

Optimal Control (EE-736)

Part III: Nonlinear Model Predictive Control

Timm Faulwasser & Yuning Jiang

ie3, TU Dortmund

timm.faulwasser@ieee.org yuning.jiang@epfl.ch

Block course @ EPFL

Version EE736.2024.I

© Timm Faulwasser

Overview

Introduction

NMPC for Setpoint Stabilization

Stabilizing NMPC with Terminal Constraints

Computation of Terminal Constraints

Stabilizing NMPC without Terminal Constraints

Comments on Different NMPC Formulations

Turnpikes and Dissipativity in OCPs

Economic NMPC with Terminal Constraints

Turnpike Approach to Economic NMPC without Terminal Constraints

Economic NiviPC without Terminal Constraints

Summary

Overview

Introduction

NMPC for Setpoint Stabilization

Stabilizing NMPC with Terminal Constraints

Computation of Terminal Constraints

Stabilizing NMPC without Terminal Constraints

Comments on Different NMPC Formulations

Turnpikes and Dissipativity in OCPs

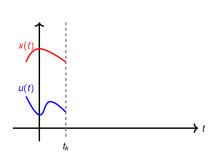
Economic NMPC with Terminal Constraints

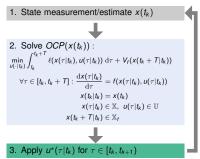
Turnpike Approach to Economic NMPC without Terminal Constraints

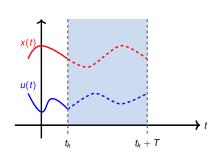
Edonomia 14411 d William Torrinia dorione

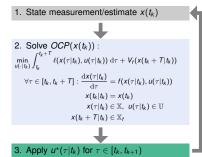
< □ > < 倒 > < ፮ > < ፮ > < ፮ < ♡!

Why do we need feedback control?

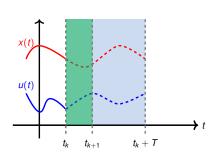


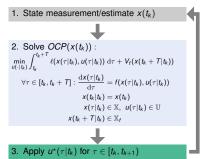


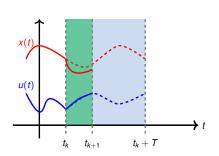


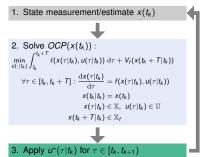


$\mbox{Predictive control} \quad \equiv \quad \mbox{repeated optimal control}.$

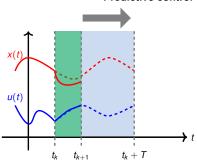


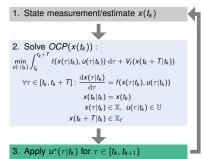


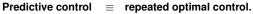


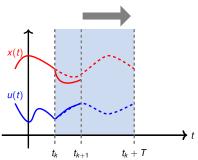


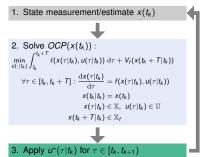
$\begin{array}{lll} \textbf{Predictive control} & \equiv & \textbf{repeated optimal control.} \end{array}$

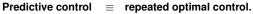


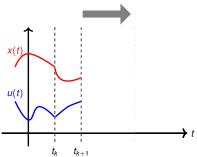


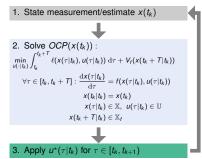


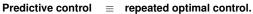


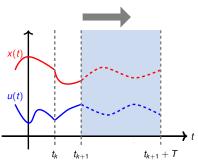


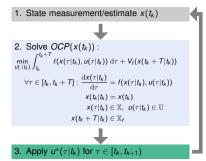


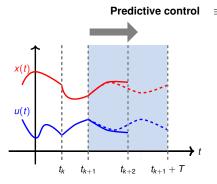




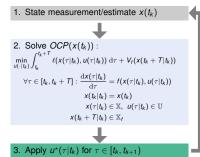






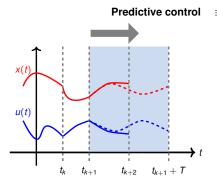


repeated optimal control.

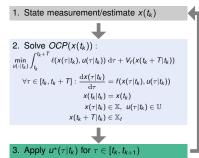


Notions and Notation:

- ▶ MPC = pred. control with linear model, convex quadratic cost and linear inequality constraints.
- ▶ NMPC = pred. control with nonlinear models and/or non-quadratic stage cost / cost function.
- \blacktriangleright $x(\cdot|t_k)$ denotes predicted state trajectory with initial condition $x(t_k)$.
- \bullet $u(\cdot|t_k)$ denotes predicted input trajectory for the NMPC feedback at time t_k .



repeated optimal control.

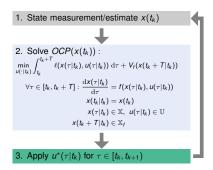


Questions:

- ► How to design and implement an NMPC scheme?
- ► Why use an NMPC scheme?

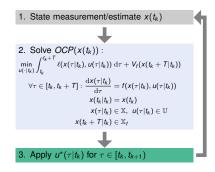
Ingredients for Sampled-Data NMPC Design

- ▶ System model $f : \mathbb{R}^{n_X} \times \mathbb{R}^{n_U} \to \mathbb{R}^{n_X}$
- ▶ State constraints $\mathbb{X} \subseteq \mathbb{R}^{n_X}$
- ▶ Input constraints $\mathbb{U} \subseteq \mathbb{R}^{n_u}$
- ightharpoonup State feedback $x(t_k)$



Ingredients for Sampled-Data NMPC Design

- ▶ System model $f : \mathbb{R}^{n_X} \times \mathbb{R}^{n_U} \to \mathbb{R}^{n_X}$
- ► State constraints $\mathbb{X} \subseteq \mathbb{R}^{n_X}$
- ▶ Input constraints $\mathbb{U} \subseteq \mathbb{R}^{n_u}$
- ightharpoonup State feedback $x(t_k)$
- ▶ Stage cost ℓ : $\mathbb{R}^{n_X} \times \mathbb{R}^{n_U} \to \mathbb{R}$
- ► Terminal penalty V_f : $\mathbb{R}^{n_\chi} \to \mathbb{R}$
- ▶ Terminal constraint $X_f \subset X \subset \mathbb{R}^{n_X}$
- ▶ Prediction horizon $T \in (0, \infty)$
- ▶ Sampling period $\delta = t_{k+1} t_k \in (0, T]$
- \rightarrow To be designed/chosen!



Motivations for Using NMPC

Feedback Control

- Control of nonlinear MIMO systemd subject to constraints
- Pre-requisite = control task at hand, such as setpoint stabilization, trajectory tracking, disturbance attenuation, ...
- ▶ Choose ℓ , V_f , X_f , δ , T according to task.
- $\rightarrow \ \text{Next!}$

Motivations for Using NMPC

Feedback Control

- Control of nonlinear MIMO systemd subject to constraints
- Pre-requisite = control task at hand, such as setpoint stabilization, trajectory tracking, disturbance attenuation, ...
- ▶ Choose ℓ , V_f , X_f , δ , T according to task.
- \rightarrow Next!

Economics / Economic Operation

- Receding horizon approximation to the solution of an infinite-horizon OCP.
- ► *Pre-requisite* = specified performance functional:

$$J_{\infty} = \int_0^{\infty} \ell(x(\tau), u(\tau)) d\tau,$$

i.e. the cost function ℓ is given!

- ▶ Choose δ , T and analyze properties of NMPC loop.
- \rightarrow Later!

Overview

Introduction

NMPC for Setpoint Stabilization

Stabilizing NMPC with Terminal Constraints

Computation of Terminal Constraints

Stabilizing NMPC without Terminal Constraints

Comments on Different NMPC Formulations

Turnpikes and Dissipativity in OCPs

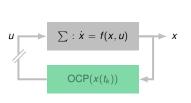
Economic NMPC with Terminal Constraints

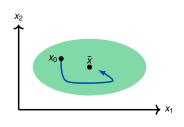
Turnpike Approach to Economic NMPC without Terminal Constraints

Summary

Considered Control Problem – Setpoint Stabilization

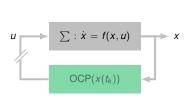
► Reference = setpoint $\bar{x} \in \mathbb{X} \subseteq \mathbb{R}^{n_x}$

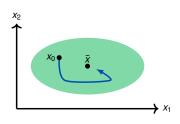




Considered Control Problem – Setpoint Stabilization

- ▶ Reference = setpoint $\bar{x} \in \mathbb{X} \subseteq \mathbb{R}^{n_x}$
- ► Convergence: $\lim_{t\to\infty} x(t,x_0,u(\cdot)) = \bar{x}, \quad \forall x_0 \in \mathbb{X}_0$

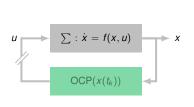


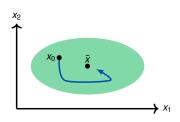


Considered Control Problem – Setpoint Stabilization

- ► Reference = setpoint $\bar{x} \in \mathbb{X} \subseteq \mathbb{R}^{n_x}$
- ► Convergence: $\lim_{t\to\infty} x(t,x_0,u(\cdot)) = \bar{x}, \quad \forall x_0 \in \mathbb{X}_0$
- ▶ Constraint satisfaction: $\forall t \geq 0 : u(t) \in \mathbb{U}$ and $x(t, x_0, u(\cdot)) \in \mathbb{X}$
- ▶ Stability: $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{such that}$

$$\|x(0) - \bar{x}\| < \delta \quad \Rightarrow \quad \|x(t, x_0, u(\cdot)) - \bar{x}\| < \varepsilon \quad \forall t \ge 0$$





NMPC Pitfall Example

$$\min_{u(\cdot|t_k)} \int_{t_k}^{t_k+T} x(\tau|t_k)^\top Qx(\tau|t_k) + u(\tau|t_k)^\top Ru(\tau|t_k) d\tau$$

subject to

$$\forall \tau \in [t_k, t_k + T]: \frac{\mathrm{d}x(\tau|t_k)}{\mathrm{d}\tau} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} x(\tau|t_k) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(\tau|t_k),$$
$$x(t_k|t_k) = x(t_k)$$

Setting:

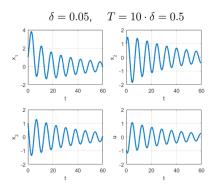
▶ Weight matrices: Q = diag(5, 5, 0), R = 1

▶ Inputs approximated as piece-wise constant

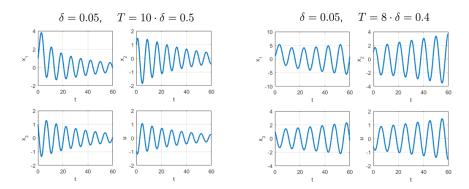
► Sampling period: $\delta = 0.05$

▶ Prediction horizon: $T = N \cdot \delta$, N = # number of shooting intervals

NMPC Pitfall Example (cont'd)

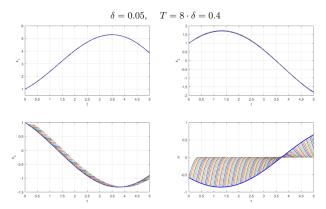


NMPC Pitfall Example (cont'd)



- ▶ At each sampling time t_k , the optimal input $u^*(t_k|t_k)$ is applied.
- ► For short horizons the closed loop is unstable.

A Pitfall Example of NMPC (cont'd)



► Predicted trajectories ≠ closed-loop trajectories:

$$x^*(\tau|t_k) \neq x(\tau, x(t_k), u^*(\cdot|t_k)), \quad \tau \in (t_k + \delta, t_k + T]$$

Stability vs. Optimality in NMPC

In the engineering literature it is often assumed (tacitly and incorrectly) that a system with an optimal control law is necessarily stable.

R.E. Kalman. "Contributions to the theory of optimal control". in Bol. Soc. Mat. Mexicana: 5.2 (1960), pages 102-119

Rudolf Emil Kálmán (1930-2016)

Stability vs. Optimality in NMPC

In the engineering literature it is often assumed (tacitly and incorrectly) that a system with an optimal control law is necessarily stable.

R.E. Kalman. "Contributions to the theory of optimal control". in Bol. Soc. Mat. Mexicana: 5.2 (1960), pages 102-119

Rudolf Emil Kálmán (1930-2016)

- ► Likewise in NMPC: Optimality does not imply stability!
- ► There is a need for NMPC design procedures guaranteeing stability!

Useful Definitions

Definition (Class-K function)

- ▶ A scalar function α : $\mathbb{R}_0^+ \to \mathbb{R}_0^+$ is said to belong to class \mathcal{K} , if it is continuous, strictly increasing, and $\alpha(0) = 0$.
- $lackbox{} \alpha: \mathbb{R}_0^+ o \mathbb{R}_0^+$ is said to belong to class \mathcal{K}_{∞} , if $\alpha \in \mathcal{K}$ and if it is radially unbounded, i.e. $\alpha(s) o \infty$ as $s o \infty$.

C.M. Kellett. "A compendium of comparison function results". in Mathematics of Control, Signals, and Systems: 26.3 (2014), pages 339–374

Useful Definitions

Definition (Stability of equilibria)

The system $\dot{x} = f(t,x)$ with f(t,0) = 0 is said to be uniformly (locally) stable at x = 0, if for every $\epsilon > 0$ there exists an $\delta = \delta(\epsilon) > 0$, which is independent from t_0 , such that all solutions $x(\cdot, t_0, x_0)$ fulfill

$$||x_0|| < \delta \quad \Rightarrow \quad ||x(t, t_0, x_0)|| < \epsilon \quad \text{ for all } t \ge t_0 \ge 0.$$

Useful Definitions

Definition (Stability of equilibria)

The system $\dot{x} = f(t,x)$ with f(t,0) = 0 is said to be uniformly (locally) stable at x = 0, if for every $\epsilon > 0$ there exists an $\delta = \delta(\epsilon) > 0$, which is independent from t_0 , such that all solutions $x(\cdot, t_0, x_0)$ fulfill

$$||x_0|| < \delta \quad \Rightarrow \quad ||x(t, t_0, x_0)|| < \epsilon \quad \text{ for all } t \ge t_0 \ge 0.$$

If x=0 is a uniformly stable equilibrium of $\dot{x}=f(t,x)$, if there exists a positive constant $c=c(t_0)$, and if, additionally, the solutions fulfill

i)

$$\lim_{t \to \infty} \|x(t, t_0, x_0)\| = 0 \quad \text{ for all } \|x_0\| < c,$$

ii) and for each $\eta > 0$ there exists $T = T(\eta) > 0$ such that

$$||x(t, t_0, x_0)|| < \eta$$
, for all $t \ge t_0 + T(\eta)$, for all $||x_0|| < c$,

then x = 0 is said to be uniformly (locally) asymptotically stable.

Useful Definitions (cont'd)

Lemma (Lyapunov function and stability)

Let $\beta_1, \beta_2 \in \mathcal{K}_{\infty}$, and $\beta_3 \in \mathcal{K}$, and the system $\dot{x} = f(t,x)$ fulfills f(t,0) = 0. Consider some compact domain \mathbb{X} containing x = 0 in its interior, and a function $V : \mathbb{R}_0^+ \times \mathbb{X} \to \mathbb{R}_0^+$ such that

$$\beta_1(\|x\|) \le V(t,x) \le \beta_2(\|x\|)$$
$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t,x) \le -\beta_3(\|x\|)$$

holds for all $t \geq 0$ and all $x \in \mathbb{X}$. Then x = 0 is uniformly asympt. stable on \mathbb{X} .

For further details on stability definitions see:

- ► H.K. Khalil. Nonlinear Systems. 3rd. Prentice Hall, New Jersey, 2002
- ► E.D. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer, 1998

Nominal NMPC Setting

Here we consider an **nominal NMPC setting:**

▶ No plant-model mismatch, i.e., *f* is an exact plant model.

Nominal NMPC Setting

Here we consider an **nominal NMPC setting:**

- ▶ No plant-model mismatch, i.e., *f* is an exact plant model.
- ▶ State feedback = plant state $x(t_k)$ is exactly known at time t_k .
- ▶ For all $k \in \mathbb{N}$, an optimal solution to OCP($x(t_k)$) exists and is attained.

Standing Assumptions

A1 (Steady state): Given \bar{x} , there exists $\bar{u} \in \mathbb{U}$, such that $0 = f(\bar{x}, \bar{u})$ and $(\bar{x}, \bar{u}) \in \operatorname{int}(\mathbb{X} \times \mathbb{U})$. W.l.o.g. we suppose $(\bar{x}, \bar{u}) = (0, 0)$.

Standing Assumptions

A1 (Steady state): Given \bar{x} , there exists $\bar{u} \in \mathbb{U}$, such that $0 = f(\bar{x}, \bar{u})$ and $(\bar{x}, \bar{u}) \in \operatorname{int}(\mathbb{X} \times \mathbb{U})$. W.l.o.g. we suppose $(\bar{x}, \bar{u}) = (0, 0)$.

A2 (Lower boundedness of ℓ): There exists a class- $\mathcal K$ function $\alpha:\mathbb R_0^+\to\mathbb R_0^+$, such that

$$\ell(x, u) \ge \alpha(\|x - \bar{x}\|), \text{ and } \ell(0, 0) = 0.$$

Standing Assumptions

A3 (Absolute continuity of ODE solutions): For all $x_0 \in \mathbb{X}$, and any $u(\cdot) \in \hat{\mathcal{C}}([0,T],\mathbb{U})$, the solution $x(\cdot,x_0,u(\cdot))$ exists on [0,T] and is absolutely continuous.

Definition (Absolute continuity)

A trajectory $x(\cdot)$ is said to be absolutely continuous on [0, T], iff

- ightharpoonup x(t) is almost everywhere differentiable w.r.t. t, $\dot{x}(t)$ is Lebesgue integrable, and
- ▶ for all $t \in [0, T]$,

$$x(t) = x(0) + \int_0^t \dot{x}(\tau) d\tau$$

holds

Instantaneous Infinite-Horizon NMPC

1. State measurement/estimate $x(t_k)$

2. Solve:

$$\begin{aligned} \min_{u(\cdot|t_k)} \int_{t_k}^{t_k + \infty} \ell(x(\tau|t_k), u(\tau|t_k)) \, \mathrm{d}\tau \\ \text{subject to } \forall \tau \in [t_k, t_k + \infty] : & (\textit{OCP}_\infty(x(t_k))) \\ \frac{\mathrm{d}x(\tau|t_k)}{\mathrm{d}\tau} &= f(x(\tau|t_k), u(\tau|t_k)), \quad x(t_k|t_k) = x(t_k) \\ & \quad x(\tau|t_k) \in \mathbb{X}, \ u(\tau|t_k) \in \mathbb{U} \end{aligned}$$

- ▶ Infinite prediction horizon ($T = \infty$) and instantaneous recalculation ($\delta = t_{k+1} t_k = 0$)
- ▶ No terminal penalty $(V_f(x(t_k + T|t_k)) = 0)$ and no terminal region $(X_f = X)$
- ► Value function: $V_{\infty}(x(t)) \doteq \int_{t}^{t+\infty} \ell(x^{*}(\tau|t_{k}), u^{*}(\tau|t_{k})) d\tau$

Stability of Instantaneous Infinite-Horizon NMPC

Theorem (Stability of instantaneous infinite-horizon NMPC)

Let Assumptions A1-A3 hold and suppose that,

(i) for all $x \in \mathbb{X}_0$, the value function $V_{\infty}(x)$ is continuously differentiable and

$$\beta_1(||x||) \leq V_{\infty}(x) \leq \beta_2(||x||), \qquad \beta_{1,2} \in \mathcal{K}_{\infty}$$

Then, the NMPC scheme based on $OCP_{\infty}(x(t_k))$ achieves local asymptotic stability of Σ at x=0. The region of attraction is given by the set of initial conditions for which (i) holds.

A. Jadbabaie, J. Yu, J. Hauser. "Unconstrained receding-horizon control of nonlinear systems". in/EEE Trans. Automat. Contr.: 46.5 (2001),

pages 776-783. DOI: 10.1109/9.920800

Instantaneous Infinite-Horizon NMPC

Proof sketch:

Instantaneous Infinite-Horizon NMPC

Overview

Introduction

NMPC for Setpoint Stabilization

Stabilizing NMPC with Terminal Constraints

Computation of Terminal Constraints

Stabilizing NMPC without Terminal Constraints

Comments on Different NMPC Formulations

Turnpikes and Dissipativity in OCPs

Economic NMPC with Terminal Constraints

Turnpike Approach to Economic NMPC without Terminal Constraints

Economic NMPC without Terminal Constraints

Summary

Idea: Truncate OCP to finite horizon and bound *cost-to-go*.

$$\int_{t_k}^{\infty} \ell(x(\tau), u(\tau)) d\tau = \int_{t_k}^{t} \ell(x(\tau), u(\tau)) d\tau + \underbrace{\int_{t}^{\infty} \ell(x(\tau), u(\tau)) d\tau}_{\text{cost-to-go}}$$

Consider

$$\frac{\partial V_f}{\partial x} f(x, u) \le -\ell(x, u)$$

Idea: Truncate OCP to finite horizon and bound *cost-to-go*.

$$\int_{t_k}^{\infty} \ell(x(\tau), u(\tau)) d\tau = \int_{t_k}^{t} \ell(x(\tau), u(\tau)) d\tau + \underbrace{\int_{t}^{\infty} \ell(x(\tau), u(\tau)) d\tau}_{\text{cost-to-go}}$$

Consider

$$\frac{\partial V_f}{\partial x}f(x,u) \leq -\ell(x,u)$$

Integrating from t to ∞ gives

$$V_f(x(\infty)) - V_f(x(t)) + \int_t^\infty \ell(x(\tau), u(\tau)) d\tau \leq 0.$$

Let $V_f(x(\infty)) = 0$, then

$$-V_f(x(t))+\int_t^\infty \ell(x(\tau),u(\tau))\ \mathrm{d}\tau\leq 0.$$

The inequality

$$\frac{\partial V_f}{\partial x} f(x, u) \le -\ell(x, u)$$

implies that $V_f : \mathbb{X}_f \to \mathbb{R}, \ V_f \in \mathcal{C}^1$ is an upper bound on the cost-to-go, i.e,

$$\int_t^{\infty} \ell(x(\tau), u(\tau)) d\tau \leq V_f(x(t))$$

The inequality

$$\frac{\partial V_f}{\partial x} f(x, u) \le -\ell(x, u)$$

implies that $V_f: \mathbb{X}_f \to \mathbb{R}, \ V_f \in \mathcal{C}^1$ is an upper bound on the cost-to-go, i.e,

$$\int_t^\infty \ell(x(\tau), u(\tau)) d\tau \leq V_f(x(t))$$

Drawback: How to find global bound on cost to go?

Local Bound on Cost-To-Go

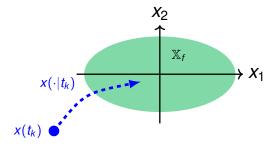
Assume that, for all $x \in X_f \subseteq X$, there exists a feedback u = k(x)

$$\frac{\partial V_f}{\partial x} f(x, k(x)) + \ell(x, k(x)) \le 0. \tag{1}$$

Local Bound on Cost-To-Go

Assume that, for all $x \in X_f \subseteq X$, there exists a feedback u = k(x)

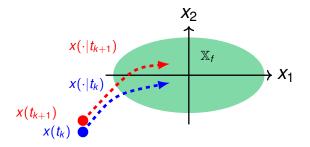
$$\frac{\partial V_f}{\partial x} f(x, k(x)) + \ell(x, k(x)) \le 0. \tag{1}$$



Local Bound on Cost-To-Go

Assume that, for all $x \in X_f \subseteq X$, there exists a feedback u = k(x)

$$\frac{\partial V_f}{\partial x} f(x, k(x)) + \ell(x, k(x)) \le 0.$$
 (1)



Idea: For NMPC require that all predicted trajectories end in the terminal set \mathbb{X}_f , whereby the local feedback $k: x \in \mathbb{X}_f \mapsto u \in \mathbb{U}$ satisfy (1).

Sampled-Data Quasi-Infinite-Horizon NMPC

1. State measurement/estimate $x(t_k)$

2. Solve:

$$\begin{aligned} \min_{u(\cdot|t_k)} \int_{t_k}^{t_k+T} \ell(x(\tau|t_k), u(\tau|t_k)) \, \mathrm{d}\tau + V_f(x(t_k+T|t_k)) \\ \text{subject to } \forall \tau \in [t_k, t_k+T] : & (\mathcal{OCP}_T^{\mathbb{X}_f}(x(t_k))) \\ \frac{\mathrm{d}x(\tau|t_k)}{\mathrm{d}\tau} &= f(x(\tau|t_k), u(\tau|t_k)), \quad x(t_k|t_k) = x(t_k) \\ & \quad x(\tau|t_k) \in \mathbb{X}, \quad u(\tau|t_k) \in \mathbb{U} \\ & \quad x(t_k+T|t_k) \in \mathbb{X}_f \end{aligned}$$

- 3. Apply $u^{\star}(\tau|t_k)$ for $\tau \in [t_k, t_{k+1})$
- ▶ Finite prediction horizon ($T < \infty$) and sampled-data recalculation ($\delta \doteq t_{k+1} t_k > 0$)
- ▶ Terminal penalty ($V_f \neq 0$) and terminal region ($X_f \subseteq X$)
- $\qquad \qquad \textbf{Value function: } V_T^{\mathbb{X}_f}(x(t_k)) \doteq \int_{t_k}^{t_k+T} \ell(x^\star(\tau|t_k), u^\star(\tau|t_k)) \; \mathrm{d}\tau + V_f(x^\star(t_k+T|t_k))$

Convergence of Quasi-Infinite-Horizon NMPC

Theorem (Convergence of sampled-data NMPC)

Let Assumptions A1–A3 hold and suppose that there exist V_f , $\mathbb{X}_f \subseteq \mathbb{X}$ $(0 \in \mathbb{X}_f)$, and a feedback $k : \mathbb{X}_f \to \mathbb{U}$ such that

- (i) $V_f: \mathbb{X}_f \to \mathbb{R}_0^+$ is positive semi-definite and $V_f(0) = 0$,
- (ii) for all $x \in \mathbb{X}_f$: $\frac{\partial V_f}{\partial x} f(x, k(x)) + \ell(x, k(x)) \leq 0$, and for all $t \in [0, \delta]$: $x(t, x, k(x)) \in \mathbb{X}_f$,
- (iii) $OCP_{\tau}^{\mathbb{X}_f}(x(t_k))$ is feasible at k=0.

Then.

- ► $OCP_T^{\mathbb{X}_f}(x(t_k))$ is recursively feasible,
- ▶ the NMPC scheme based on $OCP_T^{\mathbb{X}_t}(x(t_k))$ achieves $\lim_{t\to\infty} \|x(t)\| = 0$,
- and the region of attraction is given by the set of initial conditions for which (iii) holds.

H. Chen and F. Allgöwer. "A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability". in Automatica: 34.10 (1998), pages 1205–1217

F. Fontes. "A General Framework to Design Stabilizing Nonlinear Model Predictive Controllers". in Sys. Contr. Lett.: 42.2 (2001), pages 127–143

4 D > 4 B > 4 E > 4 E > E 990

▶ Step 1 – Recursive feasibility of the sequence $OCP_T^{\mathbb{X}_t}(x(t_k))$ for all sampling instants t_k , $k \in \mathbb{N}$

Definition (Recursive feasibility of an OCP)

- ▶ Step 1 Recursive feasibility of the sequence $OCP_T^{\mathbb{X}_t}(x(t_k))$ for all sampling instants t_k , $k \in \mathbb{N}$
- ► Step 2 Decrease of the value function $V_T^{\mathbb{X}_f}(x(t))$ in-between two sampling instants t_{k+1} and t_k

Definition (Recursive feasibility of an OCP)

- ▶ Step 1 Recursive feasibility of the sequence $OCP_T^{\mathbb{X}_f}(x(t_k))$ for all sampling instants t_k , $k \in \mathbb{N}$
- ► Step 2 Decrease of the value function $V_T^{\mathbb{X}_t}(x(t))$ in-between two sampling instants t_{k+1} and t_k
- ► Step 3 Decrease of the value function $V_T^{\mathbb{X}_t}(x(t))$ from one sampling instant to the next

Definition (Recursive feasibility of an OCP)

- ▶ Step 1 Recursive feasibility of the sequence $OCP_T^{\mathbb{X}_f}(x(t_k))$ for all sampling instants t_k , $k \in \mathbb{N}$
- ► Step 2 Decrease of the value function $V_T^{\mathbb{X}_t}(x(t))$ in-between two sampling instants t_{k+1} and t_k
- ▶ Step 3 Decrease of the value function $V_T^{\mathbb{X}_f}(x(t))$ from one sampling instant to the next
- ► Step 4 Consider the value function $V_T^{\mathbb{X}_f}(x(t))$ as a *Lyapunov* function of the closed-loop system

Definition (Recursive feasibility of an OCP)

Step 1 – Recursive Feasibility

Idea: Construct feasible $u(\cdot)$ for $OCP_T^{\mathbb{X}_f}(x(t_{k+1}))$ from solution to $OCP_T^{\mathbb{X}_f}(x(t_k))$.

Consider

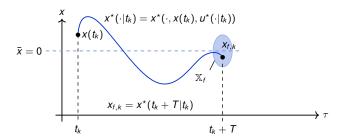
$$\tilde{u}_{k+1}(t) = \begin{cases} u^*(t|t_k) & t \in [t_{k+1}, t_k + T) \\ k(x(t)) & t \in [t_k + T, t_{k+1} + T] \end{cases}.$$

Step 1 – Recursive Feasibility

Idea: Construct feasible $u(\cdot)$ for $OCP_T^{\mathbb{X}_f}(x(t_{k+1}))$ from solution to $OCP_T^{\mathbb{X}_f}(x(t_k))$.

Consider

$$\tilde{u}_{k+1}(t) = \left\{ \begin{array}{l} u^{\star}(t|t_k) & t \in [t_{k+1}, t_k + T) \\ k(x(t)) & t \in [t_k + T, t_{k+1} + T] \end{array} \right.$$

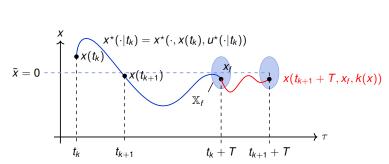


Step 1 – Recursive Feasibility

Idea: Construct feasible $u(\cdot)$ for $OCP_T^{\mathbb{X}_f}(x(t_{k+1}))$ from solution to $OCP_T^{\mathbb{X}_f}(x(t_k))$.

Consider

$$\tilde{u}_{k+1}(t) = \begin{cases} u^*(t|t_k) & t \in [t_{k+1}, t_k + T) \\ k(x(t)) & t \in [t_k + T, t_{k+1} + T] \end{cases}.$$



Observe that $\tilde{u}_{k+1}:[t_{k+1},t_{k+1}+T]\to\mathbb{U}$, i.e. $\tilde{u}_{k+1}(\cdot)$ is feasible.

Step 2 – Decrease in-between two Consecutive Instants

Consider the value function

$$V_T^{\mathbb{X}_f}(x(t_k)) \doteq \int_{t_k}^{t_k+T} \ell(x^\star(\tau|t_k), u^\star(\tau|t_k)) d\tau + V_f(x^\star(t_k+T|t_k)).$$

Step 2 – Decrease in-between two Consecutive Instants

Consider the value function

$$V_T^{\mathbb{X}_f}(x(t_k)) \doteq \int_{t_k}^{t_k+T} \ell(x^*(\tau|t_k), u^*(\tau|t_k)) d\tau + V_f(x^*(t_k+T|t_k)).$$

As we consider the nominal case (no plant-model mismatch), we have

$$x(t) = x^*(t|t_k), \quad \forall t \in [t_k, t_{k+1}].$$

Step 2 – Decrease in-between two Consecutive Instants

Consider the value function

$$V_T^{\mathbb{X}_f}(x(t_k)) \doteq \int_{t_k}^{t_k+T} \ell(x^\star(\tau|t_k), u^\star(\tau|t_k)) d\tau + V_f(x^\star(t_k+T|t_k)).$$

As we consider the nominal case (no plant-model mismatch), we have

$$x(t) = x^*(t|t_k), \quad \forall t \in [t_k, t_{k+1}].$$

Hence,

$$V_T^{\mathbb{X}_f}(x(t)) \doteq V_T^{\mathbb{X}_f}(x(t_k)) - \int_{t_k}^t \ell(x^*(\tau|t_k), u^*(\tau|t_k)) d\tau$$

is continuous and decreasing for all $t \in [t_k, t_{k+1})$.

Step 3 – Decrease from One Sampling Instant to the Next

For all $k \in \mathbb{N}$, it holds that $V_T^{\mathbb{X}_f}(x(t_{k+1})) - V_T^{\mathbb{X}_f}(x(t_k)) \leq 0$.

Note

$$V_T^{\mathbb{X}_f}(x(t_{k+1})) - V_T^{\mathbb{X}_f}(x(t_k)) \leq J(x(t_{k+1}), \tilde{u}_{k+1}(\cdot)) - V_T^{\mathbb{X}_f}(x(t_k))$$

Step 3 – Decrease from One Sampling Instant to the Next

Step 4 – Barbalat's Lemma and Convergence

Lemma (Barbalat's lemma)

Let $M: \mathbb{R}^{n_x} \to \mathbb{R}_0^+$ be a continuous positive definite function and $x(\cdot)$ be an absolutely continuous function on \mathbb{R} . If $x(\cdot) \in \mathcal{L}^{\infty}$, $\dot{x}(\cdot) \in \mathcal{L}^{\infty}$ and

$$\lim_{t\to\infty}\int_0^t M(x(\tau))\,\mathrm{d}\tau<\infty$$

then

$$\lim_{t\to\infty}||x(t)||=0.$$

H. Michalska and R.B. Vinter. "Nonlinear stabilization using discontinuous moving-horizon control". in IMA Journal of Mathematical Control and

Information: 11.4 (1994), pages 321-340

Step 4 – Barbalat's Lemma and Convergence

Step 4 – Barbalat's Lemma and Convergence

How to compute terminal regions and end penalties?

H. Chen and F. Allgöwer. "A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability". in Automatica: 34.10 (1998), pages 1205–1217

F. Fontes. "A General Framework to Design Stabilizing Nonlinear Model Predictive Controllers". in Sys. Contr. Lett.: 42.2 (2001), pages 127–143

4 D > 4 A D > 4 B > 4 B > 9 Q C

Overview

Introduction

NMPC for Setpoint Stabilization

Stabilizing NMPC with Terminal Constraints

Computation of Terminal Constraints

Stabilizing NMPC without Terminal Constraints

Comments on Different NMPC Formulations

Turnpikes and Dissipativity in OCPs

Economic NMPC with Terminal Constraints

Turnpike Approach to Economic NMPC without Terminal Constraints

Summary

Let $OCP_T^0(x(t_k))$ denote the variant of $OCP_T^{\mathbb{X}_f}(x(t_k))$ with $\mathbb{X}_f = \{0\}, V_f(x) = 0.$

Let $OCP_T^0(x(t_k))$ denote the variant of $OCP_T^{\mathbb{X}_f}(x(t_k))$ with $\mathbb{X}_f = \{0\}, V_f(x) = 0.$

Corollary (Convergence with zero-terminal constraint)

Let Assumptions A1–A3 hold and suppose that the terminal penalty is $V_f(x) = 0$, the terminal region is $X_f = \{0\}$, and (iii) $OCP_{\tau}^0(x(t_k))$ is feasible at k = 0.

Let $OCP_T^0(x(t_k))$ denote the variant of $OCP_T^{\mathbb{X}_f}(x(t_k))$ with $\mathbb{X}_f = \{0\}, V_f(x) = 0.$

Corollary (Convergence with zero-terminal constraint)

Let Assumptions A1–A3 hold and suppose that the terminal penalty is $V_f(x) = 0$, the terminal region is $\mathbb{X}_f = \{0\}$, and (iii) $OCP_T^0(x(t_k))$ is feasible at k = 0.

Then,

- ▶ $OCP_T^0(x(t_k))$ is recursively feasible,
- ▶ the NMPC scheme based on OCP $_T^0(x(t_k))$ achieves $\lim_{t\to\infty} \|x(t)\| = 0$,
- ▶ and the region of attraction is given by the set of initial conditions for which $OCP_T^0(x(t_k))$ is feasible.

Let $OCP_T^0(x(t_k))$ denote the variant of $OCP_T^{\mathbb{X}_f}(x(t_k))$ with $\mathbb{X}_f = \{0\}, V_f(x) = 0.$

Corollary (Convergence with zero-terminal constraint)

Let Assumptions A1–A3 hold and suppose that the terminal penalty is $V_f(x) = 0$, the terminal region is $\mathbb{X}_f = \{0\}$, and (iii) $OCP_T^0(x(t_k))$ is feasible at k = 0.

Then,

- ▶ $OCP_T^0(x(t_k))$ is recursively feasible,
- ▶ the NMPC scheme based on OCP $_T^0(x(t_k))$ achieves $\lim_{t\to\infty}\|x(t)\|=0$,
- ▶ and the region of attraction is given by the set of initial conditions for which $OCP_T^0(x(t_k))$ is feasible.

D.Q. Mayne and H. Michalska. "Receding horizon control of nonlinear systems". in/EEE Trans. Automat. Contr.: 35.7 (1990), pages 814–824. DOI: 10.1109/9.57020

S.S. Keerthi and E.G. Gilbert. "Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and

moving-horizon approximations". in Journal of Optimization Theory and Applications: 57.2 (1988), pages 265–293

4 D > 4 D > 4 E > 4 E > E 9 Q C

Structured Computation of Terminal Regions

Consider

$$\dot{x} = f(x, u), \quad x(0) \in \mathbb{X}_0$$
 (\(\Sigma\)

with f(0,0) = 0. Let

$$A \doteq \left. \frac{\partial f}{\partial x} \right|_{(0,0)}, \qquad B \doteq \left. \frac{\partial f}{\partial u} \right|_{(0,0)}.$$

Lemma (Nonlinear local stabilizability)

If the pair (A,B) is stabilizable—i.e., there exists u=Kx such that the real parts of all eigenvalues of A+BK are negative—then the feedback u=Kx achieves local asymptotic stability of $x=\bar{x}=0$ for the nonlinear system Σ .

H.K. Khalil. Nonlinear Systems. 3rd. Prentice Hall, New Jersey, 2002

To compute a terminal region and a corresponding terminal penalty, we consider

- ▶ $\ell(x, u) = \frac{1}{2}x^{\top}Qx + \frac{1}{2}u^{\top}Ru$, with Q > 0, R > 0, and that
- ▶ the Jacobian linearization of f(x, u) at (0, 0), (A, B), is stabilizable.

Let P be the positive definite solution of the Algebraic Riccati Equation (ARE)

$$A^{\top}P + PA - PBR^{-1}B^{\top}P + Q = 0, \quad P = P^{\top} > 0,$$
 (ARE)

and consider the feedback u = Kx

$$K = -R^{-1}B^{\top}P.$$

To compute a terminal region and a corresponding terminal penalty, we consider

- ▶ $\ell(x, u) = \frac{1}{2}x^{\top}Qx + \frac{1}{2}u^{\top}Ru$, with Q > 0, R > 0, and that
- ▶ the Jacobian linearization of f(x, u) at (0, 0), (A, B), is stabilizable.

Let P be the positive definite solution of the Algebraic Riccati Equation (ARE)

$$A^{\top}P + PA - PBR^{-1}B^{\top}P + Q = 0, \quad P = P^{\top} > 0,$$
 (ARE)

and consider the feedback u = Kx

$$K = -R^{-1}B^{\top}P.$$

In Matlab the algebraic Riccati equation can be solved using lgr or care, dare commands.

Furthermore, $u = Kx = -R^{-1}B^{T}Px$ is the optimal solution to the following linear-quadratic OCP:

$$\min_{u(\cdot)} \int_{t_0}^{\infty} \frac{1}{2} \left(x^{\top}(\tau) Q x(\tau) + u^{\top}(\tau) R u(\tau) \right) d\tau$$
 subject to
$$\dot{x} = A x + B u, \quad x(t_0) = x_0$$
 (LQR)

and the optimal value function of (LQR) is given by

$$V_{LQR}(x_0) = \frac{1}{2}x_0^\top P x_0.$$

B.D. Anderson and J.B. Moore. *Optimal Control - Linear Quadratic Methods*. Information and system science series. Prentice Hall, Englewood Cliffs, London, 1990

4D > 4A > 4 = > 4 = > = 990

Then, it is straightforward to show

- ▶ u = Kx stabilizes the nonlinear system (Σ) locally, and
- ▶ $\frac{1}{2}x^{\top}Px$ is a local Lyapunov function of the nonlinear system Σ controlled by u = Kx.

Question: Domain of attraction of the nonlinear system (Σ) under the feedback u = Kx?

Ellipsoidal ansatz for the terminal region

$$\mathbb{X}_f = \left\{ x \in \mathbb{R}^{n_x} \mid \tfrac{1}{2} x^\top P x \le \rho^2 \right\}$$
 with $\ell(x, u) = \tfrac{1}{2} x^\top Q x + \tfrac{1}{2} u^\top R u$ and $V_f(x) = \tfrac{1}{2} x^\top P x$

$$egin{array}{ll} & \min_{
ho} & -
ho \ & ext{subject to} \ & orall x \in \mathbb{X}_f: & \mathit{K}x \in \mathbb{U} \ & \dot{V}_f(x) + \ell(x,\mathit{K}x) \leq 0 \end{array}$$

 (P_{o})

Ellipsoidal ansatz for the terminal region

$$\mathbb{X}_f = \left\{ x \in \mathbb{R}^{n_x} \mid \frac{1}{2} x^\top P x \le \rho^2 \right\}$$
 with $\ell(x, u) = \frac{1}{2} x^\top Q x + \frac{1}{2} u^\top R u$ and $V_f(x) = \frac{1}{2} x^\top P x$

$$egin{array}{ll} & \min_{
ho} & -
ho \ & ext{subject to} \ & orall x \in \mathbb{X}_f: & extit{K}x \in \mathbb{U} \ & \dot{V}_f(x) + \ell(x, extit{K}x) \leq 0 \end{array}$$

- ightharpoonup max ρ is equivalent to max $vol(X_f)$ for fixed P
- ► Semi-infinite program → difficult to solve
- ▶ $\dot{V}_f(x) + \ell(x, Kx) \le 0$ is a non-convex constraint
- Structural assumptions on nonlinearity of f and polytopic constraints for simplification

40) 4 (E) 4 (E) 4 (D) 4 (D)

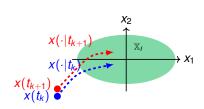
 (P_o)

Choice of terminal region and end penalty based on solution to linearized infinite-horizon problem (LQR):

$$\mathbb{X}_f = \begin{cases} x \in \mathbb{R}^{n_x} \mid \frac{1}{2} x^\top P x \le \rho^2 \\ \text{with } \rho \text{ from } (P_\rho) \end{cases}$$

$$V_f(x) = \frac{1}{2} x^\top P x$$

► P solves the algebraic Riccati equation (ARE)



H. Chen **and** F. Allgöwer. "A quasi-infinite horizon nonlinear model predictive control scheme with quaranteed stability". in *Automatica*: 34.10 (1998), pages 1205–1217

4 D > 4 D >

Intermediate Summary – NMPC with Terminal Constraints

Terminal regions X_f :

- Guarantee recursive feasibility in presence of state constraints.
- Are often computed based on linearization
- ► Their computation is in general difficult (semi-infinite program)

Intermediate Summary – NMPC with Terminal Constraints

Terminal penalties V_f :

- Typically constructed to be upper bounds on the cost-to-go
- Often computed based on linearization.
- Local Lyapunov functions arising from locally stabilizing feedbacks are natural candidates.
- Easiest non-trivial choice: value function of corresponding LQR problem

Food for thought

How to choose terminal penalty and terminal region if target steady state is globally asymptotically stable?

NMPC Pitfall Example – Revisited

$$\min_{u(\cdot|t_k)} \int_{t_k}^{t_k+T} \|x(\tau|t_k)\|_Q^2 + \|u(\tau|t_k)\|_H^2 d\tau + \|x(t_k+T|t_k)\|_P^2$$

subject to

$$\forall \tau \in [t_k, t_k + T]: \frac{\mathrm{d}x(\tau|t_k)}{\mathrm{d}\tau} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} x(\tau|t_k) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(\tau|t_k),$$
$$x(t_k|t_k) = x(t_k)$$

Setting:

 \blacktriangleright Weight matrices: Q = diag(5, 5, 0),

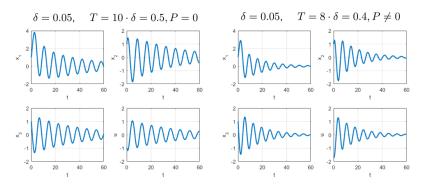
Inputs approximated as piece-wise constant

▶ Sampling period: $\delta = 0.05$

▶ Prediction horizon: $T = N \cdot \delta$, N = # number of shooting intervals

 \triangleright P \succ 0 solves (ARE)

NMPC Pitfall Example – Revisited



- ► Long horizons or terminal penalties plus terminal regions fix stability problem.
- ► How to avoid terminal regions?
- ► How to enforce recursive feasibility without terminal regions?

- Terminal regions and terminal penalties can be used to guarantee stability/convergence.
- ► Their computation is difficult for nonlinear systems.
- ► A plethora of results discuss special cases and discrete-time settings:
 - D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M. Scokaert. "Constrained model predictive control: Stability and optimality". in *Automatica*: 36.6 (2000), pages 789–814
 - J.B. Rawlings, D.Q. Mayne, M. Diehl. Model Predictive Control: Theory, Computation, and Design. Nob Hill Publishing, Madison, WI, 2017
 - ▶ ...

- Terminal regions and terminal penalties can be used to guarantee stability/convergence.
- ► Their computation is difficult for nonlinear systems.
- ► A plethora of results discuss special cases and discrete-time settings:
 - D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M. Scokaert. "Constrained model predictive control: Stability and optimality". in *Automatica*: 36.6 (2000), pages 789–814
 - J.B. Rawlings, D.Q. Mayne, M. Diehl. Model Predictive Control: Theory, Computation, and Design. Nob Hill Publishing, Madison, WI, 2017
 - ▶ ...

Questions:

- ▶ How to avoid terminal constraints?
- ▶ How to consider other control problems than set-point stabilization?

Overview

Stabilizing NMPC with Terminal Constraints

Computation of Terminal Constraints

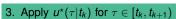
Stabilizing NMPC without Terminal Constraints

NMPC with Replaced Terminal Constraint

1. State measurement/estimate $x(t_k)$

2. Solve:

$$\begin{aligned} \min_{u(\cdot|t_k)} \int_{t_k}^{t_k+T} \ell(x(\tau|t_k), u(\tau|t_k)) \, \mathrm{d}\tau + \beta \, V_f(x(t_k+T|t_k)) \\ \text{subject to } \forall \tau \in [t_k, t_k+T] : & (\textit{OCP}_T^\beta(x(t_k))) \\ \frac{\mathrm{d}x(\tau|t_k)}{\mathrm{d}\tau} &= f(x(\tau|t_k), u(\tau|t_k)), \quad x(t_k|t_k) = x(t_k) \\ & \quad x(\tau|t_k) \in \mathbb{X}, \ u(\tau|t_k) \in \mathbb{U} \end{aligned}$$



- ▶ Finite horizon ($T < \infty$) and sampled-data recalculation ($\delta \doteq t_{k+1} t_k > 0$)
- ▶ Terminal penalty βV_f is C^1 and positive definite, and **no explicit terminal region** X_f
- ► Value function: $V_T^{\beta}(x(t_k)) \doteq \int_{t_k}^{t_k+T} \ell(x^*(\tau|t_k), u^*(\tau|t_k)) d\tau + \beta V_f(x^*(t_k+T|t_k))$

Replacing the Terminal Set by a Terminal Cost

How to choose $\beta \in [0, \infty)$ such that the NMPC scheme based on $OCP_{\tau}^{\beta}(x(t_k))$ achieves stability?

Replacing the Terminal Set by a Terminal Cost

How to choose $\beta \in [0, \infty)$ such that the NMPC scheme based on $OCP_{\mathcal{T}}^{\beta}(x(t_k))$ achieves stability?

Consider a quasi-infinite horizon NMPC scheme based on $OCP_T^{\mathbb{X}_f}(x(t_k))$.

Assumption

A4 For some $\gamma > 0$, let $\mathbb{X}_{f,\gamma} = \{x \in \mathbb{X} \mid V_f(x) \leq \gamma\}$ and V_f satisfy the quasi infinite-horizon NMPC stability conditions for specific values of $\delta > 0$, T > 0.

Replacing the Terminal Set by a Terminal Cost

Consider the quasi infinite-horizon NMPC scheme based on $OCP_T^0(x(t_k))$ with zero-terminal constraint $\mathbb{X}_f = \{0\}$ and $V_f(x) = 0$.

Let $V_T^0(x)$ be the associated optimal value function, and consider the set of feasible initial conditions

$$\Omega_T^0 = \left\{ x \in \mathbb{X} \mid V_T^0(x) < \infty \right\}.$$

Assumptions

A5 The set Ω_T^0 is compact and $0 \in \operatorname{int}(\Omega_T^0)$.

A6 There exists $\beta_2 \in \mathcal{K}_{\infty}$, such that $V_T^0(x) \leq \beta_2(\|x\|)$.

NMPC with replaced terminal constraint

Theorem (Convergence with replaced terminal constraint)

Let Assumptions A1–A6 hold. Then, there exists $\beta \in (0, \infty)$, such that

▶ the NMPC scheme based on $OCP_T^{\beta}(x(t_k))$ achieves

$$\lim_{t\to\infty}\|x(t)\|=0,$$

• and the region of attraction is given by Ω_T^0 .

Convergence with Replaced Terminal Constraint

Proof sketch:

Convergence with Replaced Terminal Constraint

D. Limon, T. Alamo, F. Salas, E.F. Camacho. "On the stability of constrained MPC without terminal constraint". in *IEEE Trans. Automat. Contr.*: 51.5 (2006), pages 832–836

Excursion – Control Lyapunov Function

Definition (Control Lyapunov function)

Let $V: \mathbb{R}^{n_x} \to \mathbb{R}^+_0$ be positive definite and continuously differentiable on \mathbb{R}^{n_x} . If, for all $x \in \mathbb{R}^{n_x}$, there exists $u \in \mathbb{U}$ such that

$$\frac{\partial V}{\partial x}f(x,u)<0, \qquad \forall x\neq 0$$

then V is said to be a control Lyapunov function.

Excursion – Control Lyapunov Function

Definition (Control Lyapunov function)

Let $V: \mathbb{R}^{n_x} \to \mathbb{R}^+_0$ be positive definite and continuously differentiable on \mathbb{R}^{n_x} . If, for all $x \in \mathbb{R}^{n_x}$, there exists $u \in \mathbb{U}$ such that

$$\frac{\partial V}{\partial x}f(x,u)<0, \qquad \forall x\neq 0$$

then V is said to be a control Lyapunov function.

Observation

Let $V: \mathbb{R}^{n_X} \to \mathbb{R}_0^+$ be a control Lyapunov function satisfying

$$\frac{\partial V}{\partial x}f(x,u) \leq -\ell(x,u),$$

then V can be used as terminal penalty V_f .

A. Jadbabaie, J. Yu, J. Hauser. "Unconstrained receding-horizon control of nonlinear systems". in *IEEE Trans. Automat. Contr.*: 46.5 (2001). pages 776–783. DOI: 10.1109/9.920800

4 D > 4 D > 4 E > 4 E > E 9 Q Q

How to avoid terminal constraints?

Replace by scaled terminal penalty βV_f(x).
 Limon, T. Alamo, F. Salas, E.F. Camacho. "On the stability of constrained MPC without terminal constraint". in IEEE Trans. Automat. Contr.: 51.5 (2006), pages 832–836

How to avoid terminal constraints?

- 1. Replace by scaled terminal penalty $\beta V_f(x)$.

 D. Limon, T. Alamo, F. Salas, E.F. Camacho. "On the stability of constrained MPC without terminal constraint". in/EEE Trans. Automat. Contr.: 51.5 (2006), pages 832–836
- Use a control Lyapunov function as terminal penalty.
 A. Jadbabaie, J. Yu, J. Hauser. "Unconstrained receding-horizon control of nonlinear systems".
 in/EEE Trans. Automat. Contr.: 46.5 (2001), pages 776–783. DOI: 10.1109/9.920800

How to avoid terminal constraints?

- 1. Replace by scaled terminal penalty $\beta V_f(x)$.

 D. Limon, T. Alamo, F. Salas, E.F. Camacho. "On the stability of constrained MPC without terminal constraint". in/EEE Trans. Automat. Contr.: 51.5 (2006), pages 832–836
- Use a control Lyapunov function as terminal penalty.
 A. Jadbabaie, J. Yu, J. Hauser. "Unconstrained receding-horizon control of nonlinear systems". in/EEE Trans. Automat. Contr.: 46.5 (2001), pages 776–783. DOI: 10.1109/9.920800
- Use a sufficiently long prediction horizon.
 A. Jadbabaie and J. Hauser. "On the stability of receding horizon control with a general terminal cost". in/EEE Trans. Automat. Contr.: 50.5 (2005), pages 674–678. DOI: 10.1109/TAC.2005.846597

How to avoid terminal constraints?

- 1. Replace by scaled terminal penalty $\beta V_f(x)$.

 D. Limon, T. Alamo, F. Salas, E.F. Camacho. "On the stability of constrained MPC without terminal constraint". in/EEE Trans. Automat. Contr.: 51.5 (2006), pages 832–836
- Use a control Lyapunov function as terminal penalty.
 A. Jadbabaie, J. Yu, J. Hauser. "Unconstrained receding-horizon control of nonlinear systems". in/EEE Trans. Automat. Contr.: 46.5 (2001), pages 776–783. DOI: 10.1109/9.920800
- Use a sufficiently long prediction horizon.
 A. Jadbabaie and J. Hauser. "On the stability of receding horizon control with a general terminal cost". in/EEE Trans. Automat. Contr.: 50.5 (2005), pages 674–678. DOI: 10.1109/TAC.2005.846597
- 4. Consider so-called cost-controllability conditions.
 - L. Grüne and J. Pannek. Nonlinear Model Predictive Control: Theory and Algorithms. 2nd Edition.

Communication and Control Engineering. Springer Verlag, 2017

How to avoid terminal constraints?

- 1. Replace by scaled terminal penalty $\beta V_f(x)$.

 D. Limon, T. Alamo, F. Salas, E.F. Camacho. "On the stability of constrained MPC without terminal constraint". in/EEE Trans. Automat. Contr.: 51.5 (2006), pages 832–836
- Use a control Lyapunov function as terminal penalty.
 A. Jadbabaie, J. Yu, J. Hauser. "Unconstrained receding-horizon control of nonlinear systems". in/EEE Trans. Automat. Contr.: 46.5 (2001), pages 776–783. DOI: 10.1109/9.920800
- Use a sufficiently long prediction horizon.
 A. Jadbabaie and J. Hauser. "On the stability of receding horizon control with a general terminal cost". in/EEE Trans. Automat. Contr.: 50.5 (2005), pages 674–678. DOI: 10.1109/TAC.2005.846597
- 4. Consider so-called cost-controllability conditions.
 - L. Grüne and J. Pannek. Nonlinear Model Predictive Control: Theory and Algorithms. 2nd Edition.
 - Communication and Control Engineering. Springer Verlag, 2017
- ► State constraints may lead to difficulties in approaches 2.–4. (recursive feasibility).
- ightharpoonup Considering turnpike properties allows tackling this issue (ightharpoonup later).

Overview

Introduction

NMPC for Setpoint Stabilization

Stabilizing NMPC with Terminal Constraints

Computation of Terminal Constraints

Stabilizing NMPC without Terminal Constraints

Comments on Different NMPC Formulations

Turnpikes and Dissipativity in OCPs

Economic NMPC with Terminal Constraints

Turnpike Approach to Economic NMPC without Terminal Constraints

Summary

Stability Ingredients for Setpoint Stabilization

- ► Reference setpoint: $(\bar{x}, \bar{u}) \in \text{int}(\mathbb{X} \times \mathbb{U})$ $0 = f(\bar{x}, \bar{u})$
- ► Error variables: $x \bar{x}$, $u \bar{u}$
- ► Cost function ℓ chosen such that

$$\ell(x, u) \ge \alpha(\|x - \bar{x}\|), \ \alpha \in \mathcal{K}$$

Stability Ingredients for Setpoint Stabilization

- ► Reference setpoint: $(\bar{x}, \bar{u}) \in \text{int}(\mathbb{X} \times \mathbb{U})$ $0 = f(\bar{x}, \bar{u})$
- ► Error variables: $x \bar{x}$, $u \bar{u}$
- ► Cost function ℓ chosen such that

$$\ell(x, u) \ge \alpha(\|x - \bar{x}\|), \ \alpha \in \mathcal{K}$$

► Typical choices:

$$\ell(x, u) = \|x - \bar{x}\|_{Q}^{2} + \|u - \bar{u}\|_{R}^{2}$$

$$Q = Q^{\top} \succ 0, R = R^{\top} \succ 0$$

$$V_{f}(x) = \|x - \bar{x}\|_{P}^{2}$$

$$X_{f} = \{x \in \mathbb{R}^{n_{x}} \mid V_{f}(x) < \gamma\}$$

1. State measurement/estimate $x(t_k)$

2. Solve $OCP(x(t_k))$:

$$\min_{u(\cdot|t_k)} \int_{t_k}^{t_k+T} \ell(x(\tau|t_k), u(\tau|t_k)) d\tau + V_f(x(t_k+T|t_k))$$

$$\forall \tau \in [t_k, t_k + T] : \frac{\mathrm{d}X(\tau|t_k)}{\mathrm{d}\tau} = f(X(\tau|t_k), u(\tau|t_k))$$
$$X(t_k|t_k) = X(t_k)$$

$$x(\tau|t_k) \in \mathbb{X}, \ u(\tau|t_k) \in \mathbb{U}$$

$$x(t_k + T|t_k) \in X_f$$

3. Apply $u^*(\tau|t_k)$ for $\tau \in [t_k, t_{k+1})$

Notation:
$$||z||_S^2 = z^\top Sz$$
, $S \succeq 0$

▶ Reference trajectory: $\dot{r} = f(r, w)$ $t \in [0, \infty) \rightarrow r(t) \in \text{int } \mathbb{X},$ $t \in [0, \infty) \rightarrow w(t) \in \text{int } \mathbb{U}$

- ► Reference trajectory: $\dot{r} = f(r, w)$ $t \in [0, \infty) \rightarrow r(t) \in \text{int } \mathbb{X},$ $t \in [0, \infty) \rightarrow w(t) \in \text{int } \mathbb{U}$
- ▶ Error variables:

$$e(t) = x(t) - r(t)$$

$$v(t) = u(t) - w(t)$$

► Cost function ℓ chosen such that $\ell(t, x, u) \ge \alpha(\|x - r(t)\|), \ \alpha \in \mathcal{K}$

- ightharpoonup Reference trajectory: $\dot{r} = f(r, w)$ $t \in [0, \infty) \to r(t) \in \operatorname{int} \mathbb{X},$ $t \in [0, \infty) \to w(t) \in \operatorname{int} \mathbb{U}$
- Frror variables:

$$e(t) = x(t) - r(t)$$
$$v(t) = u(t) - w(t)$$

- ► Cost function ℓ chosen such that $\ell(t, x, u) > \alpha(||x - r(t)||), \ \alpha \in \mathcal{K}$
- Typical choices:

$$\ell(t, x, u) = \|x - r(t)\|_Q^2 + \|u - w(t)\|_R^2$$

$$Q = Q^\top \succ 0, R = R^\top \succ 0$$

$$V_f(t, x) = \|x - r(t)\|_{P(t)}^2$$

$$\mathbb{X}_f = \{x \in \mathbb{R}^{n_x} \mid V_f(t, x) < \gamma\}$$

- 1. State measurement/estimate $x(t_k)$
- 2. Solve $OCP(t_k, x(t_k))$: $\min_{u(\cdot|t_k)} \int_{t_k}^{t_k+\tau} \ell(\tau, x(\tau|t_k), u(\tau|t_k)) d\tau + V_f(\tau, x(\tau|t_k))|_{t_k+T}$ $\forall \tau \in [t_k, t_k + T] : \frac{\mathrm{d}x(\tau|t_k)}{1-\tau} = f(x(\tau|t_k), u(\tau|t_k))$ $x(t_k|t_k) = x(t_k)$
 - $x(\tau|t_{\nu}) \in \mathbb{X}, \ u(\tau|t_{\nu}) \in \mathbb{U}$ $x(t_k + T|t_k) \in \mathbb{X}_t$
- 3. Apply $u^*(\tau|t_k)$ for $\tau \in [t_k, t_{k+1})$

- ▶ Reference trajectory: $\dot{r} = f(r, w)$ $t \in [0, \infty) \rightarrow r(t) \in \text{int } \mathbb{X},$ $t \in [0, \infty) \rightarrow w(t) \in \text{int } \mathbb{U}$
- Frror variables:

$$e(t) = x(t) - r(t)$$
$$v(t) = u(t) - w(t)$$

- ► Cost function ℓ chosen such that $\ell(t, x, u) \ge \alpha(\|x r(t)\|), \ \alpha \in \mathcal{K}$
- ► Typical choices:

$$\ell(t, x, u) = \|x - r(t)\|_Q^2 + \|u - w(t)\|_R^2$$

$$Q = Q^\top > 0, R = R^\top > 0$$

$$V_f(t, x) = \|x - r(t)\|_{P(t)}^2$$

$$\mathbb{X}_t = \{x \in \mathbb{R}^{n_x} \mid V_f(t, x) < \gamma\}$$

1. State measurement/estimate $x(t_k)$ 2. Solve $OCP(t_k, x(t_k))$: $\min_{u(\cdot|t_k)} \int_{t_k}^{t_k+T} \frac{1}{\ell(\tau, x(\tau|t_k), u(\tau|t_k))} \, \mathrm{d}\tau + V_f(\tau, x(\tau|t_k))|_{t_k+T}$ $\forall \tau \in [t_k, t_k+T] : \frac{\mathrm{d}x(\tau|t_k)}{\mathrm{d}\tau} = f(x(\tau|t_k), u(\tau|t_k))$ $x(t_k|t_k) = x(t_k)$ $x(\tau|t_k) \in \mathbb{X}, \ u(\tau|t_k) \in \mathbb{U}$ $x(t_k+T|t_k) \in \mathbb{X}_f$ 3. Apply $u^*(\tau|t_k)$ for $\tau \in [t_k, t_{k+1})$

Note: NMPC for trajectory tracking leads to a time-varying problem.

T. Faulwasser. Optimization-based Solutions to Constrained Trajectory-tracking and Path-following Problems. Shaker, Aachen, Germany, 2013. DOI:

10.2370/9783844015942

Continuous Time vs. Discrete Time Setting?

Continuous-Time NMPC

2. Solve $OCP(x(t_k))$:

$$\min_{u(\cdot|t_k)} \int_{t_k}^{t_k+T} \ell(x(\tau|t_k), u(\tau|t_k)) d\tau + V_f(x(t_k+T|t_k))$$

$$\forall \tau \in [t_k, t_k + T] : \frac{\mathrm{d}x(\tau|t_k)}{\mathrm{d}\tau} = f(x(\tau|t_k), u(\tau|t_k))$$
$$x(t_k|t_k) = x(t_k)$$

$$x(\tau|t_k) \in \mathbb{X}, \ u(\tau|t_k) \in \mathbb{U}$$

 $x(t_k + T|t_k) \in \mathbb{X}_f$

3. Apply $u^{\star}(\tau|t_k)$ for $\tau \in [t_k, t_{k+1})$

Continuous Time vs. Discrete Time Setting?

Continuous-Time NMPC

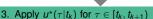
1. State measurement/estimate $x(t_k)$

$$\min_{u(\cdot|t_k)} \int_{t_k}^{t_k+T} \ell(x(\tau|t_k), u(\tau|t_k)) d\tau + V_f(x(t_k+T|t_k))$$

$$\forall \tau \in [t_k, t_k + T] : \frac{\mathrm{d}x(\tau|t_k)}{\mathrm{d}\tau} = f(x(\tau|t_k), u(\tau|t_k))$$
$$x(t_k|t_k) = x(t_k)$$

$$x(\tau|t_k) \in \mathbb{X}, \ u(\tau|t_k) \in \mathbb{U}$$

$$x(t_k+T|t_k)\in\mathbb{X}_f$$



Discrete-Time NMPC

1. State measurement/estimate x(k)

$$\min_{u(\cdot|k)} \sum_{i=1}^{k+N-1} \ell^{d}(x(i|k), u(i|k)) + V_{f}(x(k+N|k))^{d}$$

$$\forall i \in \{k, k+N-1\} : x(i+1|k) = f^d(x(i|k), u(i|k))$$

 $x(k|k) = x(k)$

$$x(i|k)\in\mathbb{X},\ u(i|k)\in\mathbb{U}$$

$$x(k+N|k) \in X_f$$

3. Apply $u^*(k|k)$ for time k

Continuous Time vs. Discrete Time Setting?

Continuous-Time NMPC

1. State measurement/estimate $x(t_k)$

2. Solve $OCP(x(t_k))$:

$$\min_{u(\cdot|t_k)} \int_{t_k}^{t_k+T} \ell(x(\tau|t_k), u(\tau|t_k)) d\tau + V_f(x(t_k+T|t_k))$$

$$\forall \tau \in [t_k, t_k+T] : \frac{\mathrm{d}x(\tau|t_k)}{\mathrm{d}\tau} = f(x(\tau|t_k), u(\tau|t_k))$$

$$x(t_k|t_k) = x(t_k)$$

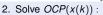
$$x(\tau|t_k) \in \mathbb{X}, \ u(\tau|t_k) \in \mathbb{U}$$

 $x(t_k + T|t_k) \in \mathbb{X}_f$

3. Apply $u^*(\tau|t_k)$ for $\tau \in [t_k, t_{k+1})$

Discrete-Time NMPC

1. State measurement/estimate x(k)



$$\min_{u(\cdot|k)} \sum_{i=k}^{k+N-1} \ell^{d}(x(i|k), u(i|k)) + V_{f}(x(k+N|k))^{d}$$

$$\forall i \in \{k, k+N-1\} : x(i+1|k) = f^d(x(i|k), u(i|k))$$

 $x(k|k) = x(k)$

$$x(i|k) \in \mathbb{X}, \ u(i|k) \in \mathbb{U}$$

 $x(k+N|k) \in \mathbb{X}_{\ell}$

3. Apply $u^*(k|k)$ for time k

Note: Previous results hold (mutatis mutandis) in discrete-time!

- L. Grüne and J. Pannek. Nonlinear Model Predictive Control: Theory and Algorithms. 2nd Edition. Communication and Control Engineering. Springer Verlag, 2017
- ▶ J.B. Rawlings, D.Q. Mayne, M. Diehl. Model Predictive Control: Theory, Computation, and Design. Nob Hill Publishing, Madison, WI, 2017

Note that NMPC can be used for problems beyond setpoint stabilization.

Note that NMPC can be used for problems beyond setpoint stabilization.

Key steps of NMPC design:

 State and formulate the considered control problem: stabilization, trajectory tracking, disturbance attenuation, ...

Note that NMPC can be used for problems beyond setpoint stabilization.

- State and formulate the considered control problem: stabilization, trajectory tracking, disturbance attenuation, ...
- ► Get a system model, design a state-estimator, ...
- Formulate an infinite-horizon OCP, which would solve the problem.

Note that NMPC can be used for problems beyond setpoint stabilization.

- State and formulate the considered control problem: stabilization, trajectory tracking, disturbance attenuation, ...
- ► Get a system model, design a state-estimator, ...
- Formulate an infinite-horizon OCP, which would solve the problem.
- ▶ Standard choice for cost function ℓ: quadratic penalty on control error + quadratic penalty on input error

Note that NMPC can be used for problems beyond setpoint stabilization.

- State and formulate the considered control problem: stabilization, trajectory tracking, disturbance attenuation, ...
- ► Get a system model, design a state-estimator, ...
- Formulate an infinite-horizon OCP, which would solve the problem.
- ► Standard choice for cost function *ℓ*: quadratic penalty on control error + quadratic penalty on input error
- ► Approximate the infinite-horizon OCP in receding horizon fashion.

Note that NMPC can be used for problems beyond setpoint stabilization.

- State and formulate the considered control problem: stabilization, trajectory tracking, disturbance attenuation, ...
- ► Get a system model, design a state-estimator, ...
- Formulate an infinite-horizon OCP, which would solve the problem.
- ► Standard choice for cost function *ℓ*: quadratic penalty on control error + quadratic penalty on input error
- ► Approximate the infinite-horizon OCP in receding horizon fashion.
- Check stability and performance in simulations having formal stability proofs in mind.

Note that NMPC can be used for problems beyond setpoint stabilization.

- State and formulate the considered control problem: stabilization, trajectory tracking, disturbance attenuation, ...
- ► Get a system model, design a state-estimator, ...
- Formulate an infinite-horizon OCP, which would solve the problem.
- ► Standard choice for cost function *ℓ*: quadratic penalty on control error + quadratic penalty on input error
- ► Approximate the infinite-horizon OCP in receding horizon fashion.
- Check stability and performance in simulations having formal stability proofs in mind.
- ▶ Tuning parameters (as in case of setpoint stabilization): ℓ , T, δ , V_f , X_f

Overview

Introduction

NMPC for Setpoint Stabilization

Stabilizing NMPC with Terminal Constraints

Computation of Terminal Constraints

Stabilizing NMPC without Terminal Constraints

Comments on Different NMPC Formulations

Turnpikes and Dissipativity in OCPs

Economic NMPC with Terminal Constraints

Turnpike Approach to Economic NMPC without Terminal Constraints

Economic Nivir & Without Terminal Constraint

Summary

Recap – Motivations for Using NMPC

Feedback Control

- Control of nonlinear MIMO system subject to constraints.
- Pre-requisite = control task at hand, such as setpoint stabilization, trajectory tracking, disturbance attenuation, ...
- ▶ Choose ℓ , V_f , X_f , δ , T according to task.
- \rightarrow See previous material!

Recap – Motivations for Using NMPC

Feedback Control

- Control of nonlinear MIMO system subject to constraints.
- Pre-requisite = control task at hand, such as setpoint stabilization, trajectory tracking, disturbance attenuation, ...
- ▶ Choose ℓ , V_f , X_f , δ , T according to task.
- → See previous material!

Economics / Economic Operation

- Receding horizon approximation to the solution of an infinite-horizon OCP.
- ► *Pre-requisite* = specified performance functional:

$$J_{\infty} = \int_0^{\infty} \ell(x(\tau), u(\tau)) d\tau,$$

i.e. the cost function ℓ is given!

- ▶ Choose δ , T and analyze properties of NMPC loop.
- → Now!

$$\min_{u(\cdot)} \int_0^T ax(\tau) + bu(\tau) - cx(\tau)u(\tau) d\tau$$

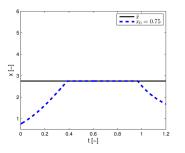
subject to

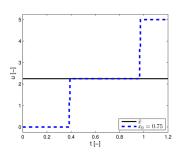
$$\dot{x} = x(\bar{x} - x - u), \quad x(0) = x_0$$

 $u(t) \in [0, u_{max}], x(t) \in (0, \infty)$

- x fish density
- u fishing rate
- ightharpoonup $\bar{x} = 5$ highest sustainable fish density

$$ightharpoonup a = 1, b = c = 2, u_{max} = 5$$





E.M. Cliff and T.L. Vincent. "An optimal policy for a fish harvest". in Journal of Optimization Theory and Applications: 12.5 (1973), pages 485-496

$$\min_{u(\cdot)} \quad \int_0^T ax(\tau) + bu(\tau) - cx(\tau)u(\tau) \; \mathrm{d}\tau$$

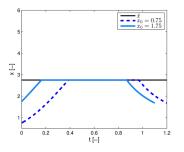
subject to

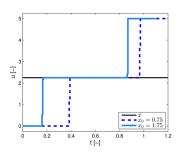
$$\dot{x} = x(\bar{x} - x - u), \quad x(0) = x_0$$

 $u(t) \in [0, u_{max}], x(t) \in (0, \infty)$

- x fish density
- u fishing rate
- $ightharpoonup \bar{x} = 5$ highest sustainable fish density

$$ightharpoonup a = 1, b = c = 2, u_{max} = 5$$





E.M. Cliff and T.L. Vincent. "An optimal policy for a fish harvest". in Journal of Optimization Theory and Applications: 12.5 (1973), pages 485-496

4 D > 4 A > 4 B > 4 B > B 900

$$\min_{u(\cdot)} \quad \int_0^T ax(\tau) + bu(\tau) - cx(\tau)u(\tau) \; \mathrm{d}\tau$$

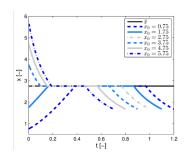
subject to

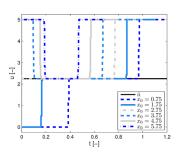
$$\dot{x} = x(\bar{x} - x - u), \quad x(0) = x_0$$

 $u(t) \in [0, u_{max}], x(t) \in (0, \infty)$

- x fish density
- u fishing rate
- $ightharpoonup \bar{x} = 5$ highest sustainable fish density

$$ightharpoonup a = 1, b = c = 2, u_{max} = 5$$

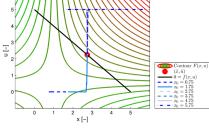


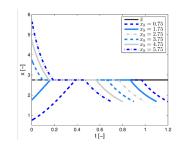


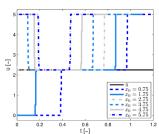
E.M. Cliff and T.L. Vincent. "An optimal policy for a fish harvest". in Journal of Optimization Theory and Applications: 12.5 (1973), pages 485-496

4 D > 4 D > 4 E > 4 E > 4 D > 4 D >

$$\begin{aligned} & \min_{u(\cdot)} \quad \int_0^T ax(\tau) + bu(\tau) - cx(\tau)u(\tau) \; \mathrm{d}\tau \\ & \text{subject to} \\ & \dot{x} = x(\bar{x} - x - u), \quad x(0) = x_0 \\ & u(t) \in [0, \, u_{\max}], \, x(t) \in (0, \, \infty) \end{aligned}$$





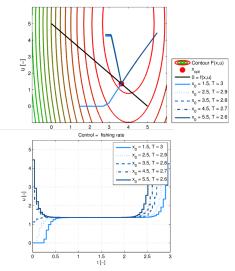


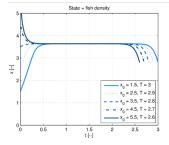
4 0 > 4 10 > 4 2 > 4 3 >

$$\min_{u(\cdot)} \quad \int_0^\tau \tfrac12 q(x(\tau)-x_C)^2 + \tfrac12 r(u(\tau)-u_C)^2 \;\mathrm{d}\tau$$
 subject to

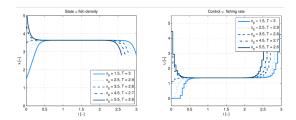
$$\dot{x} = x(\bar{x} - x - u), \quad x(0) = x_0$$

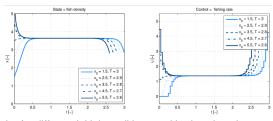
 $u(t) \in [0, u_{max}], x(t) \in (0, \infty)$
 $q = 10, r = 1, x_C = 4, u_C = 5$





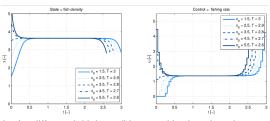
←□▶←□▶←□▶←□▶ □ りゅ○





- $\,\rightarrow\,$ Similar behavior for different initial conditions and horizon lengths.
- → Similarity properties of solutions of parametric OCPs.

→ Turnpike Property!



- $\,\rightarrow\,$ Similar behavior for different initial conditions and horizon lengths.
- → Similarity properties of solutions of parametric OCPs.

→ Turnpike Property!

It is exactly like a turnpike paralleled by a network of minor roads. [...], if origin and destination are far enough part, it will always pay to get on to the turnpike and cover distance at the best rate of travel, even if this means adding a little mileage at either end.

R. Dorfman, P.A. Samuelson, R.M. Solow. *Linear Programming and Economic Analysis*. McGraw-Hill, New York, 1958

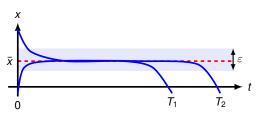
40 > 4 @ > 4 E > 4 E > 4 @ > 4 O >

Problem Setup

$$\begin{aligned} & \min_{u(\cdot)} \quad \int_0^T \ell(x(\tau), u(\tau)) \; \mathrm{d}\tau \\ & \text{subject to} & (\mathsf{OCP}_T(x_0)) \\ & \Sigma: \; \; \dot{x} = f(x, u), \quad x(0) = x_0 \in \mathbb{X}_0 \\ & u(\tau) \in \mathbb{U} \subset \mathbb{R}^{n_u}, x(\tau) \in \mathbb{X} \subset \mathbb{R}^{n_x} \end{aligned}$$

- Here: turnpike properties of OCPs without terminal constraints
- Definition of turnpikes?
- Verfication?
- ▶ Use for NMPC?

Definition of Turnpike Properties

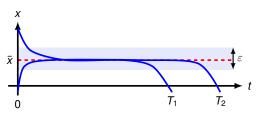


Adhoc Definition (Input-state turnpike at \bar{z})

Consider $\mathsf{OCP}_{\mathcal{T}}(x_0)$ and let $z^\star(\cdot,x_0)=(x^\star(\cdot,x_0),u^\star(\cdot))$ be its optimal pairs. $\mathsf{OCP}_{\mathcal{T}}(x_0)$ is said to have an *input-state turnpike* at $\bar{z}=(\bar{x},\bar{u})$ if, for all $x_0\in\mathbb{X}_0$, all $\mathcal{T}\geq 0$, and all $\varepsilon>0$,

$$\left[\text{time } z^\star(\cdot, x_0) \text{ spends outside of } \varepsilon\text{-neighborhood of } \bar{z} \right] \leq \nu_{\mathcal{Z}}(\varepsilon) < \infty.$$

Definition of Turnpike Properties



Definition (Input-state turnpike)

Consider the optimal pairs $z^*(\cdot, x_0) = (x^*(\cdot, x_0), u^*(\cdot))$ of $OCP_T(x_0)$ and let $\Theta_{\varepsilon, T} \doteq \{\tau \in [0, T] : \|z^*(\tau, x_0) - \bar{z}\| > \varepsilon\}$.

 $OCP_T(x_0)$ is said to have an **input-state turnpike property** with respect to \bar{z} if there exists $\nu : [0, \infty) \to [0, \infty)$ s. t.

 $\forall x_0 \in \mathbb{X}_0, \forall T \geq 0, \forall \varepsilon > 0: \quad \mu[\Theta_{\varepsilon,T}] \leq \nu(\varepsilon) < \infty,$

where $\mu[\cdot]$ is the Lebesgue measure on the real line.

T. Faulwasser, M. Korda, C.N. Jones, D. Bonvin. "On Turnpike and Dissipativity Properties of Continuous-Time Optimal Control Problems".

inAutomatica: 81 (2017), pages 297-304. DOI: 10.1016/j.automatica.2017.03.012

4 D > 4 D > 4 E > 4 E > E 9 Q Q

Turnpike Properties of OCPs

Conceptual idea of turnpike properties

- ► Property of OCPs with and without terminal constraints.
- Optimal solutions approach neighborhood of a specific steady state.
- ► Time spend at turnpike grows with increasing horizon length *T*.
- ► Turnpike \equiv property of parametric OCPs, hence we write OCP_T(x_0)
- ▶ If turnpike at \bar{x} , then for $T = \infty$, we have that

$$\lim_{t\to\infty}x^*(t)\approx\bar{x}.$$

▶ Different notions for turnpikes: dichotomy in OCPs, hyper-sensitive OCPs, ...

Dissipativity - A Useful Concept

Nonlinear system

$$\Sigma: \dot{x} = f(x, u),$$

 $y = h(x)$

Definition (Dissipativity)

 Σ is said to be dissipative on $\mathcal{D}\subseteq\mathbb{X}\times\mathbb{U}$ if there exists a bounded storage function $S:\mathbb{X}\to\mathbb{R}_0^+$ and a supply rate $w:\mathbb{R}^{n_y}\times\mathbb{U}\to\mathbb{R}$ such that

$$\frac{\partial S}{\partial x}f(x,u) \leq w(y,u)$$

holds for all $(x, u) \in \mathcal{D} \subseteq \mathbb{X} \times \mathbb{U}$.

Dissipativity - A Useful Concept

Nonlinear system

$$\Sigma: \dot{x} = f(x, u),$$

 $y = h(x)$

Definition (Dissipativity)

 Σ is said to be dissipative on $\mathcal{D}\subseteq\mathbb{X}\times\mathbb{U}$ if there exists a bounded storage function $S:\mathbb{X}\to\mathbb{R}_0^+$ and a supply rate $w:\mathbb{R}^{n_y}\times\mathbb{U}\to\mathbb{R}$ such that

$$\frac{\partial S}{\partial x}f(x,u) \leq w(y,u)$$

holds for all $(x, u) \in \mathcal{D} \subseteq \mathbb{X} \times \mathbb{U}$.

Interpretation:

Stored Energy
$$\leq \int$$
 Supplied Power $\mathrm{d} au$

Dissipativity - A Useful Concept

System Property	Supply Rate	Diagram
Asymptotic Stability	$-\alpha(\ \mathbf{x}\)$	$\xrightarrow{x(0)} \sum_{x(t)\to 0}$
Passivity	$u^{ op}y$	$ \qquad \qquad \sum \qquad \qquad y(t) $
L_2 -Gain	$\gamma^2 \ u\ ^2 - \ y\ ^2$	u L ₂ y L ₂
Input-to-state Stability	$-\alpha(\ \mathbf{x}\) + \varsigma(\ \mathbf{u}\)$	$ u(t) \leq M$ $x(0)$ $ x(t) \leq N$
Minimum Phase Property	$[y,\dot{y},\ldots,y^{(r)}]^{\top}\rho(x,u)$	$\underbrace{\begin{array}{c} u(t) \\ x(0) \end{array}}_{x(t) \to 0} \underbrace{\begin{array}{c} y(t) \equiv 0 \\ \end{array}}_{y(t) = 0}$

C. Ebenbauer, T. Raff, F. Allgöwer. "Dissipation inequalities in systems theory: An introduction and recent results". in R. Jeltsch and G. Wanner (ed.),

Invited Lectures of the International Congress on Industrial and Applied Mathematics 2007: 2009, pages 23–42

A Dissipativity Notion for Turnpikes

Definition (Strict dissipativity w.r.t. (\bar{x}, \bar{u}))

 Σ is strictly dissipative with respect to the steady state pair (\bar{x}, \bar{u}) if there exists a bounded storage function $S: \mathbb{X} \to \mathbb{R}^+_0$ and $\alpha \in \mathcal{K}$ such that

$$\frac{\partial S}{\partial x}f(x,u) \le -\alpha(\|(x,u) - (\bar{x},\bar{u})\|) + \ell(x,u) - \ell(\bar{x},\bar{u}) \tag{DI}$$

holds for all $(x, u) \in \mathcal{D} \subseteq \mathbb{X} \times \mathbb{U}$.

Implications of Dissipativity

Lemma (Strict dissipativity w.r.t. $(\bar{x}, \bar{u}) \Rightarrow$ optimality of (\bar{x}, \bar{u}))

If Σ is strictly dissipative w.r.t. to (\bar{x}, \bar{u}) , then (\bar{x}, \bar{u}) is an optimal solution of the Steady State Optimization (SOP)

$$\min_{(\bar{x},\bar{u})} \ \ell(\bar{x},\bar{u})$$

subject to

$$0=f(\bar{x},\bar{u})$$

$$(\bar{x},\bar{u})\in\mathbb{X}\times\mathbb{U}.$$

(SOP)

Implications of Dissipativity

Theorem (Strict dissipativity ⇒ turnpike)

Suppose that

- from all $x_0 \in \mathbb{X}_0$ the optimal steady state \bar{x}^* is reachable in some finite time $T_{\bar{x}^*}$,
- ightharpoonup Σ is strictly dissipative w.r.t. to (\bar{x}^*, \bar{u}^*) .

Then the optimal pairs $z^*(\cdot, x_0)$ of $OCP_T(x_0)$ have a turnpike property with respect to the steady state pair (\bar{x}^*, \bar{u}^*) .

T. Faulwasser, M. Korda, C.N. Jones, D. Bonvin. "On Turnpike and Dissipativity Properties of Continuous-Time Optimal Control Problems".

inAutomatica: 81 (2017), pages 297-304. DOI: 10.1016/j.automatica.2017.03.012

Implications of Dissipativity (cont'd)

Definition (Optimal operation at steady state)

 Σ is said to be optimally operated at $(\bar{x}^\star, \bar{u}^\star)$, if for all $x_0 \in \mathbb{X}_0$ and any infinite-horizon admissible pair $(x(\cdot), u(\cdot))$

$$\liminf_{T\to\infty}\frac{1}{T}\int_0^T\ell(x(\tau,x_0,u(\cdot)),u(\tau))\,\mathrm{d}\tau\geq\ell(\bar{x}^\star,\bar{u}^\star).$$

Implications of Dissipativity (cont'd)

Definition (Optimal operation at steady state)

 Σ is said to be optimally operated at $(\bar{x}^\star, \bar{u}^\star)$, if for all $x_0 \in \mathbb{X}_0$ and any infinite-horizon admissible pair $(x(\cdot), u(\cdot))$

$$\liminf_{T\to\infty}\frac{1}{T}\int_0^T\ell(x(\tau,x_0,u(\cdot)),u(\tau))\,\mathrm{d}\tau\geq\ell(\bar{x}^\star,\bar{u}^\star).$$

Theorem (Dissipativity ⇒ optimal operation at steady state)

Suppose that Σ is strictly dissipative on $\mathbb{X} \times \mathbb{U}$ w.r.t. to (\bar{x}^*, \bar{u}^*) , then Σ is optimally operated at the steady state (\bar{x}^*, \bar{u}^*) .

T. Faulwasser, M. Korda, C.N. Jones, D. Bonvin. "On Turnpike and Dissipativity Properties of Continuous-Time Optimal Control Problems".

inAutomatica: 81 (2017), pages 297-304. DOI: 10.1016/j.automatica.2017.03.012

 Σ is strictly dissipative w.r.t. (\bar{x}^*, \bar{u}^*) .

Further implications and proofs can be found in:

T. Faulwasser, M. Korda, C.N. Jones, D. Bonvin. "On Turnpike and Dissipativity Properties of Continuous-Time Optimal Control Problems". inAutomatica: 81 (2017), pages 297-304. DOI: 10.1016/j.automatica.2017.03.012

L. Grüne and M.A. Müller. "On the relation between strict dissipativity and turnpike properties". in Sys. Contr. Lett.: 90 (2016), pages 45 -53. DOI: http://dx.doi.org/10.1016/j.sysconle.2016.01.003

T. Faulwasser and C.M. Kellett, "On Continuous-Time Infinite Horizon Optimal Control - Dissipativity, Stability and Transversality", in Automatica: 134 (2021), page 109907. DOI: 10.1016/j.automatica.2021.109907

4日ト4回ト4ヨト4ヨト ヨ めのひ

 Σ is strictly dissipative w.r.t. $(\bar{x}^{\star}, \bar{u}^{\star})$.

 Σ is optimally operated at $(\bar{x}^{\star}, \bar{u}^{\star})$.

Further implications and proofs can be found in:

T. Faulwasser, M. Korda, C.N. Jones, D. Bonvin. "On Turnpike and Dissipativity Properties of Continuous-Time Optimal Control Problems". in Automatica: 81 (2017), pages 297–304. DOI: 10.1016/j.automatica.2017.03.012

L. Grüne and M.A. Müller. "On the relation between strict dissipativity and turnpike properties". in Sys. Contr. Lett.: 90 (2016), pages 45 –53. DOI: http://dx.doi.org/10.1016/j.sysconle.2016.01.003

T. Faulwasser and C.M. Kellett. "On Continuous-Time Infinite Horizon Optimal Control – Dissipativity, Stability and Transversality". in Automatica: 134 (2021), page 109907. DOI: 10.1016/j.automatica.2021.109907

4 D > 4 A > 4 E > 4 E > 4 D > 4 D >

 Σ is strictly dissipative w.r.t. $(\bar{x}^{\star}, \bar{u}^{\star})$.

 Σ is optimally operated at $(\bar{x}^{\star}, \bar{u}^{\star})$.

The optimal solutions of $OCP_T(x_0)$ have a turnpike at (\bar{x}^*, \bar{u}^*) .

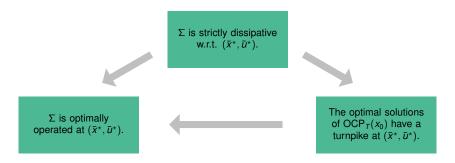
Further implications and proofs can be found in:

T. Faulwasser, M. Korda, C.N. Jones, D. Bonvin. "On Turnpike and Dissipativity Properties of Continuous-Time Optimal Control Problems". in Automatica: 81 (2017), pages 297–304. DOI: 10.1016/j.automatica.2017.03.012

L. Grüne and M.A. Müller. "On the relation between strict dissipativity and turnpike properties". in Sys. Contr. Lett.: 90 (2016), pages 45 –53. DOI: http://dx.doi.org/10.1016/j.sysconle.2016.01.003

T. Faulwasser and C.M. Kellett. "On Continuous-Time Infinite Horizon Optimal Control – Dissipativity, Stability and Transversality". in Automatica: 134 (2021), page 109907. DOI: 10.1016/j.automatica.2021.109907

4 D > 4 A > 4 E > 4 E > E 9 9 P



Further implications and proofs can be found in:

T. Faulwasser, M. Korda, C.N. Jones, D. Bonvin. "On Turnpike and Dissipativity Properties of Continuous-Time Optimal Control Problems". in Automatica: 81 (2017), pages 297–304. DOI: 10.1016/j.automatica.2017.03.012

L. Grüne and M.A. Müller. "On the relation between strict dissipativity and turnpike properties". in Sys. Contr. Lett.: 90 (2016), pages 45 –53. DOI: http://dx.doi.org/10.1016/j.sysconle.2016.01.003

T. Faulwasser and C.M. Kellett. "On Continuous-Time Infinite Horizon Optimal Control – Dissipativity, Stability and Transversality". in Automatica: 134 (2021), page 109907. DOI: 10.1016/j.automatica.2021.109907

Van de Vusse Reactor

$$A \stackrel{k_1}{\rightarrow} B \stackrel{k_2}{\rightarrow} C, \qquad 2A \stackrel{k_3}{\rightarrow} D$$

Dynamics (partial model) b

$$\dot{c}_A = r_A(c_A, \vartheta) + (c_{in} - c_A)u_1$$

$$\dot{c}_B = r_B(c_A, c_B, \vartheta) - c_Bu_1$$

$$\dot{\vartheta} = h(c_A, c_B, \vartheta) + \alpha(u_2 - \vartheta) + (\vartheta_{in} - \vartheta)u_1,
r_A(c_A, \vartheta) = -k_1(\vartheta)c_A - 2k_3(\vartheta)c_A^2$$

$$r_{R}(c_{A}, c_{B}, \vartheta) = k_{1}(\vartheta)c_{A} - k_{2}(\vartheta)c_{B}$$

$$B(O_A, O_B, O) = M_1(O)O_A M_2(O)O_B$$

$$h(c_A, c_B, \vartheta) = -\delta \Big(k_1(\vartheta) c_A \Delta H_{AB} + k_2(\vartheta) c_B \Delta H_{BC} + 2k_3(\vartheta) c_A^2 \Delta H_{AD} \Big)$$

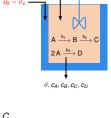
$$k_i(\vartheta) = k_{i0} \exp \frac{-E_i}{\vartheta + \vartheta_0}, \quad i = 1, 2, 3.$$

Constraints

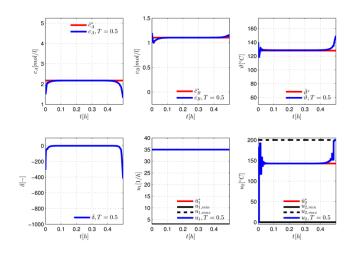
$$\begin{array}{ll} c_A \in [0,6] \frac{mol}{h} & c_B \in [0,4] \frac{mol}{h} & \vartheta \in [70,150]^{\circ} C \\ u_1 \in [3,35] \frac{1}{h} & u_2 \in [0,200]^{\circ} C. \end{array}$$

Objective = maximize produced amount of B

$$J_T(x_0, u(\cdot)) = \int_0^T -\beta c_B(\tau) u_1(\tau) d\tau, \qquad \beta > 0$$



CSTR Example

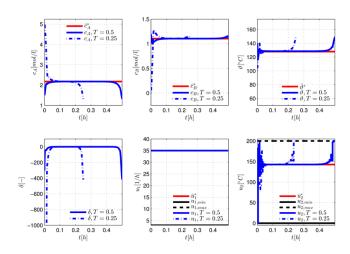


Checking dissipation inequality (DI) (for a pre-computed storage function S) via:

$$\delta = \frac{\partial S}{\partial x} f(x, u) + \bar{\alpha} \|x - \bar{x}^{\star}\|^2 - \ell(x, u) + \ell(\bar{x}^{\star}, \bar{u}^{\star}), \quad \delta \leq 0$$

4ロト4回ト4ミト4ミト ミ からぐ

CSTR Example

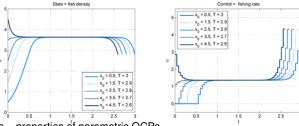


Checking dissipation inequality (DI) (for a pre-computed storage function S) via:

$$\delta = \frac{\partial S}{\partial x} f(x, u) + \bar{\alpha} \|x - \bar{x}^{\star}\|^2 - \ell(x, u) + \ell(\bar{x}^{\star}, \bar{u}^{\star}), \quad \delta \leq 0$$

←ロト←部ト←ミト←ミト ミ からぐ

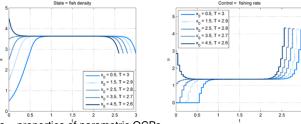
Summary – Turnpike Properties in OCPs



- ► Turnpikes = properties of parametric OCPs.
- ▶ Turnpike steady state \bar{x} = best reachable steady state.
- ► Turnpikes occur in many OCPs.
- ► Strict dissipativity + reachability = sufficient condition.

How to use turnpikes in OCPs for NMPC?

Summary – Turnpike Properties in OCPs



- ► Turnpikes = properties of parametric OCPs.
- ▶ Turnpike steady state \bar{x} = best reachable steady state.
- ► Turnpikes occur in many OCPs.
- ► Strict dissipativity + reachability = sufficient condition.

How to use turnpikes in OCPs for NMPC?

- ► Turnpike steady-state pair is often a good initial guess for numerical solution.
- ► Turnpikes can be used to design NMPC schemes.

Economic and Stabilizing NMPC

NMPC for setpoint stabilization

▶ Based on
$$OCP_T^{\mathbb{X}_f}(x(t_k))$$

$$\min_{u(\cdot|t_k))} \int_{t_k}^{t_k+T} \ell(x(\tau|t_k)), u(\tau|t_k)) d\tau + V_f(x(t_k+T|t_k))$$

$$\forall \tau \in [t_k, t_k+T] : \frac{\mathrm{d}x(\tau|t_k)}{\mathrm{d}\tau} = f(x(\tau|t_k), u(\tau|t_k))$$

$$x(t_k|t_k) = x(t_k)$$

$$x(\tau|t_k) \in \mathbb{X}, \ u(\tau|t_k) \in \mathbb{U}$$

$$x(t_k+T|t_k) \in \mathbb{X}_f$$

▶ Main assumption $\ell(x, u) \ge \alpha(\|x - \bar{x}\|)$, $\alpha \in \mathcal{K}$, \bar{x} set-point to be stabilized

Economic and Stabilizing NMPC

NMPC for setpoint stabilization

Based on $OCP_T^{\mathbb{X}_f}(x(t_k))$ $\min_{u(\cdot|t_k))} \int_{t_k}^{t_k+T} \ell(x(\tau|t_k)), u(\tau|t_k)) d\tau + V_f(x(t_k+T|t_k))$ $\forall \tau \in [t_k, t_k+T] : \frac{\mathrm{d}x(\tau|t_k)}{\mathrm{d}\tau} = f(x(\tau|t_k), u(\tau|t_k))$ $x(t_k|t_k) = x(t_k)$ $x(\tau|t_k) \in \mathbb{X}, u(\tau|t_k) \in \mathbb{U}$

$$x(t_k + T | t_k) \in \mathbb{X}_f$$
Main assumption $\ell(x, \mu) > \alpha(\|x - \overline{y}\|) \quad \alpha \in \mathcal{K}$ is set-point to

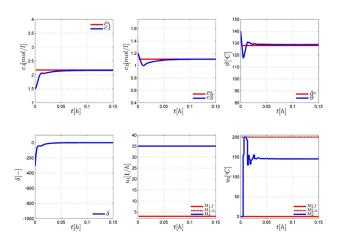
▶ Main assumption $\ell(x, u) \ge \alpha(\|x - \bar{x}\|)$, $\alpha \in \mathcal{K}$, \bar{x} set-point to be stabilized

Economic NMPC

- $lackbox{ No lower boundedness of ℓ } o ext{generalized (economic) NMPC formulations}$
- Proofs of convergence to the optimal steady-state often based on the dissipation inequality (DI)

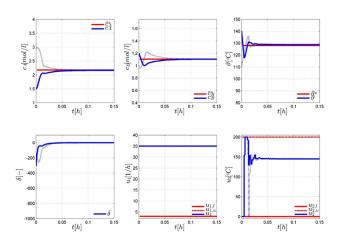
$$\frac{\partial S}{\partial x}f(x,u) \leq -\alpha(\|(x,u) - (\bar{x},\bar{u})\|) + \ell(x,u) - \ell(\bar{x},\bar{u})$$

Same OCP as before (Slide 85), solved in receding horizon fashion



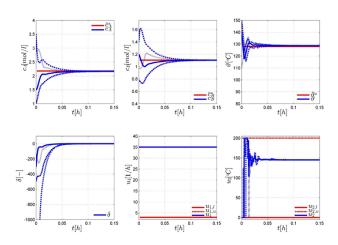
Prediction horizon T=0.1h, sampling period $\delta=1.7\cdot 10^{-3}h$

Same OCP as before (Slide 85), solved in receding horizon fashion



Prediction horizon T=0.1h, sampling period $\delta=1.7\cdot 10^{-3}h$

Same OCP as before (Slide 85), solved in receding horizon fashion



Prediction horizon T=0.1 h, sampling period $\delta=1.7\cdot 10^{-3} h$

Overview

Introduction

NMPC for Setpoint Stabilization

Stabilizing NMPC with Terminal Constraints

Computation of Terminal Constraints

Stabilizing NMPC without Terminal Constraints

Comments on Different NMPC Formulations

Turnpikes and Dissipativity in OCPs

Economic NMPC with Terminal Constraints

Turnpike Approach to Economic NMPC without Terminal Constraints

Summary

Adjusting the Standing NMPC Assumptions

A1 from Slide 18 is considered implicitly. A2 is adjusted. A3 remains.

Adjusting the Standing NMPC Assumptions

A1 from Slide 18 is considered implicitly. A2 is adjusted. A3 remains.

Assumptions

A2' (Strict dissipativity): There exists a bounded storage function S and $\alpha \in \mathcal{K}$ such that

$$\frac{\partial S}{\partial x}f(x,u) \leq -\alpha(\|(x,u) - (\bar{x},\bar{u})\|) + \ell(x,u) - \ell(\bar{x},\bar{u})$$

holds for all $(x, u) \in \mathcal{D} \subseteq \mathbb{X} \times \mathbb{U}$. Moreover, $0 = f(\bar{x}, \bar{u})$ and $(\bar{x}, \bar{u}) \in \operatorname{int}(\mathbb{X} \times \mathbb{U})$.

W.l.o.g. consider $(\bar{x}, \bar{u}) = (0, 0)$ and $\ell(\bar{x}, \bar{u}) = 0$.

Adjusting the Standing NMPC Assumptions

A1 from Slide 18 is considered implicitly. A2 is adjusted. A3 remains.

Assumptions

A2' (Strict dissipativity): There exists a bounded storage function S and $\alpha \in \mathcal{K}$ such that

$$\frac{\partial S}{\partial x}f(x,u) \leq -\alpha(\|(x,u) - (\bar{x},\bar{u})\|) + \ell(x,u) - \ell(\bar{x},\bar{u})$$

holds for all $(x, u) \in \mathcal{D} \subseteq \mathbb{X} \times \mathbb{U}$. Moreover, $0 = f(\bar{x}, \bar{u})$ and $(\bar{x}, \bar{u}) \in \operatorname{int}(\mathbb{X} \times \mathbb{U})$.

W.l.o.g. consider $(\bar{x}, \bar{u}) = (0, 0)$ and $\ell(\bar{x}, \bar{u}) = 0$.

A3 (Absolute continuity of ODE solutions): For all $x_0 \in \mathbb{X}$, and any $u(\cdot) \in \hat{\mathcal{C}}([0,T],\mathbb{U})$, the solution $x(\cdot,x_0,u(\cdot))$ exists and is absolutely continuous.

Economic NMPC with Zero-Terminal Constraint

1. State measurement/estimate $x(t_k)$

2. Solve:

$$\begin{split} \min_{u(\cdot|t_k)} \int_{t_k}^{t_k+T} \ell(x(\tau|t_k), u(\tau|t_k)) \, \mathrm{d}\tau \\ \text{subject to } \forall \tau \in [t_k, t_k+T] : & (\textit{OCP}_T^{\textit{eco},\bar{x}^*}(x(t_k))) \\ \frac{\mathrm{d}x(\tau|t_k)}{\mathrm{d}\tau} &= f(x(\tau|t_k), u(\tau|t_k)), \quad x(t_k|t_k) = x(t_k) \\ x(\tau|t_k) \in \mathbb{X}, \ u(\tau|t_k) \in \mathbb{U} \\ x(t_k+T|t_k) &= \bar{x}^* \end{split}$$

- 3. Apply $u^*(\tau|t_k)$ for $\tau \in [t_k, t_{k+1})$
- Finite horizon ($T < \infty$) and sampled-data recalculation ($\delta \doteq t_{k+1} t_k > 0$)
- No terminal penalty ($V_f = 0$) but terminal constraint at \bar{x}^*

Economic NMPC with Terminal Constraint

Theorem (Convergence of eco. NMPC with terminal constraint)

Let Assumptions A2' and A3 hold and suppose that

(i) $OCP_T^{eco,\bar{x}^*}(x(t_k))$ is feasible at k=0.

Then,

- ▶ $OCP_T^{eco,\bar{x}^*}(x(t_k))$ is recursively feasible,
- ▶ the NMPC scheme based on $OCP_T^{eco,\bar{x}^*}(x(t_k))$ achieves

$$\lim_{t\to\infty}\|x(t)\|=\bar{x}^{\star},$$

▶ and the region of attraction is given by the set of initial conditions for which $OCP_T^{eco,\bar{\chi}^*}(x(t_k))$ is feasible.

D. Angeli, R. Amrit, J.B. Rawlings. "On Average Performance and Stability of Economic Model Predictive Control". in/EEE Trans. Automat. Contr.: 57.7 (2012), pages 1615–1626. ISSN: 0018-9286. DOI: 10.1109/TAC.2011.2179349

M. Diehl, R. Amrit, J.B. Rawlings. "A Lyapunov function for economic optimizing model predictive control". in IEEE Trans. Automat. Contr.: 56.3 (2011), pages 703–707

Proof Sketch

Proof Sketch

Overview

Introduction

NMPC for Setpoint Stabilization

Stabilizing NMPC with Terminal Constraints

Computation of Terminal Constraints

Stabilizing NMPC without Terminal Constraints

Comments on Different NMPC Formulations

Turnpikes and Dissipativity in OCPs

Economic NMPC with Terminal Constraints

Turnpike Approach to Economic NMPC without Terminal Constraints

Summary

Economic NMPC without Terminal Constraints

1. State measurement/estimate $x(t_k)$

2. Solve:

$$\begin{aligned} \min_{u(\cdot|l_k)} \int_{t_k}^{t_k+T} \ell(x(\tau|t_k), u(\tau|t_k)) \, \mathrm{d}\tau \\ \text{subject to } \forall \tau \in [t_k, t_k+T] : & (\textit{OCP}_T^{\texttt{eco}}(x(t_k))) \\ \frac{\mathrm{d}x(\tau|t_k)}{\mathrm{d}\tau} &= f(x(\tau|t_k), u(\tau|t_k)), \quad x(t_k|t_k) = x(t_k) \\ & \quad x(\tau|t_k) \in \mathbb{X}, \ u(\tau|t_k) \in \mathbb{U} \end{aligned}$$

- 3. Apply $u^*(\tau|t_k)$ for $\tau \in [t_k, t_{k+1})$
- ▶ Finite horizon ($T < \infty$) and sampled-data recalculation ($\delta \doteq t_{k+1} t_k > 0$)
- ▶ No terminal penalty ($V_f = 0$) and no terminal region $X_f = X$

Economic NMPC without Terminal Constraints

1. State measurement/estimate $x(t_k)$

2. Solve:

$$\begin{aligned} \min_{u(\cdot|t_k)} \quad & I(\textbf{x}(t_k)) + \int_{t_k}^{t_k+T} \ell(\textbf{x}(\tau|t_k), u(\tau|t_k)) \; \mathrm{d}\tau \\ \text{subject to } \forall \tau \in [t_k, t_k+T]: \qquad & (\textit{OCP}_T^{\textit{eco}, l}(\textbf{x}(t_k))) \\ & \frac{\mathrm{d}\textbf{x}(\tau|t_k)}{\mathrm{d}\tau} = f(\textbf{x}(\tau|t_k), u(\tau|t_k)), \quad \textbf{x}(t_k|t_k) = \textbf{x}(t_k) \\ & \textbf{x}(\tau|t_k) \in \mathbb{X}, \ u(\tau|t_k) \in \mathbb{U} \end{aligned}$$

- 3. Apply $u^*(\tau|t_k)$ for $\tau \in [t_k, t_{k+1})$
- ▶ Finite horizon ($T < \infty$) and sampled-data recalculation ($\delta \doteq t_{k+1} t_k > 0$)
- Penalty on the initial condition $I(x(t_k))$
- ▶ As $I(x(t_k))$ does not affect optimal solutions, we temporarily set $I \equiv 0$.

Practical Convergence of Economic NMPC

Theorem (Practical convergence)

Suppose that, for all $x_0 \in \mathbb{X}_0$, Assumptions A2', A3 hold, and

- the (\bar{x}, \bar{u}) turnpike is reachable exponentially fast;
- $\bullet \ \ (\bar{x}, \, \bar{u}) \in \operatorname{int}(\mathbb{X} \times \mathbb{U}) \ \textit{with} \ \left(\frac{\partial f}{\partial x}, \, \frac{\partial f}{\partial u}\right) \Big|_{(\bar{x}, \bar{u})} \ \textit{controllable, and}$
- ▶ the penalty on the initial condition is $I(x(t_k)) = S(x(t_k))$, with S(x) satisfying (DI).

Then, there exists $\delta>0$ and $T<\infty$ such that, for all $x_0\in\mathbb{X}_0$,

- (i) $OCP_T^{eco,l}(x(t_k))$ is recursively feasible; and
- (ii) NMPC tracks the optimal steady state $\bar{x} = \bar{x}^{\star}$:

$$\lim_{t\to\infty} d(\mathcal{B}_{\rho}(\bar{x}), x(t)) = 0.$$

with
$$d(\mathcal{B}_{\rho}(\bar{x}), x(t)) \doteq \min_{z \in \mathcal{B}_{\rho}(\bar{x})} ||x - z||.$$

Proof Outline

Main steps of NMPC stability proofs:

- ► Step 0 Turnpike in a sequence of OCPs
- ▶ Step 1 Recursive feasibility of the sequence OCPs
- Step 2 Decrease of the value function inbetween sampling two instants
- Step 3 Decrease of the value function from one sampling instant to the next
- ► Step 4 Consider the value function as a *Lyapunov* function

Step 0 – Turnpikes in a Sequence of OCPs?

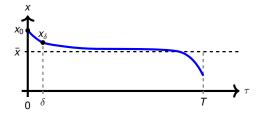
Let $OCP_T^{eco,l}(x(t_k))$ have an input-state turnpike at (\bar{x},\bar{u}) , and consider $x(t_k)=x_0$ $x_\delta \doteq x^\star(\delta,x_0,u^\star(\cdot,x_0))$.

Does $OCP_T^{eco,I}(x_\delta)$ have the same turnpike?

Step 0 – Turnpikes in a Sequence of OCPs?

Let $OCP_T^{eco,l}(x(t_k))$ have an input-state turnpike at (\bar{x},\bar{u}) , and consider $x(t_k)=x_0$ $x_\delta \doteq x^\star(\delta,x_0,u^\star(\cdot,x_0))$.

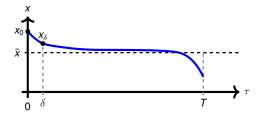
Does $\mathsf{OCP}^{eco,l}_{T}(x_\delta)$ have the same turnpike?



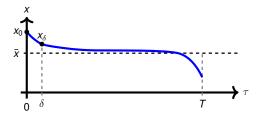
Step 0 – Turnpikes in a Sequence of OCPs?

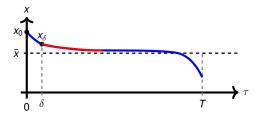
Let $OCP_T^{eco,l}(x(t_k))$ have an input-state turnpike at (\bar{x},\bar{u}) , and consider $x(t_k)=x_0$ $x_\delta \doteq x^\star(\delta,x_0,u^\star(\cdot,x_0))$.

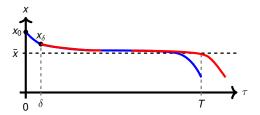
Does $OCP_T^{eco,I}(x_\delta)$ have the same turnpike?

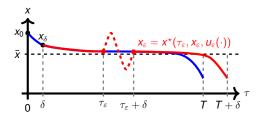


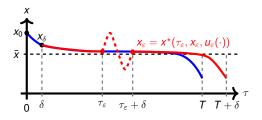
For sufficiently large T, controllability of the linearization of Σ at (\bar{x}, \bar{u}) implies existence of $\hat{\delta} > 0$, such that, for all $\delta \in [0, \hat{\delta})$, $\mathsf{OCP}^{\mathsf{eco}, l}_{T}(x_{\delta})$ has a turnpike at (\bar{x}, \bar{u}) .



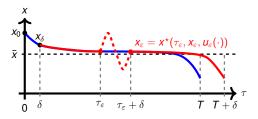






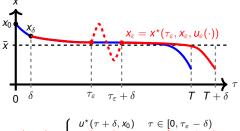


$$u(\tau, \mathsf{X}_{\delta}) = \left\{ \begin{array}{ll} u^{\star}(\tau + \delta, \mathsf{X}_{0}) & \tau \in [0, \tau_{\varepsilon} - \delta) \\ u_{\varepsilon}(\tau, \mathsf{X}_{\varepsilon}) & \tau \in [\tau_{\varepsilon} - \delta, \tau_{\varepsilon}) \\ u^{\star}(\tau, \mathsf{X}_{0}) & \tau \in [\tau_{\varepsilon}, T] \end{array} \right.$$



$$\underline{u(\tau, x_{\delta})} = \left\{ \begin{array}{ll} u^{\star}(\tau + \delta, x_{0}) & \tau \in [0, \tau_{\varepsilon} - \delta) \\ \underline{u_{\varepsilon}(\tau, x_{\varepsilon})} & \tau \in [\tau_{\varepsilon} - \delta, \tau_{\varepsilon}) \\ u^{\star}(\tau, x_{0}) & \tau \in [\tau_{\varepsilon}, T] \end{array} \right.$$

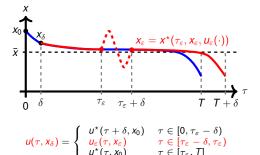
Task: Construct admissible input $u(\cdot, x_{\delta})$ from $u^{\star}(\cdot, x_{0})$.



$$u(\tau, \mathsf{x}_{\delta}) = \left\{ \begin{array}{ll} u^{\star}(\tau + \delta, \mathsf{x}_{0}) & \tau \in [0, \tau_{\varepsilon} - \delta) \\ u_{\varepsilon}(\tau, \mathsf{x}_{\varepsilon}) & \tau \in [\tau_{\varepsilon} - \delta, \tau_{\varepsilon}) \\ u^{\star}(\tau, \mathsf{x}_{0}) & \tau \in [\tau_{\varepsilon}, T] \end{array} \right.$$

ightarrow Controllability of linarization at (\bar{x}, \bar{u}) guarantees existence of $u_{\varepsilon}(\cdot)$ close to (\bar{x}, \bar{u}) .

Task: Construct admissible input $u(\cdot, x_{\delta})$ from $u^*(\cdot, x_0)$.



 \rightarrow Controllability of linarization at (\bar{x}, \bar{u}) guarantees existence of $u_{\varepsilon}(\cdot)$ close to (\bar{x}, \bar{u}) .

Implication: The sequence $OCP_T^{eco,l}(x(t_k))$, with $t_k = t_{k-1} + \delta$, is recursively feasible for suitable choices of T and δ .

Step 2 – Penalty on the Initial Condition?

$$\begin{aligned} \min_{u(\cdot|t_k)} \quad & \frac{I(x(t_k))}{f_{t_k}} + \int_{t_k}^{t_k+T} \ell(x(\tau|t_k), u(\tau|t_k)) \; \mathrm{d}\tau \\ \text{subject to } \forall \tau \in [t_k, t_k+T]: \qquad \qquad & (OCP_T^{eco,I}(x(t_k))) \\ & \frac{\mathrm{d}x(\tau|t_k)}{\mathrm{d}\tau} = f(x(\tau|t_k), u(\tau|t_k)), \quad x(t_k|t_k) = x(t_k) \\ & \quad x(\tau|t_k) \in \mathbb{X}, \; u(\tau|t_k) \in \mathbb{U} \end{aligned}$$

▶ Penalty on initial condition = storage function: $I(x(t_k)) \doteq S(x(t_k))$.

Step 2 – Penalty on the Initial Condition?

$$\begin{aligned} \min_{u(\cdot|t_k)} & \frac{I(x(t_k)) + \int_{t_k}^{t_k + T} \ell(x(\tau|t_k), u(\tau|t_k)) \, \mathrm{d}\tau}{t_k} \\ \text{subject to } & \forall \tau \in [t_k, t_k + T] : & (OCP_T^{eco,I}(x(t_k))) \\ & \frac{\mathrm{d}x(\tau|t_k)}{\mathrm{d}\tau} = f(x(\tau|t_k), u(\tau|t_k)), \quad x(t_k|t_k) = x(t_k) \\ & x(\tau|t_k) \in \mathbb{X}, \ u(\tau|t_k) \in \mathbb{U} \end{aligned}$$

- ▶ Penalty on initial condition = storage function: $I(x(t_k)) \doteq S(x(t_k))$.
- Optimal value function:

$$V_T^{\mathcal{S}}(x(t_k)) = S(x(t_k)) + \int_{t_k}^{t_k+T} \ell(x^{\star}(\tau|t_k), u^{\star}(\tau|t_k)) d\tau$$

Step 2 – Penalty on the Initial Condition?

$$\begin{split} \min_{u(\cdot|t_k)} & \quad I(x(t_k)) + \int_{t_k}^{t_k+T} \ell(x(\tau|t_k), u(\tau|t_k)) \; \mathrm{d}\tau \\ \text{subject to } \forall \tau \in [t_k, t_k+T]: & \quad (OCP_T^{eco,I}(x(t_k))) \\ & \quad \frac{\mathrm{d}x(\tau|t_k)}{\mathrm{d}\tau} = f(x(\tau|t_k), u(\tau|t_k)), \quad x(t_k|t_k) = x(t_k) \\ & \quad x(\tau|t_k) \in \mathbb{X}, \; u(\tau|t_k) \in \mathbb{U} \end{split}$$

- ▶ Penalty on initial condition = storage function: $I(x(t_k)) \doteq S(x(t_k))$.
- ► Optimal value function:

$$V_T^{\mathcal{S}}(x(t_k)) = S(x(t_k)) + \int_{t_k}^{t_k+T} \ell(x^{\star}(\tau|t_k), u^{\star}(\tau|t_k)) d\tau$$

Value function decrease?

$$V_T^{\mathcal{S}}(x(t_{k+1})) - V_T^{\mathcal{S}}(x(t_k)) \leq \underbrace{J(x(t_{k+1}), u(\cdot, x(t_{k+1}))) - V_T^{\mathcal{S}}(x(t_k))}_{\dot{=} \Delta}$$

4日ト4回ト4至ト4至ト 至 99(

Step 3 – Value Function Decrease

$$\Delta \doteq J(x(t_{k+1}), u(\cdot, x(t_{k+1}))) - V_T^{\mathcal{S}}(x(t_k))$$

$$\Delta = S(x(t_{k+1})) - S(x(t_k)) - \int_{t_k}^{t_{k+1}} \ell(x^*(\tau|t_k)), u^*(\tau|t_k)) d\tau + \int_{t_{k+1}+\tau_{\varepsilon}}^{t_{k+1}+\tau_{\varepsilon}+\delta} \ell(\cdot) d\tau$$

$$x(t_k)$$

$$\bar{x}$$

$$x(t_{k+1})$$

$$\bar{x}$$

$$x(t_{k+1})$$

$$x_{\varepsilon} = x^*(t_k + \tau_{\varepsilon}|t_k)$$

$$x_{\varepsilon} = x^*(t_k + \tau_{\varepsilon}|t_k)$$

$$x_{\varepsilon} = x^*(t_k + \tau_{\varepsilon}|t_k)$$

Step 3 – Value Function Decrease (cont'd)

Integral dissipation inequality:

$$\begin{split} S(x(t_{k+1})) - S(x(t_k)) - \int_{t_k}^{t_{k+1}} \ell(x^\star(\tau|t_k), u^\star(\tau|t_k)) \, \mathrm{d}\tau \\ & \leq \int_{t_k}^{t_{k+1}} -\alpha(\|(x^\star(\tau|t_k), u^\star(\tau|t_k)) - (\bar{x}, \bar{u})\|) - \ell(\bar{x}, \bar{u}) \, \, \mathrm{d}\tau \end{split}$$

Step 3 – Value Function Decrease

$$\Delta \leq \int_{t_k}^{t_{k+1}} -\alpha(\|(x^*(\tau), u^*(\tau)) - (\bar{x}, \bar{u})\|) d\tau + \underbrace{\int_{t_{k+1}+\tau_{\varepsilon}}^{t_{k+1}+\tau_{\varepsilon}+\delta} \ell(\cdot) - \ell(\bar{x}, \bar{u}) \, d\tau}_{\leq \sigma < \infty}$$

 \Rightarrow From t_k to t_{k+1} the optimal solution moves towards a neighborhood of \bar{x} .

Practical Convergence of Economic NMPC

Theorem III.7 (Practical convergence of economic NMPC)

Suppose that, for all $x_0 \in \mathbb{X}_0$, Assumptions A2', A3 hold, and

- the (\bar{x}, \bar{u}) turnpike is reachable exponentially fast;
- \blacktriangleright $(\bar{x}, \bar{u}) \in \operatorname{int}(\mathbb{X} \times \mathbb{U})$ with $\left. \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial u} \right) \right|_{(\bar{x}, \bar{u})}$ controllable, and
- ▶ the penalty on the initial condition is $I(x(t_k)) = S(x(t_k))$, with S(x) satisfying (DI).

Then, there exists $\delta > 0$ and $T < \infty$ such that, for all $x_0 \in \mathbb{X}_0$,

- (i) $OCP_{\tau}^{eco,l}(x(t_k))$ is recursively feasible; and
- NMPC tracks the optimal steady state $\bar{x} = \bar{x}^*$:

$$\lim_{t\to\infty} d(\mathcal{B}_{\rho}(\bar{x}), x(t)) = 0.$$

with
$$d(\mathcal{B}_{\rho}(\bar{x}), x(t)) \doteq \min_{z \in \mathcal{B}_{\rho}(\bar{x})} \|x - z\|.$$

- **EXPRESSION** For radius ρ of neighborhood $\mathcal{B}_{\rho}(\bar{x})$ see, T. Faulwasser **and** D. Bonvin. "On the Design of Economic NMPC based on Approximate Turnpike Properties". in Proc. of 54th IEEE Conference on Decision and Control: Osaka, Japan, 2015, pages 4964 –4970, DOI: 10.1109/CDC.2015.7402995.
- Choosing large T and small δ , ρ can be made arbitrarily small.
- ▶ The penalty $I(x(t_k)) = S(x(t_k))$ can be dropped and the result still holds.

Summary – Economic NMPC

- Dissipativity enables stability proofs for economic NMPC with terminal constraints.
- Dissipativity implies the turnpike property.
- ► Turnpikes are helpful to show convergence in NMPC.
- ► Recursive feasibility can be shown without any terminal constraint.
- ► Controllability of turnpike implies recursive feasibility (long horizons).
- ► Conditions apply to economic and non-economic NMPC schemes.
- ► "Automatic tracking" of optimal steady state. Turnpike properties are natural candidates to design NMPC schemes.

Overview

Introduction

NMPC for Setpoint Stabilization

Stabilizing NMPC with Terminal Constraints

Computation of Terminal Constraints

Stabilizing NMPC without Terminal Constraints

Comments on Different NMPC Formulations

Turnpikes and Dissipativity in OCPs

Economic NMPC with Terminal Constraints

Turnpike Approach to Economic NMPC without Terminal Constraints

Summary

Comparison of Stability Proofs

 NMPC for setpoint stabilization with terminal penalty relies on the following Lyapunov inequality

$$V_f(x(t))\Big|_{t_k}^{t_{k+1}} + \int_{t_{\nu}}^{t_{k+1}} \ell(x(\tau), u(\tau)) d\tau \le 0.$$
 (LI)

Comparison of Stability Proofs

► NMPC for setpoint stabilization with terminal penalty relies on the following Lyapunov inequality

$$V_f(x(t))\Big|_{t_k}^{t_{k+1}} + \int_{t_k}^{t_{k+1}} \ell(x(\tau), u(\tau)) d\tau \le 0.$$
 (LI)

► NMPC based on turnpikes relies on the dissipation inequality (DI) which, for $\ell(\bar{x}, \bar{u}) = 0$, can be written as

$$\left|S(x(t))\right|_{t_k}^{t_{k+1}} - \int_{t_k}^{t_{k+1}} \ell(x(\tau), u(\tau)) d\tau \leq 0.$$

Comparison of Stability Proofs

NMPC for setpoint stabilization with terminal penalty relies on the following Lyapunov inequality

$$V_f(x(t))\Big|_{t_k}^{t_{k+1}} + \int_{t_k}^{t_{k+1}} \ell(x(\tau), u(\tau)) d\tau \le 0.$$
 (LI)

NMPC based on turnpikes relies on the dissipation inequality (DI) which, for $\ell(\bar{x}, \bar{u}) = 0$, can be written as

$$\left.S(x(t))\right|_{t_k}^{t_{k+1}}-\int_{t_k}^{t_{k+1}}\ell(x(\tau),u(\tau))\;\mathrm{d}\tau\leq 0.$$

➤ Can the turnpike concept be applied to NMPC for setpoint stabilization?

Summary - NMPC

Main Points

- Stability of NMPC can be enforced via appropriate OCP formulation
- ▶ ∃ formulations with and without terminal constraints
- In applications formulations without terminal constraints are often preferred
- ▶ Here: time invariant problem formulations mainly

Summary - NMPC

Main Points

- Stability of NMPC can be enforced via appropriate OCP formulation
- ▶ ∃ formulations with and without terminal constraints
- In applications formulations without terminal constraints are often preferred
- ▶ Here: time invariant problem formulations mainly

Open Problems and Ongoing Research

- ▶ Real-time applicable robust NMPC?
- Stochastic economic NMPC?
- Distributed approaches?
- ▶ ...

The End.

References I

- [1] B.D. Anderson and J.B. Moore. Optimal Control Linear Quadratic Methods. Information and system science series. Prentice Hall, Englewood Cliffs, London, 1990.
- [2] D. Angeli, R. Amrit and J.B. Rawlings. "On Average Performance and Stability of Economic Model Predictive Control". in IEEE Trans. Automat. Contr.: 57.7 (2012), pages 1615–1626. ISSN: 0018-9286. DOI: 10.1109/TAC.2011.2179349.
- [3] H. Chen **and** F. Allgöwer. "A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability". **in** *Automatica*: 34.10 (1998), **pages** 1205–1217.
- [4] E.M. Cliff **and** T.L. Vincent. "An optimal policy for a fish harvest". in *Journal of Optimization Theory and Applications*: 12.5 (1973), pages 485–496.
- [5] M. Diehl, R. Amrit and J.B. Rawlings. "A Lyapunov function for economic optimizing model predictive control". in IEEE Trans. Automat. Contr.: 56.3 (2011), pages 703–707.

References II

- [6] R. Dorfman, P.A. Samuelson **and** R.M. Solow. *Linear Programming and Economic Analysis*. McGraw-Hill, New York, 1958.
- [7] C. Ebenbauer, T. Raff **and** F. Allgöwer. "Dissipation inequalities in systems theory: An introduction and recent results". **in** R. Jeltsch and G. Wanner (ed.), Invited Lectures of the International Congress on Industrial and Applied Mathematics 2007: 2009, pages 23–42.
- [8] T. Faulwasser. *Optimization-based Solutions to Constrained Trajectory-tracking and Path-following Problems*. Shaker, Aachen, Germany, 2013. DOI: 10.2370/9783844015942.
- [9] T. Faulwasser and D. Bonvin. "On the Design of Economic NMPC based on Approximate Turnpike Properties". in Proc. of 54th IEEE Conference on Decision and Control: Osaka, Japan, 2015, pages 4964 –4970. DOI: 10.1109/CDC.2015.7402995.
- [10] T. Faulwasser **and** C.M. Kellett. "On Continuous-Time Infinite Horizon Optimal Control Dissipativity, Stability and Transversality". in *Automatica*: 134 (2021), page 109907. DOI:
 - 10.1016/j.automatica.2021.109907.

References III

- [11] T. Faulwasser, M. Korda, C.N. Jones and D. Bonvin. "On Turnpike and Dissipativity Properties of Continuous-Time Optimal Control Problems". in *Automatica*: 81 (2017), pages 297–304. DOI: 10.1016/j.automatica.2017.03.012.
- F. Fontes. "A General Framework to Design Stabilizing Nonlinear [12] Model Predictive Controllers". in Sys. Contr. Lett.: 42.2 (2001), pages 127-143.
- L. Grüne **and** M.A. Müller. "On the relation between strict dissipativity [13] and turnpike properties". in Sys. Contr. Lett.: 90 (2016), pages 45 -53. DOI: http://dx.doi.org/10.1016/j.sysconle.2016.01.003.
- [14] L. Grüne and J. Pannek. Nonlinear Model Predictive Control: Theory and Algorithms. 2nd Edition. Communication and Control Engineering. Springer Verlag, 2017.
- [15] A. Jadbabaie **and** J. Hauser. "On the stability of receding horizon control with a general terminal cost". in IEEE Trans. Automat. Contr.: 50.5 (2005), pages 674–678. DOI: 10.1109/TAC.2005.846597.

References IV

- [16] A. Jadbabaie, J. Yu and J. Hauser. "Unconstrained receding-horizon control of nonlinear systems". in IEEE Trans. Automat. Contr.: 46.5 (2001), pages 776–783. DOI: 10.1109/9.920800.
- [17] R.E. Kalman. "Contributions to the theory of optimal control". inBol. Soc. Mat. Mexicana: 5.2 (1960), pages 102–119.
- [18] S.S. Keerthi **and** E.G. Gilbert. "Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations". **in** *Journal of Optimization Theory and Applications*: 57.2 (1988), **pages** 265–293.
- [19] C.M. Kellett. "A compendium of comparison function results". inMathematics of Control, Signals, and Systems: 26.3 (2014), pages 339–374.
- [20] H.K. Khalil. *Nonlinear Systems*. 3rd. Prentice Hall, New Jersey, 2002.
- [21] D. Limon, T. Alamo, F. Salas and E.F. Camacho. "On the stability of constrained MPC without terminal constraint". in IEEE Trans. Automat. Contr.: 51.5 (2006), pages 832–836.

References V

- [22] D.Q. Mayne and H. Michalska. "Receding horizon control of nonlinear systems". in/EEE Trans. Automat. Contr.: 35.7 (1990), pages 814–824. DOI: 10.1109/9.57020.
- [23] D.Q. Mayne, J.B. Rawlings, C.V. Rao and P.O.M. Scokaert. "Constrained model predictive control: Stability and optimality". in Automatica: 36.6 (2000), pages 789–814.
- [24] H. Michalska **and** R.B. Vinter. "Nonlinear stabilization using discontinuous moving-horizon control". **in** *IMA Journal of Mathematical Control and Information*: 11.4 (1994), **pages** 321–340.
- [25] J.B. Rawlings, D.Q. Mayne and M. Diehl. Model Predictive Control: Theory, Computation, and Design. Nob Hill Publishing, Madison, WI, 2017.
- [26] E.D. Sontag. *Mathematical Control Theory: Deterministic Finite Dimensional Systems*. Springer, 1998.