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Content of the Course

Part I – Basics of Optimization
I Revisiting optimality conditions for Nonlinear Programs

Part II – Introduction to Optimal Control
I Optimality conditions for Optimal Control Problems with

finite-dimensional systems
I Direct and indirect solutions methods for OCPs
I Translating control tasks into OCP formulations

Part III – Nonlinear Model Predictive Control
I Principle of Predictive Control
I Stability of NMPC with and without terminal constraints
I Economic NMPC formulations
I Numerical implementation of NMPC → exercises and projects
I Simulation case studies → exercises and projects
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Design Steps for Optimal Control and NMPC

4. NMPC Design
I Stability? State estimation? Robustness? ...

3. Solve OCP
I Choose a numerical strategy to obtain an (approximated) solution.
I Implement numerical solution. Use available toolboxes.
I Construct feasible initial guess → Solve OCP

2. Problem Analysis
I Does the model have a solution for any admissible control?
I Can the constraints be met? → feasibility
I Can the system outputs be observed/measured?
I Existence of optimal solutions?

1. Problem Formulation
I Model of system dynamics and constraints (physical restrictions)?
I Choose a performance criterion (objective functional).
I Choose the decision variables.
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OCPs and NLPs

t
0 δ 2δ kδ Nδ

ẋ = f (x(t), u(t)), x(0) = x0

Solution: x(t) = x(t , x0, u(·))

Num. Solution of ODE

t = kδ
x(k + 1) = f d (x(k), u(k)), x(0) = x0

Solution: x(k) = x(k , x0, u(·))

VT (x0)
.

= min
u(·)

∫ T

0
`(x(τ), u(τ)) dτ + ϕ(x(T ))

I ODE + initial condition
I State and input constraints

x(t) ∈ X ⊆ Rnx , u(t) ∈ U ⊆ Rnu

I Terminal constraint x(T ) ∈ Xf

min
u(·)

N−1∑
k=0

`(x(k), u(k)) + ϕ(x(N))

I Discretized ODE + ini. condition
I State and input constraints

x(k) ∈ X ⊆ Rnx , u(k) ∈ U ⊆ Rnu

I Terminal constraint x(N) ∈ Xf

Discretization

Optimization

Pontryagin’s Maximum Principle
(PMP)

Optimization

Discretization KKT conditions
of discretized OCP

VT (x0)
.

=

∫ t

0
`(x?(τ, x0, u?(·)), u?(τ)) dτ +VT−t ((x?(t , x0, u?(·)))

Bellman’s Principle of Optimality
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Meaning of Adjoints and Multipliers

PMP (w.o. state constraints)

H(x , u, λ) =λ0`(x , u) + λ>f (x , u) (λ0 ≡ 1)

ẋ? = Hλ(x?, u?, λ?)

= f (x?, u?)

λ̇? =− Hλ(x?, u?, λ?)

=− f>x λ? − `x

∀v ∈ U : H(x?, v , λ?) ≥ H(x?, u?, λ?)

x?(0) = x0

λ?(T ) = ϕx (x?(T )) + . . .

KKT cond. of discretized OCP

Lk
.

= `(x(k), u(k)) + λ(k + 1)>(x(k + 1)− f d (x(k), u(k)))

+ µ(k)>g(x(k), u(k))

L .
= λ(0)>(x(0)− x0) +

N−1∑
k=0

Lk + ϕ(x(N))

Lλ = 0→ x?(k + 1) = f d (x?(k), u?(k))

Lx = 0→ λ?(k) = (f d
x )>λ?(k + 1) + `x + g>x µ(k)

Lu = 0→ 0 = (f d
u )>λ?(k) + `u + g>u µ(k)

. . .

What is the meaning of λ??
I Sensitivity of optimal value function w.r.t. pertubations of equality constraints (dynamics)
I OCPs and NLPs
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Nonlinear Model Predictive Control

1. State measurement/estimate x(tk )

2. Solve OCP(x(tk )) :

min
u(·|tk ))

∫ tk +T

tk
`(x(τ |tk )), u(τ |tk )) dτ + Vf (x(tk + T |tk ))

∀τ ∈ [tk , tk + T ] :
dx(τ |tk )

dτ
= f (x(τ |tk ), u(τ |tk ))

x(tk |tk ) = x(tk )

x(τ |tk ) ∈ X, u(τ |tk ) ∈ U
x(tk + T |tk ) ∈ Xf

3. Apply u?(τ |tk ) for τ ∈ [tk , tk+1)

NMPC for Setpoint Stabilization
I Lower boundedness of stage cost

`(x , u) ≥ α(‖x − x̄‖)

I With term. constraints and penalty (Xf and Vf )

∂Vf

∂x
· f (x , u) + `(x , u) ≤ 0

I Without term. constraints and penalty (Xf and Vf )

Economic NMPC
I Dissipation inequality

∂S
∂x
· f (x , u) ≤ −α(‖(x − x̄)‖) + `(x , u)− `(x̄ , ū)

I Turnpike properties are crucial
I With term. constraints and penalty (Xf and Vf )
I Without term. constraints and penalty (Xf and Vf )
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The End
4. NMPC Design

I Stability? State estimation? Robustness? ...

3. Solve OCP
I Choose a numerical strategy to obtain an (approximated) solution.
I Implement numerical solution. Use available toolboxes.
I Construct feasible initial guess → Solve OCP

2. Problem Analysis
I Does the model have a solution for any admissible control?
I Can the constraints be met? → feasibility
I Can the system outputs be observed/measured?
I Existence of optimal solutions?

1. Problem Formulation
I Model of system dynamics and constraints (physical restrictions)?
I Choose a performance criterion (objective functional).
I Choose the decision variables.
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