
Optimal Control (EE-736)
Part II.2: Comments on Indirect Methods

Timm Faulwasser & Yuning Jiang

ie3, TU Dortmund

timm.faulwasser@ieee.org
yuning.jiang@epfl.ch

Block course @ EPFL

Version EE736.2024.I

© Timm Faulwasser



Overview

Introduction

Indirect Solution Approaches

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.124 / II.138



Overview

Introduction

Indirect Solution Approaches

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.125 / II.138



How to Solve Optimal Control Problems?

Core challenge:

How to compute the infinite dimensional object u(·)?

Two main options:

1. Discretize problem.

2. Optimize discretized problem.

→ Direct solution methods.

1. Optimize problem (= get NCOs).

2. Discretize to solve NCOs.

→ Indirect solution methods.

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.126 / II.138



How to Solve Optimal Control Problems?

Core challenge:

How to compute the infinite dimensional object u(·)?

Two main options:

1. Discretize problem.

2. Optimize discretized problem.

→ Direct solution methods.

1. Optimize problem (= get NCOs).

2. Discretize to solve NCOs.

→ Indirect solution methods.

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.126 / II.138



How to Solve Optimal Control Problems?

Core challenge:

How to compute the infinite dimensional object u(·)?

Two main options:

1. Discretize problem.

2. Optimize discretized problem.

→ Direct solution methods.

1. Optimize problem (= get NCOs).

2. Discretize to solve NCOs.

→ Indirect solution methods.

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.126 / II.138



How to Solve Optimal Control Problems?

Core challenge:

How to compute the infinite dimensional object u(·)?

Two main options:

1. Discretize problem.

2. Optimize discretized problem.

→ Direct solution methods.

1. Optimize problem (= get NCOs).

2. Discretize to solve NCOs.

→ Indirect solution methods.

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.126 / II.138



Overview of Solution Approaches

Continuous Time Optimal Control

Hamilton-Jacobi-Bellman-Equation
I Tabulation in state space
I Closed-loop optimal control

Indirect Methods
I Based on PMP (NCO of OCP)

Direct Solution Methods
I Convert OCP into NLP

Direct Single Shooting
I Discretized states and controls in

NLP
I Simultaneous approach

Direct Collocation
I Discretized states and controls in

NLP (collocation)
I Simultaneous approach

Direct Multiple Shooting
I Discretized controls and node start

values in NLP
I Simultaneous approach

Not covered in course!

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.127 / II.138



Overview of Solution Approaches

Continuous Time Optimal Control

Hamilton-Jacobi-Bellman-Equation
I Tabulation in state space
I Closed-loop optimal control

Indirect Methods
I Based on PMP (NCO of OCP)

Direct Solution Methods
I Convert OCP into NLP

Direct Single Shooting
I Discretized states and controls in

NLP
I Simultaneous approach

Direct Collocation
I Discretized states and controls in

NLP (collocation)
I Simultaneous approach

Direct Multiple Shooting
I Discretized controls and node start

values in NLP
I Simultaneous approach

Not covered in course!

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.127 / II.138



Overview of Solution Approaches

Continuous Time Optimal Control

Hamilton-Jacobi-Bellman-Equation
I Tabulation in state space
I Closed-loop optimal control

Indirect Methods
I Based on PMP (NCO of OCP)

Direct Solution Methods
I Convert OCP into NLP

Direct Single Shooting
I Discretized states and controls in

NLP
I Simultaneous approach

Direct Collocation
I Discretized states and controls in

NLP (collocation)
I Simultaneous approach

Direct Multiple Shooting
I Discretized controls and node start

values in NLP
I Simultaneous approach

Not covered in course!

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.127 / II.138



Overview of Solution Approaches

Continuous Time Optimal Control

Hamilton-Jacobi-Bellman-Equation
I Tabulation in state space
I Closed-loop optimal control

Indirect Methods
I Based on PMP (NCO of OCP)

Direct Solution Methods
I Convert OCP into NLP

Direct Single Shooting
I Discretized states and controls in

NLP
I Simultaneous approach

Direct Collocation
I Discretized states and controls in

NLP (collocation)
I Simultaneous approach

Direct Multiple Shooting
I Discretized controls and node start

values in NLP
I Simultaneous approach

Not covered in course!

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.127 / II.138



Overview

Introduction

Indirect Solution Approaches

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.128 / II.138



Basic Idea of Indirect Shooting

min
u(·)

∫ t1

t0
`(t , x(t),u(t))dt

subject to: (P)
ẋ = f (t , x ,u), x(t0) = x0

u(·) ∈ C[t0, t1]nu

Ψ(x(t1)) = 0

NCOs:

ẋ? = Hλ(t , x?,u?, λ?), x?(t0) = x0

λ̇? = −Hx (t , x?,u?, λ?),

λ?(t1) = φx (x?(t1)) + (ν?)>Ψx (x?(t1)),

0 = Hu(t , x?,u?, λ?),

Ψ(x?(t1)) = 0

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.129 / II.138



Basic Idea of Indirect Shooting

min
u(·)

∫ t1

t0
`(t , x(t),u(t))dt

subject to: (P)
ẋ = f (t , x ,u), x(t0) = x0

u(·) ∈ C[t0, t1]nu

Ψ(x(t1)) = 0

NCOs:

ẋ? = Hλ(t , x?,u?, λ?), x?(t0) = x0

λ̇? = −Hx (t , x?,u?, λ?),

λ?(t1) = φx (x?(t1)) + (ν?)>Ψx (x?(t1)),

0 = Hu(t , x?,u?, λ?),

Ψ(x?(t1)) = 0

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.129 / II.138



Basic Idea of Indirect Shooting

Formulate NCOs, then solve NCOs:

First optimize, then discretize.

Split NCOs into two parts:
I NCOs enforced at each iteration.
I NCOs modified at each iteration; i.e. enforced upon convergence.

NCOs:

ẋ? = Hλ(t , x?,u?, λ?), x?(t0) = x0

λ̇? = −Hx (t , x?,u?, λ?),

λ?(t1) = φx (x?(t1)) + (ν?)>Ψx (x?(t1)),

0 = Hu(t , x?,u?, λ?),

Ψ(x?(t1)) = 0

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.130 / II.138



Basic Idea of Indirect Shooting

Formulate NCOs, then solve NCOs:

First optimize, then discretize.

Split NCOs into two parts:
I NCOs enforced at each iteration.
I NCOs modified at each iteration; i.e. enforced upon convergence.

NCOs:

ẋ? = Hλ(t , x?,u?, λ?), x?(t0) = x0

λ̇? = −Hx (t , x?,u?, λ?),

λ?(t1) = φx (x?(t1)) + (ν?)>Ψx (x?(t1)),

0 = Hu(t , x?,u?, λ?),

Ψ(x?(t1)) = 0

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.130 / II.138



A Basic Indirect Shooting Algorithm

1. Choose ε > 0. Guess λ0
0, ν0. Set k = 0.

2. Integrate from t0 to t1

ẋk = Hλ(t , xk ,uk , λk ), x(t0)k = x0

λ̇k = −Hx (t , xk ,uk , λk ), λ(t0)k = λk
0

0 = Hu(t , xk ,uk , λk ).

3. Compute defect of transversality and terminal conditions:

F(λk
0, ν

k )
.

=

[
λ(t1)k − φx (x(t1)k )− (νk )>Ψx (x(t1)k )

Ψ(x(t1)k )

]
.

4. If ‖F(λk
0, ν

k )‖ ≤ ε → STOP.
5. Update λk

0, ν
k to enforce F(λk

0, ν
k )→ 0. k ← k + 1. GOTO 1.

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.131 / II.138



A Basic Indirect Shooting Algorithm

1. Choose ε > 0. Guess λ0
0, ν0. Set k = 0.

2. Integrate from t0 to t1

ẋk = Hλ(t , xk ,uk , λk ), x(t0)k = x0

λ̇k = −Hx (t , xk ,uk , λk ), λ(t0)k = λk
0

0 = Hu(t , xk ,uk , λk ).

3. Compute defect of transversality and terminal conditions:

F(λk
0, ν

k )
.

=

[
λ(t1)k − φx (x(t1)k )− (νk )>Ψx (x(t1)k )

Ψ(x(t1)k )

]
.

4. If ‖F(λk
0, ν

k )‖ ≤ ε → STOP.

5. Update λk
0, ν

k to enforce F(λk
0, ν

k )→ 0. k ← k + 1. GOTO 1.

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.131 / II.138



A Basic Indirect Shooting Algorithm

1. Choose ε > 0. Guess λ0
0, ν0. Set k = 0.

2. Integrate from t0 to t1

ẋk = Hλ(t , xk ,uk , λk ), x(t0)k = x0

λ̇k = −Hx (t , xk ,uk , λk ), λ(t0)k = λk
0

0 = Hu(t , xk ,uk , λk ).

3. Compute defect of transversality and terminal conditions:

F(λk
0, ν

k )
.

=

[
λ(t1)k − φx (x(t1)k )− (νk )>Ψx (x(t1)k )

Ψ(x(t1)k )

]
.

4. If ‖F(λk
0, ν

k )‖ ≤ ε → STOP.
5. Update λk

0, ν
k to enforce F(λk

0, ν
k )→ 0. k ← k + 1. GOTO 1.

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.131 / II.138



How to do Step 5?

I Defect condition
lim

k→∞
F(λk

0, ν
k ) = 0

is a root finding problem, i.e., we can apply Newton’s method.

I Compute defect gradients ∇λk
0
F and ∇νkF and solve

[
∇λk

0
F ∇νkF

] [δλk

δνk

]
= −F(λk

0, ν
k ).

I Update [
λk+1

0
νk+1

]
=

[
λk

0
νk

]
+

[
δλk

δνk

]
.

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.132 / II.138



How to do Step 5?

I Defect condition
lim

k→∞
F(λk

0, ν
k ) = 0

is a root finding problem, i.e., we can apply Newton’s method.

I Compute defect gradients ∇λk
0
F and ∇νkF and solve

[
∇λk

0
F ∇νkF

] [δλk

δνk

]
= −F(λk

0, ν
k ).

I Update [
λk+1

0
νk+1

]
=

[
λk

0
νk

]
+

[
δλk

δνk

]
.

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.132 / II.138



How to do Step 5?

I Defect condition
lim

k→∞
F(λk

0, ν
k ) = 0

is a root finding problem, i.e., we can apply Newton’s method.

I Compute defect gradients ∇λk
0
F and ∇νkF and solve

[
∇λk

0
F ∇νkF

] [δλk

δνk

]
= −F(λk

0, ν
k ).

I Update [
λk+1

0
νk+1

]
=

[
λk

0
νk

]
+

[
δλk

δνk

]
.

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.132 / II.138



Example

min
u(·)

∫ 1

0

1
2

u2(t)dt

subject to
ẋ(t) = u(t)(1− x(t)), x(0) = −1, x(1) = 0

I Formulate the NCOs.
I Formulate the defect.
I → MATLAB example IndirectSingleShooting.m

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.133 / II.138



Indirect Gradient Methods

Recall the NCO of the OCP (P), whereby we drop the terminal constraint:

ẋ? = Hλ(t , x?,u?, λ?), x?(t0) = x0

λ̇? = −Hx (t , x?,u?, λ?),

λ?(t1) = φx (x?(t1)),

0 = Hu(t , x?,u?, λ?)

Observe that
I The dynamics of x run forward in time from x0 to x(t1).
I The adjoint dynamics run backward in time from λ(t1) to λ(t0).
I Main idea of indirect gradient methods: forward-backward sweep

exploiting the structure of the NCOs with gradient updates.

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.134 / II.138



Indirect Gradient Methods

1. Choose ε > 0. Guess u0 (appropriately parametrized). Set k = 0.
2. Integrate forward from t0 to t1

ẋk = Hλ(t , xk ,uk , λk ) = f (t , xk ,uk ), x?(t0) = x0

3. Integrate backward from t1 to t0

λ̇k = −Hx (t , xk ,uk , λk ), λk (t1) = φx (xk (t1))

4. Update the controls

uk+1 = uk + αδuk , α ∈ (0,1]

whereby
δuk .

= Hu(λk , xk ,uk )

5. IF ‖δuk‖ < ε → STOP.
6. k ← k + 1. GOTO 1.

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.135 / II.138



Why is this gradient method?

Recall that the computation of the first variation (the Gateaux derivative) of
objective functional

δJ(u?)

lead to the NCO (Euler-Lagrange equations), cf. Slide II.48.
As the forward-backward sweep satisfies the dynamics, the adjoint
dynamics and the transversality condition, we have that

δuk .
= Hu(λk , xk ,uk ) = δJ(uk ),

i.e., uk + αδuk is a gradient step.

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.136 / II.138



How to make it work?

Constraints?

I Input trajectory needs to be parametrized, e.g. piece-wise constant.
I Input constraints via projection onto the feasible set after gradient step.
I State constraints→ can be included via penalty or barrier functions
I Initial guess of the input required, backward integration of the adjoints

often unstable
I One toolbox which uses this (in more elaborated form):

T. Englert, A. Völz, F. Mesmer, S. Rhein, K. Graichen. “A software framework
for embedded nonlinear model predictive control using a gradient-based
augmented Lagrangian approach (GRAMPC)”. inOptimization and
Engineering: 20.3 (2019), pages 769–809

Good to know

The backward step, can be understood as a back propagation to compute
the objective gradient.
This is widely used for deep learning as one formalize the training of deep
neural networks as an optimal control problem.

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.137 / II.138



How to make it work?

Constraints?

I Input trajectory needs to be parametrized, e.g. piece-wise constant.
I Input constraints via projection onto the feasible set after gradient step.
I State constraints→ can be included via penalty or barrier functions
I Initial guess of the input required, backward integration of the adjoints

often unstable
I One toolbox which uses this (in more elaborated form):

T. Englert, A. Völz, F. Mesmer, S. Rhein, K. Graichen. “A software framework
for embedded nonlinear model predictive control using a gradient-based
augmented Lagrangian approach (GRAMPC)”. inOptimization and
Engineering: 20.3 (2019), pages 769–809

Good to know

The backward step, can be understood as a back propagation to compute
the objective gradient.
This is widely used for deep learning as one formalize the training of deep
neural networks as an optimal control problem.
Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.137 / II.138



Remarks on Indirect Methods

I Require formulation of the NCOs.
I Input constraints can be considered (not covered here).
I In case of active state-path constraints→ much more complicated

NCOs→ indirect methods become quite tedious.
I Instable dynamics ẋ = f (x ,u) lead to numerical issues (good guesses

required).
I Indirect methods can be very precise (decisive element: accuracy of

integration of dynamics).
I Indirect methods can be extremely memory efficient (no need to store

large matrices).

Timm Faulwasser Optimal Control (EE-736) | Part II.2: NUM OC II.138 / II.138


	Introduction
	Indirect Solution Approaches

