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Problem Formulation

We are interested in computing the solution x : [t0, t1]→ Rn of the ordinary

differential equations (ODE)

∀ t ∈ [t0, t1], ẋ(t) = f(x(t)) with x(t0) = x0.

Assumptions:

The function f : Rn → Rn is smooth.

The initial value x0 ∈ Rn is given.
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Explicit Time Dependence

Important: In practice, ODEs are often explicit time-dependet

∀ t ∈ [t0, t1], ẏ(t) = g(t, y(t)) with y(t0) = y0.

But for theoretical derivations we may define

x(t) =

y(t)

t

 , f(x) =

g(t, y(t))

1

 , and x0 =

y(t0)

t0

 .
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Integral Form

The ordinary differential equation (ODE)

∀ t ∈ [t0, t1], ẋ(t) = f(x(t)) with x(t0) = x0

can be equivalently be written in its integral form

∀ t ∈ [t0, t1], x(t) = x0 +
∫ t

t0

f(x(τ))dτ.
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Lipschitz Continuity

Definition:

The function f is called (globally) Lipschitz continuous, if there exist a

constant L <∞ with

∀x, y ∈ Rn, ‖f(x)− f(y)‖ ≤ L ‖x− y‖ .
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Existence and Uniqueness

Theorem (Picard-Lindelöf):

If f is globally Lipschitz continuous, the ODE has a unique solution.

Sketch proof:

1. Start with any continuous function y1 : [t0, t1]→ Rn and iterate

yi+1(t) = x0 +
∫ t

t0

f(yi(τ))dτ [Picard iteration]

2. Show that y1, y2,.... is a Cauchy sequence, y∗ = limi→∞ yi.

3. Conclude that the (unique) limit point y∗ satisfies the ODE.
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Example: Linear ODEs

Linear ODE: ẋ(t) = Ax(t), A ∈ Rn×n, with x0 = x(t0).

Picard iteration:

y1(t) = x0

y2(t) = x0 + ∆tAx0

y3(t) = x0 + ∆tAx0 + ∆t2

2 A2x0

...

with ∆t = t− t0.

Take the limit to get explicit solution

x(t) =
∞∑

i=0

1
i! [(t− t0)A]ix0 = exp(A(t− t0))x0.
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Examples for Nonlinear ODEs

The ODE ẋ(t) = x(t)2, with x(0) = 1 has th explicit solution

x(t) = 1
1− t for t < 1.

Why does the solution not exist for t ≥ 1?

The ODE ẋ(t) = 2
√
x with x(0) = 0 has more than one solution

for example x(t) = 0 and x(t) = t2.

Why is there more than one solution?
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Taylor Expansion of ODEs

A typlor expansion of the solution x(t) can be constructed recursively:

x(0) = x0

ẋ(0) = f(x0)

ẍ(0) = ∂
∂tf(x(t))

∣∣
t0

= f ′(x0)f(x0)
...
x(t) = [f ′′(x0) · f(x0)] · f(x0) + f ′(x0)f ′(x0)f(x0)

and so on ...

Finally, x(t) = x0 + f(x0)t+ t2

2 f
′(x0)f(x0) + ... for small t.

Never work out such expansions by hand!
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Taylor Expansion of ODEs

A general s-order Taylor expansion can be computed by using AD:

Set φ0(x) = x.

For i = 0 : s− 1

set φi+1 = 1
i+ 1

∂φi

∂x
(x)f(x).

Return the Taylor expansion

x(t) =
s∑

i=0
φi(x0)ti + O(ts+1).
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Integration Algorithm (Constant Step-Size)

Input:

The right-hand side function f and an initial value x0.

Order s and constant step-size h = ∆t/N ; set i = 0 and y0 = x0.

Repeat: (until i = N)

Compute yi+1 =
∑s

k=0 φk(yi)hk and set i← i+ 1

Theorem: If f is globally Lipschitz continuous and smooth, then

∀ i ∈ {1, ..., N} yi = x(ih) + O(hs).
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Limitation of Taylor Model Based Integrators

1. Taylor model based intgration is easy to implement, but

we need an AD tool (not a big problem)

it is not the most efficient scheme for obtaining convergence order s.

2. Runge-Kutta integrators compute an approximation y ≈ x(h) by

evaluating f at more than one point, but don’t evaluate derivatives.

Ordinary Differential Equations 19



Explicit Runge Kutta Method (Constant Step-size)

Input:

The right-hand side function f and an initial value x0.

Constant step-size h = ∆t/N ; set n = 0 and y0 = x0.

Repeat: (unitil n = N)

1. Compute iterates ki = f(yn +
∑i−1

j=1 hai,jkj) for i = 1, ..., s.

2. Set yn+1 = yn + h
∑s

i=1 biki.

Main idea:

Choose the coefficients ai,j and bj such that

∀ i ∈ {1, ..., r}, ∂iyn+1

∂hi

∣∣∣∣
h=0

= φi(yn) (typically r = s ≤ 10).
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Example 1: Euler’s Method

For s = 1, the Runge-Kutta method takes the form

yn+1 = yn + hb1f(yn).

The first order consistency condition

∂yn+1

∂h

∣∣∣∣
h=0

= b1f(yn) = φ1(yn) = f(yn)

implies that we must choose b1 = 1.

This gives Euler’s method

yn+1 = yn + hf(yn)
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Example 2: Heun’s Method

Heun’s method is given by the coefficient scheme

0

a2,1 0

b1 b2

=
0

1 0
1
2

1
2

The corresponding method can be written as

k1 = f(yn)

k2 = f(yn + hk1)

yn+1 = yn + h

(
1
2k1 + 1

2k2

)
.
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Example 2: Heun’s Method

The first and second order consistency conditions for s = 2 are

∂yn+1

∂h

∣∣∣∣
h=0

= (b1 + b2)f(yn) = φ1(yn) = f(yn)

and

∂2yn+1

∂h2

∣∣∣∣
h=0

= b2a2,1f
′(yn)f(yn) = φ2(yn) = 1

2f
′(yn)f(yn).

Thus, Heun’s method has convergence order r = 2, since it satisfies

b1 + b2 = 1 and b2a2,1 = 1
2 .
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Example 3: RK4

A very elegant method of order 4 is given by the scheme

k1 = f(yn)

k2 = f(yn + h

2 k1)

k3 = f(yn + h

2 k2)

k4 = f(yn + hk3)

yn+1 = yn + h

(
1
6k1 + 1

3k2 + 1
3k3 + 1

6k4

)
.
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Implicit Runge Kutta (IRK) Method

IRK methods are analogous to explicit RK methods, but solve a nonlinear

equation system of the form

ki = f

yn +
s∑

j=1
hai,jkj


for i ∈ {1, .., s} in order to determine the step

yn+1 = yn +
s∑

i=1
biki.
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