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Problem Formulation

o Optimal control problem in continuous time

min L 0a(t), u()dt + M(a(ty)
z(),u to ———

MAYER TERM

LAGRANGIAN TERM

subject to
z(t) = f(z(t),ul(t), tEe [to,ty] DYNAMIC EQUATION
0 = z(ty) -2 INITIAL CONDITION
0 > h(z(t),u(t)), telto,tr] PATH CONSTRAINTS
0 > r(z(ty)) TERMINAL CONSTRAINTS

o Main idea of direct optimal control
discretize, then optimize
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Input Discretization

o Parametrize u(-) by finitely many parameters ug, k =1, ..., Nopy,
Nopt
u(t) = Z urén(t), ¢ basis functions.
k=1

o Example of basis functions

piecewise constant piecewise linear without continuity

to t tk tn,—1 tn, =1

piece-wise constant input parametrizations commonly used
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Dynamics Discretization

Main idea:

i(t) = f(x(t),u(t)), t € [tr,trt1]
r(ty) =k = Tpy1 = §(ap, up)

u(t) with piece-wise basis

o Taylor model based integrator;
o Explicit Runge-Kutta integrator:
o Euler's method;
o Heun's method;
o RK 4;

o ...

o Implicit Runge-Kutta integrator.
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Objective Discretization

o Consider piece-wise constant input parametrizations.

o Direct discretization with time grid {t;}2 and constant At = t; | —t;

ty N-— tN:tf
f( Z :I:k,uk with

to u(t) =ug, t € [tk;tk+1]~

o Indirect discretization defines the augmented state Z = (z, z) with

H(t) = (1) _ R, u(t) = f(z(t),u(t))
#(t) 0 (1), u(t))

such that the Lagrangian term is transferred to a Mayer term

/t " @), u()dt = ().
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Direct Single Shooting
Consider
o uniform grid {t;}{ with tx = t; and constant At = tj1 — t;

o piece-wise constant input parameterization, i.e., u(t) = uk, t € [tg, trt1]-

Discretized OCP:

N—
min Z (Xk (20, Uk), ux) + M(Xn (20, Un))
k=0

z0,Un
subject to
0 = 20—12 INITIAL CONDITION
Xik(zo,Ur) = €(&(..£(&(x0,u0),u1), ), Uk—1) K-STEP MODEL
0 > h(Xk(zo,Ug),ux) PATH CONSTRAINTS
0 > r(Xn(zo,Un)) TERMINAL CONSTRAINTS

with Uy = (uo,ul, ...,uk,l) for all k € {1,...,N}.
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Direct Single Shooting

Remark:
o OCP transformed into NLP on one shooting interval

o ng - N + n, decision variables

©

Constraints are enforced at discretization points only

©

Unstable systems require good initial guesses

©

Other variants of single shooting rely on variable step-size integrators

(direct sequential single shooting); not discussed here

(]

For linear-quadratic MPC also known as condensing
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Direct Multiple Shooting
Consider
o uniform grid {t;})’ with tx = ¢; and constant At = t;41 — t;
o piece-wise constant input parameterization, i.e., u(t) = ug, t € [tk, tkt1]-

Discretized OCP:

N-1
r)r(n[r]l kZ:O Uz, ug) + M(zn)
subject to
0 = x0—2 INITIAL CONDITION
41 = E(xk,ur), k €4{0,1,..., N —1} DISCRETE-TIME DYNAMIC
0 > h(xk,uk), ke {0,1,...,N —1} PATH CONSTRAINTS
0 > r(zn) TERMINAL CONSTRAINTS

with X = (zg, 21, ...,zn) and U = (ug, U1, ..., Un—1).
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Direct Multiple Shooting
Remark:
o OCP transformed into NLP on multiple shooting intervals
o (ng +ny) - N 4 n, decision variables

o ODE is satisfied upon convergence of NLP solver (— simultaneous

approach)

o Constraints are enforced at discretization points only

©

Handles unstable systems much better than single shooting

©

Workhorse method for this course (exercises and projects)
o In case of convergence problems, initialize with feasible trajectory

o Other variants of multiple shooting rely on variable step-size integrators;

not discussed here

Direct Approach for Numerical Optimal Contro 12



o Direct Collocation
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Parameterization of Controls via Polynominals

o N-stage time splitting: [to,tf] = {[to,t1], ..., [Env—1,tN]} tn =t

o In each interval [t,tr41] approximate u(-) by polynomial functions

Ly t—t
Oy = Uk(twe)ly = 3 whigh () P 1.
~—_——

i=0 b — U
7(t)€[0,1]
with [-]; j-th element.
- . [u(®)];
o Decision variables on [tg, tg41] @ T - (My + 1)
o Collocation points:
=t <t <o <M <ty whMul o e a2 !
@ L] I P
o Lagrange polynomials with 74 = 7(£;"), ’;1 ! '
wk’ “““ : !
R i =0 L (1) (2) (ML)
oM (r) = v RS
Hq=07q;ﬁiﬁ if M2>1 k k1
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Direct Collocation (Direct Transcription Method)

o State collocation: [z(t)];, j = 1,..,n, expressed via polynomial functions

(2 (8); = Xt )l Za ()

te+1 — Tk

o Time derivative of parameterized states trajectory:

M

o =gyt = 2 ()
o The collocation conditions
= Xp(t, ar)
PO 000, Ut ) = 5300 ). i = 1,0,

summarized as cg(xg, ag,wy) = 0.
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Direct Collocation (Direct Transcription Method)

Discretized OCP:

subject to

AV

v

min
X,o,w

xro — &
ck(Th, o, Wi
Xi(tht1, ar)
h(zg,wy)

r(zN)

N-1

M(zn) + Z L (xn, ok, wr)

k=0

INITIAL CONDITION
k€{0,1,..,N —1} COLLOCATION CONDITIONS
k€ {0,1,..,N —1} CONTINUITY CONDITIONS
ke{0,1,..,N -1} PATH CONSTRAINTS

TERMINAL CONSTRAINTS

with X = (20, 21,...,2Nn), & = (@0, 01, ..., an—1) and w = (Wo, W1, ..., WN—1)

Direct Approach for Numerical Optimal Control



Direct Collocation (Direct Transcription Method)

Remark:
o The resulting NLPs are large scale.
o Number of stages and collocation points has to be chosen as a prior.

o Infeasible path method: ODEs satisfied at convergence only — computationally

efficient, unstable systems doable!
o Stage times can be optimized too.

o Path constraints via inequality constraints at collocation points.

©

Pseudospectral Methods

(]

Variant of orthogonal collocation with 1 stage and high-order

polynomials.

Direct Approach for Numerical Optimal Contro 17



Direct Collocation (Direct Transcription Method)

Example: Lotka Volterra fishing problem

mi /0 (1(t) — 12 + (a2(t) — 1)%dt

u(-)

subject to j?l(t) _ $1(ﬁ) — xl(t) . l‘g(t) — 0.2$1(t> . u(t)

jfg(t) —l‘g(t) + xl(t) . l‘g(t) + O.4x2(t) . U(t)
(a:(0) xg(O))T ~ (05 0.7)T
u(t) € 10,1], t € [0,12]

with 21 and x5 the scaled population densities of a prey and a predator

species.
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Essential Tricks

o Input Rate Constraints: 4(t) € [Umin, Umax]

o introduce & = [¢",u"]" with & = v;

f(z,u)

v

o augmented dynamic i= with v € [tmin, Umax]-

o Free End-Time Problems: t; decision variable

o time transformation: ¢t = to + 7(ty — to) with 7 = ti:—t?o € [0,1];

o dynamics: @(r) = W 4 — (t; — 40) f(x(T),u(T)).

o Scaling of Input and State Variables: adjust the range

o invertible scaling matrices ¥, and X,;
o scaled state and control £ = ¥,x and @ = ¥,u;
o dynamic:

E=3.f(2"'2 2, ).
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