

Optimal Control (EE-736) Summary and Wrap-Up

Timm Faulwasser & Yuning Jiang

ie3, TU Dortmund

timm.faulwasser@ieee.org yuning.jiang@epfl.ch

Block course @ EPFL

Version EE736,2024.I

© Timm Faulwasser

Content of the Course

Part I – Basics of Optimization

► Revisiting optimality conditions for Nonlinear Programs

Content of the Course

Part I – Basics of Optimization

Revisiting optimality conditions for Nonlinear Programs

Part II – Introduction to Optimal Control

- Optimality conditions for Optimal Control Problems with finite-dimensional systems
- ▶ Direct and indirect solutions methods for OCPs
- ► Translating control tasks into OCP formulations

Content of the Course

Part I – Basics of Optimization

► Revisiting optimality conditions for Nonlinear Programs

Part II – Introduction to Optimal Control

- Optimality conditions for Optimal Control Problems with finite-dimensional systems
- ▶ Direct and indirect solutions methods for OCPs
- ► Translating control tasks into OCP formulations

Part III – Nonlinear Model Predictive Control

- Principle of Predictive Control
- Stability of NMPC with and without terminal constraints
- ► Economic NMPC formulations
- lacktriangle Numerical implementation of NMPC ightarrow exercises and projects
- ► Simulation case studies → exercises and projects

4. NMPC Design

► Stability? State estimation? Robustness? ...

4. NMPC Design

► Stability? State estimation? Robustness? ...

3. Solve OCP

- ► Choose a numerical strategy to obtain an (approximated) solution.
- ► Implement numerical solution. Use available toolboxes.
- lacktriangle Construct feasible initial guess ightarrow Solve OCP

4. NMPC Design

► Stability? State estimation? Robustness? ...

3. Solve OCP

- Choose a numerical strategy to obtain an (approximated) solution.
- ► Implement numerical solution. Use available toolboxes.
- ▶ Construct feasible initial guess → Solve OCP

2. Problem Analysis

- ▶ Does the model have a solution for any admissible control?
- $\blacktriangleright \quad \text{Can the constraints be met?} \ \to \ \text{feasibility}$
- ► Can the system outputs be observed/measured?
- Existence of optimal solutions?

4. NMPC Design

► Stability? State estimation? Robustness? ...

3. Solve OCP

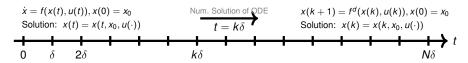
- ► Choose a numerical strategy to obtain an (approximated) solution.
- Implement numerical solution. Use available toolboxes.
- ► Construct feasible initial guess → Solve OCP

2. Problem Analysis

- ▶ Does the model have a solution for any admissible control?
- ► Can the constraints be met? → feasibility
- Can the system outputs be observed/measured?
- Existence of optimal solutions?

1. Problem Formulation

- ► Model of system dynamics and constraints (physical restrictions)?
- ► Choose a performance criterion (objective functional).
- Choose the decision variables.



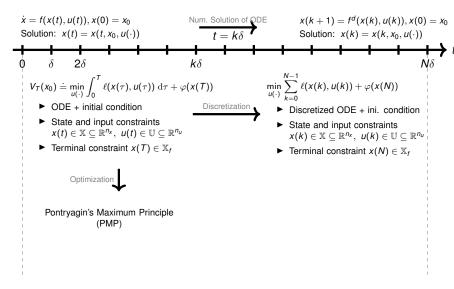
$$\dot{x} = f(x(t), u(t)), x(0) = x_0$$
Solution: $x(t) = x(t, x_0, u(\cdot))$

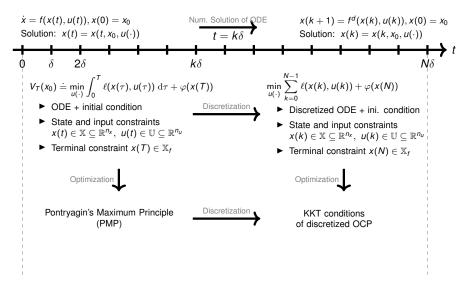
$$0 \quad \delta \quad 2\delta$$
Num. Solution of ODE
$$x(k+1) = t^d(x(k), u(k)), x(0) = x_0$$
Solution: $x(k) = x(k, x_0, u(\cdot))$

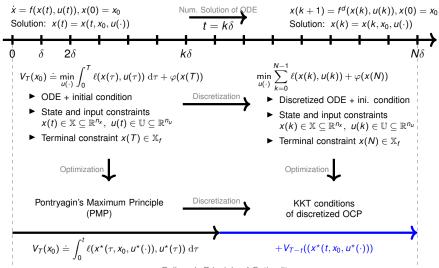
$$V_T(x_0) \doteq \min_{u(\cdot)} \int_0^T \ell(x(\tau), u(\tau)) d\tau + \varphi(x(T))$$

- ► ODE + initial condition
- State and input constraints $x(t) \in \mathbb{X} \subseteq \mathbb{R}^{n_x}, \ u(t) \in \mathbb{U} \subseteq \mathbb{R}^{n_u}$
- ▶ Terminal constraint $x(T) \in X_f$









Bellman's Principle of Optimality

Meaning of Adjoints and Multipliers

PMP (w.o. state constraints)

$$H(x, u, \lambda) = \lambda_0 \ell(x, u) + \lambda^\top f(x, u) \quad (\lambda_0 \equiv 1)$$

$$\dot{x}^* = H_{\lambda}(x^*, u^*, \lambda^*)$$

$$= f(x^*, u^*)$$

$$\dot{\lambda}^* = -H_{\lambda}(x^*, u^*, \lambda^*)$$

$$= -f_x^\top \lambda^* - \ell_x$$

$$\forall v \in \mathbb{U} : H(x^*, v, \lambda^*) \ge H(x^*, u^*, \lambda^*)$$

$$x^*(0) = x_0$$

$$\lambda^*(T) = \varphi_X(x^*(T)) + \dots$$

Meaning of Adjoints and Multipliers

PMP (w.o. state constraints)

KKT cond. of discretized OCP

$$H(x, u, \lambda) = \lambda_0 \ell(x, u) + \lambda^\top f(x, u) \quad (\lambda_0 \equiv 1) \qquad L_k \doteq \ell(x(k), u(k)) + \lambda(k+1)^\top (x(k+1) - f^d(x(k), u(k))) \\ + \mu(k)^\top g(x(k), u(k)) \\ + \mu(k)$$

Meaning of Adjoints and Multipliers

PMP (w.o. state constraints)

KKT cond. of discretized OCP

What is the meaning of λ^* ?

- Sensitivity of optimal value function w.r.t. pertubations of equality constraints (dynamics)
- OCPs and NI Ps

Nonlinear Model Predictive Control

NMPC for Setpoint Stabilization

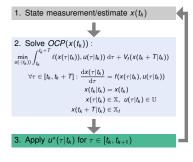
Lower boundedness of stage cost

$$\ell(x,u) \geq \alpha(\|x-\bar{x}\|)$$

▶ With term. constraints and penalty (X_f and V_f)

$$\frac{\partial V_f}{\partial x} \cdot f(x, u) + \ell(x, u) \le 0$$

▶ Without term. constraints and penalty (X_f and V_f)



Nonlinear Model Predictive Control

NMPC for Setpoint Stabilization

► Lower boundedness of stage cost

$$\ell(x,u) \geq \alpha(\|x-\bar{x}\|)$$

▶ With term. constraints and penalty (X_f and V_f)

$$\frac{\partial V_f}{\partial x} \cdot f(x, u) + \ell(x, u) \le 0$$

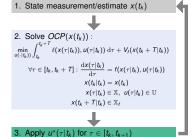
▶ Without term. constraints and penalty (X_f and V_f)

Economic NMPC

► Dissipation inequality

$$\frac{\partial S}{\partial x} \cdot f(x, u) \le -\alpha(\|(x - \bar{x})\|) + \ell(x, u) - \ell(\bar{x}, \bar{u})$$

- ► Turnpike properties are crucial
- ▶ With term. constraints and penalty (X_f and V_f)
- ▶ Without term. constraints and penalty (X_f and V_f)



The End

4. NMPC Design

► Stability? State estimation? Robustness? ...

3. Solve OCP

- ► Choose a numerical strategy to obtain an (approximated) solution.
- Implement numerical solution. Use available toolboxes.
- ► Construct feasible initial guess → Solve OCP

2. Problem Analysis

- ► Does the model have a solution for any admissible control?
- ► Can the constraints be met? → feasibility
- Can the system outputs be observed/measured?
- ► Existence of optimal solutions?

1. Problem Formulation

- Model of system dynamics and constraints (physical restrictions)?
- Choose a performance criterion (objective functional).
- Choose the decision variables.