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Problem Formulation

Optimal control problem in continuous time

min
x(·),u(·)

∫ tf

t0

`(x(t), u(t))dt︸ ︷︷ ︸
Lagrangian term

+M(x(tf ))︸ ︷︷ ︸
Mayer term

subject to

ẋ(t) = f(x(t), u(t)), t ∈ [t0, tf ] Dynamic equation

0 = x(t0)− x̂ Initial condition

0 ≥ h(x(t), u(t)), t ∈ [t0, tf ] Path constraints

0 ≥ r(x(tf )) Terminal constraints

Main idea of direct optimal control
discretize, then optimize
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Input Discretization

Parametrize u(·) by finitely many parameters uk, k = 1, ..., Nopt,

u(t) =
Nopt∑
k=1

ukφk(t), φk basis functions.

Example of basis functions

t

u(t)

t0 t1 tk tns−1 tns = tf

piecewise constant

piecewise linear with continuity

piecewise linear without continuity

piecewise cubic with continuity

piece-wise constant input parametrizations commonly used
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Dynamics Discretization

Main idea:
ẋ(t) = f(x(t), u(t)), t ∈ [tk, tk+1]

x(tk) = xk

u(t) with piece-wise basis

=⇒ xk+1 = ξ(xk, uk)

Taylor model based integrator;

Explicit Runge-Kutta integrator:

Euler’s method;

Heun’s method;

RK 4;

...

Implicit Runge-Kutta integrator.
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Objective Discretization

Consider piece-wise constant input parametrizations.

Direct discretization with time grid {tk}N0 and constant ∆t = tk+1− tk∫ tf

t0

`(x(t), u(t))dt ≈
N−1∑
k=0

`(xk, uk) with

 tN = tf

u(t) = uk, t ∈ [tk, tk+1].

Indirect discretization defines the augmented state x̃ = (x, z) with

˙̃x(t) =

x(t)

z(t)

 = F (x̃(t), u(t)) =

f(x(t), u(t))

`(x(t), u(t))


such that the Lagrangian term is transferred to a Mayer term∫ tf

t0

`(x(t), u(t))dt = z(tf ).

Then, integrate F .
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Direct Single Shooting

Consider

uniform grid {tk}N0 with tN = tf and constant ∆t = tk+1 − tk;

piece-wise constant input parameterization, i.e., u(t) = uk, t ∈ [tk, tk+1].

Discretized OCP:

min
x0,UN

N−1∑
k=0

`(Xk(x0, Uk), uk) +M(XN (x0, UN ))

subject to
0 = x0 − x̂ Initial condition

Xk(x0, Uk) = ξ(ξ(...ξ(ξ(x0, u0), u1), ...), uk−1) k-step model

0 ≥ h(Xk(x0, Uk), uk) Path constraints

0 ≥ r(XN (x0, UN )) Terminal constraints

with Uk = (u0, u1, ..., uk−1) for all k ∈ {1, ..., N}.
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Direct Single Shooting

Remark:

OCP transformed into NLP on one shooting interval

nu ·N + nx decision variables

Constraints are enforced at discretization points only

Unstable systems require good initial guesses

Other variants of single shooting rely on variable step-size integrators

(direct sequential single shooting); not discussed here

For linear-quadratic MPC also known as condensing
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Direct Multiple Shooting

Consider

uniform grid {tk}N0 with tN = tf and constant ∆t = tk+1 − tk;

piece-wise constant input parameterization, i.e., u(t) = uk, t ∈ [tk, tk+1].

Discretized OCP:

min
X,U

N−1∑
k=0

`(xk, uk) +M(xN )

subject to
0 = x0 − x̂ Initial condition

xk+1 = ξ(xk, uk), k ∈ {0, 1, ..., N − 1} Discrete-time dynamic

0 ≥ h(xk, uk), k ∈ {0, 1, ..., N − 1} Path constraints

0 ≥ r(xN ) Terminal constraints

with X = (x0, x1, ..., xN ) and U = (u0, u1, ..., uN−1).
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Direct Multiple Shooting

Remark:

OCP transformed into NLP on multiple shooting intervals

(nx + nu) ·N + nx decision variables

ODE is satisfied upon convergence of NLP solver (→ simultaneous

approach)

Constraints are enforced at discretization points only

Handles unstable systems much better than single shooting

Workhorse method for this course (exercises and projects)

In case of convergence problems, initialize with feasible trajectory

Other variants of multiple shooting rely on variable step-size integrators;

not discussed here
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Parameterization of Controls via Polynominals

N -stage time splitting: [t0, tf ]→ {[t0, t1], ..., [tN−1, tN ]}, tN = tf .

In each interval [tk, tk+1] approximate u(·) by polynomial functions

[u(t)]j = [Uk(t, ωk)]j =
Mu∑
i=0

ωj,ik φ
Mu
i

(
t− tk

tk+1 − tk

)
︸ ︷︷ ︸

τ(t)∈[0,1]

, j = 1, .., nu.

with [·]j j-th element.

Decision variables on [tk, tk+1] : nu · (Mu + 1)

Collocation points:

tk = t
(0)
k ≤ t

(1)
k ≤ · · · ≤ t

(Mu)
k ≤ tk+1

Lagrange polynomials with τq = τ(t(q)
k ),

φMi (τ) =

{
1 if M = 0∏M

q=0,q 6=i
τ−τq

τi−τq
if M ≥ 1

t

[u(t)]j

tk+1
t
(Mu)
k

ωj,Mu

k

t
(2)
k

ωj,2k

t
(1)
k

ωj,1k

tk
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Direct Collocation (Direct Transcription Method)

State collocation: [x(t)]j , j = 1, .., nx expressed via polynomial functions

[x(t)]j = [Xk(t, αk)]j :=
Mx∑
i=0

αj,ik φ
Mx
i

(
t− tk

tk+1 − tk

)
Time derivative of parameterized states trajectory:

[ẋ(t)]j = ∂

∂t
[Xk(t, αk)]j = 1

tk − tk−1

Mx∑
i=0

αj,ik
∂φMx

i

∂τ

(
t− tk

tk+1 − tk

)
The collocation conditions

xk = Xk(tk, αk)

f(Xk(t(i)k , αk), Uk(t(i)k , ωk)) = ∂

∂t
Xk(t(i)k , αk), i = 1, ...,Mx

summarized as ck(xk, αk, ωk) = 0.
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Direct Collocation (Direct Transcription Method)

Discretized OCP:

min
X,α,ω

M(xN ) +
N−1∑
k=0

`k(xk, αk, ωk)

subject to

0 = x0 − x̂ Initial condition

0 = ck(xk, αk, ωk) k ∈ {0, 1, ..., N − 1} collocation conditions

xk+1 = Xk(tk+1, αk) k ∈ {0, 1, ..., N − 1} continuity conditions

0 ≥ h(xk, ωk) k ∈ {0, 1, ..., N − 1} Path constraints

0 ≥ r(xN ) Terminal constraints

with X = (x0, x1, ..., xN ), α = (α0, α1, ..., αN−1) and ω = (ω0, ω1, ..., ωN−1)
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Direct Collocation (Direct Transcription Method)

Remark:

The resulting NLPs are large scale.

Number of stages and collocation points has to be chosen as a prior.

Infeasible path method: ODEs satisfied at convergence only → computationally

efficient, unstable systems doable!

Stage times can be optimized too.

Path constraints via inequality constraints at collocation points.

Pseudospectral Methods

Variant of orthogonal collocation with 1 stage and high-order

polynomials.
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Direct Collocation (Direct Transcription Method)

Example: Lotka Volterra fishing problem

min
u(·)

∫ 12

0
(x1(t)− 1)2 + (x2(t)− 1)2dt

subject to

ẋ1(t)

ẋ2(t)

 =

 x1(t)− x1(t) · x2(t)− 0.2x1(t) · u(t)

−x2(t) + x1(t) · x2(t) + 0.4x2(t) · u(t)

 ,
(
x1(0) x2(0)

)>
=
(

0.5 0.7
)>

u(t) ∈ [0, 1], t ∈ [0, 12]

with x1 and x2 the scaled population densities of a prey and a predator

species.
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Essential Tricks

Input Rate Constraints: u̇(t) ∈ [u̇min, u̇max]

introduce x̃ = [x>, u>]> with u̇ = v;

augmented dynamic ˙̃x =

[
f(x, u)
v

]
with v ∈ [u̇min, u̇max].

Free End-Time Problems: tf decision variable

time transformation: t = t0 + τ(tf − t0) with τ = t−t0
tf−t0

∈ [0, 1];

dynamics: ẋ(τ) = dx(t)
dt

dt
dτ

= (tf − t0)f(x(τ), u(τ)).

Scaling of Input and State Variables: adjust the range

invertible scaling matrices Σx and Σu;

scaled state and control x̃ = Σxx and ũ = Σuu;

dynamic:
˙̃x = Σxf(Σ−1

x x̃,Σ−1
u ũ).
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