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Problem Formulation

We are interested in computing the solution x : [to, t1] — R™ of the ordinary

differential equations (ODE)

Vit € [to, t1], @(t) = f(x(t)) with x(ty) = 0.
Assumptions:

o The function f : R™ — R" is smooth.

o The initial value g € R™ is given.
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Explicit Time Dependence

o Important: In practice, ODEs are often explicit time-dependet

Vt € [to,ta],  9(t) = g(t,y(t)) with y(to) = yo.
o But for theoretical derivations we may define

o(t) = y(t) ) = g9(t,y(t)) and 20 = y(to)
t 1 to
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Integral Form

The ordinary differential equation (ODE)
Vt e [to,tl}, x(t) = f(l‘(t)) with J)(to) =y
can be equivalently be written in its integral form

Vit e [to,tl], l’(t) =g+ ) f(x(’T))dT
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Lipschitz Continuity

Definition:

o The function f is called (globally) Lipschitz continuous, if there exist a

constant L < oo with

Va,y e R, [f(x) = fW)ll < Lz —yll.
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Existence and Uniqueness

Theorem (Picard-Lindel6f):
o If f is globally Lipschitz continuous, the ODE has a unique solution.
Sketch proof:

1. Start with any continuous function y; : [tg,t1] — R™ and iterate

Yir1(t) = xo + /t fys(m)dr [Picard iteration]
to

2. Show that y1, ¥o,.... is a Cauchy sequence, y* = lim;_, o ;.

3. Conclude that the (unique) limit point y* satisfies the ODE.
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Example: Linear ODEs

o Linear ODE: &(t) = Ax(t), A € R™*", with z¢ = x(¢o).
o Picard iteration:
yi(t) = xo

Y2 (t) =g+ AtAJZ‘O

A,
yg(t) =g+ AtA:L’O + TA Zo

with At =t — to.

o Take the limit to get explicit solution

oo

o) =) %[(t — to) Al 'y = exp(A(t — to))mo.
i=0
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Examples for Nonlinear ODEs

o The ODE #(t) = x(t)?, with #(0) = 1 has th explicit solution

1
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Examples for Nonlinear ODEs

o The ODE #(t) = x(t)?, with #(0) = 1 has th explicit solution
t) = ! for t <1
fL'( ) = ﬁ or .

Why does the solution not exist for ¢ > 17
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Examples for Nonlinear ODEs

o The ODE #(t) = x(t)?, with #(0) = 1 has th explicit solution

1

Why does the solution not exist for ¢ > 17

o The ODE %(t) = 24/« with x(0) = 0 has more than one solution

for example z(t) =0 and xz(t) = t°.

Ordinary Differential Equations 11



Examples for Nonlinear ODEs

o The ODE #(t) = x(t)?, with #(0) = 1 has th explicit solution
(t) = ! for t <1
X = ﬁ or .
Why does the solution not exist for ¢ > 17

o The ODE %(t) = 24/« with x(0) = 0 has more than one solution
for example z(t) =0 and xz(t) = t°.

Why is there more than one solution?
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Taylor Expansion of ODEs

A typlor expansion of the solution z(¢) can be constructed recursively:

o 2(0) =

o &(0) = f(zo)

o &(0) = & f(z(t)),, = [ (x0)f(zo0)

o z(t) = [f"(wo) - fzo)l - f(z0) + ['(w0) [ (w0) f(x0)

o and soon ...

o Finally, z(t) = o + f(zo)t + %f’(xo)f(:vo) + ... for small ¢.



Taylor Expansion of ODEs

A typlor expansion of the solution z(¢) can be constructed recursively:

2(0) =
o (0) = f(o)
° i(0) = G f(x(t)|,, = F'(z0)f(xo)
o Z(t) = [f"(wo) - f(wo)] - f(xo) + f'(x0) f'(x0) f (o)

o and soon ...

o Finally, z(t) = o + f(zo)t + %f’(xo)f(xo) + ... for small ¢.

o Never work out such expansions by hand!
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Taylor Expansion of ODEs

A general s-order Taylor expansion can be computed by using AD:
o Set ¢p(x) = x.
o Fori=0:s5—-1

1 00¢;
set is1 = 3 ot (1)),

o Return the Taylor expansion

S

a(t) =Y gi(zo)t’ + Ot 1),

=0
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Integration Algorithm (Constant Step-Size)

Input:
o The right-hand side function f and an initial value z.

o Order s and constant step-size h = At/N; set i = 0 and yo = zo.

Repeat: (until i = N)

o Compute yit1 =Y 5o P(y;)h" and set i i+ 1

Theorem: If f is globally Lipschitz continuous and smooth, then

Vie{l,..,N}  y; =a(ih)+ O(h?).
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Limitation of Taylor Model Based Integrators

1. Taylor model based intgration is easy to implement, but

o we need an AD tool (not a big problem)

o it is not the most efficient scheme for obtaining convergence order s.
2. Runge-Kutta integrators compute an approximation y ~ x(h) by

evaluating f at more than one point, but don't evaluate derivatives.
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Explicit Runge Kutta Method (Constant Step-size)

Input:

o The right-hand side function f and an initial value zg.

o Constant step-size h = At/N; set n = 0 and yg = xo.
Repeat: (unitil n = N)

1. Compute iterates k; = f(yn + Z haw j) fori=1,...s
2. Set ypt1 =yn +hd o bik;.

Main idea:

o Choose the coefficients a; ; and b; such that

ai
Vie{l,..r}, g;;j—l = ¢i(yn) (typically r = s < 10).
h=0
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Example 1: Euler’'s Method

o For s =1, the Runge-Kutta method takes the form

Ynt+1 = Yn + hblf(yn)

o The first order consistency condition

ayn+ 1
oh h=0

= blf(yn) = ¢1(yn,) = f(yn)

implies that we must choose b; = 1.

o This gives Euler's method

Ynt1 = Yn + N f(Yn)
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Example 2: Heun’s Method

o Heun's method is given by the coefficient scheme

0 0
a21 0 - 1 0
by by i3

o The corresponding method can be written as

k1 = f(yn)
ky = f(yn + hk1)

1 1
il =UYn+h | =k + =ko ).
Yn+1 Yn + <2 1+22)
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Example 2: Heun’s Method

o The first and second order consistency conditions for s = 2 are

% o = (b1 +b2) f(yn) = é1(yn) = f(yn)
and
2
Tt = baaaa £ ) = dala) = 57 ) )

o Thus, Heun's method has convergence order » = 2, since it satisfies

1
by +b=1 and bgag,l = 5
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Example 3: RK4

o A very elegant method of order 4 is given by the scheme

ky = f(yn)

h
ky = f(yn + 5791)
ks = flun + ko)
ky = f(yn + hk3)

1 1 1 1
Ynt1 =Yn +h (Gk‘l + §k2 + gk:’, + 6k‘4> .
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Implicit Runge Kutta (IRK) Method

o IRK methods are analogous to explicit RK methods, but solve a nonlinear

equation system of the form
S
kz' :f yn+2hai7jkj
j=1
for i € {1,.., s} in order to determine the step

S
Yn+l = Yn T Z bik;.
i=1
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