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What is an Optimal Control Problem?

Adhoc definition of optimal control:

Determine the control signals that will cause a system to satisfy physical
constraints
and—at the same time—minimize some performance criterion.

Generic Optimal Control Problem (OCP):

min
u(·)

J(u(·))

subject to (OCP)
ẋ(t) = f (t , x(t),u(t)), x(t0) = x0

∀t ∈ [t0, t1] : u(t) ∈ U ⊆ Rnu

∀t ∈ [t0, t1] : x(t) ∈ X ⊆ Rnx
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ẋ(t)= f (t , x(t),u(t)), x(t0) = x0

∀t∈ [t0, t1] : u(t) ∈ U ⊆ Rnu

∀t∈ [t0, t1] : x(t) ∈ X ⊆ Rnx

Ingredients
I Dynamics?
I Class of input signals? Definition of state and input constraints?
I Performance criterion?
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Useful Notions – Admissible Controls

Considered classes of input functions:
I Finitely many discontinuities on compact time intervals: u : [t0, t1]→ Rnu

u(·) ∈ Ĉ ([t0, t1],Rnu ) = Ĉ[t0, t1]nu

I Finitely many discontinuities on compact time intervals and bounded
magnitude ∀t ∈ [t0, t1] : u(t) ∈ U, U is a compact subset of Rnu . Brief
notation:

u(·) ∈ Û[t0, t1]nu .
= Ĉ ([t0, t1],U)

Remark

Here, we do not consider discrete decision variables, e.g. u ∈ {−1,0,1}, as
they lead to numerical challenges (mixed-integer optimization).
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Dynamical System

Time-varying Ordinary Differential Equation (ODE):

dx
dt

= f (t , x(t),u(t)), x(t0) = x0 (Σ)

I Brief notation: ẋ = f (t , x ,u)

I t ∈ [t0, t1] ⊂ R time
I x ∈ X ⊆ Rnx state
I u(·) ∈ Û[t0, t1]nu ⊆ Rnu input

I Solution to (Σ):
I x(·; t0, x0, u(·)) for time-varying ODE
I x(·; x0, u(·)) for time-invariant ODE
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Existence of Solutions

Definition (Local Lipschitz continuity)

A function f : Rnx → Rnx is said to be locally Lipschitz continuous (locally
Lipschitz) at x0 ∈ Rnx if there exist constants L ≥ 0, η ≥ 0 such that

∀x , y ∈ Bη(x0) : ‖f (x)− f (y)‖ ≤ L‖x − y‖. (LC)

A function f : R× Rnx → Rnx , (t , x) 7→ f (t , x) is said to be locally Lipschitz at
x0 if (LC) holds uniformly for all t ∈ [t0, t1].
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Existence of Solutions

Theorem (Local existence and uniqueness of solutions)

Let f : R× Rnx → Rnx be piecewise continuous in t and Lipschitz at x0 for all
t ∈ [t0, t1]. Then there exists δ > 0 such that

ẋ = f (t , x), x(t0) = x0

has a unique solution x(·; t0, x0) over [t0, t0 + δ].

Example
I ẋ =
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Existence of Solutions

Theorem (Global existence and uniqueness of solutions)

Let f : R×D → Rnx be piecewise continuous in t and Lipschitz at x0 for all
t ≥ t0 and all x ∈ D ⊂ Rnx . Let X be a compact subset of D and x0 ∈ X.
Suppose that every solution of

ẋ = f (t , x), x(t0) = x0

satisfies for all t ≥ t0 : x(t , t0, x0) ∈ X. Then there exists a unique solution
that is defined for all t ≥ t0.
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Performance Criteria

Cost functional J : Ĉ[t0, t1]nu → R in Lagrange form

J(u(·)) =

∫ t1

t0
`(t , x(t),u(t))dt

I ` : R× Rnx × Rnu → R, ` ∈ C0, ∂`
∂x ∈ C

0

I t0, t1 can be fixed for free:
I free end time: J : R× Ĉ[t0, t1]nu → R, J(t1, u(·))
I free initial time: J : R× Ĉ[t0, t1]nu → R, J(t0, u(·))
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I free initial time: J : R× Ĉ[t0, t1]nu → R, J(t0, u(·))

Timm Faulwasser Optimal Control (EE-736) | Part II.1: OCPs II.10 / II.128



Performance Criteria

I Cost functional J : Ĉ[t0, t1]nu → R in Lagrange form

J(u(·)) =

∫ t1

t0
`(t , x(t),u(t))dt

` : R× Rnx × Rnu → R, ` ∈ C0, ∂`
∂x ∈ C

0

I Cost functional J : Ĉ[t0, t1]nu → R in Mayer form

J(u(·)) = φ(t0, x(t0), t1, x(t1))

φ : R× Rnx × R× Rnx → R, ∂φ
∂x ∈ C

0.

I Cost functional J : Ĉ[t0, t1]nu → R in Bolza form

J(u(·)) = φ(t0, x(t0), t1, x(t1)) +

∫ t1

t0
`(t , x(t),u(t))dt
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I Cost functional J : Ĉ[t0, t1]nu → R in Mayer form

J(u(·)) = φ(t0, x(t0), t1, x(t1))

φ : R× Rnx × R× Rnx → R, ∂φ
∂x ∈ C

0.
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Equivalence of Performance Criteria
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Physical Constraints

I Point constraints:
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Physical Constraints

I Isoperimetric constraints:
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Physical Constraints

I Path constraints:

Timm Faulwasser Optimal Control (EE-736) | Part II.1: OCPs II.15 / II.128



Admissible and Feasible Controls

Definition (Feasible controls and feasible pair)

A control u(·) ∈ Û[t0, t1]nu is said to be feasible provided that:
I the response x(·; t0, x0, ū(·)) is defined on [t0, t1];
I u(·) and x(·; t0, x0,u(·)) satisfy all constraints (point, path, ...) on [t0, t1].

Furthermore, (u(·), x(·)) is called feasible pair.

Definition (Set of feasible controls)

The set
Ω[t0, t1]

.
=
{

u(·) ∈ Û[t0, t1]nu | u(·) is feasible
}

is called set of feasible controls.
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Optimality Criteria

Definition (Global minimizer)

If for all u ∈ Ω[t0, t1] and u? ∈ Ω[t0, t1] : J(u?) ≤ J(u), then u? is called
(global) minimizer.

Definition (Local minimizer)

If there exists δ > 0 such that for all u ∈ Bδ(u?) ∩ Ω[t0, t1] : J(u?) ≤ J(u),
then u? is called local minimizer.
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Open-loop Optimal Control

Given an OCP and let u?(t) be the optimal control at time t . If u?(t) is
determined as a function of time for a specified initial state x(t0) = x0, i.e.

u?(t) = wo(t , x(t0)),

then wo : R× Rnx → Rnu is called open-loop optimal control.

problem
specifications OCP

u?(t) =
wo(t , x(t0))

ẋ = f (t , x ,u)
u(t) x(t)
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Closed-loop Optimal Control

Given an OCP and let u?(t) be the optimal control at time t . If a functional
relation wc : R× Rnx → Rnu

u?(t) = wc(t , x(t))

can be found, then wc is called closed-loop optimal control.

problem
specifications OCP

u?(t) =
wc(t , x(t))

ẋ = f (t , x ,u)
u(t) x(t)
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Example – Car Control (Part I)

Consider the task to drive optimally from Lausanne to Zürich. The dynamics
of the car are modelled as:

ẋ =

[
0 1
0 0

]
x +

[
0
1

]
u, x =

[
p(t), ṗ(t)

]>
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Example – Car Control (Part I)

I Performance criteria (in words)?

I Constraints (in words)?
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Example – Car Control (Part II)

One possible (simplified) OCP formulation reads:

min
u(·)

∫ t1

t0
u2(t)dt

subject to (1)

ẋ =

[
0 1
0 0

]
x +

[
0
1

]
u, x(t0) = [p0,0]>

x1(t1)− p1 = 0

u(·) ∈ Ĉ([t0, t1], [0,1])
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Example – Car Control (Part II)

We solve OCP (1) for t0 = 0, t1 ∈ {4,8,16,32}, p0 = 0,p1 = 1

t1 2 4 8 16 32
J? 0.38 0.05 0.006 0.0007 9.2 · 10−5
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Example – Car Control (Part III)

Can we do even better solving the following OCP?

min
u(·),t1

∫ t1

t0
u2(t)dt

subject to (2)

ẋ =

[
0 1
0 0

]
x +

[
0
1

]
u, x(t0) = [p0,0]>

x1(t1)− p1 = 0

u(·) ∈ Ĉ([t0, t1], [0,1]), t1 ∈ [t0,∞)

→ This question will be answered later! ←
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Performance Criteria in OCPs?

Cost functional J : Ĉ[t0, t1]nu → R in Lagrange form

J(u(·)) =

∫ t1

t0
`(t , x(t),u(t))dt

I ` : R× Rnx × Rnu → R, ` ∈ C0, ∂`
∂x ∈ C

0;

→ How to define a derivative-like operation for J : Ĉ[t0, t1]nu → R? ←
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Calculus of Variations – Basic Notions

Problems

min
x(·)∈X

∫ t1

t0
`(t , x(t), ẋ(t))dt

subject to (P)
x(·) ∈ D

of minimizing (P) are called Lagrange problems.
I Set of admissible solutions:

D .
= {x ∈ X | x is admissible}

I Boundary constraints:
D = {x ∈ X | x(t0) = x0, x(t1) = x1}

I Joining a curve:
D = {[x , t1] ∈ X× [t0,T ] | x(t0) = x0, x(t1) = g(t1)}

I ...
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Calculus of Variations – Class of Considered Functions

X = C1 ([t0, t1],Rnx ) = C1[t0, t1]nx ,

i.e., continuously differentiable function on x : [t0, t1]→ Rnx .

X = Ĉ1 ([t0, t1],Rnx ) = Ĉ1[t0, t1]nx ,

i.e., piecewise continuously differentiable function on x : [t0, t1]→ Rnx .
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Calculus of Variations – Local and Global Optima

Definition (Global minimizer)

The function x? ∈ D is said to be a (global) minimizer of J(x(·)) on D if

∀x ∈ D : J(x(·)) ≥ J(x?(·)).

Definition (Local minimizer)

The function x? ∈ D is said to be a local minimizer of J(x) on D if

∃ε > 0 such that ∀x ∈ Bε(x?) ∩ D : J(x) ≥ J(x?).

Bε(x̄) = {x ∈ X | ‖x − x̄‖ < ε}
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Calculus of Variations – Norms

I Lp-norm

‖x‖p =

(∫ t1

t0
|x(t)|pdt

) 1
p

;

I Strong norm (L∞-norm)

‖x‖∞ = max
t∈[t0,t1]

|x(t)|;

I Weak norm
‖x‖∞,1 = max

t∈[t0,t1]
|x(t)|+ max

t∈[t0,t1]
|ẋ(t)|.

Timm Faulwasser Optimal Control (EE-736) | Part II.1: OCPs II.30 / II.128



Weak and Strong Minima

Definition (Strong local minimizer)

The function x? ∈ D is said to be a strong local minimizer of J(x) on D if

∃ε > 0 such that ∀x ∈ B∞ε (x?) ∩ D : J(x) ≥ J(x?).

Definition (Weak local minimizer)

The function x? ∈ D is said to be a weak local minimizer of J(x) on D if

∃ε > 0 such that ∀x ∈ B∞,1ε (x?) ∩ D : J(x) ≥ J(x?).
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Weak and Strong Minima

Example (Weak minimum 6⇒ strong minimum):
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Calculus of Variations – Gateaux Derivative

Definition (First variation (Gâteaux derivative))

Let J : X→ R be a functional defined on a linear space X. Then the first
variation of J at x ∈ X in the direction ξ ∈ X, also called Gâteaux derivative
with respect to ξ at x, is defined as

δJ(x , ξ)
.

= lim
η→0

J(x + ηξ)− J(x)

η
=

∂

∂η
J(x + ηξ)

∣∣∣∣
η=0

,

provided it exists. If the limit exists for all ξ ∈ X, then J is said to be Gâteaux
differentiable.
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Calculus of Variations – Gateaux Derivative

Remark

I δ (J1(x , ξ) + J2(x , ξ)) = δJ1(x , ξ) + δJ2(x , ξ);
I Homogenity: δJ(x , αξ) = αδJ(x , ξ);
I In general not additive: δJ(x , ξ1 + ξ2) 6= δJ(x , ξ1) + δJ(x , ξ2).
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Examples – Gateaux Derivative

J(x) =

∫ t1

t0
x2(t)dt , x ∈ C1[t0, t1]

and arbitrary ξ ∈ C1[t0, t1]:

δJ(x , ξ) =

∫ t1

t0
2x(t)ξ(t)dt

J is Gâteaux differentiable at all x ∈ C1[t0, t1].
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Examples – Gateaux Derivative

J(x) =

∫ 1

0
|x(t)|dt , x ∈ C1[0,1]

and x0(t) = 0, ξ0 = t :

lim
η→0

J(x + ηξ)− J(x)

η
=

1
2
|η|
η

= ±1
2

J is not Gâteaux differentiable at x = 0.
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Geometric Optimality Conditions

Lemma

Let J be a functional on a normed linear space (X, ‖ · ‖). Suppose that J
has a strictly negative variation δJ(x̄ , ξ) < 0 at x̄ ∈ X in some direction
ξ ∈ X. Then, x̄ cannot be a local minimum point for J (in the sense of the
norm ‖ · ‖).

Proof sketch:
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Admissible Directions

Definition

Let J be a functional defined on a subset D of a linear space X, and let
x̄ ∈ D. Then, a direction ξ ∈ X, ξ 6= 0 is said to be D-admissible at x̄ for J, if

(i) δJ(x̄ , ξ) exists; and
(ii) x̄ + ηξ ∈ D for all sufficiently small η, i.e.,

∃δ > 0 such that ∀ηξ ∈ Bδ(x̄) : x̄ + ηξ ∈ D.
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Geometric Conditions of Optimality

Theorem

Let J be a functional defined on a subset D of a normed linear space
(X, ‖ · ‖). Suppose that x? ∈ D is a local minimum point for J on D. Then

δJ(x?, ξ) = 0

for each D-admissible direction ξ at x?.

Proof sketch:
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First-order Necessary Conditions of Optimality

Theorem (Euler’s necessary conditions)

Consider the problem to minimize the functional

J(x) =

∫ t1

t0
`(t , x(t), ẋ(t))dt

on D = {x ∈ C1[t0, t1]nx | x(t0) = x0, x(t1) = x1} with ` : R× Rnx × Rnx → R a
continuously differentiable function. Suppose that x? is a (local) minimum
for J on D. Then

d
dt
`ẋi

(t , x?(t), ẋ?(t)) = `xi (t , x
?(t), ẋ?(t)) (3)

for each t ∈ [t0, t1] and i = 1, . . . ,nx .

The proof follows as a special case of the NCOs for OCPs (next section).
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Summary of Excursion to Calculus of Variations

Main messages
I Geometric optimality consideration carry over to function spaces

naturally!
I Mathematical details can be subtle.
I Further reading→B. Chachuat. Nonlinear and Dynamic Optimization -

From Theory to Practice. EPFL, 2009. URL: https://infoscience.
epfl.ch/record/111939/files/Chachuat_07(IC32).pdf, Chapter 3.
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Overview

Optimal Control Terminology

Small Excursion to Calculus of Variations

Variational Approach to Optimal Control

Interpretation of Adjoint Variables

OCPs with Terminal Constraints

Pontryagin’s Maximum Principle

Singular Problems

The PMP on Infinite Horizons

The Hamilton-Jacobi-Bellman-Equation

Summary and References
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Example with no Optimal Solution (OCP (2))

min
u(·),t1

∫ t1

t0
u2(t)dt

subject to

ẋ =

[
0 1
0 0

]
x +

[
0
1

]
u, x(t0) = [p0,0]>

x1(t1)− p1 = 0

u(·) ∈ Ĉ([t0, t1], [0,1]), t1 ∈ [t0,∞)
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Example with no Optimal Solution

I Extend class of controls (piecewise continuous & Lipschitz bounds,
piecewise constant).

I Focus on necessary conditions of optimality instead of sufficient
conditions.
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Existence of Optimal Controls?

min
u(·)

∫ t1

t0
`(t , x(t),u(t))dt + φ(x(t1))

subject to:
ẋ = f (t , x ,u), x(t0) = x0

g(t , x(t),u(t)) ≤ 0, ∀t ∈ [t0, t1]

u(·) ∈ Ĉ([t0, t1],U)

Reasons for non-existence of optimal controls:

I No feasible solutions exist: Ω[t0, t1] = ∅
I Finite escape times→ infinite cost
I Set of feasible controls Ω[t0, t1] is not compact

I e.g., free end time not bounded t1 ∈ [t0,∞)

→ It is in general difficult to verify the existence of optimal controls! ←
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Performance Criteria in OCPs?

Cost functional J : Ĉ[t0, t1]nu → R in Lagrange form

J(u(·)) =

∫ t1

t0
`(t , x(t),u(t))dt

` : R× Rnx × Rnu → R, ` ∈ C0, ∂`
∂x ∈ C

0

→ How to define a derivative-like operation for J : Ĉ[t0, t1]nu → R? ←
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First-order Necessary Conditions of Optimality

Problem Setup

min
u(·)

∫ t1

t0
`(t , x(t),u(t))dt

subject to: (P)
ẋ = f (t , x ,u), x(t0) = x0

u(·) ∈ C[t0, t1]nu

f :R× Rnx × Rnu → Rnx , f ∈ C0 w.r.t. (t , x ,u), f ∈ C1 w.r.t. (x ,u)

` :R× Rnx × Rnu → R , ` ∈ C0 w.r.t. (t , x ,u), ` ∈ C1 w.r.t. (x ,u)

Short hand notation:

∇w z =

(
∂z
∂w

)>
= zw , z ∈ {f , `, φ, . . . } and w ∈ {x , u, t}
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First-order Necessary Conditions of Optimality

Theorem (First-order necessary conditions)

Suppose that u?(·) ∈ C[t0, t1]nu is a local minimizer of Problem (P) and
x?(·) ∈ C1[t0, t1]nx , x?(t) = x(t ; t0, x0,u?(·)) is the corresponding solution.
Then there exists a function λ?(·) ∈ C1[t0, t1]nx such that, for all t ∈ [t0, t1],
the triple (u?(·), x?(·), λ?(·)) satisfies:

ẋ? = f (t , x?,u?), x?(t0) = x0

λ̇? = −`x (t , x?,u?)− f>x (t , x?,u?)λ?, λ?(t1) = 0 (E-L)

0 = `u(t , x?,u?) + f>u (t , x?,u?)λ?.
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Proof Sketch
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Proof Sketch
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Proof Sketch
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Proof Sketch
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Proof Sketch
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Proof Sketch
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Proof Sketch
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First-order Necessary Conditions – Remarks

I (E-L) are also known as Euler-Lagrange equations

I Unknowns: (u?(·), x?(·), λ?(·)) ∈ C[t0, t1]nu × C1[t0, t1]nx × C1[t0, t1]nx

I 2 nx ODEs, nu algebraic equations⇒ complete set of equations

I Split boundary conditions (x?(t0), λ?(t1))⇒ two-point boundary value
problem

I Note (E-L) are first-order necessary conditions of (P). Hence any
triple (u(·), x(·), λ(·)) solving (E-L) is also referred to as an extremal.

I If terminal cost (i.e. a Mayer term) φ in (P), then

λ(t1) = φx (t1, x(t1))

.
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First-order Necessary Conditions – Remarks

I Hamlitonian function: H : R× Rnx × Rnu × Rnx → R

H(t , x ,u, λ) = `(t , x ,u) + λ>f (t , x ,u) = `(t , x ,u) + 〈λ, f (t , x ,u)〉

Notation for scalar product of w , z,∈ Rn: 〈w , z〉 = w>z
I Alternative formulation of the Euler-Lagrange equations:

ẋ? = Hλ(t , x?,u?, λ?), x?(t0) = x0

λ̇? = −Hx (t , x?,u?, λ?), λ?(t1) = 0
0 = Hu(t , x?,u?, λ?)
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First-order Necessary Conditions – Remarks

I Variation of Hamiltonian along optimal trajectory

d
dt

H(t , x ,u, λ) = Ht + 〈Hx , f (t , x ,u)〉+ 〈Hu, u̇〉+ 〈f (t , x ,u), λ̇〉

I If (P) is time invariant (`t = 0, ft = 0), then the Hamiltonian is stationary
along optimal solutions: d

dt H(t , x ,u, λ) = 0.
I Euler-Lagrange equations hold for minimization and maximization.

The NCOs can be strengthened:
I Legendre-Clebsch condition: for minimization u?(·) should minimize

Hamlitonian (Huu ≥ 0)
I B. Chachuat. Nonlinear and Dynamic Optimization - From Theory to Practice.

EPFL, 2009. URL: https:
//infoscience.epfl.ch/record/111939/files/Chachuat_07(IC32).pdf.
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Example: Euler-Lagrange Equations

min
u(·)

∫ 1

0

1
2

u2(t)− x(t)dt

ẋ(t) = 2(1− u(t)), x(0) = 1

u(·) ∈ C[0, 1]
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Piecewise Continuous Extremals in OCP (P)

I Consider piecewise continuous controls u(·) ∈ Ĉ[t0, t1]nu in (P)
I Allow for finitely many discontinuities at corner points ci ∈ [t0, t1], i ∈ {1, . . . , cn}

→ State and adjoint trajectories remain continuous

lim
t↑ci

x?(t) = lim
t↓ci

x?(t) lim
t↑ci

λ?(t) = lim
t↓ci

λ?(t)

→ Hamiltonian is also continuous

lim
t↑ci

H(t , x?(t), λ?(t), u?(t)) = lim
t↓ci

H(t , x?(t), λ?(t), u?(t))

t

u, x , λ

t0 c1
... cn t1

u?

λ?

x?

I These additional conditions are also known as Erdman’s Corner Conditions.
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I Allow for finitely many discontinuities at corner points ci ∈ [t0, t1], i ∈ {1, . . . , cn}
→ State and adjoint trajectories remain continuous

lim
t↑ci

x?(t) = lim
t↓ci

x?(t) lim
t↑ci

λ?(t) = lim
t↓ci

λ?(t)

→ Hamiltonian is also continuous

lim
t↑ci

H(t , x?(t), λ?(t), u?(t)) = lim
t↓ci

H(t , x?(t), λ?(t), u?(t))

t

u, x , λ

t0 c1
... cn t1

u?

λ?

x?

I These additional conditions are also known as Erdman’s Corner Conditions.

Timm Faulwasser Optimal Control (EE-736) | Part II.1: OCPs II.60 / II.128



Piecewise Continuous Extremals in OCP (P)

I Consider piecewise continuous controls u(·) ∈ Ĉ[t0, t1]nu in (P)
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Example – Piecewise Continuous Extremals

min
u(·)

∫ 1

0
(u2(t)− u4(t)− x(t))dt

ẋ =− u(t), x(0) = 1

u(·) ∈ Ĉ[0, 1]
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Optimal Value Function of an OCP

Consider Problem (P):

min
u(·)

J(u(·)) =

∫ t1

t0
`(t , x(t),u(t))dt

subject to: (P)
ẋ = f (t , x ,u), x(t0) = x0

u(·) ∈ C[t0, t1]nu .

Definition (Optimal value function)

Let u?(·) be the minimizer of Problem (P). The function V : Rnx × R→ R,
(x0, t0) 7→ J(u?(·))

V (x0, t0)
.

= J?(u?(·))

is called optimal value function of Problem (P).1

1Note: Often the optimal value function is written as Vt1−t0 (x0, t0) whereby the subscript
t1 − t0 refers to the considered horizon in the OCP.
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Interpretation of Adjoint Variables – Setting

I Consider as before Problem (P).
I Assume u?(·) ∈ C[t0, t1]nu is the unique optimal control and

x?(·) ∈ C1[t0, t1]nx λ?(·) ∈ C1[t0, t1]nx are the corresponding
trajectories.

I NLPs:
Lagrange multipliers→ sensitivity of objective w.r.t. to constraints

I OCPs:
Interpretation of adjoints λ?(·)?
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Interpretation of Adjoint Variables – Part I
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Interpretation of Adjoint Variables – Part I

(
∂V (y(t0), t0)

∂ξ

)>∣∣∣∣∣
ξ=0

= Vx (x0, t0) = λ?(t0)

→ Adjoint variable λ? at time t0 is the gradient of V (x0)
w.r.t. the initial condition x0! ←
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Principle of Optimality

Theorem (Principle of optimality [2])
Let u?(·) ∈ Ĉ[t0, t1]nu be an optimal control for the problem

min
u(·)

∫ t1

t0
`(t , x(t), u(t))dt + φ(x(t1))

subject to (Pt1 )

ẋ = f (t , x , u), x(t0) = x0

u(·) ∈ Ĉ[t0, t1]nu

and x?(·; t0, x0, u?(·)) is the corresponding trajectory.

Then, for any τ ∈ [t0, t1], the restriction of u?(·) to [τ, t1] is optimal for the problem

min
u(·)

∫ t1

τ
`(t , x(t), u(t))dt + φ(x(t1))

subject to (Pτ )

ẋ = f (t , x , u), x(τ) = x?(τ ; t0, x0, u?(·))

u(·) ∈ Ĉ[τ, t1]nu
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Principle of Optimality
"An optimal policy has the property that whatever the initial state and

initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision."

R. Bellman. Dynamic Programming. Princeton University Press, 1957

Proof sketch:
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Proof Sketch
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Proof Sketch

Timm Faulwasser Optimal Control (EE-736) | Part II.1: OCPs II.71 / II.128



Interpretation of Adjoint Variables – Part II

Consider Problem (Pτ ) and use same arguments as before:

∀τ ∈[t0, t1] : λ?(τ) =∇xVt1−t0−τ (x?(τ), τ)

∀t ∈[t0, t1] : λ?(t) =∇xVt1−t0−t (x?(t), t)

→ The adjoint variable λ?(t) can be interpreted as the change of the
objective function for small state pertubations and re-optimization.

→ Reoptimization means that indeed for t ∈ (t0, t1) the optimal value
function refers to the truncated horizon, i.e.

∇xVt1−t0−t (x?(t), t) = λ?(t)

→ Sensitivity/gradient of the optimal value function V w.r.t. to x.

→ Observe that in problems without Mayer term (φ(x(t1)) = 0), there is no
influence of disturbance at final time:

λ?(t1) = φx (x?(t1)) = 0 ⇒ Vx (x?(t1), t1) = 0
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OCPs with Terminal Equality Constraints

Problem Setup

min
u(·)

∫ t1

t0
`(t , x(t),u(t))dt + φ(x(t1))

subject to (Peq)
ẋ =f (t , x ,u), x(t0) = x0

u(·) ∈ Ĉ[t0, t1]nu

ψk (t1, x(t1)) = 0, k = 1, . . . ,nψ

⇒ Pk (u(·))
.

= ψk (t1, x(t1)) = 0, k = 1, . . . ,nψ
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OCPs with Terminal Equality Constraints

Theorem

Suppose that u?(·) ∈ Ĉ[t0, t1]nu is the local minimizer of Problem (Peq) and
x?(·) ∈ Ĉ1[t0, t1]nx is the corresponding solution x?(·) = x?(·; t0, x0,u?(·)).
Furthermore, assume that the terminal constraint
ψk (t1, x(t1)) = 0, k = 1, . . . ,nψ is regular at u?(·).
Then there exists a function λ?(·) ∈ Ĉ1[t0, t1]nx and a vector ν? ∈ Rnψ such
that (u?(·), x?(·), λ?(·), ν?) satisfy for all t ∈ [t0, t1]

ẋ(t) = Hλ(t , x ,u, λ), x(t0) = x0

λ̇(t) =− Hx (t , x ,u, λ), λ(t1) = Φx (t1, x(t1))

0 = Hu(t , x ,u, λ)

0 = ψk (t1, x(t1)), k = 1, . . . ,nψ

Φ(t1, x(t1)) = φ+

nψ∑
k=1

νkψk (t1, x(t1)).
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OCPs with Terminal Equality Constraints

Proof Idea
I Consider first variation of

L(u(·)) = J(u(·)) +

nψ∑
k=1

νk Pk (u(·))︸ ︷︷ ︸
ψk (t1,x(t1))
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OCPs with Terminal Equality Constraints

min
u(·)

∫ 1

0

1
2

u2(t)dt

subject to

ẋ(t) = u(t)− x(t), x(0) = 1, x(1) = 0

u(·) ∈ C([0, 1],R)
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Example – OCPs with Terminal Equality Constraints
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OCPs with Terminal Inequality Constraints

Problem setup (free end time and terminal constraints)

min
u(·),t1

∫ t1

t0
`(t , x(t), u(t))dt + φ(t1, x(t1))

subject to

ẋ = f (t , x , u), x(t0) = x0

u(·) ∈ C[t0, t1]nu

t1 ∈ [t0,T ]

ψk (t1, x(t1)) ≤ 0, k = 1, . . . , nψ

+ differentiability assumptions:

f : R× Rnx × Rnu → Rnx , f ∈ C0 w.r.t. (t , x , u), f ∈ C1 w.r.t. (x , u)

` : R× Rnx × Rnu → R , ` ∈ C0 w.r.t. (t , x , u), ` ∈ C1 w.r.t. (x , u)

ψk : R× Rnx → R, ψk ∈ C1 w.r.t. (t , x)

φ : R× Rnx → R, φ ∈ C1 w.r.t. (t , x).
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Summary – Necessary Conditions of Optimality

Necessary conditions of optimality

ẋ(t) = Hλ(t , x , u, λ), x(t0) = x0

λ̇(t) =− Hx (t , x , u, λ), λ(t1) = Φx (t1, x(t1))

0 = Hu(t , x , u, λ)

0 ≤ Huu(t , x , u, λ)

0 = H(t , x , u, λ)|t1 + Φt |t1
0 ≥ ψk (t1, x(t1)), k = 1, . . . , nψ
0 ≤ ν

0 =
〈
(ν1, . . . , νnψ )

T , (ψ1(t1, x(t1)), . . . , ψnψ (t1, x(t1)))
T
〉

Φ(t1, x(t1)) =φ+
〈
(ν1, . . . , νnψ )

T , (ψ1(t1, x(t1)), . . . , ψnψ (t1, x(t1)))
T
〉

I Extension to input constraints?→Next lecture!
I Extension to state constraints?→In general difficult, not covered here.
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Lev Pontryagin

I Russian/Soviet mathematican
I 1908-1988
I Blind since the age of 14
I Seminal contributions to optimal control:

I Boltyanskii, V. G.; Gamkrelidze, R. V.;
Pontryagin, L. S. (1956): Towards a
Theory of Optimal Processes. Dokl.
Akad. Nauk SSSR (in Russian)

I Pontryagin, L. S.; Boltyanskii, V. G.;
Gamkrelidze, R. V.; Mishchenko, E. F.
(1962). The Mathematical Theory of
Optimal Processes. English translation. Source: A. Terentiev. CC BY-SA 3.0
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Pontryagin’s Maximum Principle (Preliminaries)

Problem setup (free end time & terminal constraint)

min
u(·),t1

∫ t1

t0

`(x(t), u(t))dt

subject to

ẋ = f (x , u), x(t0) = x0 (PPMP )

u(·) ∈ Ĉ ([t0, t1],U) , U ⊆ Rnu

t1 ∈ [t0,T ], T <∞
x(t1) = x1

f : Rnx × Rnu → Rnx , f ∈ C0 w.r.t. (x ,u), f ∈ C1 w.r.t. (x)

` : Rnx × Rnu → R , ` ∈ C0 w.r.t. (x ,u), ` ∈ C1 w.r.t. (x)
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Pontryagin’s Maximum Principle (Preliminaries)

Reformulation

c(t) =

∫ t1

t0
`(x(t),u(t))dt

x̃(t) =

[
c(t)
x(t)

]
˙̃x(t) =f̃ (x̃(t),u(t)) =

[
`(x(t),u(t))
f (x(t),u(t))

]
, x̃(t0) = [0, x0]>
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Pontryagin’s Maximum Principle

Theorem
Suppose that (u?(·), t?1 ) ∈ Ĉ[t0, t1]

nu × [t0,T ] is a local minimizer of Problem (PPMP ) and let
x̃?(·) ∈ Ĉ1[t0, t1]nx+1 be the corresponding extended solution x̃?(·) = x̃?(·; t0, x̃0, u?(·)).

Then there exists a function λ̃?(·) = (λ?0 (·), λ
?(·))> ∈ Ĉ1[t0, t1]nx+1, λ̃?(t) 6= (0, . . . , 0)> for all

t ∈ [t0, t1], such that (u?(·), x̃?(·), λ̃?(·)) satisfy for all t ∈ [t0, t1]

˙̃x?(t) = Hλ̃
(

x?(t), u?(t), λ̃?(t)
)
, x̃(t0) = (0, x0)

>

˙̃λ?(t) =− Hx̃

(
x?(t), u?(t), λ̃?(t)

)
with H(x , u, λ̃) =

〈
λ̃, f̃ (x , u)

〉
.

Moreover:

i) The function H
(

x?(t), v , λ̃?(t)
)

attains its minimum on U at v = u?(t):

∀t ∈ [t0, t?1 ] : H
(

x?(t), v , λ̃?(t)
)
≥ H

(
x?(t), u?(t), λ̃?(t)

)
.

ii) It holds for all t ∈ [t0, t?1 ] that λ?0 (t) = const . ≥ 0 and H
(

x?(t), u?(t), λ̃?(t)
)
= const .

iii) If the final time t1 is unspecified, the following transversality condition holds
H
(

x?(t?1 ), u
?(t?1 ), λ̃

?(t?1 )
)
= 0.
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?(·))> ∈ Ĉ1[t0, t1]nx+1, λ̃?(t) 6= (0, . . . , 0)> for all

t ∈ [t0, t1], such that (u?(·), x̃?(·), λ̃?(·)) satisfy for all t ∈ [t0, t1]

˙̃x?(t) = Hλ̃
(

x?(t), u?(t), λ̃?(t)
)
, x̃(t0) = (0, x0)

>

˙̃λ?(t) =− Hx̃

(
x?(t), u?(t), λ̃?(t)

)
with H(x , u, λ̃) =

〈
λ̃, f̃ (x , u)

〉
.

Moreover:

i) The function H
(

x?(t), v , λ̃?(t)
)

attains its minimum on U at v = u?(t):

∀t ∈ [t0, t?1 ] : H
(

x?(t), v , λ̃?(t)
)
≥ H

(
x?(t), u?(t), λ̃?(t)

)
.

ii) It holds for all t ∈ [t0, t?1 ] that λ?0 (t) = const . ≥ 0 and H
(

x?(t), u?(t), λ̃?(t)
)
= const .

iii) If the final time t1 is unspecified, the following transversality condition holds
H
(

x?(t?1 ), u
?(t?1 ), λ̃

?(t?1 )
)
= 0.

Timm Faulwasser Optimal Control (EE-736) | Part II.1: OCPs II.85 / II.128



Rudimentary Proof Sketch

xi

xi+1

c

x̃?(t)

x̃(t)

Π =
{

[c, x ]> ∈ Rnx+1 | x = x1
}

(0, x1)

(J(u?, t?1 ), x1)

(J(u, t1), x1)

(0, x0)

Optimal Response
Feasible Response

Detailed proofs of the PMP:
I D. Liberzon. Calculus of Variations and Optimal Control Theory: A Concise Introduction.

Princeton University Press, 2012. URL:
http://liberzon.csl.illinois.edu/teaching/cvoc.pdf

I E.R. Pinch. Optimal Control and the Calculus of Variations. Oxford University Press, 1995
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Example – Pontryagin’s Maximum Principle

min
u(·)

∫ 1

0

1
2

u2(t)dt

subject to

ẋ(t) = u(t)− x(t), x(0) = 1, x(1) = 0

u(·) ∈ Ĉ([0, 1], [−0.6, 0])
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Example – Pontryagin’s Maximum Principle
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Arcs of Optimal Solutions

Due to the minimization of the Hamiltonian (PMP, part i), distinctive parts
(arcs) of the optimal input trajectory u?(·) can be identified.

Let the time horizon of an OCP be [t0, t1].
I If on [τ1, τ2] ⊆ [t0, t1] one specific {input, path} constraint is active, u?(·)

on [τ1, τ2] is said to be a constrained arc.

I Likewise, if at t1 − τ1 the optimal input u?(·) changes its behavior in
order to meet a state terminal constraint at t1, u?(·) on [t1 − τ1, t1] is
said to be a constrained arc.

I If on [τ1, τ2] ⊆ [t0, t1] no constraints are active and thus u?(·) on [τ1, τ2]
is determined by the unconstrained minimum of the Hamiltonian H,
then u?(·) on [τ1, τ2] is said to be a sensitivity-seeking arc.

I Singular arcs will be introduced later.
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on [τ1, τ2] is said to be a constrained arc.
I Likewise, if at t1 − τ1 the optimal input u?(·) changes its behavior in

order to meet a state terminal constraint at t1, u?(·) on [t1 − τ1, t1] is
said to be a constrained arc.

I If on [τ1, τ2] ⊆ [t0, t1] no constraints are active and thus u?(·) on [τ1, τ2]
is determined by the unconstrained minimum of the Hamiltonian H,
then u?(·) on [τ1, τ2] is said to be a sensitivity-seeking arc.

I Singular arcs will be introduced later.
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Pontryagin’s Maximum Principle – Remarks

I If λ0 > 0, then λ0, λ1(t), . . . , λnx (t) are defined up to a common multiple
(→ normal case).

I Often one normalizes λ0, such that ∀t : λ0 = 1.
I If λ0 = 0, then ` : Rnx × Rnu → R is not present in the NCOs (→

abnormal case).

I Usually, OCPs without terminal constraints are normal, i.e., λ0 6= 0.
Observation:

I Note: minimization of the Hamiltonian is global w.r.t. u.
I Non-trivial solution , i.e., ∀t ∈ [t0, t1] (λ0, λ1(t), . . . , λnx (t)) 6= (0, . . . ,0)

required.
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Pontryagin’s Maximum Principle – Remarks

I If constraints are not active, one obtains the Euler-Lagrange equations
(E-L).

I In case of free end-time H
(

x?(t),u?(t), λ̃?(t)
)

= 0

I In case of fixed end-time H
(

x?(t),u?(t), λ̃?(t)
)

= const .

I The PMP allows consideration of minimum-time problems.
I State constraints can be considered→ see lecture notes B. Chachuat.
I PMP for time-varying systems→ see lecture notes B. Chachuat.
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Extensions of the PMP

I OCPs with fixed end time and without terminal constraints

J(u(·)) =

∫ t1

t0
`(x(t),u(t))dt + φ(x(t1))

lead to the usual terminal condition for the adjoint

λ?(t1) = φx (x?(t1)).
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Extensions of the PMP

I OCPs with generalized terminal constraint x(t1) ∈ X1 lead to a
transversality condition

∀d ∈ T (x?(t1)) : 〈λ?(t1), d〉 = 0

where T (x?(t1)) is the tangent plane to X1 at x?(t1).

I For terminal conditions Ψ(x) =
[
ψ1(x) . . . ψnψ (x)

]
= 0 with

rank (Ψx (x?(t1))) = nψ we have

T (x?(t1)) =
{

d ∈ Rnx : d>Ψx (x?(t1)) = 0
}
.

The terminal condition for the adjoint becomes

λ?(t1) = φx (x?(t1)) + ν>Ψx (x?(t1)).
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Time Optimal Control of Linear Systems

min
u(·),t1

∫ t1

0
1dt

subject to

ẋ = Ax + Bu, x(0) = x0, x(t1) = 0 (PminT )

u(·) ∈ Ĉ ([0, t1], [u, u]) , u < 0 < u
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Time Optimal Control of Linear Systems
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Time Optimal Control of Linear Systems

Definition (Normal system)

Consider ẋ = Ax + Bu, x(0) = x0. The pair (A,B) with B = [b1, b2, . . . , bm] is
called normal if for all i ∈ {1, . . . ,m} the pairs (A, bi) are controllable.
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Time Optimal Control of Linear Systems
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Bang-Bang Solutions

Theorem (Bang-bang solutions for linear systems)

Consider Problem (PminT ). Suppose that the input constraint is given by

U = [−1, 1]× · · · × [−1, 1] ⊂ Rnu

and that (A,B) is normal.
Then
I the optimal control u?(·) has finitely many switching points, i.e.

u?(·) ∈ Ĉ ([0, t?1 ],U);
I u?(·) ∈ Ĉ ([0, t?1 ],U) is unique everywhere except the switching points;
I and u?(·) ∈ Ĉ ([0, t?1 ],U) takes only values on the vertices of U ⊂ Rnu .
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Example – Time Optimal Control
min

u(·),t1
t1

subject to

ẋ1 = x2

ẋ2 = u, x(0) = x0, x(t1) = 0

u(·) ∈ Ĉ ([0, t1], [−1, 1])
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Example – Time Optimal Control
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Overview

Optimal Control Terminology

Small Excursion to Calculus of Variations

Variational Approach to Optimal Control

Interpretation of Adjoint Variables

OCPs with Terminal Constraints

Pontryagin’s Maximum Principle

Singular Problems

The PMP on Infinite Horizons

The Hamilton-Jacobi-Bellman-Equation

Summary and References
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Singular Optimal Control Problems

min
u(·)

∫ t1

t0

`(t , x(t), u(t))dt

subject to

ẋ = f (t , x , u), x(t0) = x0 (Ps)

u(·) ∈ Ĉ ([t0, t1],U) , U ⊆ Rnu

Definition (Singular optimal control problem)

Consider Problem (Ps) from above and its corresponding Hamiltonian

H(t , x , u, λ0, λ) = λ0`(t , x , u) + 〈λ, f (t , x , u)〉 .

If there exist (t , x , u, λ0, λ) 6= 0 for which detHuu = 0, then (Ps) is said to be a
singular optimal control problem.
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Singular Optimal Control Problems

OCP with dynamics and objective affine in the scalar input u ∈ R:

min
u(·)

∫ t1

t0

`0(t , x) + `1(t , x)u(t)dt

subject to

ẋ = f0(t , x) + f1(t , x)u, x(t0) = x0

u(·) ∈ Ĉ ([t0, t1], [u, u]) , u < 0 < u

Hamiltonian is also affine in u ∈ R

H(t , x , u, λ0, λ) =

〈(
λ0

λ

)
,

(
`0 + `1u
f0 + f1u

)〉
=

〈(
λ0

λ

)
,

(
`0

f0

)〉
︸ ︷︷ ︸

H0(t,x,λ0,λ)

+

〈(
λ0

λ

)
,

(
`1

f1

)〉
︸ ︷︷ ︸

H1(t,x,λ0,λ)

u

→ How to obtain the optimal input u?(·)? ←

Timm Faulwasser Optimal Control (EE-736) | Part II.1: OCPs II.103 / II.128



Singular Optimal Control Problems

OCP with dynamics and objective affine in the scalar input u ∈ R:

min
u(·)

∫ t1

t0

`0(t , x) + `1(t , x)u(t)dt

subject to
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Singular Optimal Control Problems

Hamiltonian is affine in u ∈ R

H(t , x , u, λ0, λ) = H0(t , x , λ0, λ) + H1(t , x , λ0, λ)u.

I Case I: H1(t , x , λ0, λ) vanishes only at isolated points in time.
⇒ Bang-bang control, e.g., time-optimal control of linear systems.

I Case II: H1(t , x , λ0, λ) vanishes on some interval [τ0, τ1] ⊆ [t0, t1].
⇒ Any value of u minimizes the Hamiltonian on [τ0, τ1].
⇒ Singular arc on [τ0, τ1].

Resulting problem on [τ0, τ1]:

ẋ = Hλ(t , x , u, λ0, λ) (4a)

λ̇ = −Hx(t , x , u, λ0, λ) (4b)

0 = H1(t , x , λ0, λ) (4c)

→ Note: (4) is a system of Differential Algebraic Equations (DAE).←
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Singular Optimal Control Problems

General OCP with Hamiltonian affine in u ∈ R

H(t , x , u, λ0, λ) = H0(t , x , λ0, λ) + H1(t , x , λ0, λ)u.

and along singular arc it holds that:

ẋ = Hλ(t , x , u, λ0, λ)

λ̇ = −Hx(t , x , u, λ0, λ)

0 = Hu(t , x , u, λ0, λ) = H1(t , x , λ0, λ)

→ Treat 0 = Hu(t , x , u, λ0, λ) as algebraic constraint.

→ Obtain u?(·) by computation of time derivatives of 0 = Hu(t , x , u, λ0, λ). ←
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Singular Optimal Control Problems

Compute dk

dtk Hu(t , x , u, λ0, λ) until u appears:

Hu(t , x , u, λ0, λ) = 0
d
dt Hu(t , x , u, λ0, λ) = 0

...
∂
∂u

(
dσ
dtσ Hu(t , x , u, λ0, λ)

)
6= 0

(5)

Solve (5) for the optimal control u?(·) on the singular arc.

→ Hint: If the objective is separable in x and u and strictly quadratic in u, and
moreover no state constraints are present (active), singular arcs cannot occur. ←
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Example – Singular OCP
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Example – Singular OCP
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How should the PMP for OCPs with T =∞ read?

V∞(x0, t0) = min
u(·)

∫ ∞
t0

`(x(t),u(t))dt

subject to: ẋ = f (x ,u), x(t0) = x0

u(·) ∈ Ĉ[t0, t0 +∞]nu

Solution?
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Example – Halkin’s Problem

min
u(·)

∫ ∞
t0
−(1− x)u dt

subject to: (6)
ẋ = (1− x)u, x(0) = x0 ∈ [−x̂ ,1), x̂ <∞

u(·) ∈ Ĉ([0,∞], [0,1])

Solution?
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Example – Halkin’s Problem (cont’d)

I For any u ∈ [0,1] and x0 < 1, ẋ > 0

I To minimize the objective in (6) means to maximize limt→∞ x?(t)
I Hence we have u?(t) ≡ 1
I Solving the adjoint ODE gives

λ?(t) = (λ?(0)− λ?0)et − λ?0

I Normalizing −λ?0 = λ?(0) implies

λ?(t) ≡ −λ?0 6= 0

Halkin’s observation [7]

The usual transversality condition for the adjoint variable does not hold for
infinite-horizon problems!
The PMP on infinite horizons remains partially open.2

2We see later in Part III that dissipativity notions for OCP allow to overcome this issue.
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Towards closed-loop optimal control?

The PMP
I Constitutes necessary conditions of optimality
I In most cases provides open-loop optimal control
I Implies to solve a two-point boundary value problems for a differential

algebraic equation

How to switch to closed-loop optimal control?
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Problem Setting

VT (x0, t0) = min
u(·)

∫ t0+T

t0
`(t , x(t),u(t))dt + φ(t0 + T , x(t0 + T ))

subject to: (P)
ẋ = f (t , x ,u), x(t0) = x0

u(·) ∈ Ĉ[t0, t0 + T ]nu

f :R× Rnx × Rnu → Rnx , f ∈ C0 w.r.t. (t , x ,u), f ∈ C1 w.r.t. (x ,u)

` :R× Rnx × Rnu → R , ` ∈ C0 w.r.t. (t , x ,u), ` ∈ C1 w.r.t. (x ,u)
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Deriving the Hamilton-Jacobi-Bellman-Equation

Consider

VT (x0, t0) =

∫ t0+δt

t0
`(t , x?(t),u?(t))dt +

∫ t0+T

t0+δt
`(t , x?(t),u?(t))dt︸ ︷︷ ︸

VT−δt (x?(t0 + δt), t0 + δt)

The principle of optimality can be written as follows

VT (x0, t0) = min
u(·)

{∫ t0+δt

t0
`(t , x(t),u(t))dt + VT−δt (x?(t0 + δt), t0 + δt)

}
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Deriving the Hamilton-Jacobi-Bellman-Equation

Suppose that VT is C1 in (t , x), then

VT−δt (x?(t0 + δt), t0 + δt) = VT (x0, t0) +
∂VT

∂t
δt +

∂VT

∂x
ẋδt + h.o.t .

Substitute the first-order Taylor series

VT (x0, t0) = min
u(·)

{
VT (x0, t0) +

∂VT

∂t
δt +

∂VT

∂x
ẋδt +

∫ t0+δt

t0
`(t , x(t),u(t))dt

}

Substract VT (x0, t0), divide by δt , and let δt → 0 to obtain

0 = min
u(·)

{
∂VT

∂t
+
∂VT

∂x
ẋ + `(t , x(t),u(t))

}
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The Hamilton-Jacobi-Bellman-Equation for finite T

Consider problem (P) and let VT be C1 in (t , x), we have

− ∂VT

∂t
= min

u
{〈∇xVT , f (t , x ,u)〉+ `(t , x ,u)} (HJBE)

VT (x(t0 + T ) = φ(t0 + T , x(t0 + T ))

I The HJBE is a nonlinear partial differential equation

I The assumption that VT ∈ C1 is quite restrictive
I Hence the analysis and numerical solution has evolved to so-called

viscosity solutions [5]
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The HJBE for T =∞

V∞(x0, t0) = min
u(·)

∫ ∞
t0

`(x(t),u(t))dt

subject to: (P∞)
ẋ = f (x ,u), x(t0) = x0

u(·) ∈ Ĉ[t0, t0 +∞]nu

f :Rnx × Rnu → Rnx , f ∈ C1 w.r.t. (x ,u)

` :Rnx × Rnu → R , ` ∈ C1 w.r.t. (x ,u)
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The HJBE for T =∞

Consider problem (P∞) and let V∞ be C1 in (t , x).

Principle of optimality: end pieces of optimal trajectories are optimal.

Hence end pieces of infinite-horizon optimal solutions are optimal on the
infinite horizon, i.e. on [t0 + δt ,∞).

Therefore, for time-invariant infinite-horizon problems
∂V∞
∂t

= 0 and thus

0 = min
u
{〈∇xV∞, f (x ,u)〉+ `(x ,u)} (7)

Observation

In contrast to the PMP, which becomes more tricky for infinite horizons,
the HJBE simplifies for T =∞.
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How to get the optimal control?

How to get the optimal control?

Suppose that VT is known, then

u?(t , x) ∈ arg min
u
〈∇xVT , f (t , x ,u)〉+ `(t , x ,u)
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The Link between the HJBE and the PMP

Recall that
H(λ0, λ, x ,u) = λ0`+ 〈λ, f 〉

suppose that λ0 = 1 (normal problem). Moreover, on Slide II.72 we have
shown that

∇xVT−t = λ(t0 + t)

Hence
H(1,∇VT , x ,u) = `+ 〈∇xVT , f 〉

and thus (HJBE) can be written as

−∂VT

∂t
= min

u
H(1,∇xVT , x ,u)

VT (x(t0 + T ) = φ(t0 + T , x(t0 + T ))
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The Link between the HJBE and the PMP

I The PMP and the HJBE are two side of the same medal
I Formal statements obtained via the HJBE are stronger (necessary and

sufficient)
I HJBE provides optimal feedbacks
I Assumptions needed to work with the HJBE are stronger

(differentiability, can be relaxed but quite technical)
I The HJBE for time-invariant problems becomes easier for

infinite-horizons, cf. (HJBE) vs. (7)
I The PMP as such (cf. Slide 85) becomes tricky for T =∞, i.e., the

adjoint transversality for λ?(t1) creates problems [7]
I There exist interesting links between the HJBE and dissipativity

properties of dynamical systems [6]
I Strict dissipativity also allows to characterize limt→∞ λ?(t), see [6]
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The Hamilton-Jacobi-Bellman-Equation

Summary and References

Timm Faulwasser Optimal Control (EE-736) | Part II.1: OCPs II.124 / II.128



Summary Part II.1 – Optimal Control Theory

I Optimal control→ optimization in function spaces

I Euler-Lagrange equations (E-L)↔ first-order NCOs for OCPs without
input constraints

I Pontryagin’s Maximum Principle (Slide 85)↔ first-order NCOs for
OCPs with input constraints (extension to state constraints is possible)

I NCOs for OCPs→ boundary value problems (difficult to solve)
I Direct application of NCOs often difficult (small-scale examples)
I Understanding of NCOs→ insight into the structure (arcs) of

optimal solutions
I Bellman’s optimality principle exploits the coupling through time

evolution
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Literature and References for Part II.1

I Chapter 4 of:
B. Chachuat. Nonlinear and Dynamic Optimization - From Theory to Practice. EPFL,
2009. URL:
https://infoscience.epfl.ch/record/111939/files/Chachuat_07(IC32).pdf

I D. Liberzon. Calculus of Variations and Optimal Control Theory: A Concise Introduction.
Princeton University Press, 2012. URL:
http://liberzon.csl.illinois.edu/teaching/cvoc.pdf

I E.R. Pinch. Optimal Control and the Calculus of Variations. Oxford University Press, 1995
I A.E. Bryson and Y.-C. Ho. Applied Optimal Control. Ginn and Company, Waltham,

Massachusetts, 1969
I M. Athans and P.L. Falb. Optimal Control - An Introduction to Theory and its Applications.

McGraw-Hill Book Company, 1966
I H.J. Sussmann and J.C. Willems. “300 years of optimal control: from the brachystochrone

to the maximum principle”. inIEEE Control Systems: 17.3 (1997), pages 32–44
I ...

→ How to solve optimal control problems numerically? Next lectures. ←
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