EE-736

Nonlinear Programming

(*]

Basic Notions of Nonlinear Programming

©

Necessary Conditions of Optimality

(]

Interpretation of Lagrange Multipliers

©

Minimal Primer on Algorithms for NLPs

o Computation of Derivatives

Yuning Jiang

EPFL

Contents

o Basic Notions of Nonlinear Programming

Nonlinear Programming

Nonlinear Program (NLP)

Problem formulation:

i ; bject t
in f(x) subject to

Nonlinear Programming

Nonlinear Program (NLP)

Problem formulation:

i bject t
in f(x) subject to

o Objective f : R"™ — R;

o Equality constraints h(x) : R™ — R™, h(z) = [hi(x),

oo oy, (2)] T

o Inequality constraints g(z) : R" — R"s, g(z) = [g1(2), ..., gn, (z)] T

Nonlinear Programming

Why discuss NLPs in this course?

o Nonlinear Programming = optimization in Euclidian space

o Optimal Control (OC) = optimization in a function space

Nonlinear Programming

Why discuss NLPs in this course?

o Nonlinear Programming = optimization in Euclidian space
o Optimal Control (OC) = optimization in a function space
o NLP techniques are used to solve Optimal Control Problems (OCP)

o Discrete-time optimal control = NLP

Vke{0,...,N—1}

N-1
Tt1 — f(Tr,ur) =0
min Z l(xk,ur) subject to
{z}{ur} =0 To — =0

g(xr,ur) <0

o Continuous-time dynamics — approximate solution obtained via NLPs

Nonlinear Programming

Example — Nonlinear Program

Nonlinear Programming

Example — Nonlinear Program

min (21 — 3)% + (22 — 2)?
zER?

subject to

T2

gi(z) =28 —23-3<0
ga(x) =22 —1<0

g3(r) = —x1 <0

Nonlinear Programming 8

Feasibility

Definition (Feasible Set)

S:={z €R"™ |h(z) =0 and g(z) <0}

Nonlinear Programming

Feasibility

Definition (Feasible Set)

S:={z €R"™ |h(z) =0 and g(z) <0}

o Consider NLP
min f(z)

z€eS

with feasible set S C R"=.

S # () <= NLP is feasible.

Nonlinear Programming

Definition of Optimality — Infimum

Definition (Infimum)

The infimum of a partially ordered set S, denoted as inf S, provided
it exists, is the greatest lower bound for z € S, i.e., a real number «
satisfying

1. 2> a,Vz€S;

2. Ya > «,3z € S such that z < a.

Nonlinear Programming

Definition of Optimality — Minimum

Definition

A point z* € S is said to be a (global) minimizer of f on S C R™= if
fl@) > f(z*), Vx €S,

and f(x*) is called (global) minimum of f on S.

Nonlinear Programming 12

Definition of Optimality — Minimum

Definition

A point z* € S is said to be a (global) minimizer of f on S C R"= if
f@) > f(a*), Voes,

and f(x*) is called (global) minimum of f on S.

It is said to be a strict (global) minimizer of f on S C R™= if
f(x) > f(&"), VzeS, z#a7,

and f(a*) is called strict (global) minimum of f on S.

Nonlinear Programming

Definition of Optimality — Local Minimum

e-ball around Z (or e-neighborhood):

B.(z) :={x e R™ |||z — Z|| < e} CR"

Nonlinear Programming

Definition of Optimality — Local Minimum

e-ball around Z (or e-neighborhood):

B.(z) :={x e R™ |||z — Z|| < e} CR"

Definition (Local minimum)

A point z* € S is said to be local minimizer of f, if
Je>0,Vz eB(z")NS, f(z)> f(z¥).
It is said to be a strict local minimizer of f on S if

Je>0, Vo eB(z") NS, f(x)> f(z").

Nonlinear Programming

Existence of Minima and Maxima

Theorem (Extreme value theorem)

Let S be nonempty and compact and let f be continuous on S.

Then, the following problem has a minimizer in S,

min f(z).

€S

Nonlinear Programming 16

Existence of Minima and Maxima

Theorem (Extreme value theorem)

Let S be nonempty and compact and let f be continuous on S.

Then, the following problem has a minimizer in S,

min f(z).

€S

_~

Nonlinear Programming 17

Existence of Minima and Maxima

Theorem (Extreme value theorem)

Let S be nonempty and compact and let f be continuous on S.

Then, the following problem has a minimizer in S,

min f(z).

€S

_~

Nonlinear Programming 18

Existence of Minima and Maxima

Theorem (Extreme value theorem)

Let S be nonempty and compact and let f be continuous on S.

Then, the following problem has a minimizer in S,

min f(z).

€S

_~

-
~-

Nonlinear Programming

Convex Analysis

Definition (Convex set)

A set C C R™ is said to be convex if

Ve,y e C, VA €[0,1]: z=Xzx+(1-N)yeC.

Nonlinear Programming

20

Convex Analysis

Definition (Convex set)

A set C C R™ is said to be convex if

Ve,y e C, VA €[0,1]: z=Xzx+(1-N)yeC.

Definition (Convex function)

A function f : C — R is said to be convex on C if its domain C is

aconvex set and if

Vz,ye C, YA€ [0,1]: fAz+ (1 —=Ny) <Af(z)+ (1 —-N)f(y).

Nonlinear Programming 21

Convex Program

Definition (Convex program)

Let C be a nonempty convex set, and let f be convex on C. NLP

min f(x)

zeC

is called a convex program or convex optimization problem.

Nonlinear Programming

22

Convex Program

Definition (Convex program)

Let C be a nonempty convex set, and let f be convex on C. NLP

min f(x)

zeC

is called a convex program or convex optimization problem.

Theorem
Let x* be a local minimizer of a convex program, then x* is a also a

global minimizer.

Nonlinear Programming

23

Exercises

Given a convex function f : R"* — R and a non-empty compact set
S CR™=. Let dS denote the boundary of the set S.

Which of the following statements are correct? Justify your answers.

a) The minimum of f on S is unique.

Nonlinear Programming

24

Exercises

Given a convex function f : R"* — R and a non-empty compact set

S CR™=. Let dS denote the boundary of the set S.

Which of the following statements are correct? Justify your answers.

a) The minimum of f on S is unique.

b) The minimizer of f on S is unique.

Nonlinear Programming

25

Exercises

Given a convex function f : R"* — R and a non-empty compact set

S CR™=. Let dS denote the boundary of the set S.

Which of the following statements are correct? Justify your answers.

a) The minimum of f on S is unique.

b) The minimizer of f on S is unique.

c)
argrxneigf(x) N 9S8 #0

Nonlinear Programming

26

Exercises

Given a convex function f : R"* — R and a non-empty compact set

S CR™=. Let dS denote the boundary of the set S.

Which of the following statements are correct? Justify your answers.

a) The minimum of f on S is unique.

b) The minimizer of f on S is unique.

c)
arglxneigf(x) N 9S8 #0

d)
arg max flz) N aS#£0

Nonlinear Programming

27

Exercises

Given are the following for optimization problems:

al)

minc-z subjectto0 <z <1
z€eR

with ¢ € R arbitrary.

Nonlinear Programming

28

Exercises

Given are the following for optimization problems:
al)

minc-z subjectto0 <z <1
z€eR

with ¢ € R arbitrary.
al) Solution:

o If ¢ > 0, the minimizer does not exist.

o If ¢ =0, any z satisfying 0 < z < 1 is a minimizer.

o If ¢ <0, the minimizer is z = 1.

Nonlinear Programming

29

Exercises

Given are the following for optimization problems:

a2)

inf c-x subjectto0<z<1
z€eR

with ¢ € R arbitrary.

Nonlinear Programming

30

Exercises

Given are the following for optimization problems:
a2)

inf c-x subjectto0<z<1
z€eR

with ¢ € R arbitrary.
a2) Solution:

o If ¢ > 0, the infimum is 0 and x — 0.

o If ¢ =0, the infimum is 0 with any z satisfying 0 < z < 1.

o If ¢ <0, the infimum is ¢ and z = 1.

Nonlinear Programming

31

Contents

o Necessary Conditions of Optimality

Nonlinear Programming

32

Notation: Gradients and Partial Derivatives

Consider a function f : R" — R,

o Partial derivative (the Jacobian) of f

oz Oxy "7 0T,

% _ [ﬁ af af } c RIX7e

o Gradient of f

.
Vf= (gi) cR"™

o feC™ fisn-times continuously differentiable on R"=

Nonlinear Programming

33

Consider NLP

Peq

Nonlinear Programming

Equality Constrained Problem

min
rER"z

f()

subject to h;(z) =0,i€ & :={1,..,np}

34

Equality Constrained Problem

Consider NLP

Peq : mﬂén f(z) subject to h;(x) =0, i€ & :={1,...,nu}
TER"z
Definition (Regular point)
Consider S := {x € R" |h;(x) =0, i € £} with continuously
differentiable h; : R?* — R, i € £ on R"=.
A vector Z € S is said to be a regular point if the gradient Vh;(Z),

1 € & are linearly independent, i.e.,

oh

— € R™*"= js full row rank.

ox

Nonlinear Programming 35

Equality Constrained Problem

Consider NLP

Peq : mﬂén f(z) subject to h;(x) =0, i€ & :={1,...,nu}
TER"z
Definition (Regular point)
Consider S := {x € R" |h;(x) =0, i € £} with continuously
differentiable h; : R?* — R, i € £ on R"=.
A vector Z € S is said to be a regular point if the gradient Vh;(Z),

1 € & are linearly independent, i.e.,

oh

— € R™*"= js full row rank.

ox

This is also called linear independence constraint qualification (LICQ).

Nonlinear Programming 36

Equality Constraints — Example

S={zeR®: hi(z) =0, i€c{1,2}} ‘.

hi(z) = w3 — (2 + 23)

hg(x) = T3 — 1

Nonlinear Programming 37

Equality Constraints — Example

S={zeR®: hi(z) =0, i€c{1,2}}
hi () = 25 — (af + 23)

hz((E) = T3 — 1

Nonlinear Programming

38

Necessary Condition of Optimality

Theorem (1st order optimality condition)
Consider Problem P.q and let f :R"™ — R, h; :R"* - R, i€ &
be continuously differentiable on R™= .

If a local minimizer x* is a regular point of the constraints, then

there exists a unique vector * € R™ such that

V£(z*) + VA(z*)A* =0.

Nonlinear Programming

39

Active Constraints and Active Set

Consider generic NLP

i, f(@)
Pieq : hi(z) =0, i€ &:={1,..,n,}
subject to

gi(x) <0, i €Z:={1,..,n4}

Nonlinear Programming

40

Active Constraints and Active Set

Consider generic NLP

i, f(@)
Pieq : hi(z) =0, i€ &:={1,..,n,}
subject to

gi(x) <0, i €Z:={1,..,n4}

Definition (Active Constraint)

A constraint g; is said to be active at z, if g;(z) = 0.

Nonlinear Programming

41

Active Constraints and Active Set

Consider generic NLP

i, f(@)
Pieq : hi(z) =0, i€ &:={1,..,n,}
subject to

gi(x) <0, i €Z:={1,..,n4}

Definition (Active Constraint)

A constraint g; is said to be active at z, if g;(z) = 0.

Definition (Active Set)

The active set A(z) at any feasible Z of Pipeq is denoted by

A(Z) = £ U {i € Z|gs(F) = 0).

42

Nonlinear Programming

Regular Points of General NLPs

Definition
Let h;, 2 € £ and g;, © € Z be continuously differentiable on R™= and
let

Vga(x) = [Vgi()], i € TN A(T)

with a feasible point z of Z¢q. Then, Z is said to be a regular point
if
rank([VA(z), Vga(@)]") = |A(@)|-

43

Nonlinear Programming

Karush-Kuhn-Tucker (KKT) Conditions

Definition (KKT point)
Let f, h;, i € £ and g;, i € Z be continuously differentiable on R"™=.
Consider Problem Zi.q, any pair (z, A, k) with € R™*, A € R™*

and k € R™s satisfying

STATIONARITY 0=V f(z)+ Z AiVhi(z) + Z ki Vgi(x)

€€ i€l
PRIMAL FEASIBILITY 0= h;(z), i€ €&, 0> g;(x), i€
DUAL FEASIBILITY 0<&k;, t €T
COMPLEMENTARITY 0 = k;g;(x), i €T

is called a KKT point of Pjeq.

44

Nonlinear Programming

KKT Necessary Conditions of Optimality

Theorem

Consider Problem Zi.q and let f, h;, i € £ and g;, i € L be
continuously differentiable on R™=. If

o z* is a (local) minimizer of Picq and

o x* is a regular point,

then there exist * € R™ and k* € R"s such that (z*, *,k*) is a
KKT point of Picq.

Nonlinear Programming

45

Consider NLP

. 3
min |(x; — =
Tz€R? 2

Exercises

2
) + (2o —t)* subject to

$1+1'2—1§0
Ilfl’gflgo
-1+ 22 —1<0

—$1—l‘2—1§0

For what value of ¢ does x* = [1,0] " satisfy the KKT condition?

Nonlinear Programming

Exercises

Consider NLP
932—(1—1’1)3 SO

mig —2x1 + x2 subject to
ek 1—-0.2522 —25 <0

the optimal solution is 2* = [0,1] T, questions:
a) Is z* a regular point?

b) Are the KKT conidtions satisfied?

Nonlinear Programming

47

Contents

o Interpretation of Lagrange Multipliers

Nonlinear Programming

48

Consider NLP

Nonlinear Programming

Equality Constrained NLP

m}én f(z) subject to h(zx) =0
xeR"x

49

Equality Constrained NLP

Consider NLP

rER

min f(z) subjectto h(z) =0

Necessary condition of optimality:

Vi(@®)+ Vh(z)A* =0

h(z*) =0

Nonlinear Programming

Equality Constrained NLP

Consider NLP

m}én f(z) subject to h(zx) =0
rzeR"x

Necessary condition of optimality:
Vi(@®)+ Vh(z)A* =0
h(z*) =0

Question: how does the minimum f(z*) change for varying constraints

h(z) = c?

Nonlinear Programming

Interpretation of Lagrangian Multipliers

Perturbed problem

P min f(z) subjectto h(zx)=c

zER"x

Nonlinear Programming

Interpretation of Lagrangian Multipliers

Perturbed problem

P min f(z) subjectto h(zx)=c

rER"=

Assumption

For each ¢, & has a unique regular solution, i.e.,
€ (c) =argmin f(x) subject to h(xz)=-c
¢*(¢c)= min f(x) subjectto h(x)=-c

with £*(0) = z* and ¢*(0) = f(z*).

Nonlinear Programming

Interpretation of Lagrangian Multipliers

h(E*(0) =c = Vih(€7(c)) TV () =1

Interpretation of Lagrangian Multipliers

h(E*(0) =c = Vih(€7(c)) TV () =1

Vo (c) O=Vc£*(0)Twa($*)

=~ Ve (0) ' Vah(€7(0) " X
I

:—)*

Interpretation of Lagrangian Multipliers

o The Lagrange multiplier A* can be interpreted as the sensitivity of the
optimal objective function with respect to changes in the constraint

h(z) = 0.

Nonlinear Programming

Interpretation of Lagrangian Multipliers

o The Lagrange multiplier A* can be interpreted as the sensitivity of the

optimal objective function with respect to changes in the constraint
h(z) = 0.

o In Economics Lagrange multipliers are used to characterize marginal

values or shadow prices.

Nonlinear Programming 57

Interpretation of Lagrangian Multipliers

o The Lagrange multiplier A* can be interpreted as the sensitivity of the

optimal objective function with respect to changes in the constraint

h(z) = 0.

o In Economics Lagrange multipliers are used to characterize marginal

values or shadow prices.

o Can be extended to general NLPs with inequality constraints g(x) < ¢:

multipliers k* & sensitivity of f(z*) with respect to c.

Nonlinear Programming 58

Interpretation of Lagrangian Multipliers

o The Lagrange multiplier A* can be interpreted as the sensitivity of the
optimal objective function with respect to changes in the constraint
h(z) = 0.

o In Economics Lagrange multipliers are used to characterize marginal
values or shadow prices.

o Can be extended to general NLPs with inequality constraints g(x) < ¢:

multipliers k* & sensitivity of f(z*) with respect to c.

o Inactive inequality constraints k} = 0, i € Z\(Z N A(z*)) = no change

of optimum for small perturbations.

Nonlinear Programming 59

Interpretation of Lagrangian Multipliers

o The Lagrange multiplier A* can be interpreted as the sensitivity of the
optimal objective function with respect to changes in the constraint
h(z) = 0.

o In Economics Lagrange multipliers are used to characterize marginal

values or shadow prices.

o Can be extended to general NLPs with inequality constraints g(x) < ¢:
multipliers k* & sensitivity of f(z*) with respect to c.

o Inactive inequality constraints k} = 0, i € Z\(Z N A(z*)) = no change

of optimum for small perturbations.

o Active inequality constraints k] > 0, i € Z N A(z*) = enlarged feasible

region, optimal cost cannot increase.

Nonlinear Programming 60

Contents

o Minimal Primer on Algorithms for NLPs

Nonlinear Programming

61

Algorithm Concepts

Algorithm:

o Given an initial point 2° compute a sequence {x"*} by repeated

application of an algorithmic rule.

o Objective: make {z*} converge to a point Z.

Nonlinear Programming 62

Algorithm Concepts

Algorithm:

o Given an initial point 2° compute a sequence {x"*} by repeated

application of an algorithmic rule.
o Objective: make {z*} converge to a point Z.

Why do we talk about algorithms for NLPs?

Nonlinear Programming

63

Algorithm Concepts

Algorithm:

o Given an initial point 2° compute a sequence {x"*} by repeated

application of an algorithmic rule.
o Objective: make {z*} converge to a point Z.
Why do we talk about algorithms for NLPs?

o Solvers usually require initial guess and termination criteria = basic

understanding of solution algorithms necessary to use solvers.

o Solvers often terminate prematurely = understand and diagnose reasons?

Nonlinear Programming 64

Global and Local Convergence

Definition (Global convergence)

An algorithm is said to be globally convergent if, for any initial point
20, it generates a sequence of points that converges to a point Z in

the solution set.

Nonlinear Programming 65

Global and Local Convergence

Definition (Global convergence)
An algorithm is said to be globally convergent if, for any initial point
20, it generates a sequence of points that converges to a point Z in

the solution set.

Definition (Local convergence)
An algorithm is said to be locally convergent if there exists p > 0
such that for any initial point 20 with ||2° — Z|| < p, it generates a

sequence of points that converges to a point x in the solution set.

Nonlinear Programming 66

Order of Convergence

Definition

The order of convergence of a sequence {xk} with lim z* = Z, is
k—o0

the largest non-negative number p such that

k+1

|l =]
lim 2 I _ .
dm kg P <

Nonlinear Programming 67

Order of Convergence

Definition

The order of convergence of a sequence {z*}, with klim x
xde el

the largest non-negative number p such that

k+1

[—]

lim = < o0.

koo ||zF —z||P

o p=1and 5 <1 = linear convergence
o p=1 and 5 = 0 = superlinear convergence
o p=1and =1 = sublinear convergence

o p = 2 = quadratic convergence

Nonlinear Programming

k _—

68

Order to Convergence

Definition
The order of convergence of a sequence {z*}, with klim x
—00

the largest non-negative number p such that

N |
1 —
A T =g P
Example:
¥ =1+40.5F
e =14 K7k

Nonlinear Programming

k

=z, Iis

69

Newton’s Methd for Nonlinear Equations

Given a function F': R™ — R"™, search for solutions of the nonlinear
equation

F(x) =0 with FeC.

Nonlinear Programming

70

Newton’s Methd for Nonlinear Equations

Given a function F': R™ — R"™, search for solutions of the nonlinear
equation

F(x) =0 with FeC.
Main idea:

o Start with xy and solve linear equations

F(z®) + M (@) (2" —2F) =0, ke {1,2,...}.

Nonlinear Programming

71

Newton’s Methd for Nonlinear Equations

Given a function F': R™ — R"™, search for solutions of the nonlinear

equation
F(x) =0 with FeC.
Main idea:

o Start with xy and solve linear equations
F(z®) + M (@) (2" —2F) =0, ke {1,2,...}.
o Matrix M (x), € R™*"= chosen in such a way that
F(z®) + M(a")(z — 2%) = F(z)

is an approximation of F.

Nonlinear Programming

72

Newton’s Methd for Nonlinear Equations

Given a function F': R™ — R"™, search for solutions of the nonlinear

equation
F(x) =0 with FeC.
Main idea:

o Start with xy and solve linear equations
F(z®) + M (@) (2" —2F) =0, ke {1,2,...}.
o Matrix M (x), € R™*"= chosen in such a way that
F(z®) + M(a")(z — 2%) = F(z)

is an approximation of F.

o M(z*) = OF (2*) corresponds to the so called Newton method.

Nonlinear Programming

3

Newton’s Method for Nonlinear Equations

If M (%) is invertible, the method can be written in the form

" =ab — MR R (), ke {1,2,..).

Nonlinear Programming

74

Newton’s Method for Nonlinear Equations

If M (%) is invertible, the method can be written in the form

" =ab — MR R (), ke {1,2,..).

o In practice, we usually work with approximations M (z*) ~ OF (z*).

Nonlinear Programming 75

Newton’s Method for Nonlinear Equations

If M (%) is invertible, the method can be written in the form

" =ab — MR R (), ke {1,2,..).

o In practice, we usually work with approximations M (z*) ~ OF (z*).

o If M(x*) is independent of z*, we only need to decompose M once

(e.g., using LR or QR decomposition).

o Some methods try to update M at every step without re-computing the

Jacobian (e.g., BFGS update).

Nonlinear Programming

76

(7]

(+]

Scaling Properties of Newton’s Method

F(z*)=0= 5 F(z*) = 0 with § € R"*" any (invertible) scaling

matrix.

Applying Newton's method to solve scaled equation
F(z)=5-F(z)=0

yields iteration z*+1 = 2k — M (2%)~1S . F(2*).

Using exact Jacobian M (z*) = OF (z*), we have
oF L = aF — 9F (%) F (2F).

Newton's methods with exact Jacobians is invariant under scaling.

Nonlinear Programming ”

Local Convergence of Newton’s Method

Assumption

o There exists a point x* with F(z*) = 0.

o The initial point x° is already in a small neighborhood of x*.

o Matrix M (x*)~*0F () is Lipschitz continuous w.r.t. x in a

neighborhood of x* with constant w > 0.

Nonlinear Programming

78

Local Convergence of Newton’s Method

Assumption
o There exists a point x* with F(z*) = 0.
o The initial point x° is already in a small neighborhood of x*.

o Matrix M (x*)~*0F () is Lipschitz continuous w.r.t. x in a

neighborhood of x* with constant w > 0.

The basic idea is to estimate the distance of the iterates to x*:

e+t o

= ka — M(Jck)_lF(a:k)H
= sz —a* — M(2F)7! fl OF (z* + s(:ck —z*))(2F — 2*)ds
Ha:k — " — M(2®)"1OF () (2% — 2*

IN

%112

2 Hm -7

Nonlinear Programming 79

Local Convergence of Newton’s Method

In summary, we have the estimate

41— 2 :

Sn“xk—x* —|—%ka—x*|

as long as |1 — M(2*)"*9F (2¥)|| < n. Here, 1) can be interpreted as a

bound on the accuracy of the Jacobian approximation M.

Nonlinear Programming 80

Local Convergence of Newton’s Method

In summary, we have the estimate

o+ o) < :

* |

Yk
+2Hx T

as long as |1 — M(2*)"*9F (2¥)|| < n. Here, 1) can be interpreted as a

bound on the accuracy of the Jacobian approximation M.

If we have < 1 and [|2° — z*|| < 2(1 — 1), the iterates contract and we
have

lim z* — z*.
k—o00

Nonlinear Programming 81

Convergence of Newton’s Method

The convergence rate estimate

ka-s-l e 2

Sn“xk—x* —|—%ka—x*|

implies that

82

Convergence of Newton’s Method

The convergence rate estimate

ka-s-l e 2

Sn“xk—x* —|—%ka—x*|

implies that

o if we have 0 < 1 < 1, the convergence rate is linear.

Nonlinear Programming

83

Convergence of Newton’s Method

The convergence rate estimate

ka-u e 2

g k.
+ 3 [|=* — a*|
implies that

o if we have 0 < 1 < 1, the convergence rate is linear.

o if we choose M (z*) = OF(2*), we have = 0 and
o = ot < 5 fl=* — 2"
2

In this case, the convergence rate is quadratic.

Nonlinear Programming

84

Exercises

Let scalar function f : R — R be three times continuously differentiable
with bounded third-order derivative. The first and second derivative of f are

denoted by f’ and f”, respectively. We additionally assume:
o f(z*) =0 and f’(z*) =0 at a point z* € R;

o f'(z") #0.

k
Prove that the iterates of the exact Newton method, z*+

1 .k fE&)
=TT TEh)

converge locally with cubic convergence rate, i.e.,

3
! *| , Y < oo.

fa:*|§'y’xkfx

85

Nonlinear Programming

Solution:

1. Locally, we have

’$k+1 —x*

= |T

Nonlinear Programming

k

:I/'*

Exercises

f(@*)
f'(@F)

_ k;_ * 1 xk /
= fet = g [e

86

Exercises
Solution:

1. Locally, we have

X

’$k+1 e

k 1 «
=|z" — 2% — —— f(z)dz
f'(@*) /ac
2. For the integral above, we can substitute the Taylor expansion,

F1(2) =f' (@) + f(@®) (2 = %) + O(lz — ™)
=f'(@*) + O(|a* — a*||z = ™) + Oz — ")

Nonlinear Programming 87

Exercises

Solution:

1. Locally, we have

’,’Ek+1 — 2| =

_ k% _ 1 “ /
=|z" -z e /x fl(z)dz

2. For the integral above, we can substitute the Taylor expansion,
F(2) =f' (@) + f"(a")(z = 2*) + O(|z — 2*?)
—f'(a*) + O(jak — 2|z — 2*]) + O (| — 2*?)

<ok -z _W/z* f'(z®)dz

xk-‘,—l _ Z‘*| <

3. Thus, we have

+0(|z" — 2%

—0(s* —"[?)

88

Nonlinear Programming

Newton’s Method for Unconstrained Optimization

Problem formulation:

min f(z)

rER"=

Remark
o If f is twice Lipschitz-continuously differentiable, a minimizer can

be founded by applying Newton'’s method to
Vf(z)=0.

o If a solution x* satisfies V2 f(x) = 0, it must a local minimizer.

Nonlinear Programming 89

Newton’s Method for Unconstrained Optimization

Newton-type iteration for unconstrained optimization problem
af = 2k — M (2P TV f(aF)

with M (2*) ~ V2 f(2*) a suitable Hessian approximation.
o In practice, we often choose a symmetric M.

o If M(z*) is symmetric and positive definite, the iterate 2**! is the

minimizer of the quadratic function

HI}}H f((ﬂk) + vf(xk)'r(l,ka _ l’k) + %(:L,kJrl ka)TM(xk)(ka 7:L'k),

which can be interpreted as a quadratic model of f.

Nonlinear Programming 90

Line Search Methods

So far, we have only analyzed the local convergence properties of
Newton-type methods. If we start far from a local solution, Newton type

methods are often take “too big"” steps and are divergent.

Nonlinear Programming 91

Line Search Methods

So far, we have only analyzed the local convergence properties of
Newton-type methods. If we start far from a local solution, Newton type
methods are often take “too big"” steps and are divergent.

One way to fix this problem is to first compute a step-direction by
AzF = —M(2*)"1V f(zF)
and update the iterate as

2T = 2F + oFAZE.

Nonlinear Programming

92

Line Search Methods
So far, we have only analyzed the local convergence properties of
Newton-type methods. If we start far from a local solution, Newton type
methods are often take “too big"” steps and are divergent.
One way to fix this problem is to first compute a step-direction by

Axh = —M(2") 7V f(2F)
and update the iterate as

aF T = gk 4 oF Ak

Here, o* € (0,1] is a so-called step size, which is found by (approximately)

solving the scalar optimization problem

: k k k
Az”).
Hpy St akart

Nonlinear Programming 93

Armijo Linear Search Conditions

In practice the line search optimization
min f(z" + oFAz®).
ake(0,1]

is not solved exactly (too expensive), but only approximately.

Nonlinear Programming 94

Armijo Linear Search Conditions
In practice the line search optimization

m Azx").
akeég.,l] f(&® 4+ a"Ax")

is not solved exactly (too expensive), but only approximately.
One way to implement this is by using back-tracking until the Armijo
condition
fz® +afAzP) < f(a®)+c- o V(b)) T AP
—_———
DIRECTIONAL DERIVATIVE

for a constant ¢ <« 1 is satisfied.

Nonlinear Programming

95

Armijo Linear Search Conditions
In practice the line search optimization
min f(z" + oFAz®).
ake(0,1]
is not solved exactly (too expensive), but only approximately.

One way to implement this is by using back-tracking until the Armijo

condition

fz® +afAzP) < f(a®)+c- o V(b)) T AP
—_———
DIRECTIONAL DERIVATIVE
for a constant ¢ < 1 is satisfied. This condition ensures that the line search
parameter is not excessively large, although it is not sufficient to prove

convergence in general.

Nonlinear Programming 9

Quasi-Newton Methods — Preliminaries

One way to represent invertible matrices is by considering matrices of the
form
A= B, + UV’
~—~ ~——
EASY-TO-STORE LOW RANK

with B € R"*™ and U,V € R™™"™, m < n.

Nonlinear Programming 97

Quasi-Newton Methods — Preliminaries

One way to represent invertible matrices is by considering matrices of the

form
A= B + v’
~— N——
EASY-TO-STORE LOW RANK

with B € R"*™ and U,V € R™™"™, m < n.

If B is easy to invert or B~! is already known, we have A~! as
(B+UV) '=B"'-BlUq+Vv'B'U)"'v B,

which is the so-called "Woodbury's matrix inversion formula".

Nonlinear Programming 98

Quasi-Newton Methods — Broyden’s Updates

The Newton-type iterates

ot ="t = M@t)TV (@), T = ek - M@R) TV f (),

Nonlinear Programming 99

Quasi-Newton Methods — Broyden’s Updates

The Newton-type iterates
oF =gt - M(2FHTIV (2R, 2 =2 — MR TV (R, .

We have to compute the gradient V f at each iteration such that we can

obtain the directional estimate

V@)@ = ah) & V) = V).

Nonlinear Programming 100

Quasi-Newton Methods — Broyden’s Updates

The Newton-type iterates
oF =gt - M(2FHTIV (2R, 2 =2 — MR TV (R, .

We have to compute the gradient V f at each iteration such that we can

obtain the directional estimate
V2 (@ = a®) = V(F) = V f ().
Questions: can we use this relation to improve our next Hessian

approximation M (zF*1) =~ V2 f(zk+1)?

Nonlinear Programming 101

Quasi-Newton Methods — Broyden’s Updates

Define d* = 2*+1 — 2% and y* = Vf(2**1) — V f(2*), the relation

V2f(:z:k+1)dk ~ yk

Nonlinear Programming

102

Quasi-Newton Methods — Broyden’s Updates

Define d* = 2*+1 — 2% and y* = Vf(2**1) — V f(2*), the relation
V2f(:z:k+1)dk ~ yk

motivates to improve our current estimate of V2f constructing M™* by

solving

min % Mt — M(;v’“)“j, subject to MTd* = ¢*

with || - || the Frobenius norms (|| X||Z = Tr(X X)).

Nonlinear Programming

103

Quasi-Newton Methods — Broyden’s Updates

o Broyden's update

(M (a*)d> —y*)(d") "
113

MT = M(2") -

o Inverse Broyden's update

(d* — M(a*)~ty*)(d") T M (a*) "

(M+)_1 = M(xk)_l + (dk:)'l']\/[(xk)flyk

Nonlinear Programming

104

Quasi-Newton Methods — Broyden’s Updates

o Broyden's update

(M (a*)d> —y*)(d") "

k
MY = M@") - TG

o Inverse Broyden's update

(d* — M(a*)~ty*)(d") T M (a*) "

(M+)_1 = M(xk)_l + (dk:)'l']\/[(xk)flyk

Remarks:

o both update are rank-1 update.

Nonlinear Programming

105

Quasi-Newton Methods — Broyden’s Updates

o Broyden's update

(M (a*)d> —y*)(d") "
113

MT = M(2") -
o Inverse Broyden's update

() — (a4 M) @) T)

(d)T M (2F)~TyF
Remarks:
o both update are rank-1 update.

o we don't need to compute any second order derivatives.

Nonlinear Programming

106

Quasi-Newton Methods — Broyden’s Updates

o Broyden's update

M xk dk_ k dk T

o Inverse Broyden's update

. L (dF = M(eF)) (dR) T M (k)
art) = e+

Remarks:
o both update are rank-1 update.

o we don't need to compute any second order derivatives.

o we can directly compute M !, no inversion needed.

Nonlinear Programming

107

Quasi-Newton Methods — Broyden’s Updates

o Broyden's update

M xk dk_ k dk T

o Inverse Broyden's update

() — (a4 M) @) T)

(dk)T]\/[(l.k)flyk

Remarks:

o both update are rank-1 update.

o we don't need to compute any second order derivatives.
o we can directly compute M !, no inversion needed.

But: M* may be non-symmetric even if M (x*) was symmetric.

Nonlinear Programming

108

Quasi-Newton Methods — BFGS Updates
Broyden-Fletcher-Goldfarb-Shanno Updates

The idea is to maintain the symmetry of the updates by solving

' Merk :yk

min EHMJr fM(xk)Hz subject to
M+ 2 (M) TdF =y

Nonlinear Programming 109

Quasi-Newton Methods — BFGS Updates
Broyden-Fletcher-Goldfarb-Shanno Updates

The idea is to maintain the symmetry of the updates by solving

1) Merk :yk
min = |[MT - M(xk)H subject to
M+ 2 (M) TdF =y
with [[MF = M (%) |[* = ||WE (M = (k)W i =

Nonlinear Programming

110

Quasi-Newton Methods — BFGS Updates

Broyden-Fletcher-Goldfarb-Shanno Updates

The idea is to maintain the symmetry of the updates by solving

1) Merk :yk
min = |[MT - M(xk)H subject to
M+ 2 (M) TdF =y
with [[MF = M (%) |[* = ||WE (M = (k)W i =

Tr (W%(M+ ~ M(eF)W(MF - M(xk))W%) :

Here, the norm is (mainly for computational reasons) a weighted Frobenius

norm by W any symmetric positive definite weighting matrix satisfying

Wy = d~.

Nonlinear Programming

111

Quasi-Newton Methods — BFGS Updates
Broyden-Fletcher-Goldfarb-Shanno Updates

o BFGS update:

M(mk)dk(dk>TM(ajk) k

M* = M(a") - (@) T M (zF)d*

<|S
2
_‘
QU
Ea

Nonlinear Programming

112

Quasi-Newton Methods — BFGS Updates
Broyden-Fletcher-Goldfarb-Shanno Updates

o BFGS update:

M (z*)d*(d*) " M («¥) yF (")
k

ME=MEE - =G ihe T)@

o inverse BFGS update:

1 k 4 dk k\T dkdkT
(Mﬂ(l<$%))M“> (- @) + @

Nonlinear Programming

Quasi-Newton Methods — BFGS Updates
Broyden-Fletcher-Goldfarb-Shanno Updates

o BFGS update:

M (z*)d*(d*) " M («¥) yF (")
k

ME=MEE - =G ihe T)@

o inverse BFGS update:

1 k 4 dk ENT dkdkT
oy = (1= e) e (1- e) + ey

Y

o Both are rank-2 update.

Nonlinear Programming

114

Algorithms for Constrained NLPs

Nonlinear program

hi(z) =0,i€ & :={1,...,n}
min f(z) subject to

velns gi(x) <0, i €T :={1,...,n,}

Nonlinear Programming

115

Algorithms for Constrained NLPs

Nonlinear program

hi(z) =0,i€ & :={1,...,n}
II%H f(x) subject to
zeR" @

gi(x) <0, 1€Z:={1,..,ny4}

Convert into unconstrained problem: Solve necessary conditions of optimality:

@ Penalty function method; O Newton-like methods;

@ Interior point method. O Sequential quadratic programming.

Nonlinear Programming

116

Exterior Penalty Function Methods

Penalty function

O(x) =D (hi(x) + > lgi(x)), ¢, ¢ € C°

€€ i€l

: {1/1(2’)0 ifz=0 {gb(z)o if 2z<0
with and
P(z) >0 else #(z) >0 else

Exterior Penalty Function Methods

Penalty function

O(x) =D (hi(x) + > lgi(x)), ¢, ¢ € C°

€€ i€l
e {1/}(2)0 if z=10 and{gf)(z)O if 2<0
P(z) >0 else #(z) >0 else

Typical choice: ¥(z) = |z|P, p € N5 and ¢(z) = (max{0, z})P.

118

Exterior Penalty Function Methods

Unconstrained optimization problem

mﬂén flz)+p- @(z) with p>0.
zeR" @

Nonlinear Programming

119

Exterior Penalty Function Methods

Unconstrained optimization problem
min f(z) + p- ®(z) with x> 0.

rER"=

Remark

o recovering solution of the original problem 1 — oo.

o ill-conditioned for large .

Nonlinear Programming 120

Sequential Unconstrained Optimization

Main idea:

o Start at an initial 2°, update 2* by solving
2F = arg min f(x) + p¥ - (2).

zER"=

o If u*®(z*F*1) < ¢, stop. Otherwise, update p**! = Bu* with 3 > 1.

Nonlinear Programming 121

Sequential Unconstrained Optimization

Main idea:

o Start at an initial 2°, update 2* by solving

zF = arg mlén f(@) + pF - o(2).
zeR"x

o If u*®(z*F*1) < ¢, stop. Otherwise, update p**! = Bu* with 3 > 1.

Remark

o Iterates x* are typically infeasible.

o Remedy? — interior point methods.

Nonlinear Programming

122

Barrier Method

Inequality constrained NLPs

min f(z) subjectto g;(z) <0,i€eZ:={1,..

rER"=

Nonlinear Programming

123

Barrier Method

Inequality constrained NLPs

mﬁn f(xz) subjectto gi(z) <0, ie€Z:={1,...,n4}
rER"=>

Barrier function

b(x) = Z é(gi(z)) with #(z) >0 ifz2<0

i€T lim, ,o- = o0

Nonlinear Programming 124

Barrier Method

Inequality constrained NLPs

mﬁn f(xz) subjectto gi(z) <0, ie€Z:={1,...,n4}
rER"=>

Barrier function

b(x) = Z é(gi(z)) with #(z) >0 ifz2<0

i€T lim, ,o- = o0

Typical choice
d(2) = —In(—=2).

Nonlinear Programming 125

Barrier Method

Main idea:

o Start at an initial feasible point z° with g(z°) < 0, update z* by solving

F1.—arg min f(x) 4 x* - b(z).

rER?

xT

o If u¥ - b(z**1) < ¢, stop. Otherwise, update p*+1 = gu” with g € (0,1).

Nonlinear Programming 126

Barrier Method

Main idea:

o Start at an initial feasible point z° with g(z°) < 0, update z* by solving

F1.—arg min f(x) 4 x* - b(z).

cER"

xT

o If u¥ - b(z**1) < ¢, stop. Otherwise, update p*+1 = gu” with g € (0,1).

Remark

o Iterates x* are always feasible.

o Off-the-shelf solver Ipopt.

Nonlinear Programming 127

Interior Point Method

Inequality constrained NLPs

min f(z) subjectto g;(z) <0,i€eZ:={1,..

rER"

Nonlinear Programming

128

Interior Point Method

Inequality constrained NLPs
min f(x) subjectto g;(xz) <0,i€Z:={1,...,n4}

rER"

KKT condition: Perturbed KKT condition:

Vi(z)+ Vg(z)s =0
Vf(x)+Vg(x)k =0

ki gi(r)=p, i €T

Ki-gi(z)=0,1€T with 1 > 0.

Nonlinear Programming 129

Interior Point Method
Main Idea:

o Apply Newton's method to deal with nonlinear equations

Vfi(x)+ Vg(r)k
Ful) = f(x) + Vyg(x) 0
diag(k)g(z) — - 1,,
o Update p with g — 0, ref. [Chapter 19.3, NW06]

o Linear search is necessary, ref. [Chapter 19.4, NW06]

Nonlinear Programming

130

Interior Point Method
Main Idea:

o Apply Newton's method to deal with nonlinear equations

Vfi(x)+ Vg(r)k
Ful) = f(x) + Vyg(x) 0
diag(k)g(z) — - 1,,
o Update p with g — 0, ref. [Chapter 19.3, NW06]
o Linear search is necessary, ref. [Chapter 19.4, NW06]
Remark

Log-barrier based unconstrained problem min, f(z) + p - b(z) has
KKT conditions equivalent to the perturbed KKT, i.e.,

+Z

—0=>K,i:

gi(x)

Nonlinear Programming

[NWO6] J. Nocedal and S. Wright, Numerical optimization. 2006.

131

Sequential Quadratic Programming (SQP)

Equality constrained NLP

mR@n f(z) subjectto h(x) =0
zeR"x

Nonlinear Programming

132

Sequential Quadratic Programming (SQP)

Equality constrained NLP

min f(z) subjectto h(z)=0

rER"=
x
=0 with y =
A

1st order optimality conditions

Vf(x)+ Vh(z)A
piy < [T+ 90

h(x)

Nonlinear Programming

133

Sequential Quadratic Programming (SQP)

Equality constrained NLP

min f(z) subjectto h(z)=0

rER"=
x
=0 with y =
A

Main idea: applying Newton's method to solve F(y) = 0, i.e.,

1st order optimality conditions

Vf(x)+ Vh(z)A
piy < [T+ 90

h(x)

Ax
A

V£ (@) + Vh(z)A
h(x)

with H(z) = Vau {f(z) + ATh(z)} and A= Vh(z)".

Non 134

inear Programmi

Globalization

How do we measure progress towards a solution?

Nonlinear Programming

135

Globalization

How do we measure progress towards a solution?
Recall: in unconstrained minimization, the main idea was to accept the next

iterate zF 1 if f(xF+1) is sufficiently smaller than f(z¥).

Nonlinear Programming 136

Globalization

How do we measure progress towards a solution?

Recall: in unconstrained minimization, the main idea was to accept the next
iterate zF 1 if f(xF+1) is sufficiently smaller than f(z¥).

In equality constrained optimization we need to measure two things:

1. The objective value f(z) and

2. the constraint violation ||h(z)]]

137

Nonlinear Programming

L1-Penalty Functions

One way to measure progress towards a solution is to introduce the

L1-penalty function

with \; being sufficiently large constants.

Nonlinear Programming

138

L1-Penalty Functions

One way to measure progress towards a solution is to introduce the

L1-penalty function

with \; being sufficiently large constants.
An important property of the function ¥(x) is that (under mild conditions)

we have

U(z*) = f(z*) butalso ¥(x)> f(z)

for all 2 € X within a compact subset X C R™= and \; are sufficiently large

Nonlinear Programming 139

Armijo Line Search Conditions

k

Similar to unconstrained optimization, the line search parameter o can be

found by using back-tracking until the Armijo condition
U(zk 4+ aF AzF) < U(zF) + ¢ o*D(W (), AzF)

for a constant ¢ < 1 is satisfied. Here, D(¥(z*), Az*) denotes the

directional derivative

D(¥(z"), Az") = ||n(z*) + Vh(zF) T Az¥||

Nonlinear Programming 140

SQP for Equality Constrained NLP

1. Choose initial guesses 2 € R™* and A’ € R™", tolerance ¢ > 0.

2. Repeat:
2.1 Choose Hessian approximation M (z*) ~ V., {f + (2% h(azk)} and
A(z®) = Vh(z").
2.2 Solve subQP

min %(Amk)TH(xk)A:ck + V") A

AzkeRnz

subject to h(z") + A(z") T Az =0 | AQF

2.3 Terminate If’Vf TAxk|—|—Zleg Xl |hi(z)| < e.
2.4 Choose a line-search parameter o* € (0,1] and set 2*** = z* + o*Az* and

ARHL = \F 4 gF(AQP — \k).

Nonlinear Programming 141

SQP for Inequality Constrained NLP

o Include linearized inequality constraints in subQPs, i.e.,

1
Aﬁlei%nz i(Axk)TH(xk)Axk + V()T Azk
subject to h(zF) + A(zF) T Az =0
g(z®) + B2®)TAz* <0
with B(z*) = Vg(z¥).
o Use the following L1-penalty function for linear search
V(@) = f@)+ > llha(@)] + Y Rl (max{0, g;(x)})
= i€Z
with sufficiently large \; and ;.

Nonlinear Programming

142

Numerical Implementation

o SubQP infeasible = relax the constraints

Nonlinear Programming

143

Numerical Implementation

o SubQP infeasible = relax the constraints

o Hessian regularization, e.g., M (2*) = V,.{f(x) + ATh(x)} + ol = 0.

Nonlinear Programming 144

Numerical Implementation

o SubQP infeasible = relax the constraints
o Hessian regularization, e.g., M (2*) = V,.{f(x) + ATh(x)} + ol = 0.

o Rank-deficient constraints = reformulated the constraints, e.g.,
mmin x subject to 22 =0
with * = 0 but we cannot find a A* since
0=Vf(x")+ Vh(z")A* =1

is wrong. Replacing 22 = 0 by 2 = 0 can avoid this degeneracy.

Nonlinear Programming 145

Numerical Implementation

o SubQP infeasible = relax the constraints
o Hessian regularization, e.g., M (2*) = V,.{f(x) + ATh(x)} + ol = 0.

o Rank-deficient constraints = reformulated the constraints, e.g.,
mmin x subject to 22 =0
with * = 0 but we cannot find a A* since
0=Vf(x")+ Vh(z")A* =1

is wrong. Replacing 22 = 0 by 2 = 0 can avoid this degeneracy.

o Constraint Jacobian ill-conditioned = scaling, e.g., Ruiz equilibration.

Nonlinear Programming 146

o Computation of Derivatives

Nonlinear Programming

Contents

147

Why do we need to compute derivatives?

Motivation
h(z)=0
min f(z) subject to
me g(z) <0
o Derivatives of objectives and constraints (gradients);

o Sensitivities of ODE or DAEs (needed later);

o Jacobians to solve implicit equations (e.g. implicit ODEs, DAEs, ..

Nonlinear Programming

).

148

Why do we need to compute derivatives?

Motivation

h(z)=0

i bject t
in f(z) subject to

g(x) <0
o Derivatives of objectives and constraints (gradients);

o Sensitivities of ODE or DAEs (needed later);

o Jacobians to solve implicit equations (e.g. implicit ODEs, DAEs,

Main Possibilities
o Numerical differentiation

o Algorithmic differentiation

Nonlinear Programming

).

149

Numerical Differentiation — Finite Differences

The derivative of a twice continuously differentiable function f: R — R can

be approximated by finite differences:

df(a) _ fla+h) -~ f(z)
dx h

Nonlinear Programming 150

Numerical Differentiation — Finite Differences

The derivative of a twice continuously differentiable function f: R — R can

be approximated by finite differences:

(@) _ fa+h)— i)
dx h

o The mathematical approximation error, given by

fla+h)—flz) df(x)]| h|d*f(z)
h dx dxz?

= 0(h)

~3

tends to 0 with A — 0.

Nonlinear Programming 151

Numerical Differentiation — Finite Differences

The derivative of a twice continuously differentiable function f: R — R can
be approximated by finite differences:

df(a) _ fla+h) -~ f(z)
dx h

o The mathematical approximation error, given by
fla+h) = flx) df(x)| h|df(z)
h dx dz?
tends to 0 with h — 0.

~ —0(h)

o How to choose increment h?

h = ,/eps = Limited accuracy,/eps

Nonlinear Programming 152

Numerical Differentiation — Central Differences

In order to reduce the mathematical approximation error, we can use central

differences:

df(z) _ flz+h)—flz—h)

~

dxr 2h

to approximate the derivative of f.

Nonlinear Programming 153

Numerical Differentiation — Central Differences

In order to reduce the mathematical approximation error, we can use central

differences:

df(z) _ flz+h)—flz—h)

~

dxr 2h

to approximate the derivative of f.

o The mathematical approximation error is now

flx+h)— fle—h) df(x)
2h dx

< O(h?)

Nonlinear Programming 154

Numerical Differentiation — Central Differences

In order to reduce the mathematical approximation error, we can use central

differences:
df(x) _ flx+h)— flz—h)

~

dxr 2h

to approximate the derivative of f.

o The mathematical approximation error is now

flx+h)— fle—h) df(x)
2h dx

< O(h?)

o How to choose increment h?

h = ¢eps = Limited accuracy(/eps)’

Nonlinear Programming

155

Numerical Differentiation — Imaginary Trick

The derivative of a continuously differentiable function f : R — R can be

approximated by

F@) m(frih) o
dx h ’ ’

Nonlinear Programming 156

Numerical Differentiation — Imaginary Trick

The derivative of a continuously differentiable function f : R — R can be

approximated by

F@) m(frih) o
dx h ’ ’

o The mathematical approximation error is same as central differences, i.e.,

Im(f(x+i-h)) B df (z)
h dx

< O(h?)

but the computation is cheap.

Nonlinear Programming 157

Numerical Differentiation — Imaginary Trick

The derivative of a continuously differentiable function f : R — R can be

approximated by

df (z) ~ Im(f(x+i-h))
dx h ’

i’ =—1.

o The mathematical approximation error is same as central differences, i.e.,
Im(f(z+i-h)) df(z)
h dx

but the computation is cheap.

< O(h?)

o Sketch Proof:

flx+i-h)=f(x)+i- dj;f)h—%d?;(f)hz—ou-h?’)

Nonlinear Programming

158

Numerical Differentiation — Imaginary Trick

The derivative of a continuously differentiable function f : R — R can be
approximated by

df(x) _Tm(f(x+i-h))

.2
~ - 1.
dr h >

o The mathematical approximation error is same as central differences, i.e.,

Im(f(x+i-h)) B df (z)
h dx

but the computation is cheap.

< O(h?)

o Sketch Proof:

flx+i-h)=f(x)+i- dj;f)h—%d?;(f)hz—ou-h?’)

o Easy to implement in Matlab

Nonlinear Programming

159

Factorable Functions

Many (but not all) functions of our interest can be composed into a finite
list of atom operations from a given library L, e.g.,

L = {+, —, *,sin, cos, exp, ... }.

Nonlinear Programming 160

Factorable Functions
Many (but not all) functions of our interest can be composed into a finite
list of atom operations from a given library L, e.g.,
L = {+, —, *, sin, cos, exp, ... }.
Example

o The function f(z) = sin(z1 * x2) + cos(z1) will (internally) be evaluated

as
Tz = X1 * Ty
x4 = sin(xs)
x5 = cos(xq)
T T4+ T
f(z) = g

Here, the memory for x3, ..., z5 is (usually) allocated temporarily.

Nonlinear Programming 161

Factorable Functions
Consider a given factorable function f : R™ — R™, we define

o augmented state by

Z1 Z1 1

Tn Tn+1 Tn+m

Nonlinear Programming

162

Factorable Functions
Consider a given factorable function f : R™ — R™, we define

o augmented state by

Ln Tn+1 Tn+m
o augmented elementary function by ®; : R**+% — RnHitl1
Z1
i(si) = ' , Sip1 = Pi(si)
Ln4s
Gi(T1, s Trti)

Nonlinear Programming 163

Factorable Functions

Consider a given factorable function f : R™ — R™, we define

o augmented state by

Z1 Z1 1

Tn Tn+1 Tn+m

o augmented elementary function by ®; : R**+% — RnHitl1
Z1

Pi(s;) = : , Siv1 = Pi(s;)

Ln4s
Gi(T1, - Tnpi)
o Representation of f given by f(z) = C - @1 (Pr—2(- - - P1(Po(2))))
with selection matrix C' = [0y xn, L]

Nonlinear Programming 164

Algorithmic Differentiation — Forward Mode
o Recall: the representation of a factorable function f : R™ — R™,
f(2) =C Oy (Prpa(- - P1(Po())))

The Jacobian Jy = % can be written as

09;
asi

Jf:C'Jm_l'Jm_Q"'Jl'JO with J; =

Nonlinear Programming 165

Algorithmic Differentiation — Forward Mode
o Recall: the representation of a factorable function f : R™ — R™,
f(2) =C Oy (Prpa(- - P1(Po())))

The Jacobian Jy = % can be written as

09;
332-

Jr=C-Jp_1-JIp—a---J1-Jo with J; =
o Main idea: the directional derivative J;p with seed p € R™ given by
Jip=C - (Jm-1+ (Jm—2---(J1-(Jop))))
we define p = 39 = [Z1, ..., 4] " such that
Siv1 = Ji(8:)8;, i=1,....m—1

s 1aT A T
with ;41 = [8,, Tntd]

Nonlinear Programming

166

Algorithmic Differentiation — Forward Mode

Example: f(x) = sin(x; * x9) + cos(z1):

T3 = X1 % To T3 = T1*To+ T1 *To
x4 = sin(x3) T4 = cos(x3)is

x5 = cos(xq) 5 = —sin(zq)Z;

T = T4+ Ts Te = T4+ Ts

Result: 76 = 5 V f(2).

Cost(Jy) in forward mode < 2n - Cost(f)

Nonlinear Programming 167

Algorithmic Differentiation — Backward Mode
o Recall: the representation of a factorable function f : R® — R™,

f(@) =C @1 (Pr2(- - P1(Po(2))))

The Jacobian Jy = % can be written as

0P,

= cJm—1 - Iy - - J 'thJi:
Jf C-J, 1 J, 2 Jl 0o wi 887;

Nonlinear Programming 168

Algorithmic Differentiation — Backward Mode
o Recall: the representation of a factorable function f : R® — R™,

f(@) =C @1 (Pr2(- - P1(Po(2))))

The Jacobian Jy = % can be written as

0P,
857;

o Main idea: the adjoint directional derivative)\TJf with seed A € R™

Jp=C-Jp_1-Jmo---J1-Jo withJ; =

given by
)‘TJf = ((((()‘Tc) ' Jm—l) : Jm—2) o Jl) . JO)
we define CT A = §,,, such that

T - .
S; = Ji(si) Si+1, L =M — 1, ,0

P T = T
with ;41 =[S, , Tnti]

Nonlinear Programming

Algorithmic Differentiation — Backward Mode

Example: f(x) = sin(x; * x3) + cos(x1):

= X1 * T2 zg = 1, x; =0, i=1,...,5 define seed
sin(z3) Ty = Tg+ g
cos(x1) Ts = Ty + Te
T4 + 5 Z1 = Z1 —sin(z1)Zs
Ty = Tz + cos(x3)Ta
T1 = X1 + T *xT3
Ty = T2+ 1 * T3

Result: Vf(z) = [Z1,Z2]"

Nonlinear Programming

Cost(Jy) in backward mode < 3m - Cost(f)

170

Exercise

Consider function f: R? = R,

f(z) = sin(z122) + exp(x12223)

with z = [z1, 29, 23] T. Write down
o its factorable form;
o the forward algorithmic differentiation;

o the backward algorithmic differentiation;

Nonlinear Programming

171

Solution:

g4 =

Trs =

Teg =

Ty —

rg —

Nonlinear Programming

X1 * Tg
sin(xz4)
T3 % T4
exp(zs)

x5+ x7

Exercise

Tk To + T * X9
cos(z4)Zy
I3 * Zi'4 + 573 * Ty
exp(z6)To

Ts + T7

172

Solution:

INITIALIZE SEED

Exercises

g =1

DIFFERENTIATION OF g = &5 + 7
Ts5 = Ts + Tg
T7 = T7 + Ty

DIFFERENTIATION OF 27 = exp(Zg)

T = Te + exp(xe)T7

Nonlinear Programming

DIFFERENTIATION OF g = T3 * T4
T3 = T3 + T4 * Tg

T4 = Tg + T3 * Te

DIFFERENTIATION OF x5 = sin(z4)

Ta = Ty + cos(z4)T5

DIFFERENTIATION OF T4 = T1 * To
T1 =1 + T2 * Ta

To = Ty + X1 * Ta

173

Summary

o Nonlinear programming = optimization in real-valued vector spaces.
o KKT-Conditions <« first-order necessary conditions of optimality.

o Extendable to sufficient second-order conditions (not discussed here).
o Non-differentiable functions can cause numerical problems.

o Number of active constraints and correct identification of the active set is

more important than the total number of constraints.

Nonlinear Programming 174

Summary

o Nonlinear programming = optimization in real-valued vector spaces.
o KKT-Conditions <« first-order necessary conditions of optimality.

o Extendable to sufficient second-order conditions (not discussed here).
o Non-differentiable functions can cause numerical problems.

o Number of active constraints and correct identification of the active set is

more important than the total number of constraints.

Initialization is key for solving non-convex problems.
Efficient derivative computation enables fast and reliable solutions.

Line search (and globalization) are crucial for global convergence.

Nonlinear Programming 175

Literature and References

@ B. Chachuat. Nonlinear and Dynamic Optimization - From Theory to Practice. EPFL, 2009.
URL:https://infoscience.epfl.ch/record/111939/files/Chachuat_07 (IC32) .pdf

@ D. Bertsekas. Nonlinear Programming. 2nd. Athena Scientific, Belmont, Massachusetts, 1999

@ S.P. Boyd and L. Vandenberghe. Convex Optimization. University Press, Cambridge, 2004. URL:
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

@ J. Nocedal and S. Wright. Numerical Optimization. 2nd Edition, 2006. URL:
http://www.apmath.spbu.ru/cnsa/pdf/monograf/Numerical_Optimization2006.pdf

O A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. SIAM, 2008

@ W. Squire and G. Trapp. Using complex variables to estimate derivatives of real functions. In:
SIAM Review 40.1 (1998), pp. 110-112

@ J.R.R.A. Martins, P. Sturdza, J.J. Alonso. The complex-step derivative approximation. In: ACM
Transactions on Mathematical Software (TOMS) 29.3 (2003), pp. 245-262

@ S. Gros and M. Diel. Numerical Optimal Control(draft). 2020. URL:
https://wuw.syscop.de/files/2020ss/NOC/book-NOCSE. pdf

Nonlinear Programming 176

 https://infoscience.epfl.ch/record/111939/files/Chachuat_07(IC32).pdf
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://www.apmath.spbu.ru/cnsa/pdf/monograf/Numerical_Optimization2006.pdf
https://www.syscop.de/files/2020ss/NOC/book-NOCSE.pdf

