EE-736 EPFL

Ordinary Differential Equations

Problem Formulation

Taylor-Model Based Integrators

Runge-Kutta Integrators

Yuning Jiang 1

Contents

Problem Formulation

Taylor-Model Based Integrators

Runge-Kutta Integrators

Problem Formulation

We are interested in computing the solution $x:[t_0,t_1]\to\mathbb{R}^n$ of the ordinary differential equations (ODE)

$$\forall t \in [t_0, t_1], \quad \dot{x}(t) = f(x(t)) \text{ with } x(t_0) = x_0.$$

3

Assumptions:

- The function $f: \mathbb{R}^n \to \mathbb{R}^n$ is smooth.
- The initial value $x_0 \in \mathbb{R}^n$ is given.

Explicit Time Dependence

• Important: In practice, ODEs are often explicit time-dependet

$$\forall t \in [t_0, t_1], \quad \dot{y}(t) = g(t, y(t)) \text{ with } y(t_0) = y_0.$$

• But for theoretical derivations we may define

$$x(t) = \begin{bmatrix} y(t) \\ t \end{bmatrix}, \ f(x) = \begin{bmatrix} g(t,y(t)) \\ 1 \end{bmatrix}, \ \text{and} \ \ x_0 = \begin{bmatrix} y(t_0) \\ t_0 \end{bmatrix}.$$

Integral Form

The ordinary differential equation (ODE)

$$\forall\,t\in[t_0,t_1],\quad \dot{x}(t)=f(x(t))\ \ \text{with}\ \ x(t_0)=x_0$$

can be equivalently be written in its integral form

$$\forall t \in [t_0, t_1], \quad x(t) = x_0 + \int_{t_0}^t f(x(\tau)) d\tau.$$

Lipschitz Continuity

Definition:

 \bullet The function f is called (globally) Lipschitz continuous, if there exist a constant $L<\infty$ with

$$\forall x, y \in \mathbb{R}^n, \quad \|f(x) - f(y)\| \le L \|x - y\|.$$

Existence and Uniqueness

Theorem (Picard-Lindelöf):

• If f is globally Lipschitz continuous, the ODE has a unique solution.

Sketch proof:

1. Start with any continuous function $y_1:[t_0,t_1] o \mathbb{R}^n$ and iterate

$$y_{i+1}(t) = x_0 + \int_{t_0}^t f(y_i(\tau)) d\tau$$
 [Picard iteration]

- 2. Show that y_1 , y_2 ,.... is a Cauchy sequence, $y^* = \lim_{i \to \infty} y_i$.
- 3. Conclude that the (unique) limit point y^* satisfies the ODE.

Example: Linear ODEs

- Linear ODE: $\dot{x}(t) = Ax(t)$, $A \in \mathbb{R}^{n \times n}$, with $x_0 = x(t_0)$.
- Picard iteration:

$$y_1(t) = x_0$$

 $y_2(t) = x_0 + \Delta t A x_0$
 $y_3(t) = x_0 + \Delta t A x_0 + \frac{\Delta t^2}{2} A^2 x_0$
 \vdots

with $\Delta t = t - t_0$.

Take the limit to get explicit solution

$$x(t) = \sum_{i=0}^{\infty} \frac{1}{i!} [(t - t_0)A]^i x_0 = \exp(A(t - t_0))x_0.$$

• The ODE $\dot{x}(t)=x(t)^2$, with x(0)=1 has th explicit solution

$$x(t) = \frac{1}{1-t} \text{ for } t < 1.$$

Why does the solution not exist for $t \ge 1$?

• The ODE $\dot{x}(t)=2\sqrt{x}$ with x(0)=0 has more than one solution

for example
$$x(t)=0$$
 and $x(t)=t^2$

• The ODE $\dot{x}(t)=x(t)^2$, with x(0)=1 has th explicit solution

$$x(t) = \frac{1}{1-t} \text{ for } t < 1.$$

Why does the solution not exist for $t \ge 1$?

• The ODE $\dot{x}(t)=2\sqrt{x}$ with x(0)=0 has more than one solution

for example
$$x(t)=0$$
 and $x(t)=t^2$

• The ODE $\dot{x}(t)=x(t)^2$, with x(0)=1 has th explicit solution

$$x(t) = \frac{1}{1-t} \text{ for } t < 1.$$

Why does the solution not exist for $t \ge 1$?

 \bullet The ODE $\dot{x}(t)=2\sqrt{x}$ with x(0)=0 has more than one solution

$$\text{for example} \quad x(t) = 0 \ \ \text{and} \ \ x(t) = t^2.$$

• The ODE $\dot{x}(t)=x(t)^2$, with x(0)=1 has th explicit solution

$$x(t) = \frac{1}{1-t} \text{ for } t < 1.$$

Why does the solution not exist for $t \ge 1$?

 \bullet The ODE $\dot{x}(t)=2\sqrt{x}$ with x(0)=0 has more than one solution

$$\text{for example} \quad x(t) = 0 \ \ \text{and} \ \ x(t) = t^2.$$

Contents

Problem Formulation

Taylor-Model Based Integrators

Runge-Kutta Integrators

Taylor Expansion of ODEs

A typlor expansion of the solution x(t) can be constructed recursively:

•
$$x(0) = x_0$$

$$\dot{x}(0) = f(x_0)$$

$$\bullet \ \ddot{x}(0) = \frac{\partial}{\partial t} f(x(t)) \Big|_{t_0} = f'(x_0) f(x_0)$$

•
$$\ddot{x}(t) = [f''(x_0) \cdot f(x_0)] \cdot f(x_0) + f'(x_0)f'(x_0)f(x_0)$$

- and so on ...
- Finally, $x(t) = x_0 + f(x_0)t + \frac{t^2}{2}f'(x_0)f(x_0) + \dots$ for small t.
- Never work out such expansions by hand!

Taylor Expansion of ODEs

A typlor expansion of the solution x(t) can be constructed recursively:

•
$$x(0) = x_0$$

•
$$\dot{x}(0) = f(x_0)$$

$$\bullet \ \ddot{x}(0) = \frac{\partial}{\partial t} f(x(t)) \Big|_{t_0} = f'(x_0) f(x_0)$$

$$\bullet \ \ddot{x}(t) = [f''(x_0) \cdot f(x_0)] \cdot f(x_0) + f'(x_0)f'(x_0)f(x_0)$$

- and so on ...
- Finally, $x(t) = x_0 + f(x_0)t + \frac{t^2}{2}f'(x_0)f(x_0) + \dots$ for small t.
- Never work out such expansions by hand!

Taylor Expansion of ODEs

A general s-order Taylor expansion can be computed by using AD:

- Set $\phi_0(x) = x$.
- For i = 0 : s 1

set
$$\phi_{i+1} = \frac{1}{i+1} \frac{\partial \phi_i}{\partial x}(x) f(x)$$
.

Return the Taylor expansion

$$x(t) = \sum_{i=0}^{s} \phi_i(x_0)t^i + \mathbf{O}(t^{s+1}).$$

Integration Algorithm (Constant Step-Size)

Input:

- The right-hand side function f and an initial value x_0 .
- Order s and constant step-size $h = \Delta t/N$; set i = 0 and $y_0 = x_0$.

Repeat: (until i = N)

• Compute $y_{i+1} = \sum_{k=0}^{s} \phi_k(y_i) h^k$ and set $i \leftarrow i+1$

Theorem: If f is globally Lipschitz continuous and smooth, then

$$\forall i \in \{1, ..., N\} \qquad y_i = x(ih) + \mathbf{O}(h^s).$$

Contents

Problem Formulation

Taylor-Model Based Integrators

Runge-Kutta Integrators

Limitation of Taylor Model Based Integrators

- 1. Taylor model based intgration is easy to implement, but
 - we need an AD tool (not a big problem)
 - ullet it is not the most efficient scheme for obtaining convergence order s.
- 2. Runge-Kutta integrators compute an approximation $y \approx x(h)$ by evaluating f at more than one point, but don't evaluate derivatives.

Explicit Runge Kutta Method (Constant Step-size)

Input:

- The right-hand side function f and an initial value x_0 .
- Constant step-size $h = \Delta t/N$; set n = 0 and $y_0 = x_0$.

Repeat: (unitil n = N)

- 1. Compute iterates $k_i = f(y_n + \sum_{j=1}^{i-1} ha_{i,j}k_j)$ for i = 1, ..., s.
- 2. Set $y_{n+1} = y_n + h \sum_{i=1}^s b_i k_i$.

Main idea:

ullet Choose the coefficients $a_{i,j}$ and b_j such that

$$\forall\,i\in\{1,...,r\},\quad \left.\frac{\partial^i y_{n+1}}{\partial h^i}\right|_{h=0}=\phi_i(y_n)\quad \text{(typically }r=s\leq 10\text{)}.$$

Example 1: Euler's Method

ullet For s=1, the Runge-Kutta method takes the form

$$y_{n+1} = y_n + hb_1 f(y_n).$$

The first order consistency condition

$$\left. \frac{\partial y_{n+1}}{\partial h} \right|_{h=0} = b_1 f(y_n) = \phi_1(y_n) = f(y_n)$$

implies that we must choose $b_1 = 1$.

This gives Euler's method

$$y_{n+1} = y_n + hf(y_n)$$

Example 2: Heun's Method

Heun's method is given by the coefficient scheme

$$\begin{array}{ccc}
0 & & & 0 \\
a_{2,1} & 0 & = & 1 & 0 \\
\hline
b_1 & b_2 & & \frac{1}{2} & \frac{1}{2}
\end{array}$$

The corresponding method can be written as

$$k_1 = f(y_n)$$

 $k_2 = f(y_n + hk_1)$
 $y_{n+1} = y_n + h\left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right)$.

Example 2: Heun's Method

ullet The first and second order consistency conditions for s=2 are

$$\frac{\partial y_{n+1}}{\partial h}\Big|_{h=0} = (b_1 + b_2)f(y_n) = \phi_1(y_n) = f(y_n)$$

and

$$\left. \frac{\partial^2 y_{n+1}}{\partial h^2} \right|_{h=0} = b_2 a_{2,1} f'(y_n) f(y_n) = \phi_2(y_n) = \frac{1}{2} f'(y_n) f(y_n).$$

ullet Thus, Heun's method has convergence order r=2, since it satisfies

$$b_1 + b_2 = 1$$
 and $b_2 a_{2,1} = \frac{1}{2}$.

Example 3: RK4

A very elegant method of order 4 is given by the scheme

$$k_1 = f(y_n)$$

$$k_2 = f(y_n + \frac{h}{2}k_1)$$

$$k_3 = f(y_n + \frac{h}{2}k_2)$$

$$k_4 = f(y_n + hk_3)$$

$$y_{n+1} = y_n + h\left(\frac{1}{6}k_1 + \frac{1}{3}k_2 + \frac{1}{3}k_3 + \frac{1}{6}k_4\right).$$

Implicit Runge Kutta (IRK) Method

 IRK methods are analogous to explicit RK methods, but solve a nonlinear equation system of the form

$$k_i = f\left(y_n + \sum_{j=1}^s ha_{i,j}k_j\right)$$

for $i \in \{1, ..., s\}$ in order to determine the step

$$y_{n+1} = y_n + \sum_{i=1}^{s} b_i k_i.$$