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Task I – Optimal Fishing
Setting
Consider the following model of a fish population in a habitat operated by a
company:

ẋ = x(xs − x − u), x(0) = x0 > 0 (1)
where x ∈ R+

0 is the fish density and u ∈ R+
0 is the fishing rate. The

following objective ` : R+
0 × R+

0 → R models the economic operation of the
company’s fishing business

`(x ,u) = −ax − bu + cxu

for given values of x and u. The parameter values are
a = 1,b = c = 2, xs = 5.1

1The example is modification from E.M. Cliff and T.L. Vincent. “An optimal policy for a fish
harvest”. inJournal of Optimization Theory and Applications: 12.5 (1973), pages 485–496
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Task I – Optimal Fishing (cont’d)
Tasks

a) Interpret the parameters a,b, c and xs and the objective `.
b) How to compute steady solutions to (5)?
c) Formulate an NLP to model optimal stationary operation of the fishing

business.
Hint: Yo do not need to consider further constraints on x and u besides
stationarity.

d) Solve the NLP for x?,u? and λ?.
e) How could you check for global optimality of the solution?
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Task I – Optimal Fishing Solution
a) I a: cost of keeping per fish population

I b: cost of fishing per fish population
I c: income related to fish density and fishing rate
I xs: highest sustainable fish density
I `: profit

b)
ẋ = x(xs − x − u)

!
= 0→ x = 0 or u = xs − x

c)

min
(x,u)

−`(x ,u)

s. t. x(xs − x − u) = 0

d) We have f (x ,u) = −` = ax + bu − cxu and h(x ,u) = x(xs − x − u).
Then Theorem I.3 gives

∇x f (x?,u?) +∇hx (x?,u?)λ? = a− cu + λ(xs − 2x − u) = 0
∇uf (x?,u?) +∇hu(x?,u?)λ? = b − cx − λx = 0

Together with h(x?,u?) = 0 we get x? = 2.75, u? = 2.25, λ? = −1.27.
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Task I – Optimal Fishing Solution

e) The problem is non-convex. No guarantee of global optimality.
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Task II – Formulation of OCPs

Given the following in-complete optimal control problem:

min
u(·)

∫ t1

t0
`(t , x(t),u(t))dt

subject to
ẋ(t) = f (t , x(t),u(t)), x(t0) = x0

The underlying control problem requires that the state x hits a target curve
g : [t0,∞)→ Rnx at time t1.

a) Propose a constraint which models this control problem.

b) What are real-world examples of such a control problems?

c) What are reasons why the proposed constraint might lead to
infeasibility?
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Task II – Formulation of OCPs (cont’d)

d) Propose an objective functional which models the control problem. Can
you come up with a formulation which is guaranteed to be feasible?
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Task III – Formulation of OCPs

In the lecture we have shown how an OCP in Lagrange form can be
rewritten as an OCP in Mayer form.
I Show that a Mayer problem can also be written in Lagrange form.

Hint: Consider a Mayer term which only depends on the terminal state,
i.e., φ(t1, x(t1)).
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Task IV – Weak and Strong Norms
Let B∞,1ε (x̄) be an open ε-ball, centred at x̄ and let the underlying linear
space X be endowed with the weak norm ‖ · ‖∞,1. Similarly, let B∞ε (x̄) be an
open ε-ball, centred at x̄ and the underlying linear space X is endowed with
the strong norm ‖ · ‖∞.

Which of the following statements are correct?

a) x ∈ B∞ε (x̄) ⇒ x ∈ B∞,1ε (x̄) Solution: False

b) x ∈ B∞,1ε (x̄) ⇒ x ∈ B∞ε (x̄) Solution: True

Timm Faulwasser Optimal Control | Part II: OCPs II-C.11 / II-C.24



Overview

In-Class Exercise – Formulation of NLPs

In-Class Exercise – Basics of Optimal Control

In-Class Exercise – Optimality Conditions

In-Class Exercise – Singular OCPs

Timm Faulwasser Optimal Control | Part II: OCPs II-C.12 / II-C.24



Task V – Relation of NCOs of OCPs and NLPs

Consider the following OCP

min
u(·)

∫ t1

t0
`(x(t),u(t))dt (2a)

subject to
ẋ(t) = f (x(t),u(t)), x(t0) = x0 (2b)

and the corresponding steady-state optimization problem

min
ū,x̄

`(x̄ , ū) (3a)

subject to
0 = f (x̄ , ū). (3b)
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Task V – Relation of the NCOs of OCPs and NLPs (cont’d)

a) Formulate the NCOs of (2).
b) Formulate the NCOs of (3).
c) Show that the NCOs of (3) correspond to the NCOs of (2) evaluated at

steady state.
Hint: Use the NCO formulation based on the Hamiltonian.
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Task VI – Relation of NCOs of OCPs and NLPs

Consider a second OCP

min
u(·)

∫ t1

t0
`(x(t),u(t))dt + λ̄>x(t1) (4a)

subject to
ẋ(t) = f (x(t),u(t)), x(t0) = x0 (4b)

where λ̄> ∈ Rnx is a constant vector.
a) Classify (4) as a Mayer, Bolza, or Lagrange problem.
b) Formulate the NCOs of (4). Denote the adjoint variable of OCP (4) as λ̃.
c) Reformulate (4) as a Lagrange problem. Derive the NCOs of (4)

formulated as Lagrange problem. Denote the adjoint variable as λ̂.
d) What is the relation between λ̃ and λ̂?
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Task VI – Relation of NCOs of OCPs and NLPs (cont’d)

e) Give a geometrical interpretation of the reformulation of (4) as a
Lagrange problem.

f) Compare the adjoint equations for (4) and (2). Give an interpretation of
the Mayer term ϕ(x) = λ̄>x in terms of the adjoint dynamics.
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Task VII – Example

min
u(·)

∫ 1

0

1
2

u2(t)dt

subject to
ẋ(t) = u(t)− x(t), x(0) = 1, x(1) = 0
u(·) ∈ C([0,1],R)
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Task VIII – Optimal Fishing
Setting
Consider the following model of a fish population in a habitat operated by a
company:

ẋ = x(xs − x − u), x(t0) = x0 > 0 (5)
where x ∈ R+

0 is the fish density and u ∈ [0,5] is the fishing rate. The
following objective ` : R+

0 × R+
0 → R models the economic operation of the

company’s fishing business

`(x ,u) = −ax − bu + cxu

for given values of x and u. The parameter values are
a = 1,b = c = 2, xs = 5.2

2The example is a modification from E.M. Cliff and T.L. Vincent. “An optimal policy for a fish
harvest”. inJournal of Optimization Theory and Applications: 12.5 (1973), pages 485–496
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Task VIII – Optimal Fishing (cont’d)
Tasks

a) Formulate an OCP to model optimal operation of the fishing business.
Hint: Observe that we already discussed the stationary (and simplified)
variant of this problem in a previous task. You may neglect the state
constraint x ∈ R+

0 .
b) Derive the NCOs for the OCP formulated. Is the considered problem

singular? Why?
c) Characterize the arcs of the optimal solution.
d) Determine the controls, states and adjoints on the singular arc.
e) Compare your result with the optimal steady state computed previously.
f) Can you conjecture a structure of the optimal input profile?
g) How could one avoid singular arcs in the OCP?
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Task VIII – Optimal Fishing Solution
a) OCP reads

min
u(·)
−
∫ t1

t0
`(x(t),u(t)) dt (6a)

subject to

ẋ(t) = x(t)
(
xs − x(t)− u(t)

)
, x(t0) = x0, (6b)

u(·) ∈ Ĉ([t0, t1], [0,5]). (6c)

Observe that when x = 0, ẋ = x(xs − x − u) implies ẋ = 0. Thus for
any x0 > 0, x(·) ≥ 0 always holds since the zero-crossing is impossible.
Therefore, we can neglect the state constraint x(·) ∈ R+

0 .
b) The Hamiltonian function is

H(x ,u, λ0, λ) = −λ0`(x ,u) + λf (x ,u)

= λ0(ax + bu − cxu) + λ
(
x(xs − x − u)

)
.

(7)
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Task VIII – Optimal Fishing Solution
The following conditions are obtained from PMP

ẋ? = Hλ = f (x?,u?), x?(t0) = x0 (8a)

λ̇? = −Hx = −λ?0`x (x?,u?) + λ?(t)fx (x?,u?), λ?(t1) = 0. (8b)

Moreover, H(x?,u, λ?0, λ
?) obtains its minimum on Ĉ([t0, t1], [0,5]) at u = u?:

u?(·) = arg min
u(·)∈Ĉ([t0,t1],[0,5])

H(x?,u, λ?0, λ
?) (8c)

and λ?0 is a constant. Hamiltonian (7) shows it is an affine function with
respect to input u, which implies Huu = 0. Therefore, (6) is said to be a
singular OCP.

c) Arrange Hamiltonian (7) as

H = λx(xs − x) + λ0ax +
(
λ0(b − cx)− λx

)
u

The arcs of u?(·) can be characterized as

u?(·) =


0, if λ0(b − cx)− λx > 0,
5, if λ0(b − cx)− λx < 0,
?, if λ0(b − cx)− λx = 0.
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Task VIII – Optimal Fishing Solution

d) Choose λ0 = 1 and compute dk

dtk Hu until u appears:

Hu = b − cx − λx = 0 (9a)
d
dt

Hu = cx2 − λx2 + (a− cxs)x = 0 (9b)

Plug (9a) into (9b) to eliminate λ and compute the derivative with
respect to t , we obtain

d2

dt2 Hu = (2cx + a− b − cxs)(xs − x − u)x = 0, (10)

where u appears. When (10) holds, we have either
ẋ = (xs − x − u)x = 0 or 2cx + a− b− cxs = 0, which both imply x is at
steady state (ẋ = 0) on the singular arc and admit the same solution.
Solving the NCOs on the singular arc, we get

x? =
−a + b + cxs

2c
, u? =

a− b + cxs

2c
, λ? =

2bc
−a + b + cxs

− c.
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Task VIII – Optimal Fishing Solution

e) The solutions are the same.
f) The structure of the optimal input can be divided into three parts:

steering to the singular arc, staying on the singular arc, and leaving the
singular arc.

g) Yes, we can add a strictly quadratic term in u into the stage cost to
avoid singular arcs. In this fishing example, we could add εu2 into the
stage cost −` such that it reads

˜̀(x ,u) = −`(x ,u) + εu2.

Timm Faulwasser Optimal Control | Part II: OCPs II-C.24 / II-C.24


	In-Class Exercise – Formulation of NLPs
	In-Class Exercise – Basics of Optimal Control
	In-Class Exercise – Optimality Conditions
	In-Class Exercise – Singular OCPs

