

Optimal Control (EE-736)

Part II.1: Optimal Control Theory In-Class Exercises

Timm Faulwasser & Yuning Jiang

ie3, TU Dortmund

timm.faulwasser@ieee.org yuning.jiang@epfl.ch

Block course @ EPFL

Version FF736,2024.I

© Timm Faulwasser

In-Class Exercise – Formulation of NLPs

In-Class Exercise – Basics of Optimal Control

In-Class Exercise – Optimality Conditions

In-Class Exercise - Formulation of NLPs

In-Class Exercise - Basics of Optimal Control

In-Class Exercise – Optimality Conditions

Task I – Optimal Fishing

Setting

Consider the following model of a fish population in a habitat operated by a company:

$$\dot{x} = x(x_s - x - u), \quad x(0) = x_0 > 0$$
 (1)

where $x \in \mathbb{R}_0^+$ is the fish density and $u \in \mathbb{R}_0^+$ is the fishing rate. The following objective $\ell: \mathbb{R}_0^+ \times \mathbb{R}_0^+ \to \mathbb{R}$ models the economic operation of the company's fishing business

$$\ell(x,u) = -ax - bu + cxu$$

for given values of x and u. The parameter values are $a = 1, b = c = 2, x_s = 5.$

Timm Faulwasser Optimal Control | Part II: OCPs II-C.3 / II-C.24

 $^{^1}$ The example is modification from E.M. Cliff **and** T.L. Vincent. "An optimal policy for a fish harvest". In *Journal of Optimization Theory and Applications*: 12.5 (193), pages 485–496 9 9 9

Task I – Optimal Fishing (cont'd)

Tasks

- a) Interpret the parameters a, b, c and x_s and the objective ℓ .
- b) How to compute steady solutions to (5)?
- Formulate an NLP to model optimal stationary operation of the fishing business.
 - Hint: Yo do not need to consider further constraints on x and u besides stationarity.
- d) Solve the NLP for x^* , u^* and λ^* .
- e) How could you check for global optimality of the solution?

- a) a: cost of keeping per fish population
 - ▶ b: cost of fishing per fish population
 - c: income related to fish density and fishing rate
 - ► x_s: highest sustainable fish density
 - ► ℓ: profit

$$\dot{x} = x(x_s - x - u) \stackrel{!}{=} 0 \to x = 0 \text{ or } u = x_s - x$$

c)

$$\min_{(x,u)} -\ell(x,u)$$

s. t.
$$x(x_s - x - u) = 0$$

d) We have $f(x, u) = -\ell = ax + bu - cxu$ and $h(x, u) = x(x_s - x - u)$. Then Theorem I.3 gives

$$\nabla_{x} f(x^{\star}, u^{\star}) + \nabla h_{x}(x^{\star}, u^{\star}) \lambda^{\star} = a - cu + \lambda (x_{s} - 2x - u) = 0$$

$$\nabla_{u} f(x^{\star}, u^{\star}) + \nabla h_{u}(x^{\star}, u^{\star}) \lambda^{\star} = b - cx - \lambda x = 0$$

Together with
$$h(x^*, u^*) = 0$$
 we get $x^* = 2.75$, $u^* = 2.25$, $\lambda^* = -1.27$.

e) The problem is non-convex. No guarantee of global optimality.

In-Class Exercise – Formulation of NLPs

In-Class Exercise - Basics of Optimal Control

In-Class Exercise – Optimality Conditions

Task II – Formulation of OCPs

Given the following in-complete optimal control problem:

$$\min_{u(\cdot)} \int_{t_0}^{t_1} \ell(t,x(t),u(t)) \mathrm{d}t$$
 subject to
$$\dot{x}(t) = f(t,x(t),u(t)), \quad x(t_0) = x_0$$

The underlying control problem requires that the state x hits a target curve $g:[t_0,\infty)\to\mathbb{R}^{n_x}$ at time t_1 .

- a) Propose a constraint which models this control problem.
- b) What are real-world examples of such a control problems?
- c) What are reasons why the proposed constraint might lead to infeasibility?

Task II – Formulation of OCPs (cont'd)

d) Propose an objective functional which models the control problem. Can you come up with a formulation which is guaranteed to be feasible?

Task III – Formulation of OCPs

In the lecture we have shown how an OCP in Lagrange form can be rewritten as an OCP in Mayer form.

▶ Show that a Mayer problem can also be written in Lagrange form. Hint: Consider a Mayer term which only depends on the terminal state, i.e., $\phi(t_1, x(t_1))$.

Task IV – Weak and Strong Norms

Let $\mathcal{B}_{\varepsilon}^{\infty,1}(\bar{x})$ be an open ε -ball, centred at \bar{x} and let the underlying linear space \mathcal{X} be endowed with the weak norm $\|\cdot\|_{\infty,1}$. Similarly, let $\mathcal{B}_{\varepsilon}^{\infty}(\bar{x})$ be an open ε -ball, centred at \bar{x} and the underlying linear space \mathcal{X} is endowed with the strong norm $\|\cdot\|_{\infty}$.

Which of the following statements are correct?

a)
$$x \in \mathcal{B}_{\varepsilon}^{\infty}(\bar{x}) \implies x \in \mathcal{B}_{\varepsilon}^{\infty,1}(\bar{x})$$
 Solution: False

b)
$$x \in \mathcal{B}^{\infty,1}_{\varepsilon}(\bar{x}) \Rightarrow x \in \mathcal{B}^{\infty}_{\varepsilon}(\bar{x})$$
 Solution: True

In-Class Exercise – Formulation of NLPs

In-Class Exercise - Basics of Optimal Control

In-Class Exercise – Optimality Conditions

Task V – Relation of NCOs of OCPs and NLPs

Consider the following OCP

$$\min_{u(\cdot)} \int_{t_0}^{t_1} \ell(x(t), u(t)) dt$$
 (2a)

subject to

$$\dot{x}(t) = f(x(t), u(t)), \quad x(t_0) = x_0$$
 (2b)

and the corresponding steady-state optimization problem

$$\min_{\bar{u},\bar{x}} \ell(\bar{x},\bar{u}) \tag{3a}$$

subject to

$$0 = f(\bar{x}, \bar{u}). \tag{3b}$$

Task V – Relation of the NCOs of OCPs and NLPs (cont'd)

- a) Formulate the NCOs of (2).
- b) Formulate the NCOs of (3).
- c) Show that the NCOs of (3) correspond to the NCOs of (2) evaluated at steady state.

Hint: Use the NCO formulation based on the Hamiltonian.

Task VI – Relation of NCOs of OCPs and NLPs

Consider a second OCP

$$\min_{u(\cdot)} \int_{t_0}^{t_1} \ell(x(t), u(t)) \mathrm{d}t + \bar{\lambda}^\top x(t_1)$$
 (4a)

subject to

$$\dot{x}(t) = f(x(t), u(t)), \quad x(t_0) = x_0$$
 (4b)

where $\bar{\lambda}^{\top} \in \mathbb{R}^{n_x}$ is a constant vector.

- a) Classify (4) as a Mayer, Bolza, or Lagrange problem.
- b) Formulate the NCOs of (4). Denote the adjoint variable of OCP (4) as $\tilde{\lambda}.$
- c) Reformulate (4) as a Lagrange problem. Derive the NCOs of (4) formulated as Lagrange problem. Denote the adjoint variable as $\hat{\lambda}$.
- d) What is the relation between $\tilde{\lambda}$ and $\hat{\lambda}$?

Task VI – Relation of NCOs of OCPs and NLPs (cont'd)

- e) Give a geometrical interpretation of the reformulation of (4) as a Lagrange problem.
- f) Compare the adjoint equations for (4) and (2). Give an interpretation of the Mayer term $\varphi(x) = \bar{\lambda}^{\top} x$ in terms of the adjoint dynamics.

Task VII - Example

$$\min_{u(\cdot)} \int_0^1 \frac{1}{2} u^2(t) dt$$
 subject to
$$\dot{x}(t) = u(t) - x(t), \quad x(0) = 1, \ x(1) = 0$$

$$u(\cdot) \in \mathcal{C}([0, 1], \mathbb{R})$$

In-Class Exercise – Formulation of NLPs

In-Class Exercise - Basics of Optimal Control

In-Class Exercise – Optimality Conditions

Task VIII - Optimal Fishing

Setting

Consider the following model of a fish population in a habitat operated by a company:

$$\dot{x} = x(x_s - x - u), \quad x(t_0) = x_0 > 0$$
 (5)

where $x \in \mathbb{R}_0^+$ is the fish density and $u \in [0,5]$ is the fishing rate. The following objective $\ell: \mathbb{R}_0^+ \times \mathbb{R}_0^+ \to \mathbb{R}$ models the economic operation of the company's fishing business

$$\ell(x,u) = -ax - bu + cxu$$

for given values of x and u. The parameter values are $a = 1, b = c = 2, x_s = 5.^2$

 $^{^2}$ The example is a modification from E.M. Cliff and T.L. Vincent. "An optimal policy for a fish harvest". in Journal of Optimization Theory and Applications: 12.5 (1973), pages 485–496 $^\circ$ $^\circ$

Task VIII – Optimal Fishing (cont'd)

Tasks

- a) Formulate an OCP to model optimal operation of the fishing business. Hint: Observe that we already discussed the stationary (and simplified) variant of this problem in a previous task. You may neglect the state constraint $x \in \mathbb{R}^+_0$.
- b) Derive the NCOs for the OCP formulated. Is the considered problem singular? Why?
- c) Characterize the arcs of the optimal solution.
- d) Determine the controls, states and adjoints on the singular arc.
- e) Compare your result with the optimal steady state computed previously.
- f) Can you conjecture a structure of the optimal input profile?
- g) How could one avoid singular arcs in the OCP?

a) OCP reads

$$\min_{u(\cdot)} - \int_{t_0}^{t_1} \ell(x(t), u(t)) \, \mathrm{d}t \tag{6a}$$

subject to

$$\dot{x}(t) = x(t)(x_s - x(t) - u(t)), \quad x(t_0) = x_0,$$
 (6b)

$$u(\cdot) \in \hat{\mathcal{C}}([t_0, t_1], [0, 5]).$$
 (6c)

Observe that when x=0, $\dot{x}=x(x_s-x-u)$ implies $\dot{x}=0$. Thus for any $x_0>0$, $x(\cdot)\geq 0$ always holds since the zero-crossing is impossible. Therefore, we can neglect the state constraint $x(\cdot)\in\mathbb{R}_0^+$.

b) The Hamiltonian function is

$$H(x, u, \lambda_0, \lambda) = -\lambda_0 \ell(x, u) + \lambda f(x, u)$$

= $\lambda_0 (ax + bu - cxu) + \lambda (x(x_s - x - u)).$ (7)

The following conditions are obtained from PMP

$$\dot{x}^* = H_\lambda = f(x^*, u^*),$$
 $x^*(t_0) = x_0$ (8a)

$$\dot{\lambda}^{\star} = -H_{x} = -\lambda_{0}^{\star} \ell_{x}(x^{\star}, u^{\star}) + \lambda^{\star}(t) f_{x}(x^{\star}, u^{\star}), \qquad \quad \lambda^{\star}(t_{1}) = 0.$$
 (8b)

Moreover, $H(x^*, u, \lambda_0^*, \lambda^*)$ obtains its minimum on $\hat{C}([t_0, t_1], [0, 5])$ at $u = u^*$:

$$u^{\star}(\cdot) = \arg\min_{u(\cdot) \in \hat{\mathcal{C}}([t_0, t_1], [0, 5])} H(x^{\star}, u, \lambda_0^{\star}, \lambda^{\star})$$
(8c)

and λ_0^{\star} is a constant. Hamiltonian (7) shows it is an affine function with respect to input u, which implies $H_{uu} = 0$. Therefore, (6) is said to be a singular OCP.

c) Arrange Hamiltonian (7) as

$$H = \lambda x(x_s - x) + \lambda_0 ax + (\lambda_0 (b - cx) - \lambda x) u$$

The arcs of $u^*(\cdot)$ can be characterized as

$$u^{\star}(\cdot) = \begin{cases} 0, & \text{if } \lambda_0(b - cx) - \lambda x > 0, \\ 5, & \text{if } \lambda_0(b - cx) - \lambda x < 0, \\ ?, & \text{if } \lambda_0(b - cx) - \lambda x = 0. \end{cases}$$

d) Choose $\lambda_0 = 1$ and compute $\frac{d^k}{dt^k} H_u$ until u appears:

$$H_u = b - cx - \lambda x \qquad \qquad = 0 \tag{9a}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}H_u = cx^2 - \lambda x^2 + (a - cx_s)x = 0$$
 (9b)

Plug (9a) into (9b) to eliminate λ and compute the derivative with respect to t, we obtain

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}H_u = (2cx + a - b - cx_s)(x_s - x - u)x = 0,$$
 (10)

where u appears. When (10) holds, we have either $\dot{x} = (x_s - x - u)x = 0$ or $2cx + a - b - cx_s = 0$, which both imply x is at steady state ($\dot{x} = 0$) on the singular arc and admit the same solution. Solving the NCOs on the singular arc, we get

$$x^* = \frac{-a + b + cx_s}{2c}, \ u^* = \frac{a - b + cx_s}{2c}, \ \lambda^* = \frac{2bc}{-a + b + cx_s} - c.$$

- e) The solutions are the same.
 - f) The structure of the optimal input can be divided into three parts: steering to the singular arc, staying on the singular arc, and leaving the singular arc.
- g) Yes, we can add a strictly quadratic term in u into the stage cost to avoid singular arcs. In this fishing example, we could add εu^2 into the stage cost $-\ell$ such that it reads

$$\tilde{\ell}(x, u) = -\ell(x, u) + \varepsilon u^2.$$