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Why do we need feedback control?
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Principle of Predictive Control
Predictive control ≡ repeated optimal control.

t

tk

x(t)

u(t)

tk + Ttk+1 tk+1 + Ttk+2

1. State measurement/estimate x(tk )

2. Solve OCP(x(tk )) :

min
u(·|tk )

∫ tk +T

tk
`(x(τ |tk ), u(τ |tk )) dτ + Vf (x(tk + T |tk ))

∀τ ∈ [tk , tk + T ] :
dx(τ |tk )

dτ
= f (x(τ |tk ), u(τ |tk ))

x(tk |tk ) = x(tk )

x(τ |tk ) ∈ X, u(τ |tk ) ∈ U
x(tk + T |tk ) ∈ Xf

3. Apply u?(τ |tk ) for τ ∈ [tk , tk+1)

Notions and Notation:
I MPC = pred. control with linear model, convex quadratic cost and linear inequality constraints.
I NMPC = pred. control with nonlinear models and/or non-quadratic stage cost / cost function.
I x(·|tk ) denotes predicted state trajectory with initial condition x(tk ).

I u(·|tk ) denotes predicted input trajectory for the NMPC feedback at time tk .
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Questions:
I How to design and implement an NMPC scheme?
I Why use an NMPC scheme?
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Ingredients for Sampled-Data NMPC Design

I System model f : Rnx × Rnu → Rnx

I State constraints X ⊆ Rnx

I Input constraints U ⊆ Rnu

I State feedback x(tk )

→ Assumed to be exactly known.

I Stage cost ` : Rnx × Rnu → R
I Terminal penalty Vf : Rnx → R
I Terminal constraint Xf ⊆ X ⊆ Rnx

I Prediction horizon T ∈ (0,∞)

I Sampling period δ = tk+1 − tk ∈ (0,T ]

→ To be designed/chosen!

1. State measurement/estimate x(tk )

2. Solve OCP(x(tk )) :

min
u(·|tk )

∫ tk +T

tk
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Motivations for Using NMPC

Feedback Control
I Control of nonlinear MIMO systemd subject to constraints
I Pre-requisite = control task at hand, such as setpoint stabilization, trajectory tracking,

disturbance attenuation, ...
I Choose `,Vf ,Xf , δ,T according to task.

→ Next!

Economics / Economic Operation
I Receding horizon approximation to the solution of an infinite-horizon OCP.
I Pre-requisite = specified performance functional:

J∞ =

∫ ∞
0

`(x(τ), u(τ)) dτ,

i.e. the cost function ` is given!
I Choose δ,T and analyze properties of NMPC loop.

→ Later!
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Considered Control Problem – Setpoint Stabilization

I Reference = setpoint x̄ ∈ X ⊆ Rnx

I Convergence: lim
t→∞

x(t , x0,u(·)) = x̄ , ∀x0 ∈ X0

I Constraint satisfaction: ∀t ≥ 0 : u(t) ∈ U and x(t , x0,u(·)) ∈ X
I Stability: ∀ε > 0 ∃δ > 0 such that

‖x(0)− x̄‖ < δ ⇒ ‖x(t , x0,u(·))− x̄‖ < ε ∀t ≥ 0

∑
: ẋ = f (x ,u)

OCP(x(tk ))

u x

x1

x2

x̄x0
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NMPC Pitfall Example

min
u(·|tk )

∫ tk +T

tk
x(τ |tk )>Qx(τ |tk ) + u(τ |tk )>Ru(τ |tk ) dτ

subject to

∀τ ∈ [tk , tk + T ] :
dx(τ |tk )

dτ
=

0 1 0
0 0 1
0 0 0

 x(τ |tk ) +

0
0
1

u(τ |tk ),

x(tk |tk ) = x(tk )

Setting:
I Weight matrices: Q = diag(5, 5, 0), R = 1
I Inputs approximated as piece-wise constant
I Sampling period: δ = 0.05
I Prediction horizon: T = N · δ, N = # number of shooting intervals
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NMPC Pitfall Example (cont’d)

I At each sampling time tk , the optimal input u?(tk |tk ) is applied.
I For short horizons the closed loop is unstable.
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NMPC Pitfall Example (cont’d)
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A Pitfall Example of NMPC (cont’d)

I Predicted trajectories 6= closed-loop trajectories:

x?(τ |tk ) 6= x(τ, x(tk ),u?(·|tk )), τ ∈ (tk + δ, tk + T ]
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Stability vs. Optimality in NMPC

In the engineering literature it is often assumed (tacitly and incorrectly)
that a system with an optimal control law is necessarily stable.

R.E. Kalman. “Contributions to the theory of optimal control”. inBol. Soc. Mat. Mexicana: 5.2 (1960), pages 102–119

Rudolf Emil Kálmán (1930-2016)

I Likewise in NMPC: Optimality does not imply stability!
I There is a need for NMPC design procedures guaranteeing

stability!
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Useful Definitions

Definition (Class-K function)

I A scalar function α : R+
0 → R+

0 is said to belong to class K, if it is
continuous, strictly increasing, and α(0) = 0.

I α : R+
0 → R+

0 is said to belong to class K∞, if α ∈ K and if it is radially
unbounded, i.e. α(s)→∞ as s →∞.

C.M. Kellett. “A compendium of comparison function results”. inMathematics of Control, Signals, and Systems: 26.3 (2014), pages 339–374
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Useful Definitions

Definition (Stability of equilibria)

The system ẋ = f (t , x) with f (t ,0) = 0 is said to be uniformly (locally) stable
at x = 0, if for every ε > 0 there exists an δ = δ(ε) > 0, which is independent
from t0, such that all solutions x(·, t0, x0) fulfill

‖x0‖ < δ ⇒ ‖x(t , t0, x0)‖ < ε for all t ≥ t0 ≥ 0.

If x = 0 is a uniformly stable equilibrium of ẋ = f (t , x), if there exists a
positive constant c = c(t0), and if, additionally, the solutions fulfill

i)
lim

t→∞
‖x(t , t0, x0)‖ = 0 for all ‖x0‖ < c,

ii) and for each η > 0 there exists T = T (η) > 0 such that

‖x(t , t0, x0)‖ < η, for all t ≥ t0 + T (η), for all ‖x0‖ < c,

then x = 0 is said to be uniformly (locally) asymptotically stable.
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Useful Definitions (cont’d)

Lemma (Lyapunov function and stability)

Let β1, β2 ∈ K∞, and β3 ∈ K, and the system ẋ = f (t , x) fulfills f (t ,0) = 0.
Consider some compact domain X containing x = 0 in its interior, and a
function V : R+

0 × X→ R+
0 such that

β1(‖x‖) ≤ V (t , x) ≤ β2(‖x‖)
∂V
∂t

+
∂V
∂x

f (t , x) ≤ −β3(‖x‖)

holds for all t ≥ 0 and all x ∈ X. Then x = 0 is uniformly asympt. stable on
X.

For further details on stability definitions see:
I H.K. Khalil. Nonlinear Systems. 3rd. Prentice Hall, New Jersey, 2002
I E.D. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer, 1998
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Nominal NMPC Setting

Here we consider an nominal NMPC setting:

I No plant-model mismatch, i.e., f is an exact plant model.

I State feedback = plant state x(tk ) is exactly known at time tk .

I For all k ∈ N, an optimal solution to OCP(x(tk )) exists and is attained.
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Standing Assumptions

A1 (Steady state): Given x̄ , there exists ū ∈ U, such that 0 = f (x̄ , ū) and
(x̄ , ū) ∈ int(X× U). W.l.o.g. we suppose (x̄ , ū) = (0,0).

A2 (Lower boundedness of `): There exists a class-K function
α : R+

0 → R+
0 , such that

`(x ,u) ≥ α(‖x − x̄‖), and `(0,0) = 0.
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Standing Assumptions

A3 (Absolute continuity of ODE solutions): For all x0 ∈ X, and any
u(·) ∈ Ĉ([0,T ],U), the solution x(·, x0,u(·)) exists on [0,T ] and is
absolutely continuous.

Definition (Absolute continuity)

A trajectory x(·) is said to be absolutely continuous on [0,T ], iff
I x(t) is almost everywhere differentiable w.r.t. t , ẋ(t) is Lebesgue

integrable, and
I for all t ∈ [0,T ],

x(t) = x(0) +

∫ t

0
ẋ(τ) dτ

holds.
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Instantaneous Infinite-Horizon NMPC

1. State measurement/estimate x(tk )

2. Solve:

min
u(·|tk )

∫ tk +∞

tk
`(x(τ |tk ), u(τ |tk )) dτ

subject to ∀τ ∈ [tk , tk +∞] : (OCP∞(x(tk )))

dx(τ |tk )

dτ
= f (x(τ |tk ), u(τ |tk )), x(tk |tk ) = x(tk )

x(τ |tk ) ∈ X, u(τ |tk ) ∈ U

3. Apply u?(τ |tk ) for τ ∈ [tk , tk+1)

I Infinite prediction horizon (T =∞) and instantaneous recalculation (δ .
= tk+1 − tk = 0)

I No terminal penalty (Vf (x(tk + T |tk )) = 0) and no terminal region (Xf = X)

I Value function: V∞(x(t))
.

=

∫ t+∞

t
`(x?(τ |tk ), u?(τ |tk )) dτ
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Stability of Instantaneous Infinite-Horizon NMPC

Theorem (Stability of instantaneous infinite-horizon NMPC)

Let Assumptions A1–A3 hold and suppose that,
(i) for all x ∈ X0, the value function V∞(x) is continuously differentiable

and
β1(‖x‖) ≤ V∞(x) ≤ β2(‖x‖), β1,2 ∈ K∞

Then, the NMPC scheme based on OCP∞(x(tk )) achieves local asymptotic
stability of Σ at x = 0. The region of attraction is given by the set of initial
conditions for which (i) holds.

A. Jadbabaie, J. Yu, J. Hauser. “Unconstrained receding-horizon control of nonlinear systems”. inIEEE Trans. Automat. Contr.: 46.5 (2001),

pages 776–783. DOI: 10.1109/9.920800

Timm Faulwasser Optimal Control (EE-736) | Part III: NMPC III.21 / III.120

https://doi.org/10.1109/9.920800


Instantaneous Infinite-Horizon NMPC
Proof sketch:
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Instantaneous Infinite-Horizon NMPC
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Overview

Introduction

NMPC for Setpoint Stabilization

Stabilizing NMPC with Terminal Constraints

Computation of Terminal Constraints

Stabilizing NMPC without Terminal Constraints

Comments on Different NMPC Formulations

Turnpikes and Dissipativity in OCPs

Economic NMPC with Terminal Constraints

Turnpike Approach to
Economic NMPC without Terminal Constraints

Summary
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From Infinite to Quasi Infinite-Horizon NMPC

Idea: Truncate OCP to finite horizon and bound cost-to-go.

∫ ∞
tk

`(x(τ),u(τ)) dτ =

∫ t

tk
`(x(τ),u(τ)) dτ +

∫ ∞
t

`(x(τ),u(τ)) dτ︸ ︷︷ ︸
cost-to-go

Consider

∂Vf

∂x
f (x ,u) ≤ −`(x ,u)

Integrating from t to∞ gives

Vf (x(∞))− Vf (x(t)) +

∫ ∞
t

`(x(τ),u(τ)) dτ ≤ 0.

Let Vf (x(∞)) = 0, then

−Vf (x(t)) +

∫ ∞
t

`(x(τ),u(τ)) dτ ≤ 0.
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From Infinite to Quasi Infinite-Horizon NMPC

The inequality

∂Vf

∂x
f (x ,u) ≤ −`(x ,u)

implies that Vf : Xf → R, Vf ∈ C1 is an upper bound on the cost-to-go, i.e,∫ ∞
t

`(x(τ),u(τ)) dτ ≤ Vf (x(t))

Drawback: How to find global bound on cost to go?
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Local Bound on Cost-To-Go

Assume that, for all x ∈ Xf ⊆ X, there exists a feedback u = k(x)

∂Vf

∂x
f (x , k(x)) + `(x , k(x)) ≤ 0. (1)

Xf

x1

x2

x(tk )

x(·|tk )

x(tk+1)

x(·|tk+1)

Idea: For NMPC require that all predicted trajectories end in the terminal set
Xf , whereby the local feedback k : x ∈ Xf 7→ u ∈ U satisfy (1).
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Sampled-Data Quasi-Infinite-Horizon NMPC

1. State measurement/estimate x(tk )

2. Solve:

min
u(·|tk )

∫ tk +T

tk
`(x(τ |tk ), u(τ |tk )) dτ + Vf (x(tk + T |tk ))

subject to ∀τ ∈ [tk , tk + T ] : (OCPXf
T (x(tk )))

dx(τ |tk )

dτ
= f (x(τ |tk ), u(τ |tk )), x(tk |tk ) = x(tk )

x(τ |tk ) ∈ X, u(τ |tk ) ∈ U
x(tk + T |tk ) ∈ Xf

3. Apply u?(τ |tk ) for τ ∈ [tk , tk+1)

I Finite prediction horizon (T <∞) and sampled-data recalculation (δ .
= tk+1 − tk > 0)

I Terminal penalty (Vf 6= 0) and terminal region (Xf ⊆ X)

I Value function: VXf
T (x(tk ))

.
=

∫ tk +T

tk
`(x?(τ |tk ), u?(τ |tk )) dτ + Vf (x?(tk + T |tk ))
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Convergence of Quasi-Infinite-Horizon NMPC
Theorem (Convergence of sampled-data NMPC)

Let Assumptions A1–A3 hold and suppose that there exist Vf , Xf ⊆ X (0 ∈ Xf ), and
a feedback k : Xf → U such that

(i) Vf : Xf → R+
0 is positive semi-definite and Vf (0) = 0,

(ii) for all x ∈ Xf :
∂Vf

∂x
f (x , k(x)) + `(x , k(x)) ≤ 0,

and for all t ∈ [0, δ] : x(t , x , k(x)) ∈ Xf ,

(iii) OCPXf
T (x(tk )) is feasible at k = 0.

Then,
I OCPXf

T (x(tk )) is recursively feasible,
I the NMPC scheme based on OCPXf

T (x(tk )) achieves lim
t→∞
‖x(t)‖ = 0,

I and the region of attraction is given by the set of initial conditions for which (iii)
holds.

H. Chen and F. Allgöwer. “A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability”. inAutomatica: 34.10 (1998),
pages 1205–1217

F. Fontes. “A General Framework to Design Stabilizing Nonlinear Model Predictive Controllers”. inSys. Contr. Lett.: 42.2 (2001), pages 127–143
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Main Steps of NMPC Stability Proofs

I Step 1 – Recursive feasibility of the sequence OCPXf
T (x(tk )) for all

sampling instants tk , k ∈ N

I Step 2 – Decrease of the value function VXf
T (x(t)) in-between two

sampling instants tk+1 and tk
I Step 3 – Decrease of the value function VXf

T (x(t)) from one sampling
instant to the next

I Step 4 – Consider the value function VXf
T (x(t)) as a Lyapunov function

of the closed-loop system

Definition (Recursive feasibility of an OCP)

In the context of NMPC, an OCP(x(tk )) is said to be recusively feasible, if,
for all k ∈ N its feasibility at time tk implies its feasibility at time tk+1.
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Step 1 – Recursive Feasibility

Idea: Construct feasible u(·) for OCPXf
T (x(tk+1)) from solution to OCPXf

T (x(tk )).

Consider

ũk+1(t) =

{
u?(t |tk ) t ∈ [tk+1, tk + T )
k(x(t)) t ∈ [tk + T , tk+1 + T ]

.

τ

x

x̄ = 0

x(tk )

tk tk + T

x?(·|tk ) = x?(·, x(tk ), u?(·|tk ))

Xf

xf ,k

xf ,k = x?(tk + T |tk )
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Step 1 – Recursive Feasibility

Idea: Construct feasible u(·) for OCPXf
T (x(tk+1)) from solution to

OCPXf
T (x(tk )).

Consider

ũk+1(t) =

{
u?(t |tk ) t ∈ [tk+1, tk + T )
k(x(t)) t ∈ [tk + T , tk+1 + T ]

.

τ

x

x̄ = 0
x(tk )

tk tk + T

x?(·|tk ) = x?(·, x(tk ),u?(·|tk ))

Xf

xf

tk+1

x(tk+1)

tk+1 + T

x(tk+1 + T , xf , k(x))

Observe that ũk+1 : [tk+1, tk+1 + T ]→ U, i.e. ũk+1(·) is feasible.
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Step 2 – Decrease in-between two Consecutive Instants

Consider the value function

VXf
T (x(tk ))

.
=

∫ tk +T

tk
`(x?(τ |tk ),u?(τ |tk )) dτ + Vf (x?(tk + T |tk )).

As we consider the nominal case (no plant-model mismatch), we have

x(t) = x?(t |tk ), ∀t ∈ [tk , tk+1].

Hence,

VXf
T (x(t))

.
= VXf

T (x(tk ))−
∫ t

tk
`(x?(τ |tk ),u?(τ |tk )) dτ

is continuous and decreasing for all t ∈ [tk , tk+1).
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Step 3 – Decrease from One Sampling Instant to the Next

For all k ∈ N, it holds that VXf
T (x(tk+1))− VXf

T (x(tk )) ≤ 0.

Note

VXf
T (x(tk+1))− VXf

T (x(tk )) ≤ J(x(tk+1), ũk+1(·))− VXf
T (x(tk ))
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Step 3 – Decrease from One Sampling Instant to the Next

Timm Faulwasser Optimal Control (EE-736) | Part III: NMPC III.35 / III.120



Step 4 – Barbalat’s Lemma and Convergence

Lemma (Barbalat’s lemma)

Let M : Rnx → R+
0 be a continuous positive definite function and x(·) be an

absolutely continuous function on R. If x(·) ∈ L∞, ẋ(·) ∈ L∞ and

lim
t→∞

∫ t

0
M(x(τ)) dτ <∞

then
lim

t→∞
‖x(t)‖ = 0.

H. Michalska and R.B. Vinter. “Nonlinear stabilization using discontinuous moving-horizon control”. inIMA Journal of Mathematical Control and

Information: 11.4 (1994), pages 321–340
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Step 4 – Barbalat’s Lemma and Convergence
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Step 4 – Barbalat’s Lemma and Convergence

How to compute terminal regions and end penalties?

H. Chen and F. Allgöwer. “A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability”. inAutomatica: 34.10 (1998),
pages 1205–1217

F. Fontes. “A General Framework to Design Stabilizing Nonlinear Model Predictive Controllers”. inSys. Contr. Lett.: 42.2 (2001), pages 127–143
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NMPC with Zero-Terminal Constraint

Let OCP0
T (x(tk )) denote the variant of OCPXf

T (x(tk )) with
Xf = {0},Vf (x) = 0.

Corollary (Convergence with zero-terminal constraint)

Let Assumptions A1–A3 hold and suppose that the terminal penalty is
Vf (x) = 0, the terminal region is Xf = {0}, and
(iii) OCP0

T (x(tk )) is feasible at k = 0.

Then,
I OCP0

T (x(tk )) is recursively feasible,
I the NMPC scheme based on OCP0

T (x(tk )) achieves lim
t→∞

‖x(t)‖ = 0,

I and the region of attraction is given by the set of initial conditions for
which OCP0

T (x(tk )) is feasible.

D.Q. Mayne and H. Michalska. “Receding horizon control of nonlinear systems”. inIEEE Trans. Automat. Contr.: 35.7 (1990), pages 814–824. DOI:
10.1109/9.57020

S.S. Keerthi and E.G. Gilbert. “Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and

moving-horizon approximations”. inJournal of Optimization Theory and Applications: 57.2 (1988), pages 265–293
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T (x(tk )) is feasible at k = 0.
Then,
I OCP0

T (x(tk )) is recursively feasible,
I the NMPC scheme based on OCP0

T (x(tk )) achieves lim
t→∞

‖x(t)‖ = 0,

I and the region of attraction is given by the set of initial conditions for
which OCP0

T (x(tk )) is feasible.

D.Q. Mayne and H. Michalska. “Receding horizon control of nonlinear systems”. inIEEE Trans. Automat. Contr.: 35.7 (1990), pages 814–824. DOI:
10.1109/9.57020

S.S. Keerthi and E.G. Gilbert. “Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and

moving-horizon approximations”. inJournal of Optimization Theory and Applications: 57.2 (1988), pages 265–293
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Structured Computation of Terminal Regions

Consider
ẋ = f (x ,u), x(0) ∈ X0 (Σ)

with f (0,0) = 0. Let

A .
=

∂f
∂x

∣∣∣∣
(0,0)

, B .
=

∂f
∂u

∣∣∣∣
(0,0)

.

Lemma (Nonlinear local stabilizability)

If the pair (A,B) is stabilizable—i.e., there exists u = Kx such that the real
parts of all eigenvalues of A + BK are negative—then the feedback u = Kx
achieves local asymptotic stability of x = x̄ = 0 for the nonlinear system Σ.

H.K. Khalil. Nonlinear Systems. 3rd. Prentice Hall, New Jersey, 2002
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Structured Computation of Terminal Regions

To compute a terminal region and a corresponding terminal penalty, we
consider
I `(x ,u) = 1

2 x>Qx + 1
2 u>Ru, with Q � 0,R � 0, and that

I the Jacobian linearization of f (x ,u) at (0,0), (A, B), is stabilizable.

Let P be the positive definite solution of the Algebraic Riccati
Equation (ARE)

A>P + PA− PBR−1B>P + Q = 0, P = P> � 0, (ARE)

and consider the feedback u = Kx

K = −R−1B>P.

In Matlab the algebraic Riccati equation can be solved using
lqr or care, dare commands.
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Structured Computation of Terminal Regions

Furthermore, u = Kx = −R−1B>Px is the optimal solution to the following
linear-quadratic OCP:

min
u(·)

∫ ∞
t0

1
2
(
x>(τ)Qx(τ) + u>(τ)Ru(τ)

)
dτ

subject to (LQR)
ẋ = Ax + Bu, x(t0) = x0

and the optimal value function of (LQR) is given by

VLQR(x0) =
1
2

x>0 Px0.

B.D. Anderson and J.B. Moore. Optimal Control - Linear Quadratic Methods. Information and system

science series. Prentice Hall, Englewood Cliffs, London, 1990
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Structured Computation of Terminal Regions

Then, it is straightforward to show
I u = Kx stabilizes the nonlinear system (Σ) locally, and
I 1

2 x>Px is a local Lyapunov function of the nonlinear system Σ
controlled by u = Kx .

Question: Domain of attraction of the nonlinear system (Σ) under the
feedback u = Kx ?
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Structured Computation of Terminal Regions

Ellipsoidal ansatz for the terminal region

Xf =
{

x ∈ Rnx | 1
2 x>Px ≤ ρ2}

with `(x ,u) = 1
2 x>Qx + 1

2 u>Ru and Vf (x) = 1
2 x>Px

min
ρ

− ρ

subject to (Pρ)
∀x ∈ Xf : Kx ∈ U

V̇f (x) + `(x ,Kx) ≤ 0

I max ρ is equivalent to max vol(Xf ) for fixed P
I Semi-infinite program→ difficult to solve
I V̇f (x) + `(x ,Kx) ≤ 0 is a non-convex constraint
I Structural assumptions on nonlinearity of f and polytopic constraints for

simplification
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Structured Computation of Terminal Regions

Choice of terminal region and end penalty based on solution to linearized
infinite-horizon problem (LQR):

I Xf ={
x ∈ Rnx | 1

2
x>Px ≤ ρ2

}
with ρ from (Pρ)

I Vf (x) =
1
2

x>Px

I P solves the algebraic
Riccati equation (ARE)

Xf

x1

x2

x(tk)

x(·|tk)
x(tk+1)

x(·|tk+1)

H. Chen and F. Allgöwer. “A quasi-infinite horizon nonlinear model predictive control scheme with

guaranteed stability”. inAutomatica: 34.10 (1998), pages 1205–1217
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Intermediate Summary – NMPC with Terminal Constraints

Terminal regions Xf :
I Guarantee recursive feasibility in presence of state constraints.
I Are often computed based on linearization
I Their computation is in general difficult (semi-infinite program)
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Intermediate Summary – NMPC with Terminal Constraints

Terminal penalties Vf :
I Typically constructed to be upper bounds on the cost-to-go
I Often computed based on linearization.
I Local Lyapunov functions arising from locally stabilizing feedbacks are

natural candidates.
I Easiest non-trivial choice: value function of corresponding LQR

problem

Food for thought

How to choose terminal penalty and terminal region if target steady state is
globally asymptotically stable?
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NMPC Pitfall Example – Revisited

min
u(·|tk )

∫ tk +T

tk
‖x(τ |tk )‖2

Q + ‖u(τ |tk )‖2
R dτ + ‖x(tk + T |tk )‖2

P

subject to

∀τ ∈ [tk , tk + T ] :
dx(τ |tk )

dτ
=

0 1 0
0 0 1
0 0 0

 x(τ |tk ) +

0
0
1

 u(τ |tk ),

x(tk |tk ) = x(tk )

Setting:
I Weight matrices: Q = diag(5, 5, 0), R = 1
I Inputs approximated as piece-wise constant
I Sampling period: δ = 0.05
I Prediction horizon: T = N · δ, N = # number of shooting intervals
I P � 0 solves (ARE)
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NMPC Pitfall Example – Revisited

I Long horizons or terminal penalties plus terminal regions fix stability problem.
I How to avoid terminal regions?

I How to enforce recursive feasibility without terminal regions?
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Summary – NMPC with Terminal Constraints

I Terminal regions and terminal penalties can be used to guarantee
stability/convergence.

I Their computation is difficult for nonlinear systems.
I A plethora of results discuss special cases and discrete-time settings:

I D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M. Scokaert. “Constrained model
predictive control: Stability and optimality”. inAutomatica: 36.6 (2000),
pages 789–814

I J.B. Rawlings, D.Q. Mayne, M. Diehl. Model Predictive Control: Theory,
Computation, and Design. Nob Hill Publishing, Madison, WI, 2017

I . . .

Questions:
I How to avoid terminal constraints?
I How to consider other control problems than set-point stabilization?
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NMPC with Replaced Terminal Constraint

1. State measurement/estimate x(tk )

2. Solve:

min
u(·|tk )

∫ tk +T

tk
`(x(τ |tk ), u(τ |tk )) dτ + βVf (x(tk + T |tk ))

subject to ∀τ ∈ [tk , tk + T ] : (OCPβT (x(tk )))

dx(τ |tk )

dτ
= f (x(τ |tk ), u(τ |tk )), x(tk |tk ) = x(tk )

x(τ |tk ) ∈ X, u(τ |tk ) ∈ U

3. Apply u?(τ |tk ) for τ ∈ [tk , tk+1)

I Finite horizon (T <∞) and sampled-data recalculation (δ .
= tk+1 − tk > 0)

I Terminal penalty βVf is C1 and positive definite, and no explicit terminal region Xf

I Value function: VβT (x(tk ))
.

=

∫ tk +T

tk
`(x?(τ |tk ), u?(τ |tk )) dτ + βVf (x?(tk + T |tk ))
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Replacing the Terminal Set by a Terminal Cost

How to choose β ∈ [0,∞) such that the NMPC scheme based on
OCPβ

T (x(tk )) achieves stability?

Consider a quasi-infinite horizon NMPC scheme based on OCPXf
T (x(tk )).

Assumption

A4 For some γ > 0, let Xf ,γ = {x ∈ X | Vf (x) ≤ γ} and Vf satisfy the quasi
infinite-horizon NMPC stability conditions for specific values of
δ > 0,T > 0.
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Replacing the Terminal Set by a Terminal Cost

Consider the quasi infinite-horizon NMPC scheme based on OCP0
T (x(tk ))

with zero-terminal constraint Xf = {0} and Vf (x) = 0.

Let V 0
T (x) be the associated optimal value function, and consider the set of

feasible initial conditions

Ω0
T =

{
x ∈ X | V 0

T (x) <∞
}
.

Assumptions

A5 The set Ω0
T is compact and 0 ∈ int(Ω0

T ).
A6 There exists β2 ∈ K∞, such that V 0

T (x) ≤ β2(‖x‖).
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NMPC with replaced terminal constraint

Theorem (Convergence with replaced terminal constraint)

Let Assumptions A1–A6 hold. Then, there exists β ∈ (0,∞), such that
I the NMPC scheme based on OCPβ

T (x(tk )) achieves

lim
t→∞

‖x(t)‖ = 0,

I and the region of attraction is given by Ω0
T .
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Convergence with Replaced Terminal Constraint

Proof sketch:
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Convergence with Replaced Terminal Constraint

D. Limon, T. Alamo, F. Salas, E.F. Camacho. “On the stability of constrained MPC without terminal
constraint”. inIEEE Trans. Automat. Contr.: 51.5 (2006), pages 832–836
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Excursion – Control Lyapunov Function

Definition (Control Lyapunov function)
Let V : Rnx → R+

0 be positive definite and continuously differentiable on Rnx . If, for all x ∈ Rnx ,
there exists u ∈ U such that

∂V
∂x

f (x , u) < 0, ∀x 6= 0

then V is said to be a control Lyapunov function.

Observation
Let V : Rnx → R+

0 be a control Lyapunov function satisfying

∂V
∂x

f (x , u) ≤ −`(x , u),

then V can be used as terminal penalty Vf .

A. Jadbabaie, J. Yu, J. Hauser. “Unconstrained receding-horizon control of nonlinear systems”. inIEEE

Trans. Automat. Contr.: 46.5 (2001), pages 776–783. DOI: 10.1109/9.920800
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Summary – NMPC without Terminal Constraints

How to avoid terminal constraints?

1. Replace by scaled terminal penalty βVf (x).
D. Limon, T. Alamo, F. Salas, E.F. Camacho. “On the stability of constrained MPC without terminal
constraint”. inIEEE Trans. Automat. Contr.: 51.5 (2006), pages 832–836

2. Use a control Lyapunov function as terminal penalty.
A. Jadbabaie, J. Yu, J. Hauser. “Unconstrained receding-horizon control of nonlinear systems”.
inIEEE Trans. Automat. Contr.: 46.5 (2001), pages 776–783. DOI: 10.1109/9.920800

3. Use a sufficiently long prediction horizon.
A. Jadbabaie and J. Hauser. “On the stability of receding horizon control with a general terminal cost”.
inIEEE Trans. Automat. Contr.: 50.5 (2005), pages 674–678. DOI: 10.1109/TAC.2005.846597

4. Consider so-called cost-controllability conditions.
L. Grüne and J. Pannek. Nonlinear Model Predictive Control: Theory and Algorithms. 2nd Edition.

Communication and Control Engineering. Springer Verlag, 2017

I State constraints may lead to difficulties in approaches 2.–4. (recursive feasibility).
I Considering turnpike properties allows tackling this issue (→ later).
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Stability Ingredients for Setpoint Stabilization

I Reference setpoint: (x̄ , ū) ∈ int(X× U)
0 = f (x̄ , ū)

I Error variables: x − x̄ , u − ū
I Cost function ` chosen such that

`(x , u) ≥ α(‖x − x̄‖), α ∈ K

I Typical choices:

`(x , u) = ‖x − x̄‖2
Q + ‖u − ū‖2

R

Q = Q> � 0,R = R> � 0

Vf (x) = ‖x − x̄‖2
P

Xf = {x ∈ Rnx |Vf (x) ≤ γ}

1. State measurement/estimate x(tk )

2. Solve OCP(x(tk )) :

min
u(·|tk )

∫ tk +T

tk
`(x(τ |tk ), u(τ |tk )) dτ + Vf (x(tk + T |tk ))

∀τ ∈ [tk , tk + T ] :
dx(τ |tk )

dτ
= f (x(τ |tk ), u(τ |tk ))

x(tk |tk ) = x(tk )

x(τ |tk ) ∈ X, u(τ |tk ) ∈ U
x(tk + T |tk ) ∈ Xf

3. Apply u?(τ |tk ) for τ ∈ [tk , tk+1)

Notation: ‖z‖2
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Stability Ingredients for Setpoint Stabilization
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R

Q = Q> � 0,R = R> � 0

Vf (x) = ‖x − x̄‖2
P

Xf = {x ∈ Rnx |Vf (x) ≤ γ}

1. State measurement/estimate x(tk )

2. Solve OCP(x(tk )) :

min
u(·|tk )

∫ tk +T

tk
`(x(τ |tk ), u(τ |tk )) dτ + Vf (x(tk + T |tk ))

∀τ ∈ [tk , tk + T ] :
dx(τ |tk )

dτ
= f (x(τ |tk ), u(τ |tk ))

x(tk |tk ) = x(tk )

x(τ |tk ) ∈ X, u(τ |tk ) ∈ U
x(tk + T |tk ) ∈ Xf

3. Apply u?(τ |tk ) for τ ∈ [tk , tk+1)

Notation: ‖z‖2
S = z>Sz, S � 0

Timm Faulwasser Optimal Control (EE-736) | Part III: NMPC III.62 / III.120



Stability Ingredients for Trajectory Tracking

I Reference trajectory: ṙ = f (r ,w)
t ∈ [0,∞)→ r(t) ∈ intX,
t ∈ [0,∞)→ w(t) ∈ intU

I Error variables:
e(t) = x(t)− r(t)

v(t) = u(t)− w(t)
I Cost function ` chosen such that
`(t , x , u) ≥ α(‖x − r(t)‖), α ∈ K

I Typical choices:

`(t , x , u) = ‖x − r(t)‖2
Q + ‖u − w(t)‖2

R

Q = Q> � 0,R = R> � 0

Vf (t , x) = ‖x − r(t)‖2
P(t)

Xf = {x ∈ Rnx |Vf (t , x) ≤ γ}

1. State measurement/estimate x(tk )

2. Solve OCP(tk , x(tk )) :

min
u(·|tk )

∫ tk +T

tk
`(τ, x(τ |tk ), u(τ |tk )) dτ+Vf (τ, x(τ |tk ))|tk +T

∀τ ∈ [tk , tk + T ] :
dx(τ |tk )

dτ
= f (x(τ |tk ), u(τ |tk ))

x(tk |tk ) = x(tk )

x(τ |tk ) ∈ X, u(τ |tk ) ∈ U
x(tk + T |tk ) ∈ Xf

3. Apply u?(τ |tk ) for τ ∈ [tk , tk+1)

Note: NMPC for trajectory tracking leads to a time-varying problem.

T. Faulwasser. Optimization-based Solutions to Constrained Trajectory-tracking and Path-following Problems. Shaker, Aachen, Germany, 2013. DOI:

10.2370/9783844015942
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Continuous Time vs. Discrete Time Setting?

Continuous-Time NMPC

1. State measurement/estimate x(tk )

2. Solve OCP(x(tk )) :

min
u(·|tk )

∫ tk +T

tk
`(x(τ |tk ), u(τ |tk )) dτ + Vf (x(tk + T |tk ))

∀τ ∈ [tk , tk + T ] :
dx(τ |tk )

dτ
= f (x(τ |tk ), u(τ |tk ))

x(tk |tk ) = x(tk )

x(τ |tk ) ∈ X, u(τ |tk ) ∈ U
x(tk + T |tk ) ∈ Xf

3. Apply u?(τ |tk ) for τ ∈ [tk , tk+1)

Discrete-Time NMPC

1. State measurement/estimate x(k)

2. Solve OCP(x(k)) :

min
u(·|k)

k+N−1∑
i=k

`d (x(i|k), u(i|k)) + Vf (x(k + N|k))d

∀i ∈ {k , k + N − 1} : x(i + 1|k) = f d (x(i|k), u(i|k))

x(k |k) = x(k)

x(i|k) ∈ X, u(i|k) ∈ U

x(k + N|k) ∈ Xf

3. Apply u?(k |k) for time k

Note: Previous results hold (mutatis mutandis) in discrete-time!
I L. Grüne and J. Pannek. Nonlinear Model Predictive Control: Theory and Algorithms. 2nd Edition. Communication and Control Engineering.

Springer Verlag, 2017

I J.B. Rawlings, D.Q. Mayne, M. Diehl. Model Predictive Control: Theory, Computation, and Design. Nob Hill Publishing, Madison, WI, 2017
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Summary – Advanced NMPC Formulations

Note that NMPC can be used for problems beyond setpoint stabilization.

Key steps of NMPC design:

I State and formulate the considered control problem: stabilization, trajectory tracking,
disturbance attenuation, ...

I Get a system model, design a state-estimator, ...

I Formulate an infinite-horizon OCP, which would solve the problem.

I Standard choice for cost function `:
quadratic penalty on control error + quadratic penalty on input error

I Approximate the infinite-horizon OCP in receding horizon fashion.

I Check stability and performance in simulations having formal stability proofs in mind.

I Tuning parameters (as in case of setpoint stabilization): `, T , δ, Vf , Xf
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Overview

Introduction

NMPC for Setpoint Stabilization

Stabilizing NMPC with Terminal Constraints

Computation of Terminal Constraints

Stabilizing NMPC without Terminal Constraints

Comments on Different NMPC Formulations

Turnpikes and Dissipativity in OCPs

Economic NMPC with Terminal Constraints

Turnpike Approach to
Economic NMPC without Terminal Constraints

Summary
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Recap – Motivations for Using NMPC

Feedback Control
I Control of nonlinear MIMO system subject to constraints.
I Pre-requisite = control task at hand, such as setpoint stabilization, trajectory tracking,

disturbance attenuation, ...
I Choose `,Vf ,Xf , δ,T according to task.

→ See previous material!

Economics / Economic Operation
I Receding horizon approximation to the solution of an infinite-horizon OCP.
I Pre-requisite = specified performance functional:

J∞ =

∫ ∞
0

`(x(τ), u(τ)) dτ,

i.e. the cost function ` is given!
I Choose δ,T and analyze properties of NMPC loop.

→ Now!
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Example – Optimal Fish Harvest

min
u(·)

∫ T

0
ax(τ) + bu(τ)− cx(τ)u(τ) dτ

subject to

ẋ = x(x̄ − x − u), x(0) = x0

u(t) ∈ [0, umax ], x(t) ∈ (0,∞)

I x fish density
I u fishing rate
I x̄ = 5 highest sustainable fish density

I a = 1, b = c = 2, umax = 5

E.M. Cliff and T.L. Vincent. “An optimal policy for a fish harvest”. inJournal of Optimization Theory and Applications: 12.5 (1973), pages 485–496
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Example – Optimal Fish Harvest
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Example – Optimal Fish Harvest

min
u(·)

∫ T

0

1
2 q(x(τ)− xC )2 + 1

2 r(u(τ)− uC )2 dτ

subject to

ẋ = x(x̄ − x − u), x(0) = x0

u(t) ∈ [0, umax ], x(t) ∈ (0,∞)

q = 10, r = 1, xC = 4, uC = 5
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Example – Optimal Fish Harvest

→ Similar behavior for different initial conditions and horizon lengths.

→ Similarity properties of solutions of parametric OCPs.

→ Turnpike Property!

It is exactly like a turnpike paralleled by a network of minor roads. [. . . ], if origin and destination
are far enough part, it will always pay to get on to the turnpike and cover distance at the best
rate of travel, even if this means adding a little mileage at either end.

R. Dorfman, P.A. Samuelson, R.M. Solow. Linear Programming and Economic Analysis. McGraw-Hill, New

York, 1958
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Problem Setup

min
u(·)

∫ T

0
`(x(τ),u(τ)) dτ

subject to (OCPT (x0))
Σ : ẋ = f (x ,u), x(0) = x0 ∈ X0

u(τ) ∈ U ⊂ Rnu , x(τ) ∈ X ⊂ Rnx

I Here: turnpike properties of OCPs without terminal constraints
I Definition of turnpikes?
I Verfication?

I Use for NMPC?

Timm Faulwasser Optimal Control (EE-736) | Part III: NMPC III.74 / III.120



Definition of Turnpike Properties

x̄ ε

t

0

x

T1 T2

Adhoc Definition (Input-state turnpike at z̄)
Consider OCPT (x0) and let z?(·, x0) = (x?(·, x0), u?(·)) be its optimal pairs. OCPT (x0) is said
to have an input-state turnpike at z̄ = (x̄ , ū) if, for all x0 ∈ X0, all T ≥ 0, and all ε > 0,[

time z?(·, x0) spends outside of ε-neighborhood of z̄
]
≤ νz (ε) <∞.
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Definition of Turnpike Properties

x̄ ε

t

0

x

T1 T2

Definition (Input-state turnpike)
Consider the optimal pairs z?(·, x0) = (x?(·, x0), u?(·)) of OCPT (x0) and let

Θε,T
.

= {τ ∈ [0,T ] : ‖z?(τ, x0)− z̄‖ > ε} .

OCPT (x0) is said to have an input-state turnpike property with respect to z̄ if there exists
ν : [0,∞)→ [0,∞) s. t.

∀x0 ∈ X0,∀T ≥ 0, ∀ε > 0 : µ[Θε,T ] ≤ ν(ε) <∞,
where µ[·] is the Lebesgue measure on the real line.

T. Faulwasser, M. Korda, C.N. Jones, D. Bonvin. “On Turnpike and Dissipativity Properties of Continuous-Time Optimal Control Problems”.

inAutomatica: 81 (2017), pages 297–304. DOI: 10.1016/j.automatica.2017.03.012
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Turnpike Properties of OCPs

Conceptual idea of turnpike properties
I Property of OCPs with and without terminal constraints.
I Optimal solutions approach neighborhood of a specific steady state.
I Time spend at turnpike grows with increasing horizon length T .
I Turnpike ≡ property of parametric OCPs, hence we write OCPT (x0)

I If turnpike at x̄ , then for T =∞, we have that

lim
t→∞

x?(t) ≈ x̄ .

I Different notions for turnpikes: dichotomy in OCPs, hyper-sensitive
OCPs, ...
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Dissipativity – A Useful Concept

Nonlinear system

Σ : ẋ = f (x ,u),

y = h(x)

Definition (Dissipativity)
Σ is said to be dissipative on D ⊆ X×U if there exists a bounded storage function S : X→ R+

0
and a supply rate w : Rny × U→ R such that

∂S
∂x

f (x , u) ≤ w(y , u)

holds for all (x , u) ∈ D ⊆ X× U.

Interpretation:

Stored Energy ≤
∫

Supplied Power dτ
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Σ : ẋ = f (x ,u),

y = h(x)

Definition (Dissipativity)
Σ is said to be dissipative on D ⊆ X×U if there exists a bounded storage function S : X→ R+

0
and a supply rate w : Rny × U→ R such that

∂S
∂x

f (x , u) ≤ w(y , u)

holds for all (x , u) ∈ D ⊆ X× U.

Interpretation:

Stored Energy ≤
∫

Supplied Power dτ

Timm Faulwasser Optimal Control (EE-736) | Part III: NMPC III.78 / III.120



Dissipativity – A Useful Concept
System Property Supply Rate Diagram

Asymptotic Stability −α(‖x‖) ∑
x(t)→0

x(0)

Passivity u>y ∑u(t) y(t)

L2-Gain γ2‖u‖2 − ‖y‖2 ∑||u||L2 ||y||L2

Input-to-state
Stability −α(‖x‖) + ς(‖u‖) ∑

||x(t)||≤N

||u(t)|| ≤ M

x(0)

Minimum Phase
Property [y , ẏ , . . . , y (r)]>ρ(x ,u)

∑
x(t)→0

u(t)

x(0)

y(t) ≡ 0

C. Ebenbauer, T. Raff, F. Allgöwer. “Dissipation inequalities in systems theory: An introduction and recent results”. inR. Jeltsch and G. Wanner (ed.),

Invited Lectures of the International Congress on Industrial and Applied Mathematics 2007: 2009, pages 23–42
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A Dissipativity Notion for Turnpikes

Definition (Strict dissipativity w.r.t. (x̄ , ū))
Σ is strictly dissipative with respect to the steady state pair (x̄ , ū) if there exists a bounded
storage function S : X→ R+

0 and α ∈ K such that

∂S
∂x

f (x , u) ≤ −α(‖(x , u)− (x̄ , ū)‖) + `(x , u)− `(x̄ , ū) (DI)

holds for all (x , u) ∈ D ⊆ X× U.
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Implications of Dissipativity

Lemma (Strict dissipativity w.r.t. (x̄ , ū)⇒ optimality of (x̄ , ū))
If Σ is strictly dissipative w.r.t. to (x̄ , ū), then (x̄ , ū)is an optimal solution of the Steady State
Optimization (SOP)

min
(x̄,ū)

`(x̄ , ū)

subject to (SOP)

0 = f (x̄ , ū)

(x̄ , ū) ∈ X× U.
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Implications of Dissipativity

Theorem (Strict dissipativity⇒ turnpike)
Suppose that

I from all x0 ∈ X0 the optimal steady state x̄? is reachable in some finite time Tx̄? ,
I Σ is strictly dissipative w.r.t. to (x̄?, ū?).

Then the optimal pairs z?(·, x0) of OCPT (x0) have a turnpike property with respect to the
steady state pair (x̄?, ū?).

T. Faulwasser, M. Korda, C.N. Jones, D. Bonvin. “On Turnpike and Dissipativity Properties of Continuous-Time Optimal Control Problems”.

inAutomatica: 81 (2017), pages 297–304. DOI: 10.1016/j.automatica.2017.03.012
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Implications of Dissipativity (cont’d)

Definition (Optimal operation at steady state)
Σ is said to be optimally operated at (x̄?, ū?), if for all x0 ∈ X0 and any infinite-horizon
admissible pair (x(·), u(·))

lim inf
T→∞

1
T

∫ T

0
`(x(τ, x0, u(·)), u(τ)) dτ ≥ `(x̄?, ū?).

Theorem (Dissipativity⇒ optimal operation at steady state)

Suppose that Σ is strictly dissipative on X× U w.r.t. to (x̄?, ū?), then Σ is optimally operated at
the steady state (x̄?, ū?).

T. Faulwasser, M. Korda, C.N. Jones, D. Bonvin. “On Turnpike and Dissipativity Properties of Continuous-Time Optimal Control Problems”.

inAutomatica: 81 (2017), pages 297–304. DOI: 10.1016/j.automatica.2017.03.012
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Implications of Turnpike Properties

Σ is strictly dissipative
w.r.t. (x̄?, ū?).

Σ is optimally
operated at (x̄?, ū?).

The optimal solutions
of OCPT (x0) have a
turnpike at (x̄?, ū?).

Further implications and proofs can be found in:

T. Faulwasser, M. Korda, C.N. Jones, D. Bonvin. “On Turnpike and Dissipativity Properties of Continuous-Time Optimal Control Problems”.
inAutomatica: 81 (2017), pages 297–304. DOI: 10.1016/j.automatica.2017.03.012
L. Grüne and M.A. Müller. “On the relation between strict dissipativity and turnpike properties”. inSys. Contr. Lett.: 90 (2016), pages 45 –53. DOI:
http://dx.doi.org/10.1016/j.sysconle.2016.01.003

T. Faulwasser and C.M. Kellett. “On Continuous-Time Infinite Horizon Optimal Control – Dissipativity, Stability and Transversality”. inAutomatica: 134

(2021), page 109907. DOI: 10.1016/j.automatica.2021.109907
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Σ is optimally
operated at (x̄?, ū?).
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Example – Chemical Reactor
Van de Vusse Reactor

A
k1→ B

k2→ C, 2A
k3→ D

Dynamics (partial model) b
ċA = rA(cA, ϑ) + (cin − cA)u1

ċB = rB(cA, cB , ϑ)− cBu1

ϑ̇ = h(cA, cB , ϑ) + α(u2 − ϑ) + (ϑin − ϑ)u1,

rA(cA, ϑ) = −k1(ϑ)cA − 2k3(ϑ)c2
A

rB(cA, cB , ϑ) = k1(ϑ)cA − k2(ϑ)cB

h(cA, cB , ϑ) = −δ
(

k1(ϑ)cA∆HAB + k2(ϑ)cB∆HBC + 2k3(ϑ)c2
A∆HAD

)
ki (ϑ) = ki0 exp

−Ei

ϑ + ϑ0
, i = 1, 2, 3.

u2 = ϑc

u1 = V̇

ϑ, cA, cB, cC , cD

θin, cin

A k1−−→ B k2−−→ C

2 A k3−−→ D

Constraints cA ∈ [0, 6] mol
l cB ∈ [0, 4] mol

l ϑ ∈ [70, 150]◦C
u1 ∈ [3, 35] 1

h u2 ∈ [0, 200]◦C.

Objective = maximize produced amount of B

JT (x0, u(·)) =

∫ T

0
−βcB(τ)u1(τ) dτ, β > 0
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CSTR Example

Checking dissipation inequality (DI) (for a pre-computed storage function S) via:

δ = ∂S
∂x f (x, u) + ᾱ‖x − x̄?‖2 − `(x, u) + `(x̄?, ū?), δ ≤ 0
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Summary – Turnpike Properties in OCPs

I Turnpikes = properties of parametric OCPs.
I Turnpike steady state x̄ = best reachable steady state.
I Turnpikes occur in many OCPs.
I Strict dissipativity + reachability = sufficient condition.

How to use turnpikes in OCPs for NMPC?

I Turnpike steady-state pair is often a good initial guess for numerical solution.
I Turnpikes can be used to design NMPC schemes.
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Economic and Stabilizing NMPC
NMPC for setpoint stabilization

I Based on OCPXf
T (x(tk ))

min
u(·|tk ))

∫ tk +T

tk
`(x(τ |tk )), u(τ |tk )) dτ + Vf (x(tk + T |tk ))

∀τ ∈ [tk , tk + T ] :
dx(τ |tk )

dτ
= f (x(τ |tk ), u(τ |tk ))

x(tk |tk ) = x(tk )

x(τ |tk ) ∈ X, u(τ |tk ) ∈ U
x(tk + T |tk ) ∈ Xf

I Main assumption `(x , u) ≥ α(‖x − x̄‖), α ∈ K, x̄ set-point to be stabilized

Economic NMPC
I No lower boundedness of ` → generalized (economic) NMPC formulations
I Proofs of convergence to the optimal steady-state often based on the dissipation

inequality (DI)
∂S
∂x

f (x , u) ≤ −α(‖(x , u)− (x̄ , ū)‖) + `(x , u)− `(x̄ , ū)
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Example – Chemical Reactor

Same OCP as before (Slide 85), solved in receding horizon fashion

Prediction horizon T = 0.1h, sampling period δ = 1.7 · 10−3h
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Example – Chemical Reactor
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Overview

Introduction

NMPC for Setpoint Stabilization

Stabilizing NMPC with Terminal Constraints

Computation of Terminal Constraints

Stabilizing NMPC without Terminal Constraints

Comments on Different NMPC Formulations

Turnpikes and Dissipativity in OCPs

Economic NMPC with Terminal Constraints

Turnpike Approach to
Economic NMPC without Terminal Constraints

Summary
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Adjusting the Standing NMPC Assumptions

A1 from Slide 18 is considered implicitly. A2 is adjusted. A3 remains.

Assumptions

A2’ (Strict dissipativity): There exists a bounded storage function S and α ∈ K such that

∂S
∂x

f (x , u) ≤ −α(‖(x , u)− (x̄ , ū)‖) + `(x , u)− `(x̄ , ū)

holds for all (x , u) ∈ D ⊆ X× U. Moreover, 0 = f (x̄ , ū) and (x̄ , ū) ∈ int(X× U).

W.l.o.g. consider (x̄ , ū) = (0, 0) and `(x̄ , ū) = 0.

A3 (Absolute continuity of ODE solutions): For all x0 ∈ X, and any u(·) ∈ Ĉ([0,T ],U), the
solution x(·, x0, u(·)) exists and is absolutely continuous.
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Economic NMPC with Zero-Terminal Constraint

1. State measurement/estimate x(tk )

2. Solve:

min
u(·|tk )

∫ tk +T

tk
`(x(τ |tk ),u(τ |tk )) dτ

subject to ∀τ ∈ [tk , tk + T ] : (OCPeco,x̄?

T (x(tk )))
dx(τ |tk )

dτ
= f (x(τ |tk ),u(τ |tk )), x(tk |tk ) = x(tk )

x(τ |tk ) ∈ X, u(τ |tk ) ∈ U
x(tk + T |tk ) = x̄?

3. Apply u?(τ |tk ) for τ ∈ [tk , tk+1)

I Finite horizon (T <∞) and sampled-data recalculation (δ .
= tk+1 − tk > 0)

I No terminal penalty (Vf = 0) but terminal constraint at x̄?
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Economic NMPC with Terminal Constraint

Theorem (Convergence of eco. NMPC with terminal constraint)
Let Assumptions A2’ and A3 hold and suppose that

(i) OCPeco,x̄?

T (x(tk )) is feasible at k = 0.

Then,

I OCPeco,x̄?

T (x(tk )) is recursively feasible,

I the NMPC scheme based on OCPeco,x̄?

T (x(tk )) achieves

lim
t→∞

‖x(t)‖ = x̄?,

I and the region of attraction is given by the set of initial conditions for which
OCPeco,x̄?

T (x(tk )) is feasible.

D. Angeli, R. Amrit, J.B. Rawlings. “On Average Performance and Stability of Economic Model Predictive Control”. inIEEE Trans. Automat. Contr.: 57.7
(2012), pages 1615–1626. ISSN: 0018-9286. DOI: 10.1109/TAC.2011.2179349
M. Diehl, R. Amrit, J.B. Rawlings. “A Lyapunov function for economic optimizing model predictive control”. inIEEE Trans. Automat. Contr.: 56.3 (2011),
pages 703–707
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Economic NMPC without Terminal Constraints

1. State measurement/estimate x(tk )

2. Solve:

min
u(·|tk )

∫ tk +T

tk
`(x(τ |tk ), u(τ |tk )) dτ

subject to ∀τ ∈ [tk , tk + T ] : (OCPeco
T (x(tk )))

dx(τ |tk )

dτ
= f (x(τ |tk ), u(τ |tk )), x(tk |tk ) = x(tk )

x(τ |tk ) ∈ X, u(τ |tk ) ∈ U

3. Apply u?(τ |tk ) for τ ∈ [tk , tk+1)

I Finite horizon (T <∞) and sampled-data recalculation (δ .
= tk+1 − tk > 0)

I No terminal penalty (Vf = 0) and no terminal region Xf = X
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Economic NMPC without Terminal Constraints

1. State measurement/estimate x(tk )

2. Solve:

min
u(·|tk ))

I(x(tk )) +

∫ tk +T

tk
`(x(τ |tk ), u(τ |tk )) dτ

subject to ∀τ ∈ [tk , tk + T ] : (OCPeco,I
T (x(tk )))

dx(τ |tk )

dτ
= f (x(τ |tk ), u(τ |tk )), x(tk |tk ) = x(tk )

x(τ |tk ) ∈ X, u(τ |tk ) ∈ U

3. Apply u?(τ |tk ) for τ ∈ [tk , tk+1)

I Finite horizon (T <∞) and sampled-data recalculation (δ .
= tk+1 − tk > 0)

I Penalty on the initial condition I(x(tk ))
I As I(x(tk )) does not affect optimal solutions, we temporarily set I ≡ 0.
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Practical Convergence of Economic NMPC

Theorem (Practical convergence)
Suppose that, for all x0 ∈ X0, Assumptions A2’, A3 hold, and

I the (x̄ , ū) turnpike is reachable exponentially fast;

I (x̄ , ū) ∈ int(X× U) with
(
∂f
∂x
,
∂f
∂u

)∣∣∣∣
(x̄,ū)

controllable, and

I the penalty on the initial condition is I(x(tk )) = S(x(tk )), with S(x) satisfying (DI).

Then, there exists δ > 0 and T <∞ such that, for all x0 ∈ X0,

(i) OCPeco,I
T (x(tk )) is recursively feasible; and

(ii) NMPC tracks the optimal steady state x̄ = x̄?:

lim
t→∞

d
(
Bρ(x̄), x(t)

)
= 0.

with d
(
Bρ(x̄), x(t)

) .
= min

z∈Bρ(x̄)
‖x − z‖.
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Proof Outline

Main steps of NMPC stability proofs:

I Step 0 – Turnpike in a sequence of OCPs
I Step 1 – Recursive feasibility of the sequence OCPs
I Step 2 – Decrease of the value function inbetween sampling two

instants
I Step 3 – Decrease of the value function from one sampling instant to

the next
I Step 4 – Consider the value function as a Lyapunov function
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Step 0 – Turnpikes in a Sequence of OCPs?

Let OCPeco,I
T (x(tk )) have an input-state turnpike at (x̄ , ū), and consider x(tk ) = x0

xδ
.

= x?(δ, x0, u?(·, x0)).

Does OCPeco,I
T (xδ) have the same turnpike?

τ

0

x

x̄

δ T

x0 xδ

For sufficiently large T , controllability of the linearization of Σ at (x̄ , ū) implies existence of
δ̂ > 0, such that, for all δ ∈ [0, δ̂), OCPeco,I

T (xδ) has a turnpike at (x̄ , ū).
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Step 1 – Recursive Feasibility

Task: Construct admissible input u(·, xδ) from u?(·, x0).

τ

0

x

x̄

δ T

x0 xδ

T + δτε τε + δ

xε = x?(τε, xε,uε(·))

u(τ, xδ) =

 u?(τ + δ, x0) τ ∈ [0, τε − δ)
uε(τ, xε) τ ∈ [τε − δ, τε)
u?(τ, x0) τ ∈ [τε, T ]
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Step 1 – Recursive Feasibility

Task: Construct admissible input u(·, xδ) from u?(·, x0).

τ

0

x

x̄
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x0 xδ
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u?(τ, x0) τ ∈ [τε, T ]

→ Controllability of linarization at (x̄ , ū) guarantees existence of uε(·) close to (x̄ , ū).

Implication: The sequence OCPeco,I
T (x(tk )), with tk = tk−1 + δ, is recursively feasible for

suitable choices of T and δ.
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Step 2 – Penalty on the Initial Condition?

min
u(·|tk )

I(x(tk )) +

∫ tk +T

tk
`(x(τ |tk ), u(τ |tk )) dτ

subject to ∀τ ∈ [tk , tk + T ] : (OCPeco,I
T (x(tk )))

dx(τ |tk )

dτ
= f (x(τ |tk ), u(τ |tk )), x(tk |tk ) = x(tk )

x(τ |tk ) ∈ X, u(τ |tk ) ∈ U

I Penalty on initial condition = storage function: I(x(tk ))
.

= S(x(tk )).

I Optimal value function:

V S
T (x(tk )) = S(x(tk )) +

∫ tk +T

tk
`(x?(τ |tk ), u?(τ |tk )) dτ

Value function decrease?

V S
T (x(tk+1))− V S

T (x(tk )) ≤ J(x(tk+1), u(·, x(tk+1)))− V S
T (x(tk ))︸ ︷︷ ︸

.
= ∆
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Step 3 – Value Function Decrease
∆

.
= J(x(tk+1), u(·, x(tk+1)))− V S

T (x(tk ))

∆ = S(x(tk+1))−S(x(tk ))−
∫ tk+1

tk
`(x?(τ |tk )), u?(τ |tk )) dτ +

∫ tk+1+τε+δ

tk+1+τε

`(·) dτ

t

0

x

x̄

tk+1 T

x(tk ) x(tk+1)

tk+1 + Ttk+1 + τε tk+1 + τε + δ

xε = x?(tk + τε|tk )
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Step 3 – Value Function Decrease (cont’d)

Integral dissipation inequality:

S(x(tk+1))− S(x(tk ))−
∫ tk+1

tk
`(x?(τ |tk ), u?(τ |tk )) dτ

≤
∫ tk+1

tk
−α(‖(x?(τ |tk ), u?(τ |tk ))− (x̄ , ū)‖)− `(x̄ , ū) dτ
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Step 3 – Value Function Decrease

∆ ≤
∫ tk+1

tk
−α(‖(x?(τ), u?(τ))− (x̄ , ū)‖)dτ +

∫ tk+1+τε+δ

tk+1+τε

`(·)−`(x̄ , ū) dτ︸ ︷︷ ︸
≤ σ <∞

⇒ From tk to tk+1 the optimal solution moves towards a neighborhood of x̄ .
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Practical Convergence of Economic NMPC
Theorem III.7 (Practical convergence of economic NMPC)
Suppose that, for all x0 ∈ X0, Assumptions A2’, A3 hold, and

I the (x̄ , ū) turnpike is reachable exponentially fast;

I (x̄ , ū) ∈ int(X× U) with
(
∂f
∂x
,
∂f
∂u

)∣∣∣∣
(x̄,ū)

controllable, and

I the penalty on the initial condition is I(x(tk )) = S(x(tk )), with S(x) satisfying (DI).

Then, there exists δ > 0 and T <∞ such that, for all x0 ∈ X0,

(i) OCPeco,I
T (x(tk )) is recursively feasible; and

(ii) NMPC tracks the optimal steady state x̄ = x̄?:

lim
t→∞

d
(
Bρ(x̄), x(t)

)
= 0.

with d
(
Bρ(x̄), x(t)

) .
= min

z∈Bρ(x̄)
‖x − z‖.

I Expression for radius ρ of neighborhood Bρ(x̄) see, T. Faulwasser and D. Bonvin. “On the
Design of Economic NMPC based on Approximate Turnpike Properties”. inProc. of 54th IEEE
Conference on Decision and Control: Osaka, Japan, 2015, pages 4964 –4970. DOI:
10.1109/CDC.2015.7402995.

I Choosing large T and small δ, ρ can be made arbitrarily small.
I The penalty I(x(tk )) = S(x(tk )) can be dropped and the result still holds.
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Summary – Economic NMPC

I Dissipativity enables stability proofs for economic NMPC with terminal
constraints.

I Dissipativity implies the turnpike property.
I Turnpikes are helpful to show convergence in NMPC.
I Recursive feasibility can be shown without any terminal constraint.
I Controllability of turnpike implies recursive feasibility (long horizons).
I Conditions apply to economic and non-economic NMPC schemes.
I "Automatic tracking" of optimal steady state. Turnpike properties are

natural candidates to design NMPC schemes.
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Comparison of Stability Proofs

I NMPC for setpoint stabilization with terminal penalty relies on the
following Lyapunov inequality

Vf (x(t))
∣∣∣tk+1

tk
+

∫ tk+1

tk
`(x(τ),u(τ)) dτ ≤ 0. (LI)

I NMPC based on turnpikes relies on the dissipation inequality (DI)
which, for `(x̄ , ū) = 0, can be written as

S(x(t))
∣∣∣tk+1

tk
−
∫ tk+1

tk
`(x(τ),u(τ)) dτ ≤ 0.

I Can the turnpike concept be applied to NMPC for setpoint stabilization?
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Summary – NMPC

Main Points
I Stability of NMPC can be enforced via appropriate OCP formulation
I ∃ formulations with and without terminal constraints
I In applications formulations without terminal constraints are often

preferred
I Here: time invariant problem formulations mainly

Open Problems and Ongoing Research
I Real-time applicable robust NMPC?
I Stochastic economic NMPC?
I Distributed approaches?
I . . .

The End.
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