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How to Solve Optimal Control Problems?
Core challenge:

How to compute the infinite dimensional object u(-)?
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How to Solve Optimal Control Problems?
Core challenge:

How to compute the infinite dimensional object u(-)?
Two main options:

1. Discretize problem.

2. Optimize discretized problem.

— Direct solution methods.
Timm Faulwasser

=] = = = =
Optimal Control (EE-736) | Part Il.2: NUM OC

DA

11126 /11.138



How to Solve Optimal Control Problems?

Core challenge:
How to compute the infinite dimensional object u(-)?
Two main options:
1. Discretize problem. 1. Optimize problem (= get NCOs).

2. Optimize discretized problem. 2. Discretize to solve NCOs.

— Direct solution methods. — Indirect solution methods.
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Overview of Solution Approaches

Continuous Time Optimal Control
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Overview of Solution Approaches

Continuous Time Optimal Control

Hamilton-Jacobi-Bellman-Equation
» Tabulation in state space
» Closed-loop optimal control

Indirect Methods

» Based on PMP (NCO of OCP)

Direct Solution Methods
» Convert OCP into NLP
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Overview of Solution Approaches

Continuous Time Optimal Control

Hamilton-Jacobi-Bellman-Equation N
o Indirect Methods
» Tabulation in state space
i » Based on PMP (NCO of OCP)
» Closed-loop optimal control

Direct Solution Methods
» Convert OCP into NLP
Direct Single Shooting Direct Collocation
» Discretized states and controls in
NLP
» Simultaneous approach

> Discretized states and controls in
NLP (collocation)

Direct Multiple Shooting
» Discretized controls and node start
values in NLP

» Simultaneous approach

» Simultaneous approach
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Overview of Solution Approaches

Continuous Time Optimal Control

Indirect Methods Direct Solution Methods
» Based on PMP (NCO of OCP) » Convert OCP into NLP
Direct Single Shooting Direct Collocation Direct Multiple Shooting
» Discretized states and controls in » Discretized states and controls in » Discretized controls and node start
NLP (collocation) values in NLP
» Simultaneous approach » Simultaneous approach » Simultaneous approach
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Basic Idea of Indirect Shooting

" ot x(1), u()dt

fo

min
u(-)

subject to:

x = f(t, x, u),

u(-) € Clto, t4]™
V(x(t)) =0

x(fo) = Xo
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Basic Idea of Indirect Shooting

t

min £(t, x(t), u(t))dt

u(-)

subject to:

x = f(t, x, u),

u(-) € Clto, t4]™
V(x(t)) =0

)

x(to) = Xo

NCOs:

H)\(ta X*v U*a )‘*)7
—H, (t, x*, u*, \*),

dx(X* (1)) + (V%) "Wk (X* (1)),
Hy(t, x*, u™, A7),

x*(to) = Xo

[m]

Optimal Control (EE-736) | Part Il.2: NUM OC

= 125N 64

11129 /11.138

Timm Faulwasser



Basic Idea of Indirect Shooting

Formulate NCOs, then solve NCOs:

First optimize, then discretize.
Split NCOs into two parts:

» NCOs enforced at each iteration.

» NCOs modified at each iteration; i.e. enforced upon convergence
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Basic Idea of Indirect Shooting

Formulate NCOs, then solve NCOs:
First optimize, then discretize.

Split NCOs into two parts:
» NCOs enforced at each iteration.
» NCOs modified at each iteration; i.e. enforced upon convergence.

NCOs:

)'(* = Hy(t,x*,u*,\%), x*(t) = xo
—Hy(t, x*, u*, \%),
(

)= dx(X* (1)) + (V%) "Wk (x* (1)),
0= Hu(t,x*,u*, \*),

= = = E E DA
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A Basic Indirect Shooting Algorithm

1. Choose ¢ > 0. Guess )\, °. Set k = 0.
2. Integrate from f to f

XK= HA(t xR UK N, x()E = xo
M= —H (8, X5 050N, M)k = \s

0= Hy(t,xk uk k).

o 5 =
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A Basic Indirect Shooting Algorithm

1. Choose ¢ > 0. Guess )\, °. Set k = 0.
2. Integrate from f to f

)'(k

Ha(t, x*, uk XK,
M= —H, (8, x5, Uk, \F),
0= Hy(t,xk uk k).

3. Compute defect of transversality and terminal conditions:

At~ (()) () T (x (1))
W(x(t)") ’

FO ) = T
—  STOP.

4.1t FOG )l < e
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A Basic Indirect Shooting Algorithm

1. Choose ¢ > 0. Guess )\, °. Set k = 0.
2. Integrate from f to f

X" = Ha(t, x5 UK N9), x(b)K = xo
—Hy (£, X5 U 00, A(to)* = A
0= Hy(t,xk uk k).

3. Compute defect of transversality and terminal conditions:
M) = on(x()" )*( ) Tk (x (1))

F(xs, ") = :

(e, 7%) Wx(1))

4. If |F(M§, VM) <e — STOP.
5. Update A%, v¥ to enforce F(A\&,v¥) — 0. k «+ k + 1. GOTO 1.

=] = = = £ DA
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How to do Step 5?

» Defect condition

lim F(\§,v¥) =0
k— o0

is a root finding problem, i.e., we can apply Newton’s method
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How to do Step 5?

» Defect condition
lim F(\§,v¥) =0
k—o00

is a root finding problem, i.e., we can apply Newton’s method.

» Compute defect gradients V e and V _«F and solve

k
Vi F vukf} Bi] —F(Nk 5.
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How to do Step 5?

» Defect condition
lim F(\§,v¥) =0
k—o00

is a root finding problem, i.e., we can apply Newton’s method.

» Compute defect gradients V e and V _«F and solve

[GAK
_51/k

/\k+1 ')\k 5>\k
BRINEIRbE

[VAS}" vukf} ] = —F(\E 0.

» Update
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Example

|
. 1,
min —u-(t)at
u() /0 2 0
subject to

x(t) = u(t)(1 —x(t)), x(0)=-1,x(1)=0

» Formulate the NCOs.
» Formulate the defect.
» — MATLAB example IndirectSingleShooting.m
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Indirect Gradient Methods

Recall the NCO of the OCP (P), whereby we drop the terminal constraint:

X" = Hk(taX*aU*7>\*)7 X*(to) = Xo
M= CHy (1 Xt Ut ),

() = ox(x*(h)),
0= Hy(t,x*,u,\%)

Observe that
» The dynamics of x run forward in time from xp to x(t).
» The adjoint dynamics run backward in time from A(t;) to A(f).

» Main idea of indirect gradient methods: forward-backward sweep
exploiting the structure of the NCOs with gradient updates.
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Indirect Gradient Methods
1. Choose ¢ > 0. Guess u° (appropriately parametrized). Set k = 0.
2. Integrate forward from f; to &
XK= Hy(t, x5, Uk N = £(t, XK, Uk, x* () = x0
3. Integrate backward from t; to fy
M= —H(t, x5 U 0, M () = ox(xX (1))
4. Update the controls
Ut = Uk asuk, o e (0,1]

whereby
Suk = Hy(\K, Xk, uk)

5 IF [|ouk|| <e — STOP.
6. k< k+1. GOTO 1.
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Why is this gradient method?

Recall that the computation of the first variation (the Gateaux derivative) of
objective functional
od(u*)

lead to the NCO (Euler-Lagrange equations), cf. Slide 11.48.
As the forward-backward sweep satisfies the dynamics, the adjoint
dynamics and the transversality condition, we have that

Suk = Hy(NK, XK, uF) = sJ(u"),

i.e., Uk + aduk is a gradient step.
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How to make it work?
Constraints?

» Input trajectory needs to be parametrized, e.g. piece-wise constant.

» Input constraints via projection onto the feasible set after gradient step.
» State constraints — can be included via penalty or barrier functions

» Initial guess of the input required, backward integration of the adjoints
often unstable

One toolbox which uses this (in more elaborated form):

T. Englert, A. Vélz, F. Mesmer, S. Rhein, K. Graichen. “A software framework
for embedded nonlinear model predictive control using a gradient-based
augmented Lagrangian approach (GRAMPC)”. inOptimization and
Engineering: 20.3 (2019), pages 769-809

v
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» Input trajectory needs to be parametrized, e.g. piece-wise constant.

» Input constraints via projection onto the feasible set after gradient step.

» State constraints — can be included via penalty or barrier functions

» Initial guess of the input required, backward integration of the adjoints
often unstable

One toolbox which uses this (in more elaborated form):

T. Englert, A. Vélz, F. Mesmer, S. Rhein, K. Graichen. “A software framework
for embedded nonlinear model predictive control using a gradient-based
augmented Lagrangian approach (GRAMPC)”. inOptimization and
Engineering: 20.3 (2019), pages 769-809

v

Good to know

The backward step, can be understood as a back propagation to compute
the objective gradient.

This is widely used for deep learning as one formalize the training of deep
neural networks as an optimal control problem.
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Remarks on Indirect Methods

» Require formulation of the NCOs.
» Input constraints can be considered (not covered here).

» In case of active state-path constraints — much more complicated
NCOs — indirect methods become quite tedious.

» Instable dynamics x = f(x, u) lead to numerical issues (good guesses
required).

» Indirect methods can be very precise (decisive element: accuracy of
integration of dynamics).

» Indirect methods can be extremely memory efficient (no need to store
large matrices).
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