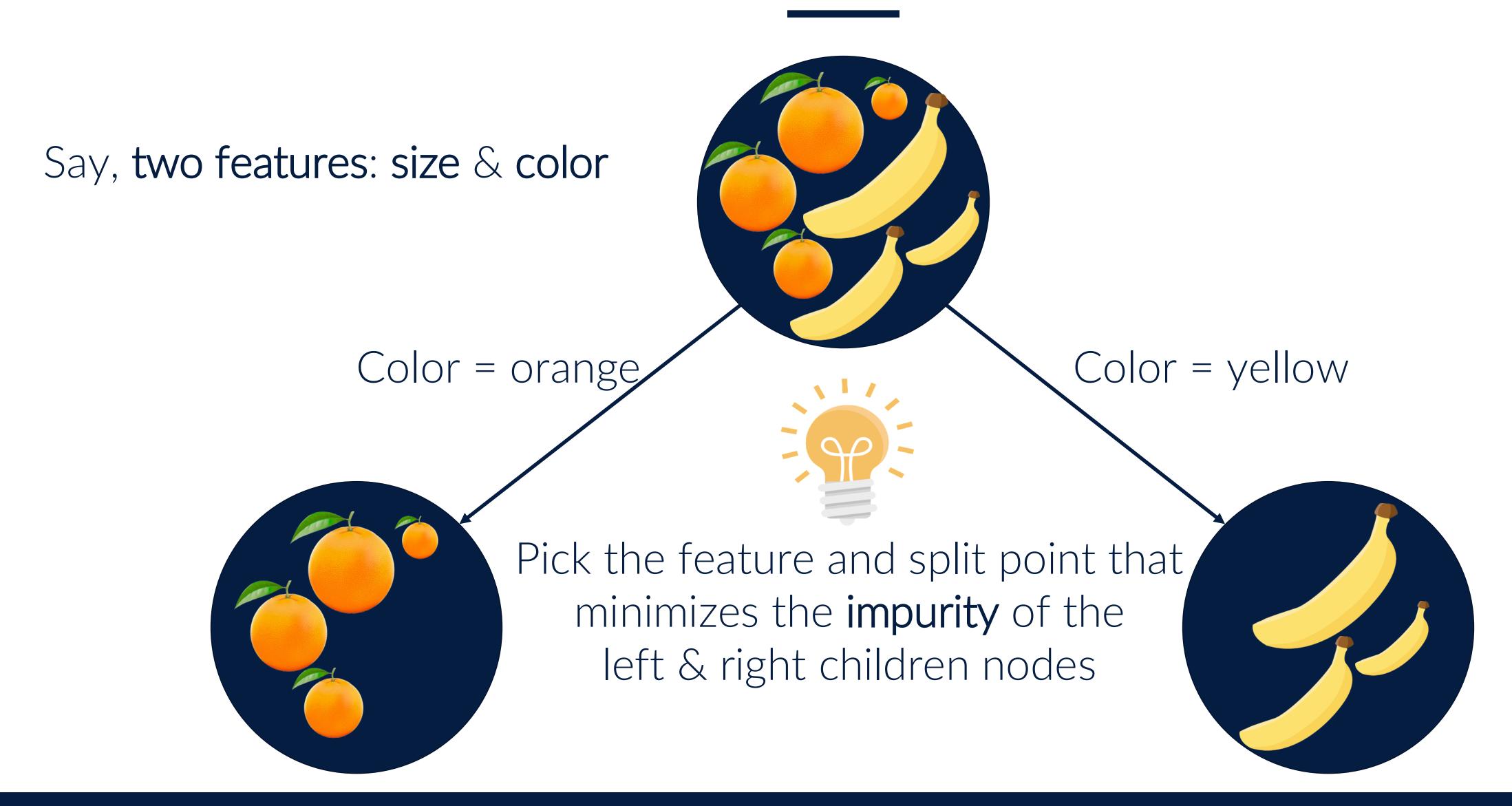
How is this first split decided? Feature and split point of 0.8?



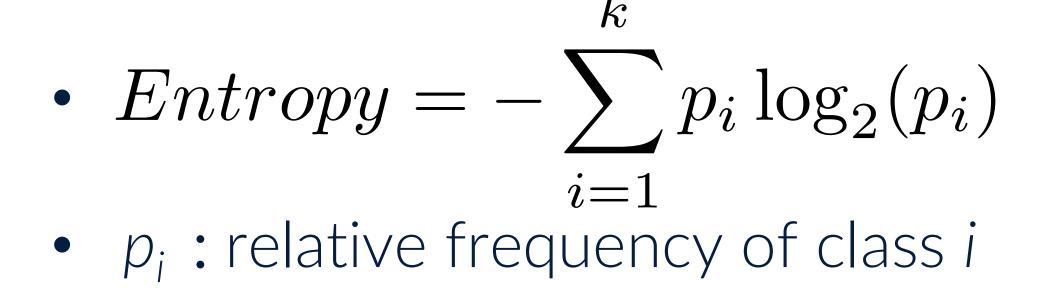
Measuring the quality of a split



Measuring the quality of a split



Entropy as a measure of impurity

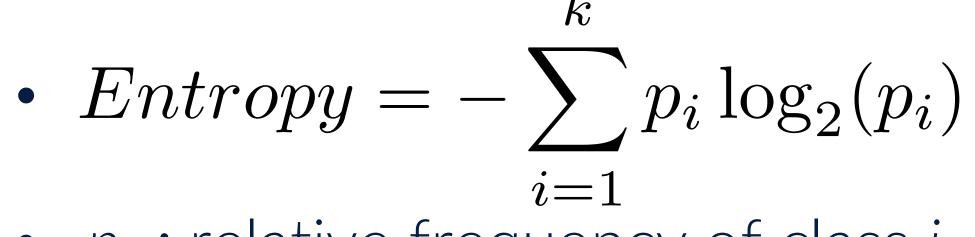


$$p_{banana}^0 = 3/7$$

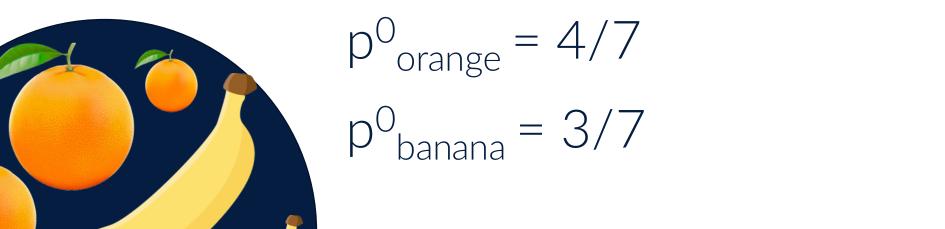
Entropy⁰ =
$$-4/7 \times \log_2(4/7) - 3/7 \times \log_2(3/7)$$

= 0.985

Entropy as a measure of impurity



• p_i : relative frequency of class i

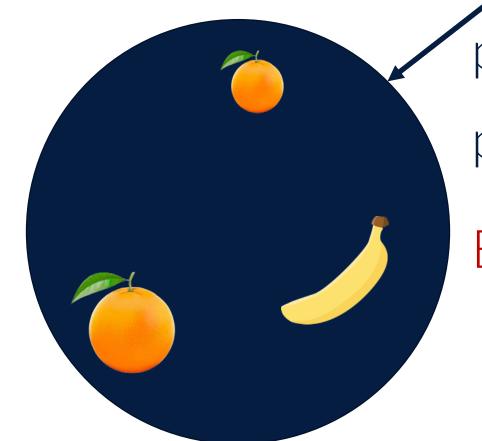


Entropy⁰ = $-4/7 \times \log_2(4/7) - 3/7 \times \log_2(3/7)$ = 0.985

Size = small
$$p^{1L}_{orange} = 2/3$$

$$p^{1R}_{orange} = 2/4$$

 $(3/7 \times 0.918 + 4/7 \times 1.0 = 0.965)$



$$p^{1L}_{banana} = 1/3$$

Intropy^{1L} =
$$0.918$$

Entropy^{1L} = **0.918**

(Weighted) total entropy = 0.965

 $p^{1R}_{banana} = 2/4$ Entropy $^{1R} = 1.0$

Entropy as a measure of impurity

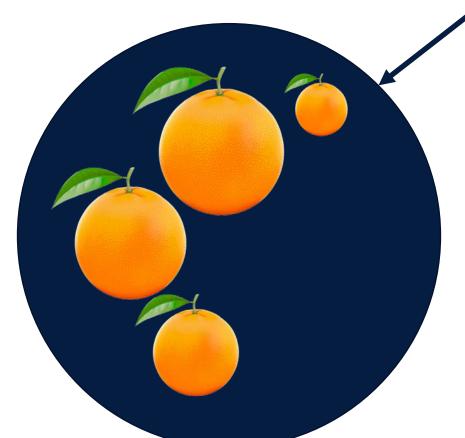
•
$$Entropy = -\sum_{i=1}^{k} p_i \log_2(p_i)$$

• p_i : relative frequency of class i

$$p^{0}_{orange} = 4/7$$

$$p^{0}_{banana} = 3/7$$

Entropy⁰ = $-4/7 \times \log_2(4/7) - 3/7 \times \log_2(3/7)$ = 0.985



$$p^{1L}_{orange} = 4/4$$

$$p^{1L}_{banana} = 0/4$$

Entropy
$$^{1L} = 0.0$$

(Weighted) total entropy = 0.0!

$$p^{1R}_{orange} = 0/4$$

$$p^{1R}_{banana} = 4/4$$

Entropy
$$^{1R} = 0.0$$

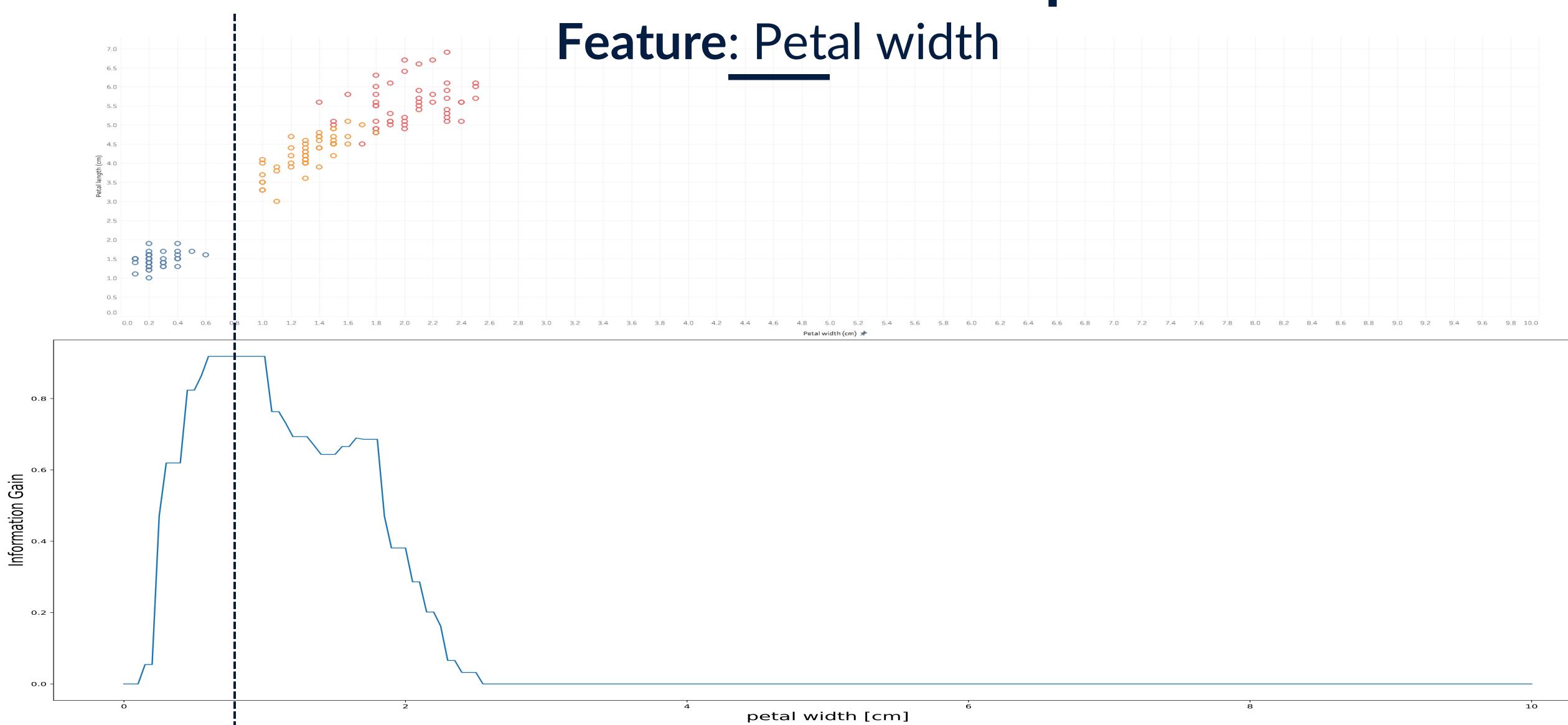
Color = yellow

Information Gain as split decision

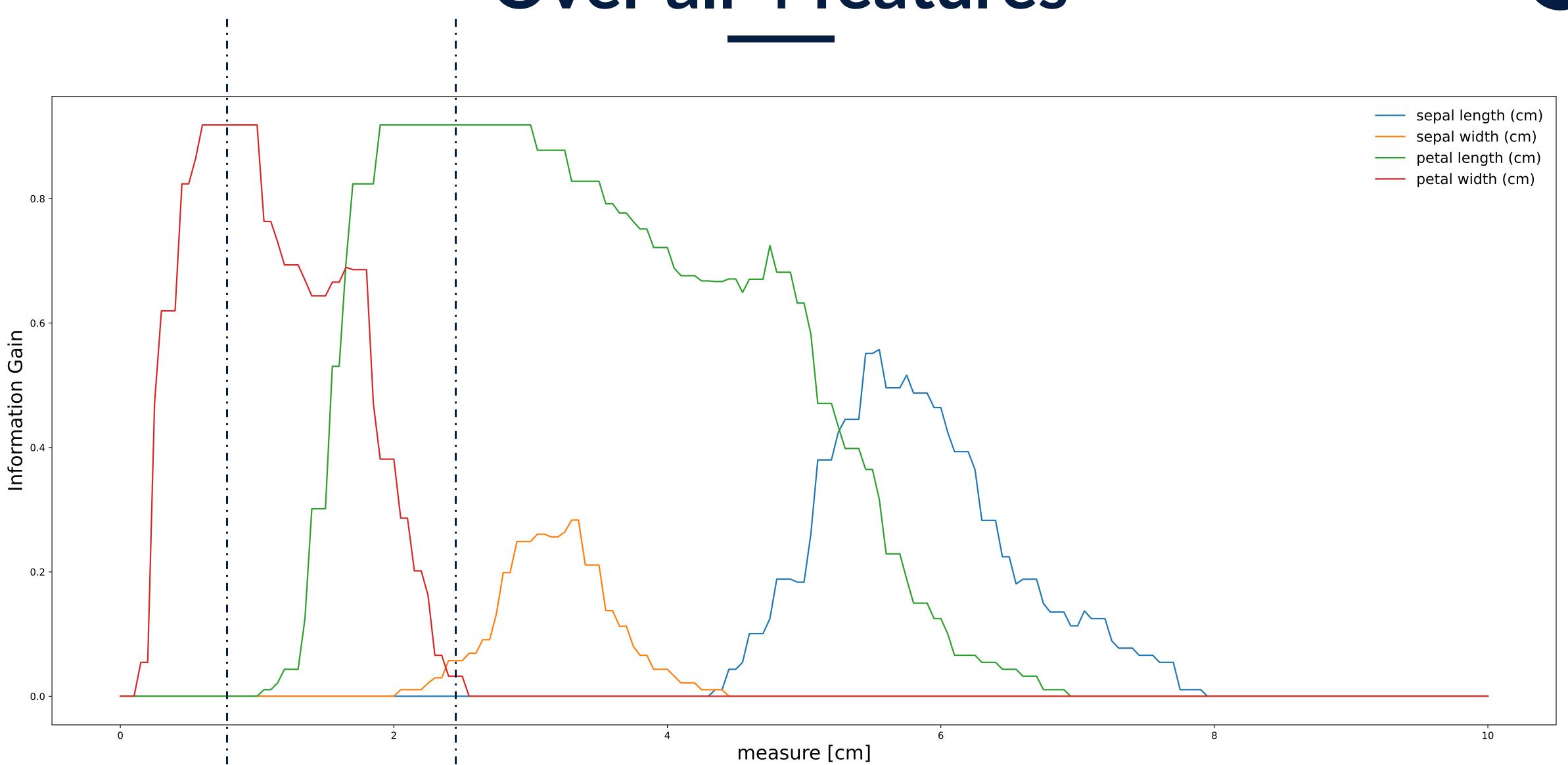
- Information Gain = How much entropy we removed by the split
- The split (feature & value) that maximizes the Information Gain is chosen

```
Split by size: 0.985 - 0.965 = 0.02
Split by color: 0.985 - 0.0 = 0.985
```


Back to our Iris example



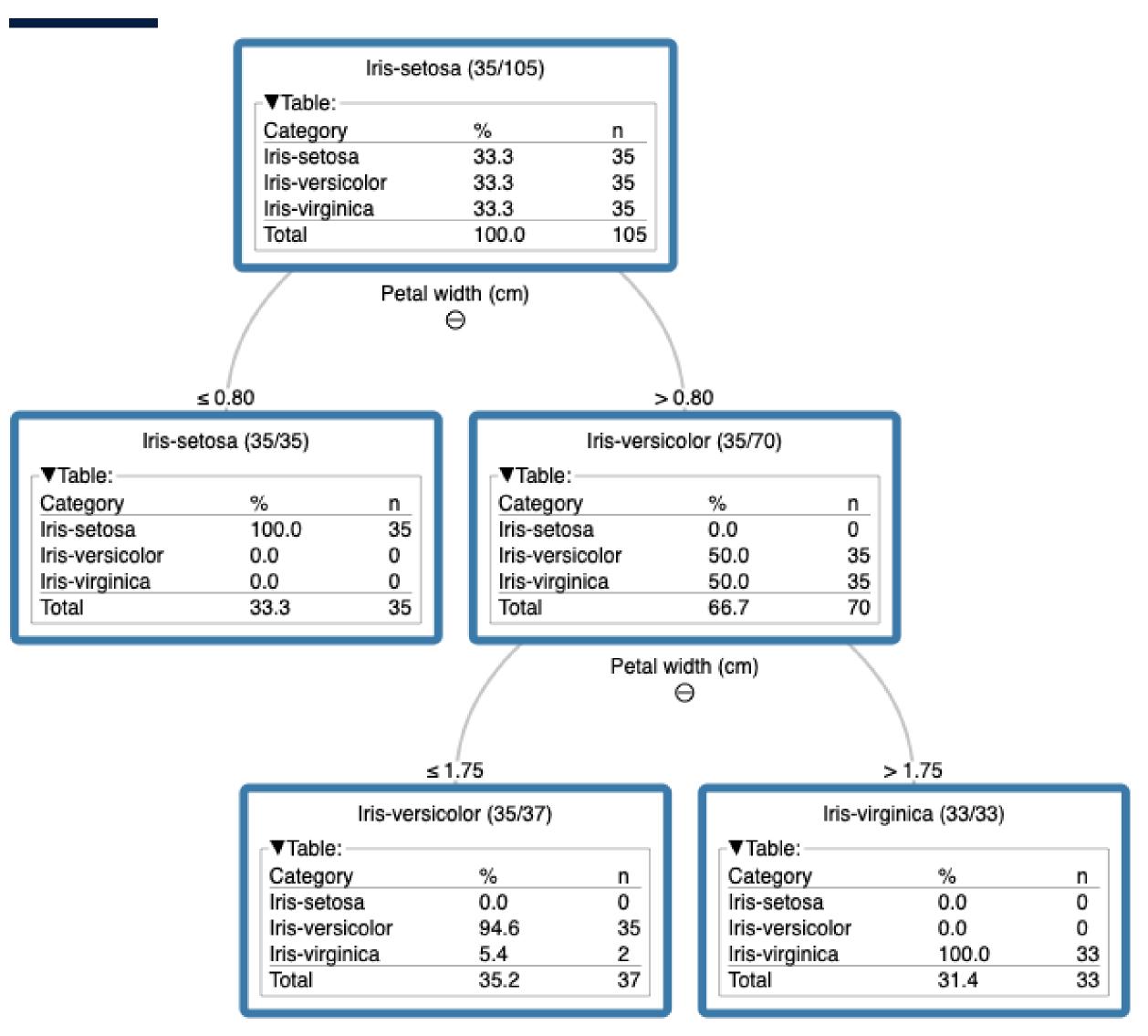
Over all 4 features



Recursively splitting

Stopping criterion (overfitting!)

- purity > threshold
- number of samples < threshold
- depth > threshold



Another split criterion

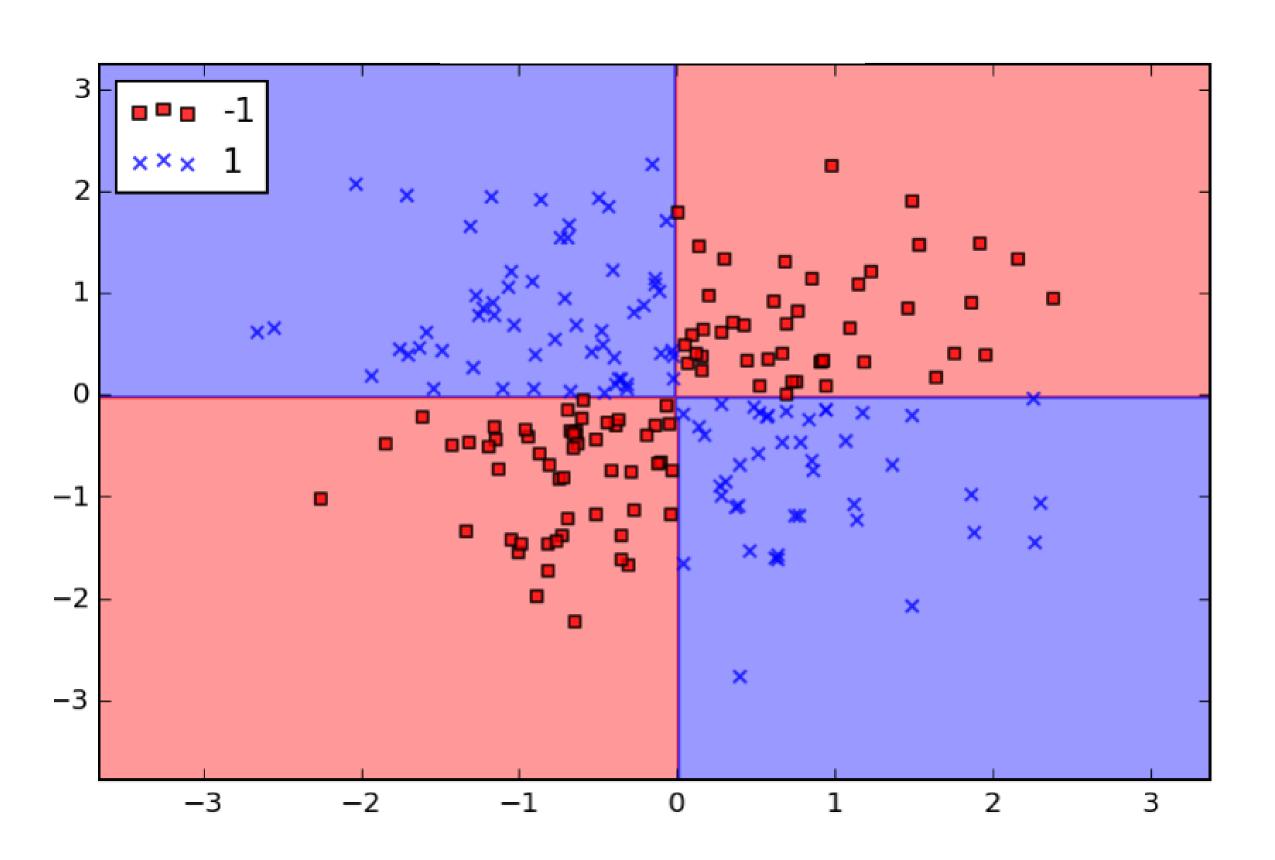
Gini index (or Gini impurity)

$$Gini = \sum_{i=1}^{k} p_i (1 - p_i) = 1 - \sum_{i=1}^{k} p_i^2$$

- The Gini Impurity of a dataset is a number between 0 and 0.5
- Gini impurity measures how often a randomly chosen element of a set (of cardinality k) would be incorrectly labeled if it were labeled randomly and independently according to the distribution of labels in the set.

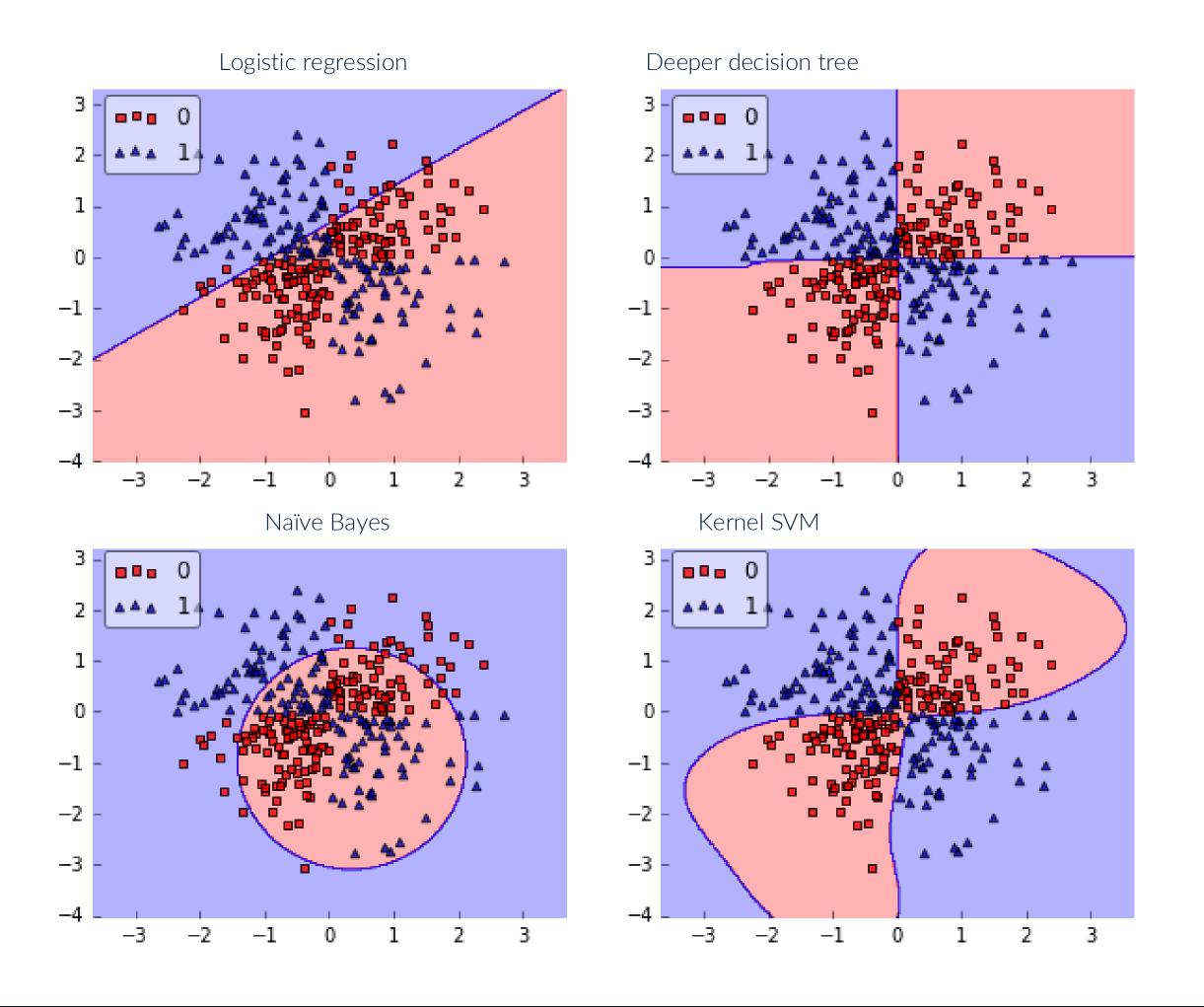
More complex datasets

XOR



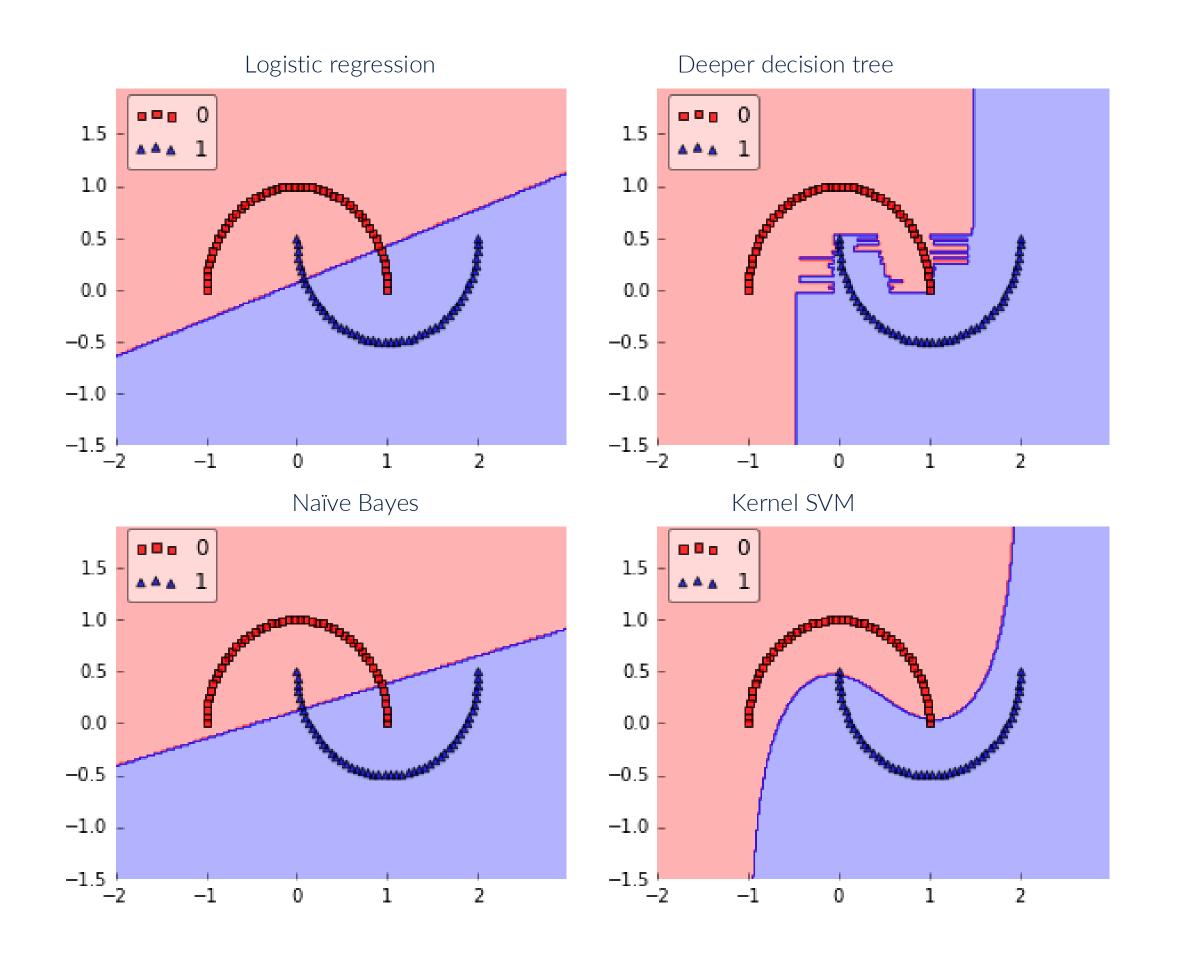
More complex datasets

XOR



More complex datasets

Half-Moons



(Dis)Advantages of Decision Trees

Advantages:

- 1. Interpretability
- 2. Less Data Preparation
- 3. Non-Parametric
- 4. Non-Linearity

Disadvantages:

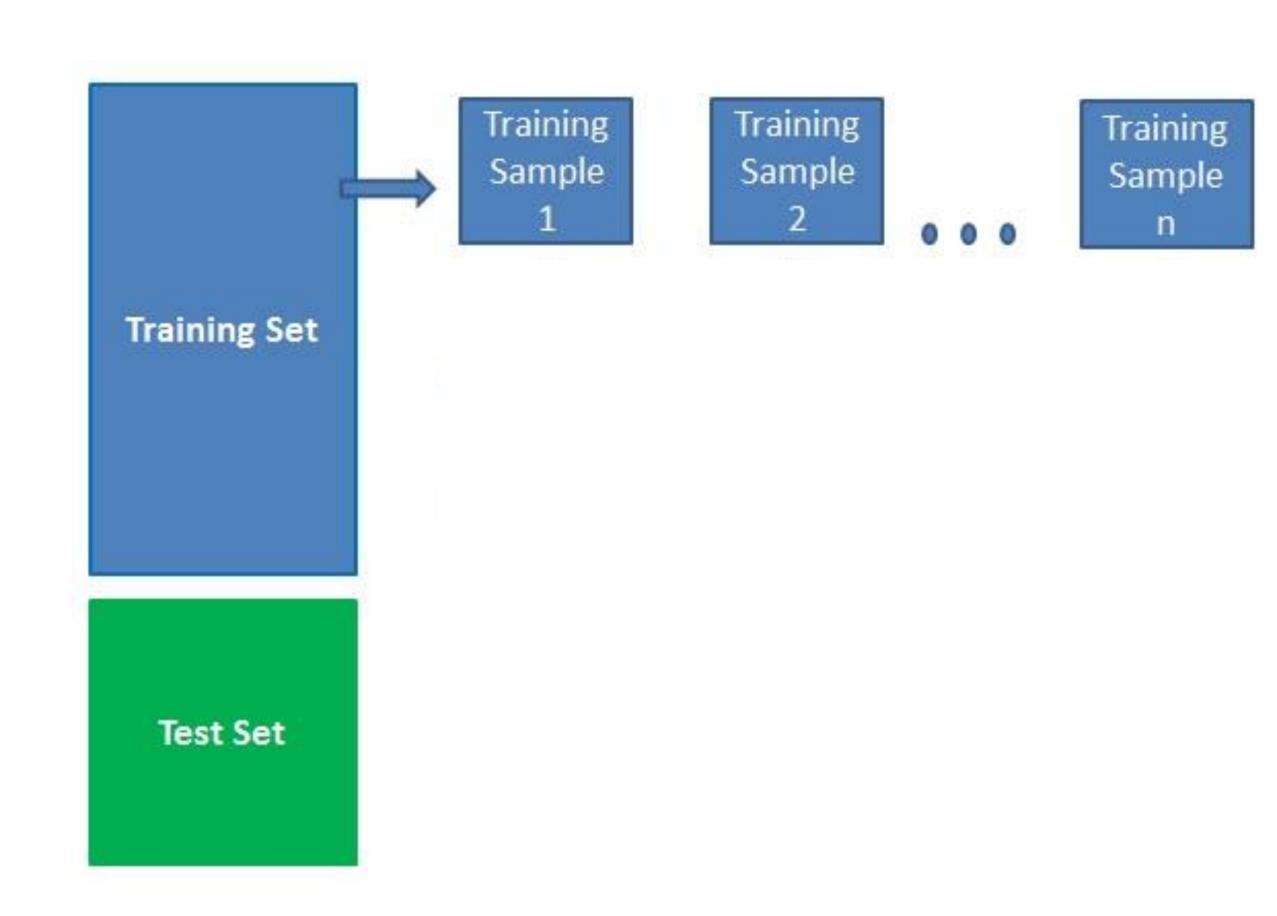
- 1. Overfitting
- 2. Unstability

- More stable
- Less prone to overfitting

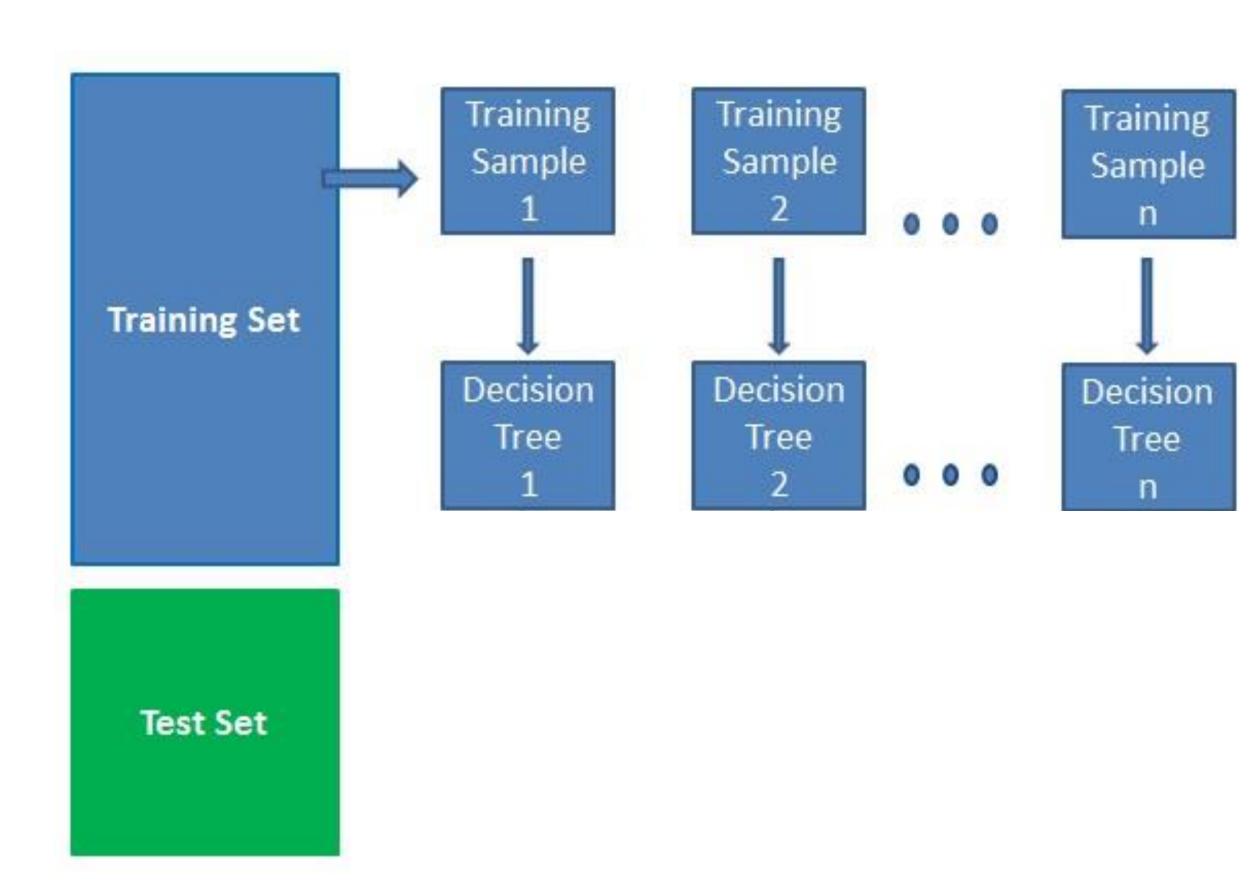
Works in 4 steps

Test Set

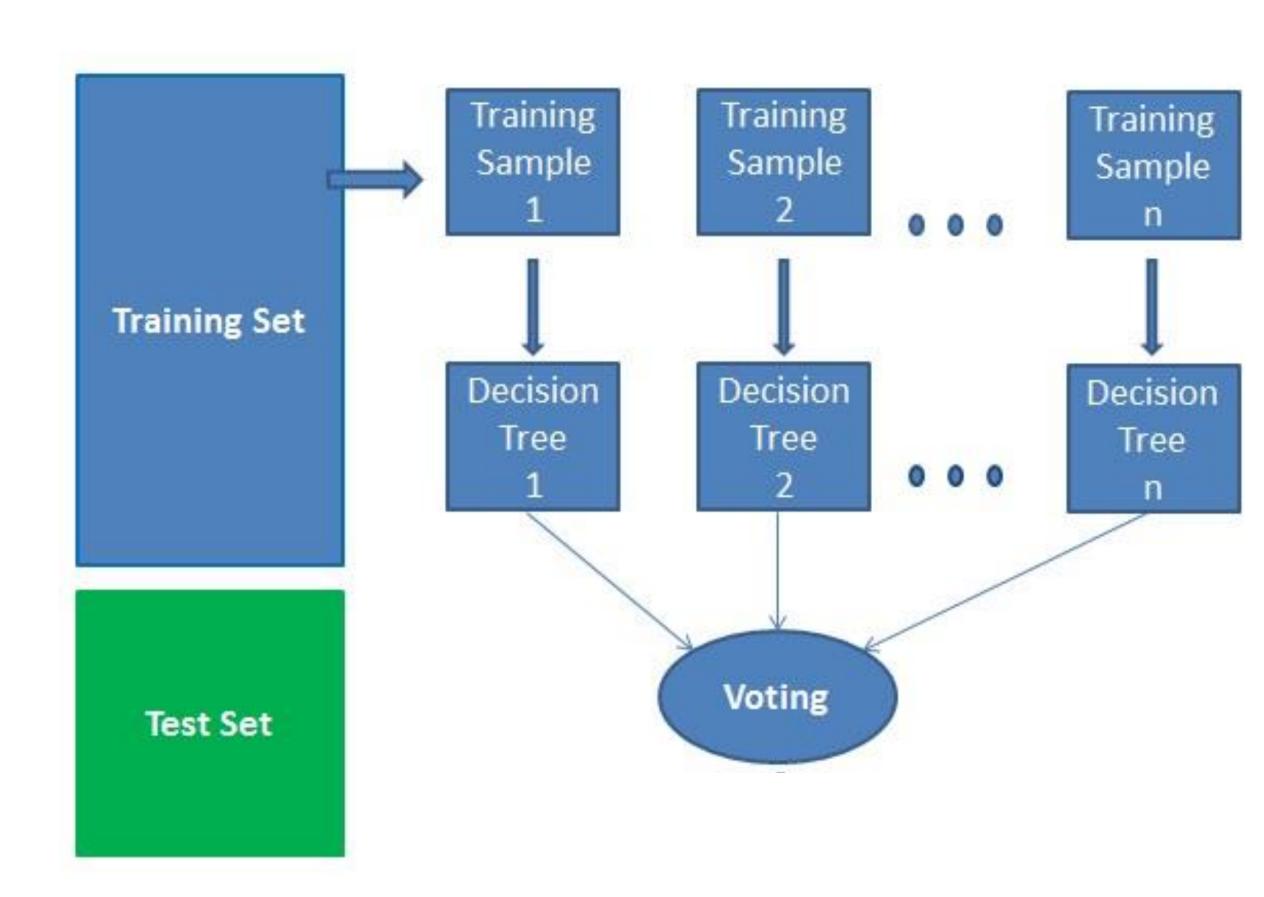
- Works in 4 steps:
 - 1. Select random samples from a given dataset



- Works in 5 steps:
 - 1. Select random samples from a given dataset
 - 2. Construct a decision tree for each sample



- Works in 5 steps:
 - 1. Select random samples from a given dataset
 - 2. Construct a decision tree for each sample
 - 3. Get a prediction from each tree
 - 4. Perform a vote for each predicted result



- Works in 5 steps:
 - 1. Select random samples from a given dataset
 - 2. Construct a decision tree for each sample
 - 3. Get a prediction from each tree
 - 4. Perform a vote for each predicted result
 - 5. Select the prediction result with the most votes as the final prediction

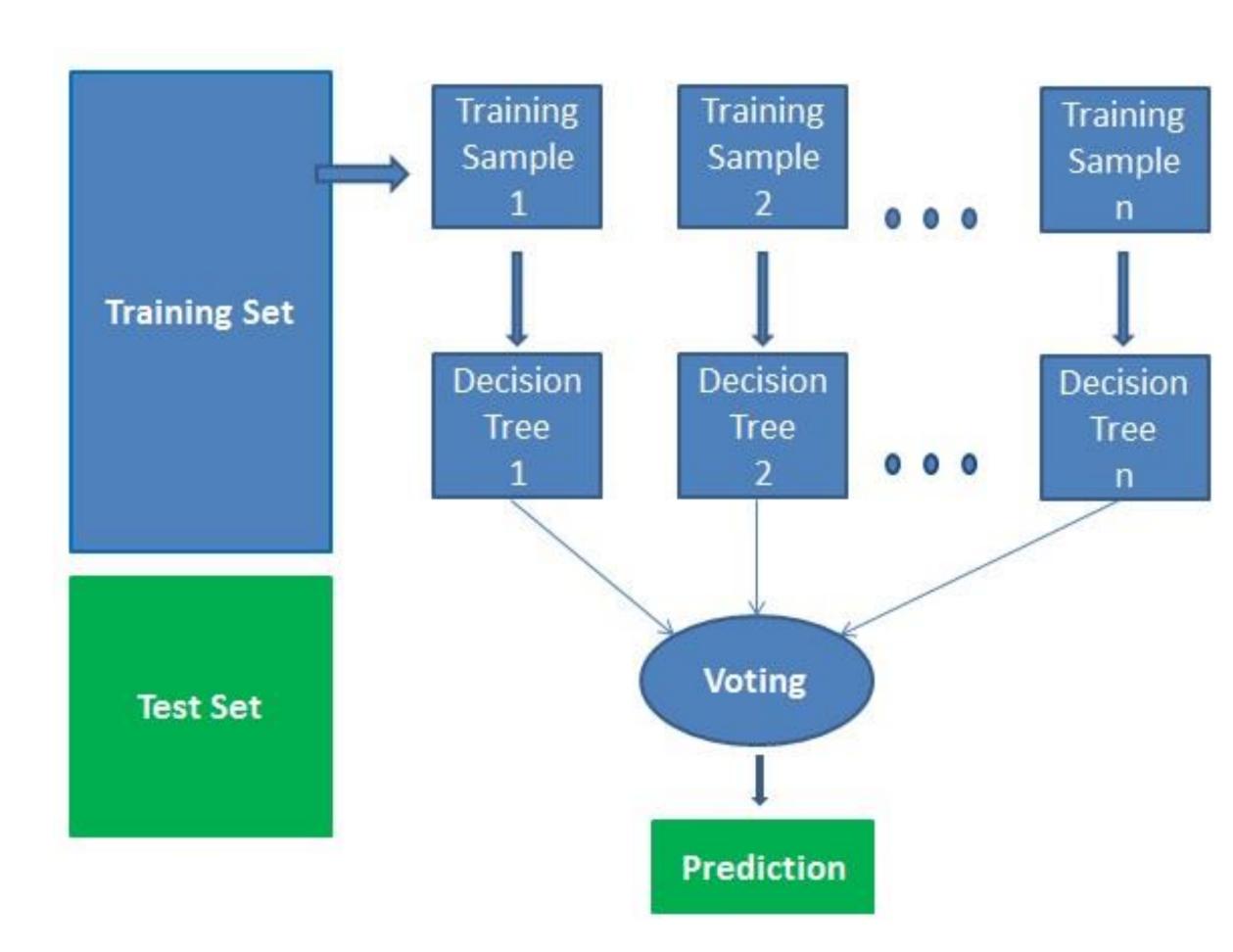
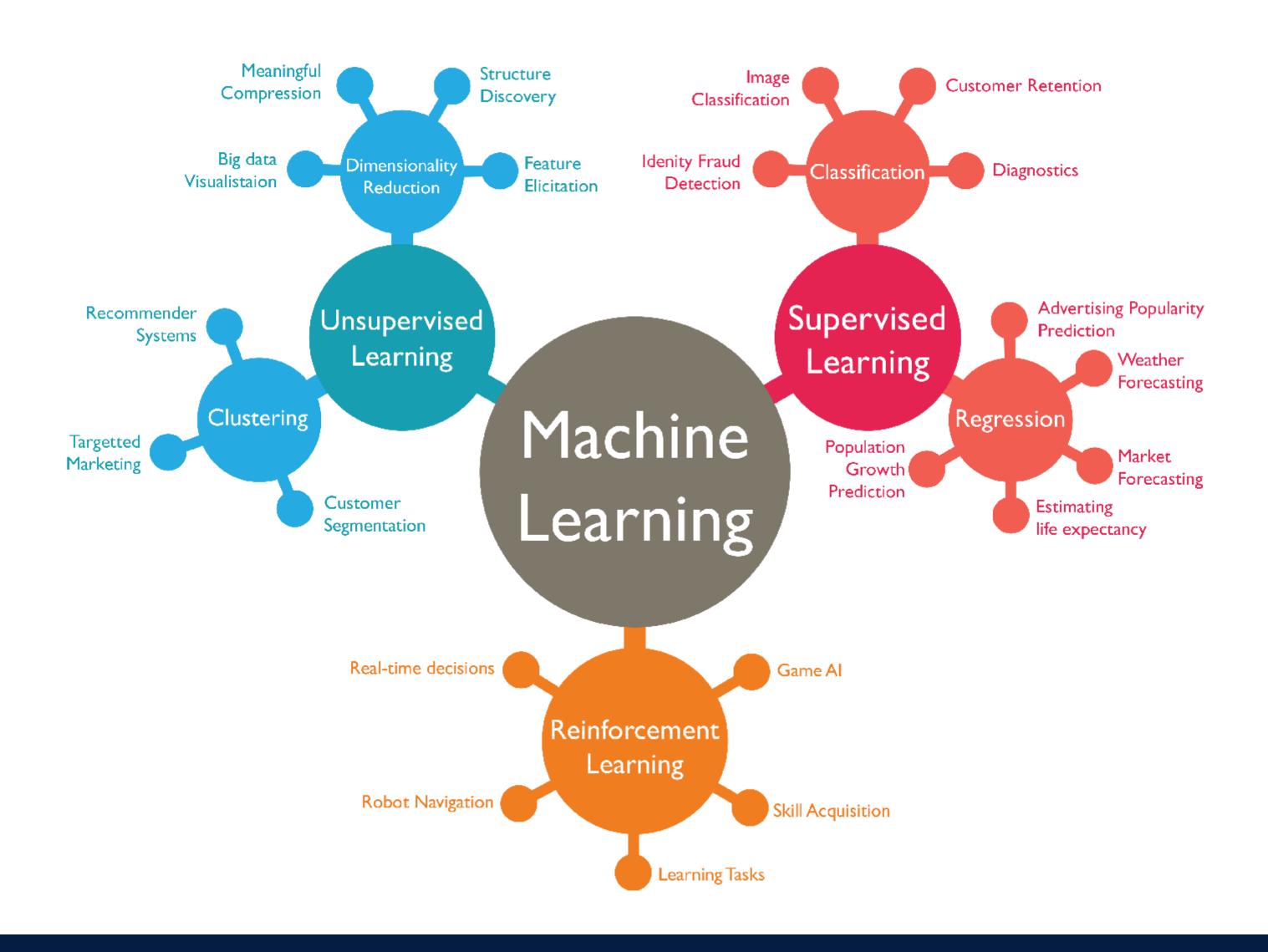


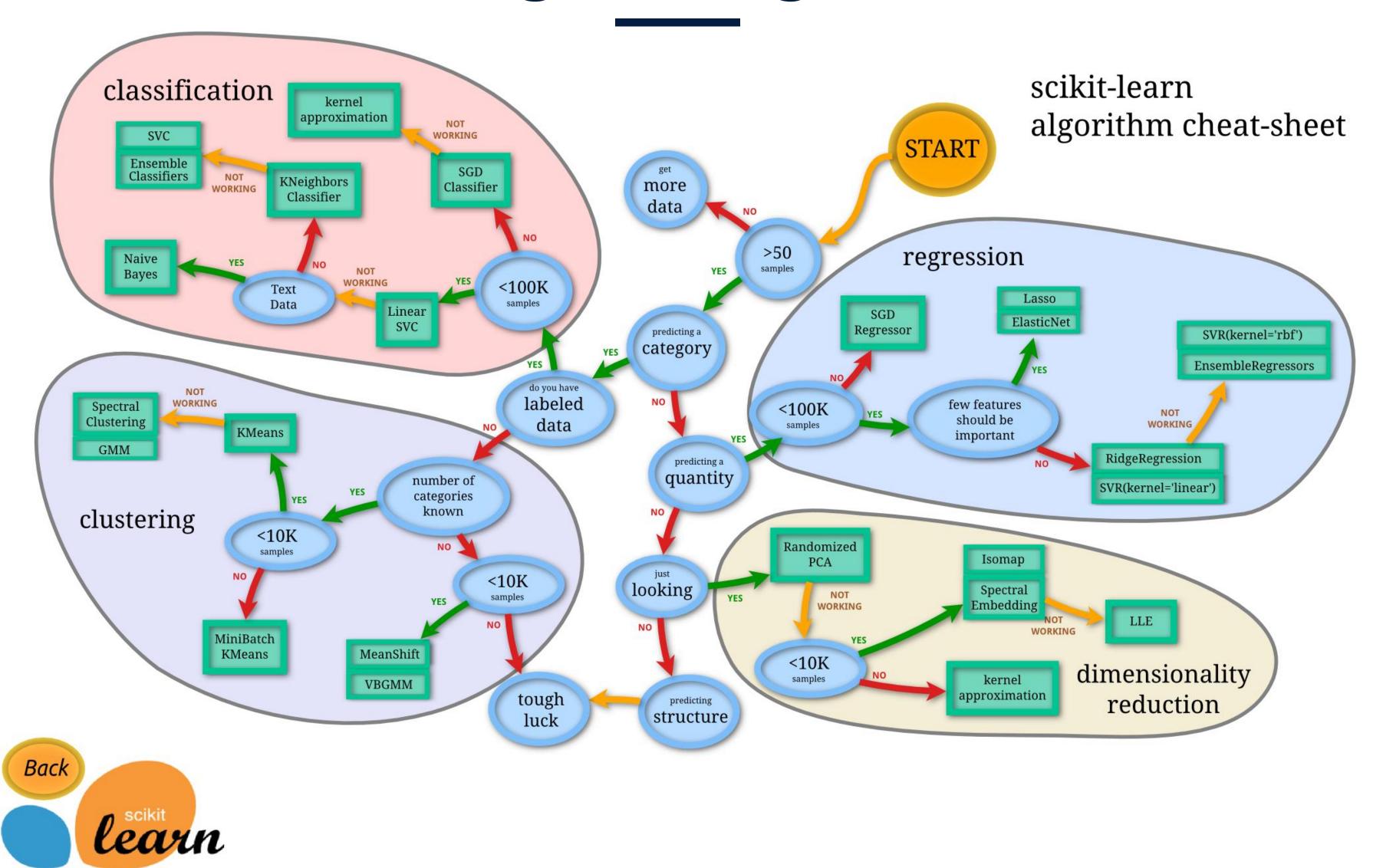
Illustration in Python (cf notebook)

25

Types of learning



Choosing the right model

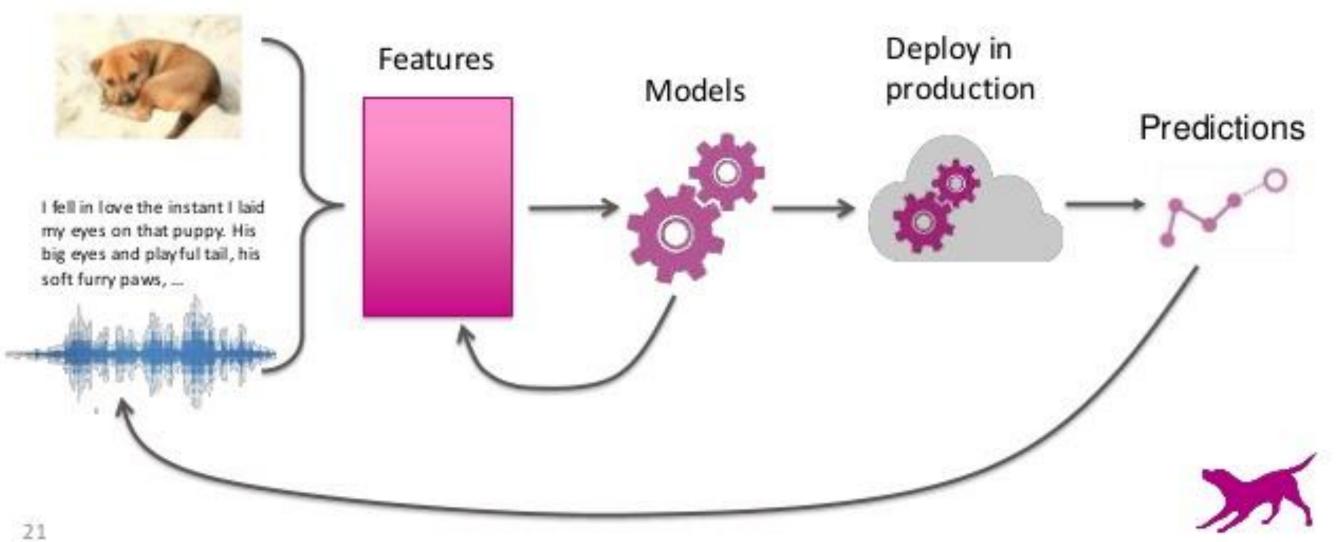


Final (important) words

Feature engineering & selection

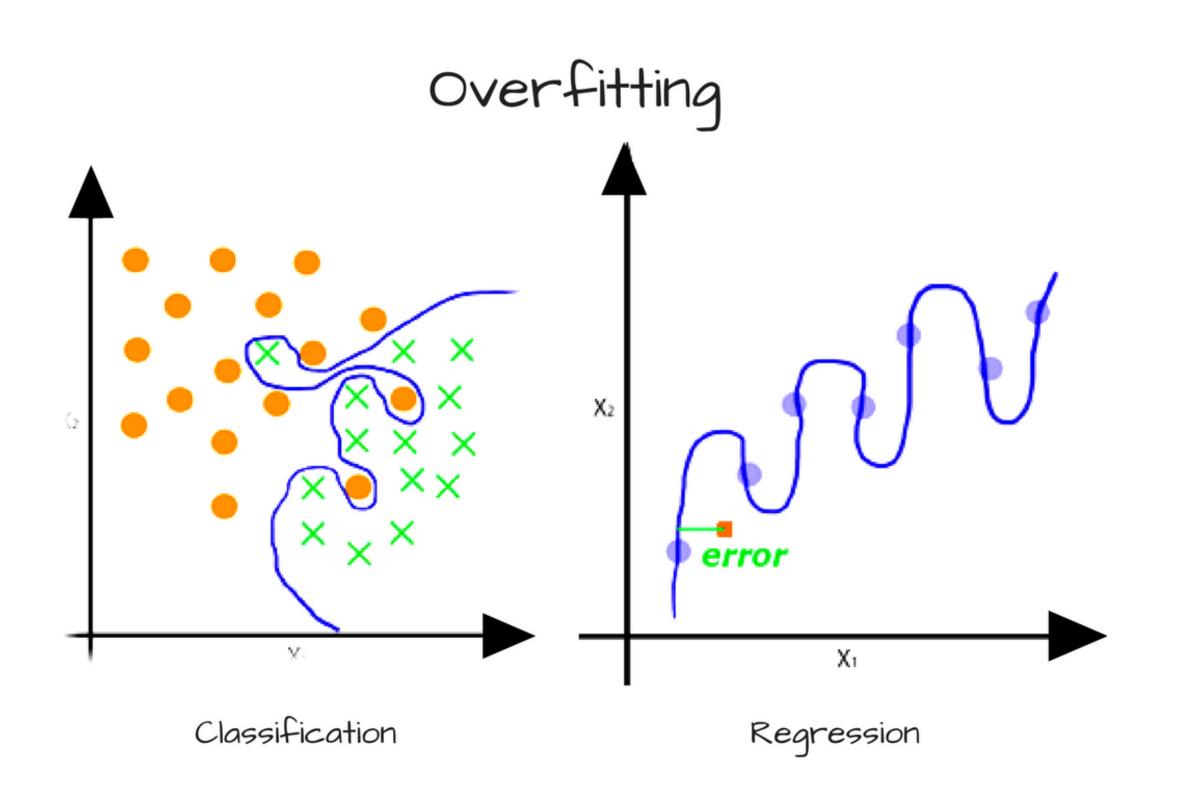
The machine learning pipeline

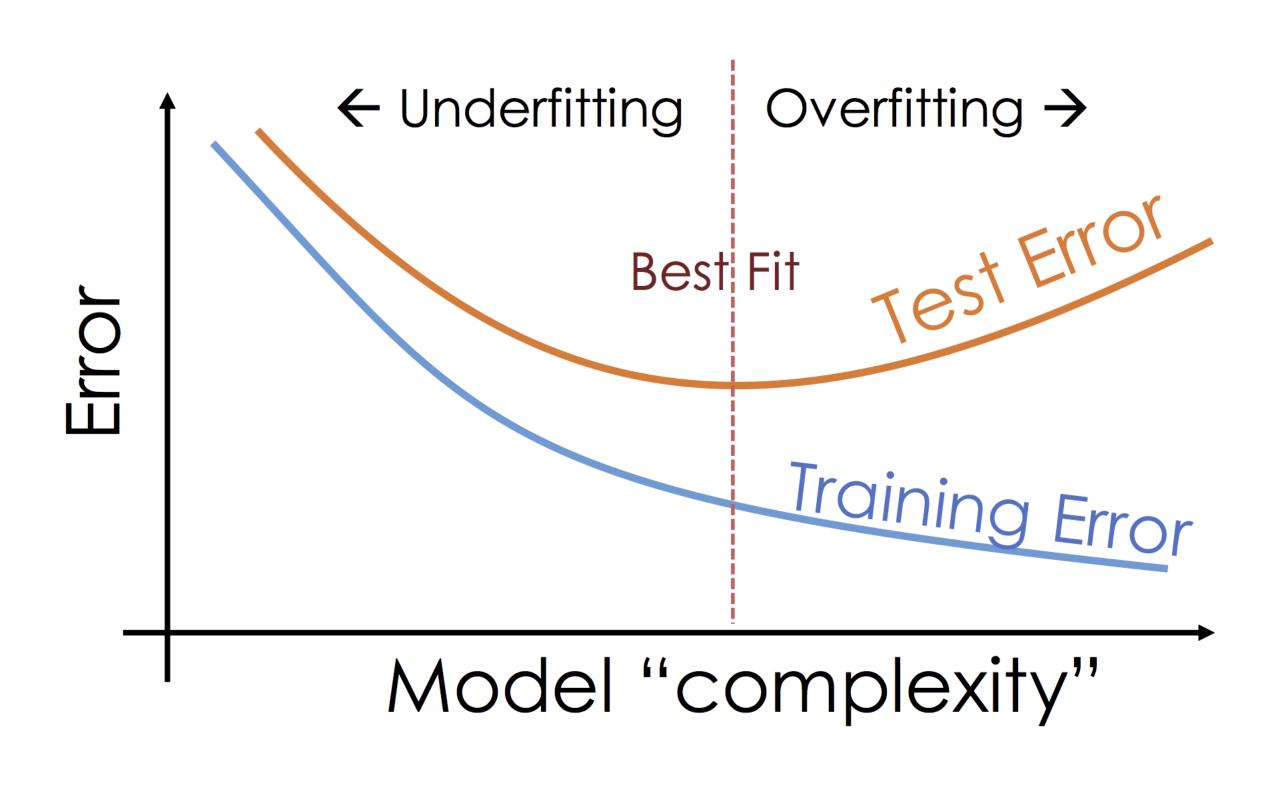
Raw data



Final (important) words

Bias-Variance trade-off





Final (important) words

Curse of dimensionality

