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How to Solve Optimal Control Problems?

Core challenge:

How to compute the infinite dimensional object u(·)?

Two main options:

1. Discretize problem.

2. Optimize discretized problem.

→ Direct solution methods.

1. Optimize problem (= get NCOs).

2. Discretize to solve NCOs.

→ Indirect solution methods.
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Overview of Solution Approaches

Continuous Time Optimal Control

Hamilton-Jacobi-Bellman-Equation
I Tabulation in state space
I Closed-loop optimal control

Indirect Methods
I Based on PMP (NCO of OCP)

Direct Solution Methods
I Convert OCP into NLP

Direct Single Shooting
I Discretized states and controls in

NLP
I Simultaneous approach

Direct Collocation
I Discretized states and controls in

NLP (collocation)
I Simultaneous approach

Direct Multiple Shooting
I Discretized controls and node start

values in NLP
I Simultaneous approach

Not covered in course!
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Basic Idea of Indirect Shooting

min
u(·)

∫ t1

t0
`(t , x(t),u(t))dt

subject to: (P)
ẋ = f (t , x ,u), x(t0) = x0

u(·) ∈ C[t0, t1]nu

Ψ(x(t1)) = 0

NCOs:

ẋ? = Hλ(t , x?,u?, λ?), x?(t0) = x0

λ̇? = −Hx (t , x?,u?, λ?),

λ?(t1) = φx (x?(t1)) + (ν?)>Ψx (x?(t1)),

0 = Hu(t , x?,u?, λ?),

Ψ(x?(t1)) = 0
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Basic Idea of Indirect Shooting

Formulate NCOs, then solve NCOs:

First optimize, then discretize.

Split NCOs into two parts:
I NCOs enforced at each iteration.
I NCOs modified at each iteration; i.e. enforced upon convergence.

NCOs:

ẋ? = Hλ(t , x?,u?, λ?), x?(t0) = x0

λ̇? = −Hx (t , x?,u?, λ?),

λ?(t1) = φx (x?(t1)) + (ν?)>Ψx (x?(t1)),
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A Basic Indirect Shooting Algorithm

1. Choose ε > 0. Guess λ0
0, ν0. Set k = 0.

2. Integrate from t0 to t1

ẋk = Hλ(t , xk ,uk , λk ), x(t0)k = x0

λ̇k = −Hx (t , xk ,uk , λk ), λ(t0)k = λk
0

0 = Hu(t , xk ,uk , λk ).

3. Compute defect of transversality and terminal conditions:

F(λk
0, ν

k )
.

=

[
λ(t1)k − φx (x(t1)k )− (νk )>Ψx (x(t1)k )

Ψ(x(t1)k )

]
.

4. If ‖F(λk
0, ν

k )‖ ≤ ε → STOP.
5. Update λk

0, ν
k to enforce F(λk

0, ν
k )→ 0. k ← k + 1. GOTO 1.
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ẋk = Hλ(t , xk ,uk , λk ), x(t0)k = x0

λ̇k = −Hx (t , xk ,uk , λk ), λ(t0)k = λk
0

0 = Hu(t , xk ,uk , λk ).

3. Compute defect of transversality and terminal conditions:

F(λk
0, ν

k )
.

=

[
λ(t1)k − φx (x(t1)k )− (νk )>Ψx (x(t1)k )

Ψ(x(t1)k )

]
.

4. If ‖F(λk
0, ν

k )‖ ≤ ε → STOP.

5. Update λk
0, ν

k to enforce F(λk
0, ν

k )→ 0. k ← k + 1. GOTO 1.

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.131 / II.138



A Basic Indirect Shooting Algorithm

1. Choose ε > 0. Guess λ0
0, ν0. Set k = 0.

2. Integrate from t0 to t1
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How to do Step 5?

I Defect condition
lim

k→∞
F(λk

0, ν
k ) = 0

is a root finding problem, i.e., we can apply Newton’s method.

I Compute defect gradients ∇λk
0
F and ∇νkF and solve

[
∇λk

0
F ∇νkF

] [δλk

δνk

]
= −F(λk

0, ν
k ).

I Update [
λk+1

0
νk+1

]
=

[
λk

0
νk

]
+

[
δλk

δνk

]
.
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Example

min
u(·)

∫ 1

0

1
2

u2(t)dt

subject to
ẋ(t) = u(t)(1− x(t)), x(0) = −1, x(1) = 0

I Formulate the NCOs.
I Formulate the defect.
I → MATLAB example IndirectSingleShooting.m
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Indirect Gradient Methods

Recall the NCO of the OCP (P), whereby we drop the terminal constraint:

ẋ? = Hλ(t , x?,u?, λ?), x?(t0) = x0

λ̇? = −Hx (t , x?,u?, λ?),

λ?(t1) = φx (x?(t1)),

0 = Hu(t , x?,u?, λ?)

Observe that
I The dynamics of x run forward in time from x0 to x(t1).
I The adjoint dynamics run backward in time from λ(t1) to λ(t0).
I Main idea of indirect gradient methods: forward-backward sweep

exploiting the structure of the NCOs with gradient updates.

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.134 / II.138



Indirect Gradient Methods

1. Choose ε > 0. Guess u0 (appropriately parametrized). Set k = 0.
2. Integrate forward from t0 to t1

ẋk = Hλ(t , xk ,uk , λk ) = f (t , xk ,uk ), x?(t0) = x0

3. Integrate backward from t1 to t0

λ̇k = −Hx (t , xk ,uk , λk ), λk (t1) = φx (xk (t1))

4. Update the controls

uk+1 = uk + αδuk , α ∈ (0,1]

whereby
δuk .

= Hu(λk , xk ,uk )

5. IF ‖δuk‖ < ε → STOP.
6. k ← k + 1. GOTO 1.
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Why is this gradient method?

Recall that the computation of the first variation (the Gateaux derivative) of
objective functional

δJ(u?)

lead to the NCO (Euler-Lagrange equations), cf. Slide II.48.
As the forward-backward sweep satisfies the dynamics, the adjoint
dynamics and the transversality condition, we have that

δuk .
= Hu(λk , xk ,uk ) = δJ(uk ),

i.e., uk + αδuk is a gradient step.
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How to make it work?

Constraints?

I Input trajectory needs to be parametrized, e.g. piece-wise constant.
I Input constraints via projection onto the feasible set after gradient step.
I State constraints→ can be included via penalty or barrier functions
I Initial guess of the input required, backward integration of the adjoints

often unstable
I One toolbox which uses this (in more elaborated form):

T. Englert, A. Völz, F. Mesmer, S. Rhein, K. Graichen. “A software framework
for embedded nonlinear model predictive control using a gradient-based
augmented Lagrangian approach (GRAMPC)”. inOptimization and
Engineering: 20.3 (2019), pages 769–809

Good to know

The backward step, can be understood as a back propagation to compute
the objective gradient.
This is widely used for deep learning as one formalize the training of deep
neural networks as an optimal control problem.
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Remarks on Indirect Methods

I Require formulation of the NCOs.
I Input constraints can be considered (not covered here).
I In case of active state-path constraints→ much more complicated

NCOs→ indirect methods become quite tedious.
I Instable dynamics ẋ = f (x ,u) lead to numerical issues (good guesses

required).
I Indirect methods can be very precise (decisive element: accuracy of

integration of dynamics).
I Indirect methods can be extremely memory efficient (no need to store

large matrices).
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