
EE-736 EPFL

Nonlinear Programming

Basic Notions of Nonlinear Programming

Necessary Conditions of Optimality

Interpretation of Lagrange Multipliers

Minimal Primer on Algorithms for NLPs

Computation of Derivatives

Yuning Jiang 1

Contents

Basic Notions of Nonlinear Programming

Necessary Conditions of Optimality

Interpretation of Lagrange Multipliers

Minimal Primer on Algorithms for NLPs

Computation of Derivatives

Nonlinear Programming 2

Nonlinear Program (NLP)

Problem formulation:

min
x∈Rnx

f(x) subject to

h(x) = 0

g(x) ≤ 0

Objective f : Rnx → R;

Equality constraints h(x) : Rnx → Rnh , h(x) = [h1(x), ..., hnh
(x)]>;

Inequality constraints g(x) : Rnx → Rng , g(x) = [g1(x), ..., gng (x)]>.

Nonlinear Programming 3

Nonlinear Program (NLP)

Problem formulation:

min
x∈Rnx

f(x) subject to

h(x) = 0

g(x) ≤ 0

Objective f : Rnx → R;

Equality constraints h(x) : Rnx → Rnh , h(x) = [h1(x), ..., hnh
(x)]>;

Inequality constraints g(x) : Rnx → Rng , g(x) = [g1(x), ..., gng (x)]>.

Nonlinear Programming 4

Why discuss NLPs in this course?

Nonlinear Programming = optimization in Euclidian space

Optimal Control (OC) = optimization in a function space

NLP techniques are used to solve Optimal Control Problems (OCP)

Discrete-time optimal control ≡ NLP

min
{xk},{uk}

N−1∑
k=0

`(xk, uk) subject to



∀ k ∈ {0, . . . , N − 1}

xk+1 − f(xk, uk) = 0

x0 − x̄ = 0

g(xk, uk) ≤ 0

Continuous-time dynamics → approximate solution obtained via NLPs

Nonlinear Programming 5

Why discuss NLPs in this course?

Nonlinear Programming = optimization in Euclidian space

Optimal Control (OC) = optimization in a function space

NLP techniques are used to solve Optimal Control Problems (OCP)

Discrete-time optimal control ≡ NLP

min
{xk},{uk}

N−1∑
k=0

`(xk, uk) subject to



∀ k ∈ {0, . . . , N − 1}

xk+1 − f(xk, uk) = 0

x0 − x̄ = 0

g(xk, uk) ≤ 0

Continuous-time dynamics → approximate solution obtained via NLPs

Nonlinear Programming 6

Example – Nonlinear Program

min
x∈R2

(x1 − 3)2 + (x2 − 2)2

subject to

g1(x) = x2
1 − x2 − 3 ≤ 0

g2(x) = x2 − 1 ≤ 0

g3(x) = −x1 ≤ 0

−3 −2 −1 0 1 2 3

−2

0

2

−3

−1

1

3

g2(x) = 0

f(x) = cig1(x) = 0

g3(x) = 0

x? = [2, 1]>

x1

x
2

Nonlinear Programming 7

Example – Nonlinear Program

min
x∈R2

(x1 − 3)2 + (x2 − 2)2

subject to

g1(x) = x2
1 − x2 − 3 ≤ 0

g2(x) = x2 − 1 ≤ 0

g3(x) = −x1 ≤ 0

−3 −2 −1 0 1 2 3

−2

0

2

−3

−1

1

3

g2(x) = 0

f(x) = cig1(x) = 0

g3(x) = 0

x? = [2, 1]>

x1

x
2

Nonlinear Programming 8

Feasibility

Definition (Feasible Set)

S := {x ∈ Rnx |h(x) = 0 and g(x) ≤ 0}

Consider NLP

min
x∈S

f(x)

with feasible set S ⊆ Rnx .

S 6= ∅ ⇐⇒ NLP is feasible.

Nonlinear Programming 9

Feasibility

Definition (Feasible Set)

S := {x ∈ Rnx |h(x) = 0 and g(x) ≤ 0}

Consider NLP

min
x∈S

f(x)

with feasible set S ⊆ Rnx .

S 6= ∅ ⇐⇒ NLP is feasible.

Nonlinear Programming 10

Definition of Optimality – Infimum

Definition (Infimum)

The infimum of a partially ordered set S, denoted as inf S, provided

it exists, is the greatest lower bound for z ∈ S, i.e., a real number α

satisfying

1. z ≥ α,∀z ∈ S;

2. ∀ᾱ > α,∃z ∈ S such that z < ᾱ.

Nonlinear Programming 11

Definition of Optimality – Minimum

Definition
A point x∗ ∈ S is said to be a (global) minimizer of f on S ⊆ Rnx if

f(x) ≥ f(x∗), ∀x ∈ S,

and f(x∗) is called (global) minimum of f on S.

Nonlinear Programming 12

Definition of Optimality – Minimum

Definition
A point x∗ ∈ S is said to be a (global) minimizer of f on S ⊆ Rnx if

f(x) ≥ f(x∗), ∀x ∈ S,

and f(x∗) is called (global) minimum of f on S.

It is said to be a strict (global) minimizer of f on S ⊆ Rnx if

f(x) > f(x∗), ∀x ∈ S, x 6= x∗,

and f(x∗) is called strict (global) minimum of f on S.

Nonlinear Programming 13

Definition of Optimality – Local Minimum

ε-ball around x̄ (or ε-neighborhood):

Bε(x̄) := {x ∈ Rnx |‖x− x̄‖ ≤ ε} ⊂ Rnx

Definition (Local minimum)

A point x∗ ∈ S is said to be local minimizer of f , if

∃ ε > 0, ∀x ∈ Bε(x∗) ∩ S, f(x) ≥ f(x∗).

It is said to be a strict local minimizer of f on S if

∃ ε > 0, ∀x ∈ Bε(x∗) ∩ S, f(x) > f(x∗).

Nonlinear Programming 14

Definition of Optimality – Local Minimum

ε-ball around x̄ (or ε-neighborhood):

Bε(x̄) := {x ∈ Rnx |‖x− x̄‖ ≤ ε} ⊂ Rnx

Definition (Local minimum)

A point x∗ ∈ S is said to be local minimizer of f , if

∃ ε > 0, ∀x ∈ Bε(x∗) ∩ S, f(x) ≥ f(x∗).

It is said to be a strict local minimizer of f on S if

∃ ε > 0, ∀x ∈ Bε(x∗) ∩ S, f(x) > f(x∗).

Nonlinear Programming 15

Existence of Minima and Maxima

Theorem (Extreme value theorem)

Let S be nonempty and compact and let f be continuous on S.

Then, the following problem has a minimizer in S,

min
x∈S

f(x).

f

()
a b

f

f(c)

[]
a bc

f

[)
a +∞

Nonlinear Programming 16

Existence of Minima and Maxima

Theorem (Extreme value theorem)

Let S be nonempty and compact and let f be continuous on S.

Then, the following problem has a minimizer in S,

min
x∈S

f(x).

f

()
a b

f

f(c)

[]
a bc

f

[)
a +∞

Nonlinear Programming 17

Existence of Minima and Maxima

Theorem (Extreme value theorem)

Let S be nonempty and compact and let f be continuous on S.

Then, the following problem has a minimizer in S,

min
x∈S

f(x).

f

()
a b

f

f(c)

[]
a bc

f

[)
a +∞

Nonlinear Programming 18

Existence of Minima and Maxima

Theorem (Extreme value theorem)

Let S be nonempty and compact and let f be continuous on S.

Then, the following problem has a minimizer in S,

min
x∈S

f(x).

f

()
a b

f

f(c)

[]
a bc

f

[)
a +∞

Nonlinear Programming 19

Convex Analysis

Definition (Convex set)

A set C ⊂ Rnx is said to be convex if

∀x, y ∈ C, ∀λ ∈ [0, 1] : z = λx+ (1− λ)y ∈ C.

Definition (Convex function)

A function f : C→ R is said to be convex on C if its domain C is

aconvex set and if

∀x, y ∈ C, ∀λ ∈ [0, 1] : f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Nonlinear Programming 20

Convex Analysis

Definition (Convex set)

A set C ⊂ Rnx is said to be convex if

∀x, y ∈ C, ∀λ ∈ [0, 1] : z = λx+ (1− λ)y ∈ C.

Definition (Convex function)

A function f : C→ R is said to be convex on C if its domain C is

aconvex set and if

∀x, y ∈ C, ∀λ ∈ [0, 1] : f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Nonlinear Programming 21

Convex Program

Definition (Convex program)

Let C be a nonempty convex set, and let f be convex on C. NLP

min
x∈C

f(x)

is called a convex program or convex optimization problem.

Theorem
Let x∗ be a local minimizer of a convex program, then x∗ is a also a

global minimizer.

Nonlinear Programming 22

Convex Program

Definition (Convex program)

Let C be a nonempty convex set, and let f be convex on C. NLP

min
x∈C

f(x)

is called a convex program or convex optimization problem.

Theorem
Let x∗ be a local minimizer of a convex program, then x∗ is a also a

global minimizer.

Nonlinear Programming 23

Exercises

Given a convex function f : Rnx → R and a non-empty compact set

S ⊆ Rnx . Let ∂S denote the boundary of the set S.

Which of the following statements are correct? Justify your answers.

a) The minimum of f on S is unique.

b) The minimizer of f on S is unique.

c)

arg min
x∈S

f(x) ∩ ∂S 6= ∅

d)

arg max
x∈S

f(x) ∩ ∂S 6= ∅

Nonlinear Programming 24

Exercises

Given a convex function f : Rnx → R and a non-empty compact set

S ⊆ Rnx . Let ∂S denote the boundary of the set S.

Which of the following statements are correct? Justify your answers.

a) The minimum of f on S is unique.

b) The minimizer of f on S is unique.

c)

arg min
x∈S

f(x) ∩ ∂S 6= ∅

d)

arg max
x∈S

f(x) ∩ ∂S 6= ∅

Nonlinear Programming 25

Exercises

Given a convex function f : Rnx → R and a non-empty compact set

S ⊆ Rnx . Let ∂S denote the boundary of the set S.

Which of the following statements are correct? Justify your answers.

a) The minimum of f on S is unique.

b) The minimizer of f on S is unique.

c)

arg min
x∈S

f(x) ∩ ∂S 6= ∅

d)

arg max
x∈S

f(x) ∩ ∂S 6= ∅

Nonlinear Programming 26

Exercises

Given a convex function f : Rnx → R and a non-empty compact set

S ⊆ Rnx . Let ∂S denote the boundary of the set S.

Which of the following statements are correct? Justify your answers.

a) The minimum of f on S is unique.

b) The minimizer of f on S is unique.

c)

arg min
x∈S

f(x) ∩ ∂S 6= ∅

d)

arg max
x∈S

f(x) ∩ ∂S 6= ∅

Nonlinear Programming 27

Exercises

Given are the following for optimization problems:

a1)

min
x∈R

c · x subject to 0 < x ≤ 1

with c ∈ R arbitrary.

a1) Solution:

If c > 0, the minimizer does not exist.

If c = 0, any x satisfying 0 < x ≤ 1 is a minimizer.

If c < 0, the minimizer is x = 1.

Nonlinear Programming 28

Exercises

Given are the following for optimization problems:

a1)

min
x∈R

c · x subject to 0 < x ≤ 1

with c ∈ R arbitrary.

a1) Solution:

If c > 0, the minimizer does not exist.

If c = 0, any x satisfying 0 < x ≤ 1 is a minimizer.

If c < 0, the minimizer is x = 1.

Nonlinear Programming 29

Exercises

Given are the following for optimization problems:

a2)

inf
x∈R

c · x subject to 0 < x ≤ 1

with c ∈ R arbitrary.

a2) Solution:

If c > 0, the infimum is 0 and x→ 0.

If c = 0, the infimum is 0 with any x satisfying 0 < x ≤ 1.

If c < 0, the infimum is c and x = 1.

Nonlinear Programming 30

Exercises

Given are the following for optimization problems:

a2)

inf
x∈R

c · x subject to 0 < x ≤ 1

with c ∈ R arbitrary.

a2) Solution:

If c > 0, the infimum is 0 and x→ 0.

If c = 0, the infimum is 0 with any x satisfying 0 < x ≤ 1.

If c < 0, the infimum is c and x = 1.

Nonlinear Programming 31

Contents

Basic Notions of Nonlinear Programming

Necessary Conditions of Optimality

Interpretation of Lagrange Multipliers

Minimal Primer on Algorithms for NLPs

Computation of Derivatives

Nonlinear Programming 32

Notation: Gradients and Partial Derivatives

Consider a function f : Rnx → R,

Partial derivative (the Jacobian) of f

∂f

∂x
=
[
∂f
∂x1

∂f
∂x2

. . . ∂f
∂xnx

]
∈ R1×nx

Gradient of f

∇f =
(
∂f

∂x

)>
∈ Rnx

f ∈ Cn: f is n-times continuously differentiable on Rnx

Nonlinear Programming 33

Equality Constrained Problem

Consider NLP

Peq : min
x∈Rnx

f(x) subject to hi(x) = 0, i ∈ E := {1, ..., nh}

Definition (Regular point)

Consider S := {x ∈ Rnx |hi(x) = 0, i ∈ E} with continuously

differentiable hi : Rnx → R, i ∈ E on Rnx .

A vector x̄ ∈ S is said to be a regular point if the gradient ∇hi(x̄),

i ∈ E are linearly independent, i.e.,

∂h

∂x
∈ Rnh×nx is full row rank.

This is also called linear independence constraint qualification (LICQ).
Nonlinear Programming 34

Equality Constrained Problem

Consider NLP

Peq : min
x∈Rnx

f(x) subject to hi(x) = 0, i ∈ E := {1, ..., nh}

Definition (Regular point)

Consider S := {x ∈ Rnx |hi(x) = 0, i ∈ E} with continuously

differentiable hi : Rnx → R, i ∈ E on Rnx .

A vector x̄ ∈ S is said to be a regular point if the gradient ∇hi(x̄),

i ∈ E are linearly independent, i.e.,

∂h

∂x
∈ Rnh×nx is full row rank.

This is also called linear independence constraint qualification (LICQ).
Nonlinear Programming 35

Equality Constrained Problem

Consider NLP

Peq : min
x∈Rnx

f(x) subject to hi(x) = 0, i ∈ E := {1, ..., nh}

Definition (Regular point)

Consider S := {x ∈ Rnx |hi(x) = 0, i ∈ E} with continuously

differentiable hi : Rnx → R, i ∈ E on Rnx .

A vector x̄ ∈ S is said to be a regular point if the gradient ∇hi(x̄),

i ∈ E are linearly independent, i.e.,

∂h

∂x
∈ Rnh×nx is full row rank.

This is also called linear independence constraint qualification (LICQ).
Nonlinear Programming 36

Equality Constraints – Example

S =
{
x ∈ R3 : hi(x) = 0, i ∈ {1, 2}

}
h1(x) = x3 − (x2

1 + x2
2)

h2(x) = x3 − 1
−1

1
−1

1

1

x1

x2

x3

Nonlinear Programming 37

Equality Constraints – Example

S =
{
x ∈ R3 : hi(x) = 0, i ∈ {1, 2}

}
h1(x) = x3 − (x2

1 + x2
2)

h2(x) = x3 − 1
−1

1
−1

1

1

x1

x2

x3

Nonlinear Programming 38

Necessary Condition of Optimality

Theorem (1st order optimality condition)

Consider Problem Peq and let f : Rnx → R, hi : Rnx → R, i ∈ E

be continuously differentiable on Rnx .

If a local minimizer x∗ is a regular point of the constraints, then

there exists a unique vector λ∗ ∈ Rnh such that

∇f(x∗) +∇h(x∗)λ∗ = 0.

Nonlinear Programming 39

Active Constraints and Active Set
Consider generic NLP

Pieq :

min
x∈Rnx

f(x)

subject to

hi(x) = 0, i ∈ E := {1, ..., nh}

gi(x) ≤ 0, i ∈ I := {1, ..., ng}

Definition (Active Constraint)

A constraint gi is said to be active at x̄, if gi(x̄) = 0.

Definition (Active Set)

The active set A(x̄) at any feasible x̄ of Pineq is denoted by

A(x̄) = E ∪ {i ∈ I|gi(x̄) = 0}.

Nonlinear Programming 40

Active Constraints and Active Set
Consider generic NLP

Pieq :

min
x∈Rnx

f(x)

subject to

hi(x) = 0, i ∈ E := {1, ..., nh}

gi(x) ≤ 0, i ∈ I := {1, ..., ng}

Definition (Active Constraint)

A constraint gi is said to be active at x̄, if gi(x̄) = 0.

Definition (Active Set)

The active set A(x̄) at any feasible x̄ of Pineq is denoted by

A(x̄) = E ∪ {i ∈ I|gi(x̄) = 0}.

Nonlinear Programming 41

Active Constraints and Active Set
Consider generic NLP

Pieq :

min
x∈Rnx

f(x)

subject to

hi(x) = 0, i ∈ E := {1, ..., nh}

gi(x) ≤ 0, i ∈ I := {1, ..., ng}

Definition (Active Constraint)

A constraint gi is said to be active at x̄, if gi(x̄) = 0.

Definition (Active Set)

The active set A(x̄) at any feasible x̄ of Pineq is denoted by

A(x̄) = E ∪ {i ∈ I|gi(x̄) = 0}.

Nonlinear Programming 42

Regular Points of General NLPs

Definition
Let hi, i ∈ E and gi, i ∈ I be continuously differentiable on Rnx and

let

∇gA(x̄) := [∇gi(x̄)], i ∈ I ∩ A(x̄)

with a feasible point x̄ of Pieq. Then, x̄ is said to be a regular point

if

rank([∇h(x̄), ∇gA(x̄)]>) = |A(x̄)|.

Nonlinear Programming 43

Karush-Kuhn-Tucker (KKT) Conditions

Definition (KKT point)

Let f , hi, i ∈ E and gi, i ∈ I be continuously differentiable on Rnx .

Consider Problem Pieq, any pair (x, λ, κ) with x ∈ Rnx , λ ∈ Rnh

and κ ∈ Rng satisfying

Stationarity 0 = ∇f(x) +
∑
i∈E

λi∇hi(x) +
∑
i∈I

κi∇gi(x)

Primal feasibility 0 = hi(x), i ∈ E , 0 ≥ gi(x), i ∈ I

Dual feasibility 0 ≤ κi, i ∈ I

Complementarity 0 = κigi(x), i ∈ I

is called a KKT point of Pieq.

Nonlinear Programming 44

KKT Necessary Conditions of Optimality

Theorem
Consider Problem Pieq and let f , hi, i ∈ E and gi, i ∈ I be

continuously differentiable on Rnx . If

x∗ is a (local) minimizer of Pieq and

x∗ is a regular point,

then there exist λ∗ ∈ Rnh and κ∗ ∈ Rng such that (x∗, λ∗, κ∗) is a

KKT point of Pieq.

Nonlinear Programming 45

Exercises

Consider NLP

min
x∈R2

(
x1 −

3
2

)2
+ (x2 − t)4 subject to



x1 + x2 − 1 ≤ 0

x1 − x2 − 1 ≤ 0

−x1 + x2 − 1 ≤ 0

−x1 − x2 − 1 ≤ 0

For what value of t does x∗ = [1, 0]> satisfy the KKT condition?

Nonlinear Programming 46

Exercises

Consider NLP

min
x∈R2

−2x1 + x2 subject to

 x2 − (1− x1)3 ≤ 0

1− 0.25x2
1 − x2 ≤ 0

the optimal solution is x∗ = [0, 1]>, questions:

a) Is x∗ a regular point?

b) Are the KKT conidtions satisfied?

Nonlinear Programming 47

Contents

Basic Notions of Nonlinear Programming

Necessary Conditions of Optimality

Interpretation of Lagrange Multipliers

Minimal Primer on Algorithms for NLPs

Computation of Derivatives

Nonlinear Programming 48

Equality Constrained NLP

Consider NLP

min
x∈Rnx

f(x) subject to h(x) = 0

Necessary condition of optimality:

∇f(x∗) +∇h(x∗)λ∗ = 0

h(x∗) = 0

Question: how does the minimum f(x∗) change for varying constraints

h(x) = c?

Nonlinear Programming 49

Equality Constrained NLP

Consider NLP

min
x∈Rnx

f(x) subject to h(x) = 0

Necessary condition of optimality:

∇f(x∗) +∇h(x∗)λ∗ = 0

h(x∗) = 0

Question: how does the minimum f(x∗) change for varying constraints

h(x) = c?

Nonlinear Programming 50

Equality Constrained NLP

Consider NLP

min
x∈Rnx

f(x) subject to h(x) = 0

Necessary condition of optimality:

∇f(x∗) +∇h(x∗)λ∗ = 0

h(x∗) = 0

Question: how does the minimum f(x∗) change for varying constraints

h(x) = c?

Nonlinear Programming 51

Interpretation of Lagrangian Multipliers

Perturbed problem

Pc : min
x∈Rnx

f(x) subject to h(x) = c

Assumption
For each c, Pc has a unique regular solution, i.e.,

ξ?(c) =arg min
x

f(x) subject to h(x) = c

φ?(c) = min
x

f(x) subject to h(x) = c

with ξ?(0) = x∗ and φ?(0) = f(x∗).

Nonlinear Programming 52

Interpretation of Lagrangian Multipliers

Perturbed problem

Pc : min
x∈Rnx

f(x) subject to h(x) = c

Assumption
For each c, Pc has a unique regular solution, i.e.,

ξ?(c) =arg min
x

f(x) subject to h(x) = c

φ?(c) = min
x

f(x) subject to h(x) = c

with ξ?(0) = x∗ and φ?(0) = f(x∗).

Nonlinear Programming 53

Interpretation of Lagrangian Multipliers

h(ξ?(c)) = c ⇒ ∇xh(ξ?(c))>∇cξ?(c)> = I

∇cφ?(c)
∣∣∣
c=0

=∇cξ?(0)>∇xf(x∗)

=−∇cξ?(0)>∇xh(ξ?(0))>︸ ︷︷ ︸
I

λ∗

=− λ∗

Nonlinear Programming 54

Interpretation of Lagrangian Multipliers

h(ξ?(c)) = c ⇒ ∇xh(ξ?(c))>∇cξ?(c)> = I

∇cφ?(c)
∣∣∣
c=0

=∇cξ?(0)>∇xf(x∗)

=−∇cξ?(0)>∇xh(ξ?(0))>︸ ︷︷ ︸
I

λ∗

=− λ∗

Nonlinear Programming 55

Interpretation of Lagrangian Multipliers

The Lagrange multiplier λ∗ can be interpreted as the sensitivity of the

optimal objective function with respect to changes in the constraint

h(x) = 0.

In Economics Lagrange multipliers are used to characterize marginal

values or shadow prices.

Can be extended to general NLPs with inequality constraints g(x) ≤ c:

multipliers κ∗ ≈ sensitivity of f(x∗) with respect to c.

Inactive inequality constraints κ∗i = 0, i ∈ I\(I ∩ A(x∗)) ⇒ no change

of optimum for small perturbations.

Active inequality constraints κ∗i ≥ 0, i ∈ I ∩ A(x∗) ⇒ enlarged feasible

region, optimal cost cannot increase.
Nonlinear Programming 56

Interpretation of Lagrangian Multipliers

The Lagrange multiplier λ∗ can be interpreted as the sensitivity of the

optimal objective function with respect to changes in the constraint

h(x) = 0.

In Economics Lagrange multipliers are used to characterize marginal

values or shadow prices.

Can be extended to general NLPs with inequality constraints g(x) ≤ c:

multipliers κ∗ ≈ sensitivity of f(x∗) with respect to c.

Inactive inequality constraints κ∗i = 0, i ∈ I\(I ∩ A(x∗)) ⇒ no change

of optimum for small perturbations.

Active inequality constraints κ∗i ≥ 0, i ∈ I ∩ A(x∗) ⇒ enlarged feasible

region, optimal cost cannot increase.
Nonlinear Programming 57

Interpretation of Lagrangian Multipliers

The Lagrange multiplier λ∗ can be interpreted as the sensitivity of the

optimal objective function with respect to changes in the constraint

h(x) = 0.

In Economics Lagrange multipliers are used to characterize marginal

values or shadow prices.

Can be extended to general NLPs with inequality constraints g(x) ≤ c:

multipliers κ∗ ≈ sensitivity of f(x∗) with respect to c.

Inactive inequality constraints κ∗i = 0, i ∈ I\(I ∩ A(x∗)) ⇒ no change

of optimum for small perturbations.

Active inequality constraints κ∗i ≥ 0, i ∈ I ∩ A(x∗) ⇒ enlarged feasible

region, optimal cost cannot increase.
Nonlinear Programming 58

Interpretation of Lagrangian Multipliers

The Lagrange multiplier λ∗ can be interpreted as the sensitivity of the

optimal objective function with respect to changes in the constraint

h(x) = 0.

In Economics Lagrange multipliers are used to characterize marginal

values or shadow prices.

Can be extended to general NLPs with inequality constraints g(x) ≤ c:

multipliers κ∗ ≈ sensitivity of f(x∗) with respect to c.

Inactive inequality constraints κ∗i = 0, i ∈ I\(I ∩ A(x∗)) ⇒ no change

of optimum for small perturbations.

Active inequality constraints κ∗i ≥ 0, i ∈ I ∩ A(x∗) ⇒ enlarged feasible

region, optimal cost cannot increase.
Nonlinear Programming 59

Interpretation of Lagrangian Multipliers

The Lagrange multiplier λ∗ can be interpreted as the sensitivity of the

optimal objective function with respect to changes in the constraint

h(x) = 0.

In Economics Lagrange multipliers are used to characterize marginal

values or shadow prices.

Can be extended to general NLPs with inequality constraints g(x) ≤ c:

multipliers κ∗ ≈ sensitivity of f(x∗) with respect to c.

Inactive inequality constraints κ∗i = 0, i ∈ I\(I ∩ A(x∗)) ⇒ no change

of optimum for small perturbations.

Active inequality constraints κ∗i ≥ 0, i ∈ I ∩ A(x∗) ⇒ enlarged feasible

region, optimal cost cannot increase.
Nonlinear Programming 60

Contents

Basic Notions of Nonlinear Programming

Necessary Conditions of Optimality

Interpretation of Lagrange Multipliers

Minimal Primer on Algorithms for NLPs

Computation of Derivatives

Nonlinear Programming 61

Algorithm Concepts

Algorithm:

Given an initial point x0 compute a sequence {xk} by repeated

application of an algorithmic rule.

Objective: make {xk} converge to a point x̄.

Why do we talk about algorithms for NLPs?

Solvers usually require initial guess and termination criteria ⇒ basic

understanding of solution algorithms necessary to use solvers.

Solvers often terminate prematurely ⇒ understand and diagnose reasons?

Nonlinear Programming 62

Algorithm Concepts

Algorithm:

Given an initial point x0 compute a sequence {xk} by repeated

application of an algorithmic rule.

Objective: make {xk} converge to a point x̄.

Why do we talk about algorithms for NLPs?

Solvers usually require initial guess and termination criteria ⇒ basic

understanding of solution algorithms necessary to use solvers.

Solvers often terminate prematurely ⇒ understand and diagnose reasons?

Nonlinear Programming 63

Algorithm Concepts

Algorithm:

Given an initial point x0 compute a sequence {xk} by repeated

application of an algorithmic rule.

Objective: make {xk} converge to a point x̄.

Why do we talk about algorithms for NLPs?

Solvers usually require initial guess and termination criteria ⇒ basic

understanding of solution algorithms necessary to use solvers.

Solvers often terminate prematurely ⇒ understand and diagnose reasons?

Nonlinear Programming 64

Global and Local Convergence

Definition (Global convergence)

An algorithm is said to be globally convergent if, for any initial point

x0, it generates a sequence of points that converges to a point x̄ in

the solution set.

Definition (Local convergence)

An algorithm is said to be locally convergent if there exists ρ > 0

such that for any initial point x0 with ‖x0 − x̄‖ < ρ, it generates a

sequence of points that converges to a point x̄ in the solution set.

Nonlinear Programming 65

Global and Local Convergence

Definition (Global convergence)

An algorithm is said to be globally convergent if, for any initial point

x0, it generates a sequence of points that converges to a point x̄ in

the solution set.

Definition (Local convergence)

An algorithm is said to be locally convergent if there exists ρ > 0

such that for any initial point x0 with ‖x0 − x̄‖ < ρ, it generates a

sequence of points that converges to a point x̄ in the solution set.

Nonlinear Programming 66

Order of Convergence

Definition
The order of convergence of a sequence {xk}, with lim

k→∞
xk = x̄, is

the largest non-negative number p such that

lim
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖p

= β <∞.

p = 1 and β < 1 ⇒ linear convergence

p = 1 and β = 0 ⇒ superlinear convergence

p = 1 and β = 1 ⇒ sublinear convergence

p = 2 ⇒ quadratic convergence

Nonlinear Programming 67

Order of Convergence

Definition
The order of convergence of a sequence {xk}, with lim

k→∞
xk = x̄, is

the largest non-negative number p such that

lim
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖p

= β <∞.

p = 1 and β < 1 ⇒ linear convergence

p = 1 and β = 0 ⇒ superlinear convergence

p = 1 and β = 1 ⇒ sublinear convergence

p = 2 ⇒ quadratic convergence

Nonlinear Programming 68

Order to Convergence

Definition
The order of convergence of a sequence {xk}, with lim

k→∞
xk = x̄, is

the largest non-negative number p such that

lim
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖p

= β <∞.

Example:
xk = 1 + 0.5k

xk = 1 + k−k

xk = 1 + 0.52k

Nonlinear Programming 69

Newton’s Methd for Nonlinear Equations

Given a function F : Rn → Rn, search for solutions of the nonlinear

equation

F (x) = 0 with F ∈ C1.

Main idea:

Start with x0 and solve linear equations

F (xk) +M(xk)(xk+1 − xk) = 0, k ∈ {1, 2, ...}.

Matrix M(x)k ∈ Rnx×nx chosen in such a way that

F (xk) +M(xk)(x− xk) ≈ F (x)

is an approximation of F .

M(xk) = ∂F (xk) corresponds to the so called Newton method.
Nonlinear Programming 70

Newton’s Methd for Nonlinear Equations

Given a function F : Rn → Rn, search for solutions of the nonlinear

equation

F (x) = 0 with F ∈ C1.

Main idea:

Start with x0 and solve linear equations

F (xk) +M(xk)(xk+1 − xk) = 0, k ∈ {1, 2, ...}.

Matrix M(x)k ∈ Rnx×nx chosen in such a way that

F (xk) +M(xk)(x− xk) ≈ F (x)

is an approximation of F .

M(xk) = ∂F (xk) corresponds to the so called Newton method.
Nonlinear Programming 71

Newton’s Methd for Nonlinear Equations

Given a function F : Rn → Rn, search for solutions of the nonlinear

equation

F (x) = 0 with F ∈ C1.

Main idea:

Start with x0 and solve linear equations

F (xk) +M(xk)(xk+1 − xk) = 0, k ∈ {1, 2, ...}.

Matrix M(x)k ∈ Rnx×nx chosen in such a way that

F (xk) +M(xk)(x− xk) ≈ F (x)

is an approximation of F .

M(xk) = ∂F (xk) corresponds to the so called Newton method.
Nonlinear Programming 72

Newton’s Methd for Nonlinear Equations

Given a function F : Rn → Rn, search for solutions of the nonlinear

equation

F (x) = 0 with F ∈ C1.

Main idea:

Start with x0 and solve linear equations

F (xk) +M(xk)(xk+1 − xk) = 0, k ∈ {1, 2, ...}.

Matrix M(x)k ∈ Rnx×nx chosen in such a way that

F (xk) +M(xk)(x− xk) ≈ F (x)

is an approximation of F .

M(xk) = ∂F (xk) corresponds to the so called Newton method.
Nonlinear Programming 73

Newton’s Method for Nonlinear Equations

If M(xk) is invertible, the method can be written in the form

xk+1 = xk −M(xk)−1F (xk), k ∈ {1, 2, ...}.

In practice, we usually work with approximations M(xk) ≈ ∂F (xk).

If M(xk) is independent of xk, we only need to decompose M once

(e.g., using LR or QR decomposition).

Some methods try to update M at every step without re-computing the

Jacobian (e.g., BFGS update).

Nonlinear Programming 74

Newton’s Method for Nonlinear Equations

If M(xk) is invertible, the method can be written in the form

xk+1 = xk −M(xk)−1F (xk), k ∈ {1, 2, ...}.

In practice, we usually work with approximations M(xk) ≈ ∂F (xk).

If M(xk) is independent of xk, we only need to decompose M once

(e.g., using LR or QR decomposition).

Some methods try to update M at every step without re-computing the

Jacobian (e.g., BFGS update).

Nonlinear Programming 75

Newton’s Method for Nonlinear Equations

If M(xk) is invertible, the method can be written in the form

xk+1 = xk −M(xk)−1F (xk), k ∈ {1, 2, ...}.

In practice, we usually work with approximations M(xk) ≈ ∂F (xk).

If M(xk) is independent of xk, we only need to decompose M once

(e.g., using LR or QR decomposition).

Some methods try to update M at every step without re-computing the

Jacobian (e.g., BFGS update).

Nonlinear Programming 76

Scaling Properties of Newton’s Method

F (x∗) = 0 ⇒ S · F (x∗) = 0 with S ∈ Rnx×nx any (invertible) scaling

matrix.

Applying Newton’s method to solve scaled equation

F̃ (x) = S · F (x) = 0

yields iteration xk+1 = xk −M(xk)−1S · F (xk).

Using exact Jacobian M(xk) = ∂F̃ (xk), we have

xk+1 = xk − ∂F (xk)−1F (xk).

Newton’s methods with exact Jacobians is invariant under scaling.

Nonlinear Programming 77

Local Convergence of Newton’s Method

Assumption
There exists a point x∗ with F (x∗) = 0.

The initial point x0 is already in a small neighborhood of x∗.

Matrix M(xk)−1∂F (x) is Lipschitz continuous w.r.t. x in a

neighborhood of x∗ with constant ω ≥ 0.

The basic idea is to estimate the distance of the iterates to x∗:∥∥xk+1 − x∗
∥∥ =

∥∥xk − x∗ −M(xk)−1F (xk)
∥∥

=
∥∥∥xk − x∗ −M(xk)−1 ∫ 1

0 ∂F (x∗ + s(xk − x∗))(xk − x∗)ds
∥∥∥

≤
∥∥xk − x∗ −M(xk)−1∂F (xk)(xk − x∗)

∥∥+ ω
2
∥∥xk − x∗∥∥2

Nonlinear Programming 78

Local Convergence of Newton’s Method

Assumption
There exists a point x∗ with F (x∗) = 0.

The initial point x0 is already in a small neighborhood of x∗.

Matrix M(xk)−1∂F (x) is Lipschitz continuous w.r.t. x in a

neighborhood of x∗ with constant ω ≥ 0.

The basic idea is to estimate the distance of the iterates to x∗:∥∥xk+1 − x∗
∥∥ =

∥∥xk − x∗ −M(xk)−1F (xk)
∥∥

=
∥∥∥xk − x∗ −M(xk)−1 ∫ 1

0 ∂F (x∗ + s(xk − x∗))(xk − x∗)ds
∥∥∥

≤
∥∥xk − x∗ −M(xk)−1∂F (xk)(xk − x∗)

∥∥+ ω
2
∥∥xk − x∗∥∥2

Nonlinear Programming 79

Local Convergence of Newton’s Method

In summary, we have the estimate

∥∥xk+1 − x∗
∥∥ ≤ η ∥∥xk − x∗∥∥+ ω

2
∥∥xk − x∗∥∥2

as long as
∥∥I−M(xk)−1∂F (xk)

∥∥ ≤ η. Here, η can be interpreted as a

bound on the accuracy of the Jacobian approximation M .

If we have η < 1 and ‖x0 − x∗‖ < 2
ω (1− η), the iterates contract and we

have

lim
k→∞

xk → x∗.

Nonlinear Programming 80

Local Convergence of Newton’s Method

In summary, we have the estimate

∥∥xk+1 − x∗
∥∥ ≤ η ∥∥xk − x∗∥∥+ ω

2
∥∥xk − x∗∥∥2

as long as
∥∥I−M(xk)−1∂F (xk)

∥∥ ≤ η. Here, η can be interpreted as a

bound on the accuracy of the Jacobian approximation M .

If we have η < 1 and ‖x0 − x∗‖ < 2
ω (1− η), the iterates contract and we

have

lim
k→∞

xk → x∗.

Nonlinear Programming 81

Convergence of Newton’s Method

The convergence rate estimate

∥∥xk+1 − x∗
∥∥ ≤ η ∥∥xk − x∗∥∥+ ω

2
∥∥xk − x∗∥∥2

implies that

if we have 0 < η < 1, the convergence rate is linear.

if we choose M(xk) = ∂F (xk), we have η = 0 and

∥∥xk+1 − x∗
∥∥ ≤ ω

2
∥∥xk − x∗∥∥2

.

In this case, the convergence rate is quadratic.

Nonlinear Programming 82

Convergence of Newton’s Method

The convergence rate estimate

∥∥xk+1 − x∗
∥∥ ≤ η ∥∥xk − x∗∥∥+ ω

2
∥∥xk − x∗∥∥2

implies that

if we have 0 < η < 1, the convergence rate is linear.

if we choose M(xk) = ∂F (xk), we have η = 0 and

∥∥xk+1 − x∗
∥∥ ≤ ω

2
∥∥xk − x∗∥∥2

.

In this case, the convergence rate is quadratic.

Nonlinear Programming 83

Convergence of Newton’s Method

The convergence rate estimate

∥∥xk+1 − x∗
∥∥ ≤ η ∥∥xk − x∗∥∥+ ω

2
∥∥xk − x∗∥∥2

implies that

if we have 0 < η < 1, the convergence rate is linear.

if we choose M(xk) = ∂F (xk), we have η = 0 and

∥∥xk+1 − x∗
∥∥ ≤ ω

2
∥∥xk − x∗∥∥2

.

In this case, the convergence rate is quadratic.

Nonlinear Programming 84

Exercises

Let scalar function f : R→ R be three times continuously differentiable

with bounded third-order derivative. The first and second derivative of f are

denoted by f ′ and f ′′, respectively. We additionally assume:

f(x∗) = 0 and f ′′(x∗) = 0 at a point x∗ ∈ R;

f ′(x∗) 6= 0.

Prove that the iterates of the exact Newton method, xk+1 = xk − f(xk)
f ′(xk) ,

converge locally with cubic convergence rate, i.e.,

∣∣xk+1 − x∗
∣∣ ≤ γ ∣∣xk − x∗∣∣3 , γ <∞.

Nonlinear Programming 85

Exercises
Solution:

1. Locally, we have∣∣xk+1 − x∗
∣∣ =

∣∣∣∣xk − x∗ − f(xk)
f ′(xk)

∣∣∣∣ =

∣∣∣∣∣xk − x∗ − 1
f ′(xk)

∫ xk

x∗
f ′(z)dz

∣∣∣∣∣
2. For the integral above, we can substitute the Taylor expansion,

f ′(z) =f ′(xk) + f ′′(xk)(z − xk) + O(|z − xk|2)

=f ′(xk) + O(|xk − x∗||z − xk|) + O(|z − xk|2)

3. Thus, we have∣∣xk+1 − x∗
∣∣ ≤ ∣∣∣∣∣xk − x∗ − 1

f ′(xk)

∫ xk

x∗
f ′(xk)dz

∣∣∣∣∣+ O(|xk − x∗|3)

=O(|xk − x∗|3)

Nonlinear Programming 86

Exercises
Solution:

1. Locally, we have∣∣xk+1 − x∗
∣∣ =

∣∣∣∣xk − x∗ − f(xk)
f ′(xk)

∣∣∣∣ =

∣∣∣∣∣xk − x∗ − 1
f ′(xk)

∫ xk

x∗
f ′(z)dz

∣∣∣∣∣
2. For the integral above, we can substitute the Taylor expansion,

f ′(z) =f ′(xk) + f ′′(xk)(z − xk) + O(|z − xk|2)

=f ′(xk) + O(|xk − x∗||z − xk|) + O(|z − xk|2)

3. Thus, we have∣∣xk+1 − x∗
∣∣ ≤ ∣∣∣∣∣xk − x∗ − 1

f ′(xk)

∫ xk

x∗
f ′(xk)dz

∣∣∣∣∣+ O(|xk − x∗|3)

=O(|xk − x∗|3)

Nonlinear Programming 87

Exercises
Solution:

1. Locally, we have∣∣xk+1 − x∗
∣∣ =

∣∣∣∣xk − x∗ − f(xk)
f ′(xk)

∣∣∣∣ =

∣∣∣∣∣xk − x∗ − 1
f ′(xk)

∫ xk

x∗
f ′(z)dz

∣∣∣∣∣
2. For the integral above, we can substitute the Taylor expansion,

f ′(z) =f ′(xk) + f ′′(xk)(z − xk) + O(|z − xk|2)

=f ′(xk) + O(|xk − x∗||z − xk|) + O(|z − xk|2)

3. Thus, we have∣∣xk+1 − x∗
∣∣ ≤ ∣∣∣∣∣xk − x∗ − 1

f ′(xk)

∫ xk

x∗
f ′(xk)dz

∣∣∣∣∣+ O(|xk − x∗|3)

=O(|xk − x∗|3)

Nonlinear Programming 88

Newton’s Method for Unconstrained Optimization

Problem formulation:

min
x∈Rnx

f(x)

Remark
If f is twice Lipschitz-continuously differentiable, a minimizer can

be founded by applying Newton’s method to

∇f(x) = 0.

If a solution x∗ satisfies ∇2f(x) � 0, it must a local minimizer.

Nonlinear Programming 89

Newton’s Method for Unconstrained Optimization

Newton-type iteration for unconstrained optimization problem

xk+1 = xk −M(xk)−1∇f(xk)

with M(xk) ≈ ∇2f(xk) a suitable Hessian approximation.

In practice, we often choose a symmetric M .

If M(xk) is symmetric and positive definite, the iterate xk+1 is the

minimizer of the quadratic function

min
xk+1

f(xk) +∇f(xk)>(xk+1 − xk) + 1
2(xk+1 − xk)>M(xk)(xk+1 − xk),

which can be interpreted as a quadratic model of f .

Nonlinear Programming 90

Line Search Methods
So far, we have only analyzed the local convergence properties of

Newton-type methods. If we start far from a local solution, Newton type

methods are often take “too big” steps and are divergent.

One way to fix this problem is to first compute a step-direction by

∆xk = −M(xk)−1∇f(xk)

and update the iterate as

xk+1 = xk + αk∆xk.

Here, αk ∈ (0, 1] is a so-called step size, which is found by (approximately)

solving the scalar optimization problem

min
αk∈(0,1]

f(xk + αk∆xk).

Nonlinear Programming 91

Line Search Methods
So far, we have only analyzed the local convergence properties of

Newton-type methods. If we start far from a local solution, Newton type

methods are often take “too big” steps and are divergent.

One way to fix this problem is to first compute a step-direction by

∆xk = −M(xk)−1∇f(xk)

and update the iterate as

xk+1 = xk + αk∆xk.

Here, αk ∈ (0, 1] is a so-called step size, which is found by (approximately)

solving the scalar optimization problem

min
αk∈(0,1]

f(xk + αk∆xk).

Nonlinear Programming 92

Line Search Methods
So far, we have only analyzed the local convergence properties of

Newton-type methods. If we start far from a local solution, Newton type

methods are often take “too big” steps and are divergent.

One way to fix this problem is to first compute a step-direction by

∆xk = −M(xk)−1∇f(xk)

and update the iterate as

xk+1 = xk + αk∆xk.

Here, αk ∈ (0, 1] is a so-called step size, which is found by (approximately)

solving the scalar optimization problem

min
αk∈(0,1]

f(xk + αk∆xk).

Nonlinear Programming 93

Armijo Linear Search Conditions

In practice the line search optimization

min
αk∈(0,1]

f(xk + αk∆xk).

is not solved exactly (too expensive), but only approximately.

One way to implement this is by using back-tracking until the Armijo

condition

f(xk + αk∆xk) ≤ f(xk) + c · αk ∇f(xk)>∆xk︸ ︷︷ ︸
directional derivative

for a constant c� 1 is satisfied. This condition ensures that the line search

parameter is not excessively large, although it is not sufficient to prove

convergence in general.
Nonlinear Programming 94

Armijo Linear Search Conditions

In practice the line search optimization

min
αk∈(0,1]

f(xk + αk∆xk).

is not solved exactly (too expensive), but only approximately.

One way to implement this is by using back-tracking until the Armijo

condition

f(xk + αk∆xk) ≤ f(xk) + c · αk ∇f(xk)>∆xk︸ ︷︷ ︸
directional derivative

for a constant c� 1 is satisfied. This condition ensures that the line search

parameter is not excessively large, although it is not sufficient to prove

convergence in general.
Nonlinear Programming 95

Armijo Linear Search Conditions

In practice the line search optimization

min
αk∈(0,1]

f(xk + αk∆xk).

is not solved exactly (too expensive), but only approximately.

One way to implement this is by using back-tracking until the Armijo

condition

f(xk + αk∆xk) ≤ f(xk) + c · αk ∇f(xk)>∆xk︸ ︷︷ ︸
directional derivative

for a constant c� 1 is satisfied. This condition ensures that the line search

parameter is not excessively large, although it is not sufficient to prove

convergence in general.
Nonlinear Programming 96

Quasi-Newton Methods – Preliminaries

One way to represent invertible matrices is by considering matrices of the

form

A = B︸︷︷︸
easy-to-store

+ UV >︸ ︷︷ ︸
low rank

with B ∈ Rn×n and U, V ∈ Rn×m, m� n.

If B is easy to invert or B−1 is already known, we have A−1 as

(B + UV)−1 = B−1 −B−1U(I + V >B−1U)−1V >B−1,

which is the so-called "Woodbury’s matrix inversion formula".

Nonlinear Programming 97

Quasi-Newton Methods – Preliminaries

One way to represent invertible matrices is by considering matrices of the

form

A = B︸︷︷︸
easy-to-store

+ UV >︸ ︷︷ ︸
low rank

with B ∈ Rn×n and U, V ∈ Rn×m, m� n.

If B is easy to invert or B−1 is already known, we have A−1 as

(B + UV)−1 = B−1 −B−1U(I + V >B−1U)−1V >B−1,

which is the so-called "Woodbury’s matrix inversion formula".

Nonlinear Programming 98

Quasi-Newton Methods – Broyden’s Updates

The Newton-type iterates

xk = xk−1 −M(xk−1)−1∇f(xk−1), xk+1 = xk −M(xk)−1∇f(xk), ...

We have to compute the gradient ∇f at each iteration such that we can

obtain the directional estimate

∇2f(xk+1)(xk+1 − xk) ≈ ∇f(xk+1)−∇f(xk).

Questions: can we use this relation to improve our next Hessian

approximation M(xk+1) ≈ ∇2f(xk+1)?

Nonlinear Programming 99

Quasi-Newton Methods – Broyden’s Updates

The Newton-type iterates

xk = xk−1 −M(xk−1)−1∇f(xk−1), xk+1 = xk −M(xk)−1∇f(xk), ...

We have to compute the gradient ∇f at each iteration such that we can

obtain the directional estimate

∇2f(xk+1)(xk+1 − xk) ≈ ∇f(xk+1)−∇f(xk).

Questions: can we use this relation to improve our next Hessian

approximation M(xk+1) ≈ ∇2f(xk+1)?

Nonlinear Programming 100

Quasi-Newton Methods – Broyden’s Updates

The Newton-type iterates

xk = xk−1 −M(xk−1)−1∇f(xk−1), xk+1 = xk −M(xk)−1∇f(xk), ...

We have to compute the gradient ∇f at each iteration such that we can

obtain the directional estimate

∇2f(xk+1)(xk+1 − xk) ≈ ∇f(xk+1)−∇f(xk).

Questions: can we use this relation to improve our next Hessian

approximation M(xk+1) ≈ ∇2f(xk+1)?

Nonlinear Programming 101

Quasi-Newton Methods – Broyden’s Updates

Define dk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk), the relation

∇2f(xk+1)dk ≈ yk

motivates to improve our current estimate of ∇2f constructing M+ by

solving

min
M+

1
2
∥∥M+ −M(xk)

∥∥2
F

subject to M+dk = yk

with ‖ · ‖F the Frobenius norms (‖X‖2F = Tr(XX>)).

Nonlinear Programming 102

Quasi-Newton Methods – Broyden’s Updates

Define dk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk), the relation

∇2f(xk+1)dk ≈ yk

motivates to improve our current estimate of ∇2f constructing M+ by

solving

min
M+

1
2
∥∥M+ −M(xk)

∥∥2
F

subject to M+dk = yk

with ‖ · ‖F the Frobenius norms (‖X‖2F = Tr(XX>)).

Nonlinear Programming 103

Quasi-Newton Methods – Broyden’s Updates

Broyden’s update

M+ = M(xk)− (M(xk)dk − yk)(dk)>

‖dk‖22

Inverse Broyden’s update

(M+)−1 = M(xk)−1 + (dk −M(xk)−1yk)(dk)>M(xk)−1

(dk)>M(xk)−1yk

Remarks:

both update are rank-1 update.

we don’t need to compute any second order derivatives.

we can directly compute M−1, no inversion needed.

But: M+ may be non-symmetric even if M(xk) was symmetric.
Nonlinear Programming 104

Quasi-Newton Methods – Broyden’s Updates

Broyden’s update

M+ = M(xk)− (M(xk)dk − yk)(dk)>

‖dk‖22

Inverse Broyden’s update

(M+)−1 = M(xk)−1 + (dk −M(xk)−1yk)(dk)>M(xk)−1

(dk)>M(xk)−1yk

Remarks:

both update are rank-1 update.

we don’t need to compute any second order derivatives.

we can directly compute M−1, no inversion needed.

But: M+ may be non-symmetric even if M(xk) was symmetric.
Nonlinear Programming 105

Quasi-Newton Methods – Broyden’s Updates

Broyden’s update

M+ = M(xk)− (M(xk)dk − yk)(dk)>

‖dk‖22

Inverse Broyden’s update

(M+)−1 = M(xk)−1 + (dk −M(xk)−1yk)(dk)>M(xk)−1

(dk)>M(xk)−1yk

Remarks:

both update are rank-1 update.

we don’t need to compute any second order derivatives.

we can directly compute M−1, no inversion needed.

But: M+ may be non-symmetric even if M(xk) was symmetric.
Nonlinear Programming 106

Quasi-Newton Methods – Broyden’s Updates

Broyden’s update

M+ = M(xk)− (M(xk)dk − yk)(dk)>

‖dk‖22

Inverse Broyden’s update

(M+)−1 = M(xk)−1 + (dk −M(xk)−1yk)(dk)>M(xk)−1

(dk)>M(xk)−1yk

Remarks:

both update are rank-1 update.

we don’t need to compute any second order derivatives.

we can directly compute M−1, no inversion needed.

But: M+ may be non-symmetric even if M(xk) was symmetric.
Nonlinear Programming 107

Quasi-Newton Methods – Broyden’s Updates

Broyden’s update

M+ = M(xk)− (M(xk)dk − yk)(dk)>

‖dk‖22

Inverse Broyden’s update

(M+)−1 = M(xk)−1 + (dk −M(xk)−1yk)(dk)>M(xk)−1

(dk)>M(xk)−1yk

Remarks:

both update are rank-1 update.

we don’t need to compute any second order derivatives.

we can directly compute M−1, no inversion needed.

But: M+ may be non-symmetric even if M(xk) was symmetric.
Nonlinear Programming 108

Quasi-Newton Methods – BFGS Updates
Broyden-Fletcher-Goldfarb-Shanno Updates

The idea is to maintain the symmetry of the updates by solving

min
M+

1
2
∥∥M+ −M(xk)

∥∥2 subject to

 M+dk =yk

(M+)>dk =yk

with
∥∥M+ −M(xk)

∥∥2 :=
∥∥∥W 1

2 (M+ −M(xk))W 1
2

∥∥∥2

F
=

Tr
(
W

1
2 (M+ −M(xk))W (M+ −M(xk))W 1

2

)
.

Here, the norm is (mainly for computational reasons) a weighted Frobenius

norm by W any symmetric positive definite weighting matrix satisfying

Wyk = dk.

Nonlinear Programming 109

Quasi-Newton Methods – BFGS Updates
Broyden-Fletcher-Goldfarb-Shanno Updates

The idea is to maintain the symmetry of the updates by solving

min
M+

1
2
∥∥M+ −M(xk)

∥∥2 subject to

 M+dk =yk

(M+)>dk =yk

with
∥∥M+ −M(xk)

∥∥2 :=
∥∥∥W 1

2 (M+ −M(xk))W 1
2

∥∥∥2

F
=

Tr
(
W

1
2 (M+ −M(xk))W (M+ −M(xk))W 1

2

)
.

Here, the norm is (mainly for computational reasons) a weighted Frobenius

norm by W any symmetric positive definite weighting matrix satisfying

Wyk = dk.

Nonlinear Programming 110

Quasi-Newton Methods – BFGS Updates
Broyden-Fletcher-Goldfarb-Shanno Updates

The idea is to maintain the symmetry of the updates by solving

min
M+

1
2
∥∥M+ −M(xk)

∥∥2 subject to

 M+dk =yk

(M+)>dk =yk

with
∥∥M+ −M(xk)

∥∥2 :=
∥∥∥W 1

2 (M+ −M(xk))W 1
2

∥∥∥2

F
=

Tr
(
W

1
2 (M+ −M(xk))W (M+ −M(xk))W 1

2

)
.

Here, the norm is (mainly for computational reasons) a weighted Frobenius

norm by W any symmetric positive definite weighting matrix satisfying

Wyk = dk.

Nonlinear Programming 111

Quasi-Newton Methods – BFGS Updates
Broyden-Fletcher-Goldfarb-Shanno Updates

BFGS update:

M+ = M(xk)− M(xk)dk(dk)>M(xk)
(dk)>M(xk)dk + yk(yk)>

(yk)>dk

inverse BFGS update:

(M+)−1 =
(

I− dk(yk)>

(dk)>yk

)
M(xk)−1

(
I− dk(yk)>

(dk)>yk

)
+ dk(dk)>

(dk)>yk

Both are rank-2 update.

Nonlinear Programming 112

Quasi-Newton Methods – BFGS Updates
Broyden-Fletcher-Goldfarb-Shanno Updates

BFGS update:

M+ = M(xk)− M(xk)dk(dk)>M(xk)
(dk)>M(xk)dk + yk(yk)>

(yk)>dk

inverse BFGS update:

(M+)−1 =
(

I− dk(yk)>

(dk)>yk

)
M(xk)−1

(
I− dk(yk)>

(dk)>yk

)
+ dk(dk)>

(dk)>yk

Both are rank-2 update.

Nonlinear Programming 113

Quasi-Newton Methods – BFGS Updates
Broyden-Fletcher-Goldfarb-Shanno Updates

BFGS update:

M+ = M(xk)− M(xk)dk(dk)>M(xk)
(dk)>M(xk)dk + yk(yk)>

(yk)>dk

inverse BFGS update:

(M+)−1 =
(

I− dk(yk)>

(dk)>yk

)
M(xk)−1

(
I− dk(yk)>

(dk)>yk

)
+ dk(dk)>

(dk)>yk

Both are rank-2 update.

Nonlinear Programming 114

Algorithms for Constrained NLPs

Nonlinear program

min
x∈Rnx

f(x) subject to

hi(x) = 0, i ∈ E := {1, ..., nh}

gi(x) ≤ 0, i ∈ I := {1, ..., ng}

Convert into unconstrained problem:

Penalty function method;

Interior point method.

Solve necessary conditions of optimality:

Newton-like methods;

Sequential quadratic programming.

Nonlinear Programming 115

Algorithms for Constrained NLPs

Nonlinear program

min
x∈Rnx

f(x) subject to

hi(x) = 0, i ∈ E := {1, ..., nh}

gi(x) ≤ 0, i ∈ I := {1, ..., ng}

Convert into unconstrained problem:

Penalty function method;

Interior point method.

Solve necessary conditions of optimality:

Newton-like methods;

Sequential quadratic programming.

Nonlinear Programming 116

Exterior Penalty Function Methods

Penalty function

Φ(x) =
∑
i∈E

ψ(hi(x)) +
∑
i∈I

φ(gi(x)), ψ, φ ∈ C0

with

 ψ(z) = 0 if z = 0

ψ(z) > 0 else
and

 φ(z) = 0 if z ≤ 0

φ(z) > 0 else

Typical choice: ψ(z) = |z|p, p ∈ N>0 and φ(z) = (max{0, z})p.

Nonlinear Programming 117

Exterior Penalty Function Methods

Penalty function

Φ(x) =
∑
i∈E

ψ(hi(x)) +
∑
i∈I

φ(gi(x)), ψ, φ ∈ C0

with

 ψ(z) = 0 if z = 0

ψ(z) > 0 else
and

 φ(z) = 0 if z ≤ 0

φ(z) > 0 else

Typical choice: ψ(z) = |z|p, p ∈ N>0 and φ(z) = (max{0, z})p.

Nonlinear Programming 118

Exterior Penalty Function Methods

Unconstrained optimization problem

min
x∈Rnx

f(x) + µ · Φ(x) with µ > 0.

Remark
recovering solution of the original problem µ→∞.

ill-conditioned for large µ.

Nonlinear Programming 119

Exterior Penalty Function Methods

Unconstrained optimization problem

min
x∈Rnx

f(x) + µ · Φ(x) with µ > 0.

Remark
recovering solution of the original problem µ→∞.

ill-conditioned for large µ.

Nonlinear Programming 120

Sequential Unconstrained Optimization

Main idea:

Start at an initial x0, update xk by solving

xk+1 := arg min
x∈Rnx

f(x) + µk · Φ(x).

If µkΦ(xk+1) < ε, stop. Otherwise, update µk+1 = βµk with β > 1.

Remark
Iterates xk are typically infeasible.

Remedy? → interior point methods.

Nonlinear Programming 121

Sequential Unconstrained Optimization

Main idea:

Start at an initial x0, update xk by solving

xk+1 := arg min
x∈Rnx

f(x) + µk · Φ(x).

If µkΦ(xk+1) < ε, stop. Otherwise, update µk+1 = βµk with β > 1.

Remark
Iterates xk are typically infeasible.

Remedy? → interior point methods.

Nonlinear Programming 122

Barrier Method

Inequality constrained NLPs

min
x∈Rnx

f(x) subject to gi(x) ≤ 0, i ∈ I := {1, ..., ng}

Barrier function

b(x) =
∑
i∈I

φ(gi(x)) with

 φ(z) ≥ 0 if z ≤ 0

limz→0− =∞

Typical choice

φ(z) = − ln(−z).

Nonlinear Programming 123

Barrier Method

Inequality constrained NLPs

min
x∈Rnx

f(x) subject to gi(x) ≤ 0, i ∈ I := {1, ..., ng}

Barrier function

b(x) =
∑
i∈I

φ(gi(x)) with

 φ(z) ≥ 0 if z ≤ 0

limz→0− =∞

Typical choice

φ(z) = − ln(−z).

Nonlinear Programming 124

Barrier Method

Inequality constrained NLPs

min
x∈Rnx

f(x) subject to gi(x) ≤ 0, i ∈ I := {1, ..., ng}

Barrier function

b(x) =
∑
i∈I

φ(gi(x)) with

 φ(z) ≥ 0 if z ≤ 0

limz→0− =∞

Typical choice

φ(z) = − ln(−z).

Nonlinear Programming 125

Barrier Method

Main idea:

Start at an initial feasible point x0 with g(x0) < 0, update xk by solving

xk+1 := arg min
x∈Rnx

f(x) + µk · b(x).

If µk · b(xk+1) < ε, stop. Otherwise, update µk+1 = βµk with β ∈ (0, 1).

Remark
Iterates xk are always feasible.

Off-the-shelf solver Ipopt.

Nonlinear Programming 126

Barrier Method

Main idea:

Start at an initial feasible point x0 with g(x0) < 0, update xk by solving

xk+1 := arg min
x∈Rnx

f(x) + µk · b(x).

If µk · b(xk+1) < ε, stop. Otherwise, update µk+1 = βµk with β ∈ (0, 1).

Remark
Iterates xk are always feasible.

Off-the-shelf solver Ipopt.

Nonlinear Programming 127

Interior Point Method

Inequality constrained NLPs

min
x∈Rnx

f(x) subject to gi(x) ≤ 0, i ∈ I := {1, ..., ng}

KKT condition:

∇f(x) +∇g(x)κ = 0

g(x) ≤ 0

κ ≥ 0

κi · gi(x) = 0, i ∈ I

Perturbed KKT condition:

∇f(x) +∇g(x)κ = 0

κi · gi(x) = µ, i ∈ I

with µ > 0.

Nonlinear Programming 128

Interior Point Method

Inequality constrained NLPs

min
x∈Rnx

f(x) subject to gi(x) ≤ 0, i ∈ I := {1, ..., ng}

KKT condition:

∇f(x) +∇g(x)κ = 0

g(x) ≤ 0

κ ≥ 0

κi · gi(x) = 0, i ∈ I

Perturbed KKT condition:

∇f(x) +∇g(x)κ = 0

κi · gi(x) = µ, i ∈ I

with µ > 0.

Nonlinear Programming 129

Interior Point Method
Main Idea:

Apply Newton’s method to deal with nonlinear equations

Fµ(x, κ) =

 ∇f(x) +∇g(x)κ

diag(κ)g(x)− µ · 1ng

 = 0

Update µ with µ→ 0, ref. [Chapter 19.3, NW06]

Linear search is necessary, ref. [Chapter 19.4, NW06]

Remark
Log-barrier based unconstrained problem minx f(x) + µ · b(x) has

KKT conditions equivalent to the perturbed KKT, i.e.,

∇f(x) +
∑
i∈I

µ

gi(x)∇gi(x) = 0 ⇒ κi = µ

gi(x)

[NW06] J. Nocedal and S. Wright, Numerical optimization. 2006.
Nonlinear Programming 130

Interior Point Method
Main Idea:

Apply Newton’s method to deal with nonlinear equations

Fµ(x, κ) =

 ∇f(x) +∇g(x)κ

diag(κ)g(x)− µ · 1ng

 = 0

Update µ with µ→ 0, ref. [Chapter 19.3, NW06]

Linear search is necessary, ref. [Chapter 19.4, NW06]

Remark
Log-barrier based unconstrained problem minx f(x) + µ · b(x) has

KKT conditions equivalent to the perturbed KKT, i.e.,

∇f(x) +
∑
i∈I

µ

gi(x)∇gi(x) = 0 ⇒ κi = µ

gi(x)

[NW06] J. Nocedal and S. Wright, Numerical optimization. 2006.
Nonlinear Programming 131

Sequential Quadratic Programming (SQP)

Equality constrained NLP

min
x∈Rnx

f(x) subject to h(x) = 0

1st order optimality conditions

F (y) =

∇f(x) +∇h(x)λ

h(x)

 = 0 with y =

x
λ


Main idea: applying Newton’s method to solve F (y) = 0, i.e.,H(x) A(x)>

A(x)

∆x

∆λ

 = −

∇f(x) +∇h(x)λ

h(x)


with H(x) = ∇xx

{
f(x) + λ>h(x)

}
and A = ∇h(x)>.

Nonlinear Programming 132

Sequential Quadratic Programming (SQP)

Equality constrained NLP

min
x∈Rnx

f(x) subject to h(x) = 0

1st order optimality conditions

F (y) =

∇f(x) +∇h(x)λ

h(x)

 = 0 with y =

x
λ


Main idea: applying Newton’s method to solve F (y) = 0, i.e.,H(x) A(x)>

A(x)

∆x

∆λ

 = −

∇f(x) +∇h(x)λ

h(x)


with H(x) = ∇xx

{
f(x) + λ>h(x)

}
and A = ∇h(x)>.

Nonlinear Programming 133

Sequential Quadratic Programming (SQP)

Equality constrained NLP

min
x∈Rnx

f(x) subject to h(x) = 0

1st order optimality conditions

F (y) =

∇f(x) +∇h(x)λ

h(x)

 = 0 with y =

x
λ


Main idea: applying Newton’s method to solve F (y) = 0, i.e.,H(x) A(x)>

A(x)

∆x

∆λ

 = −

∇f(x) +∇h(x)λ

h(x)


with H(x) = ∇xx

{
f(x) + λ>h(x)

}
and A = ∇h(x)>.

Nonlinear Programming 134

Globalization

How do we measure progress towards a solution?

Recall: in unconstrained minimization, the main idea was to accept the next

iterate xk+1 if f(xk+1) is sufficiently smaller than f(xk).

In equality constrained optimization we need to measure two things:

1. The objective value f(x) and

2. the constraint violation ‖h(x)‖

Nonlinear Programming 135

Globalization

How do we measure progress towards a solution?

Recall: in unconstrained minimization, the main idea was to accept the next

iterate xk+1 if f(xk+1) is sufficiently smaller than f(xk).

In equality constrained optimization we need to measure two things:

1. The objective value f(x) and

2. the constraint violation ‖h(x)‖

Nonlinear Programming 136

Globalization

How do we measure progress towards a solution?

Recall: in unconstrained minimization, the main idea was to accept the next

iterate xk+1 if f(xk+1) is sufficiently smaller than f(xk).

In equality constrained optimization we need to measure two things:

1. The objective value f(x) and

2. the constraint violation ‖h(x)‖

Nonlinear Programming 137

L1-Penalty Functions

One way to measure progress towards a solution is to introduce the

L1-penalty function

Ψ(x) = f(x) +
∑
i∈E

λ̄i|hi(x)|

with λ̄i being sufficiently large constants.

An important property of the function Ψ(x) is that (under mild conditions)

we have

Ψ(x∗) = f(x∗) but also Ψ(x) ≥ f(x)

for all x ∈ X within a compact subset X ⊆ Rnx and λ̄i are sufficiently large

Nonlinear Programming 138

L1-Penalty Functions

One way to measure progress towards a solution is to introduce the

L1-penalty function

Ψ(x) = f(x) +
∑
i∈E

λ̄i|hi(x)|

with λ̄i being sufficiently large constants.

An important property of the function Ψ(x) is that (under mild conditions)

we have

Ψ(x∗) = f(x∗) but also Ψ(x) ≥ f(x)

for all x ∈ X within a compact subset X ⊆ Rnx and λ̄i are sufficiently large

Nonlinear Programming 139

Armijo Line Search Conditions

Similar to unconstrained optimization, the line search parameter αk can be

found by using back-tracking until the Armijo condition

Ψ(xk + αk∆xk) ≤ Ψ(xk) + c · αkD(Ψ(xk),∆xk)

for a constant c� 1 is satisfied. Here, D(Ψ(xk),∆xk) denotes the

directional derivative

D(Ψ(xk),∆xk) =
∥∥h(xk) +∇h(xk)>∆xk

∥∥
1

Nonlinear Programming 140

SQP for Equality Constrained NLP

1. Choose initial guesses x0 ∈ Rnx and λ0 ∈ Rnh , tolerance ε > 0.

2. Repeat:

2.1 Choose Hessian approximation M(xk) ≈ ∇xx

{
f(xk) + (λk)>h(xk)

}
and

A(xk) = ∇h(xk).

2.2 Solve subQP

min
∆xk∈Rnx

1
2(∆xk)>H(xk)∆xk +∇f(xk)>∆xk

subject to h(xk) +A(xk)>∆xk = 0 | λQP

2.3 Terminate if
∣∣∇f(xk)>∆xk

∣∣+
∑

i∈E |λi| |hi(x)| ≤ ε.

2.4 Choose a line-search parameter αk ∈ (0, 1] and set xk+1 = xk + αk∆xk and

λk+1 = λk + αk(λQP − λk).

Nonlinear Programming 141

SQP for Inequality Constrained NLP

Include linearized inequality constraints in subQPs, i.e.,

min
∆xk∈Rnx

1
2(∆xk)>H(xk)∆xk +∇f(xk)>∆xk

subject to h(xk) +A(xk)>∆xk = 0

g(xk) +B(xk)>∆xk ≤ 0

with B(xk) = ∇g(xk).

Use the following L1-penalty function for linear search

Ψ(x) = f(x) +
∑
i∈E
|λ̄i||hi(x)|+

∑
i∈I
|κ̄i|(max{0, gi(x)})

with sufficiently large λ̄i and κ̄i.

Nonlinear Programming 142

Numerical Implementation

SubQP infeasible ⇒ relax the constraints

Hessian regularization, e.g., M(xk) = ∇xx{f(x) + λ>h(x)}+ σI � 0.

Rank-deficient constraints ⇒ reformulated the constraints, e.g.,

min
x

x subject to x2 = 0

with x∗ = 0 but we cannot find a λ∗ since

0 = ∇f(x∗) +∇h(x∗)λ∗ = 1

is wrong. Replacing x2 = 0 by x = 0 can avoid this degeneracy.

Constraint Jacobian ill-conditioned ⇒ scaling, e.g., Ruiz equilibration.

Nonlinear Programming 143

Numerical Implementation

SubQP infeasible ⇒ relax the constraints

Hessian regularization, e.g., M(xk) = ∇xx{f(x) + λ>h(x)}+ σI � 0.

Rank-deficient constraints ⇒ reformulated the constraints, e.g.,

min
x

x subject to x2 = 0

with x∗ = 0 but we cannot find a λ∗ since

0 = ∇f(x∗) +∇h(x∗)λ∗ = 1

is wrong. Replacing x2 = 0 by x = 0 can avoid this degeneracy.

Constraint Jacobian ill-conditioned ⇒ scaling, e.g., Ruiz equilibration.

Nonlinear Programming 144

Numerical Implementation

SubQP infeasible ⇒ relax the constraints

Hessian regularization, e.g., M(xk) = ∇xx{f(x) + λ>h(x)}+ σI � 0.

Rank-deficient constraints ⇒ reformulated the constraints, e.g.,

min
x

x subject to x2 = 0

with x∗ = 0 but we cannot find a λ∗ since

0 = ∇f(x∗) +∇h(x∗)λ∗ = 1

is wrong. Replacing x2 = 0 by x = 0 can avoid this degeneracy.

Constraint Jacobian ill-conditioned ⇒ scaling, e.g., Ruiz equilibration.

Nonlinear Programming 145

Numerical Implementation

SubQP infeasible ⇒ relax the constraints

Hessian regularization, e.g., M(xk) = ∇xx{f(x) + λ>h(x)}+ σI � 0.

Rank-deficient constraints ⇒ reformulated the constraints, e.g.,

min
x

x subject to x2 = 0

with x∗ = 0 but we cannot find a λ∗ since

0 = ∇f(x∗) +∇h(x∗)λ∗ = 1

is wrong. Replacing x2 = 0 by x = 0 can avoid this degeneracy.

Constraint Jacobian ill-conditioned ⇒ scaling, e.g., Ruiz equilibration.

Nonlinear Programming 146

Contents

Basic Notions of Nonlinear Programming

Necessary Conditions of Optimality

Interpretation of Lagrange Multipliers

Minimal Primer on Algorithms for NLPs

Computation of Derivatives

Nonlinear Programming 147

Why do we need to compute derivatives?

Motivation

min
x∈Rnx

f(x) subject to

h(x) = 0

g(x) ≤ 0

Derivatives of objectives and constraints (gradients);

Sensitivities of ODE or DAEs (needed later);

Jacobians to solve implicit equations (e.g. implicit ODEs, DAEs, ...).

Main Possibilities

Numerical differentiation

Algorithmic differentiation

Nonlinear Programming 148

Why do we need to compute derivatives?

Motivation

min
x∈Rnx

f(x) subject to

h(x) = 0

g(x) ≤ 0

Derivatives of objectives and constraints (gradients);

Sensitivities of ODE or DAEs (needed later);

Jacobians to solve implicit equations (e.g. implicit ODEs, DAEs, ...).

Main Possibilities

Numerical differentiation

Algorithmic differentiation

Nonlinear Programming 149

Numerical Differentiation – Finite Differences
The derivative of a twice continuously differentiable function f : R→ R can

be approximated by finite differences:

df(x)
dx

≈ f(x+ h)− f(x)
h

The mathematical approximation error, given by∣∣∣∣f(x+ h)− f(x)
h

− df(x)
dx

∣∣∣∣ ≈ h

2

∣∣∣∣d2f(x)
dx2

∣∣∣∣ = O(h)

tends to 0 with h→ 0.

How to choose increment h?

h = √eps ⇒ Limited accuracy√eps

Nonlinear Programming 150

Numerical Differentiation – Finite Differences
The derivative of a twice continuously differentiable function f : R→ R can

be approximated by finite differences:

df(x)
dx

≈ f(x+ h)− f(x)
h

The mathematical approximation error, given by∣∣∣∣f(x+ h)− f(x)
h

− df(x)
dx

∣∣∣∣ ≈ h

2

∣∣∣∣d2f(x)
dx2

∣∣∣∣ = O(h)

tends to 0 with h→ 0.

How to choose increment h?

h = √eps ⇒ Limited accuracy√eps

Nonlinear Programming 151

Numerical Differentiation – Finite Differences
The derivative of a twice continuously differentiable function f : R→ R can

be approximated by finite differences:

df(x)
dx

≈ f(x+ h)− f(x)
h

The mathematical approximation error, given by∣∣∣∣f(x+ h)− f(x)
h

− df(x)
dx

∣∣∣∣ ≈ h

2

∣∣∣∣d2f(x)
dx2

∣∣∣∣ = O(h)

tends to 0 with h→ 0.

How to choose increment h?

h = √eps ⇒ Limited accuracy√eps

Nonlinear Programming 152

Numerical Differentiation – Central Differences

In order to reduce the mathematical approximation error, we can use central

differences:
df(x)
dx

≈ f(x+ h)− f(x− h)
2h

to approximate the derivative of f .

The mathematical approximation error is now∣∣∣∣f(x+ h)− f(x− h)
2h − df(x)

dx

∣∣∣∣ ≤ O(h2)

How to choose increment h?

h = 3
√eps ⇒ Limited accuracy(3

√eps)2

Nonlinear Programming 153

Numerical Differentiation – Central Differences

In order to reduce the mathematical approximation error, we can use central

differences:
df(x)
dx

≈ f(x+ h)− f(x− h)
2h

to approximate the derivative of f .

The mathematical approximation error is now∣∣∣∣f(x+ h)− f(x− h)
2h − df(x)

dx

∣∣∣∣ ≤ O(h2)

How to choose increment h?

h = 3
√eps ⇒ Limited accuracy(3

√eps)2

Nonlinear Programming 154

Numerical Differentiation – Central Differences

In order to reduce the mathematical approximation error, we can use central

differences:
df(x)
dx

≈ f(x+ h)− f(x− h)
2h

to approximate the derivative of f .

The mathematical approximation error is now∣∣∣∣f(x+ h)− f(x− h)
2h − df(x)

dx

∣∣∣∣ ≤ O(h2)

How to choose increment h?

h = 3
√eps ⇒ Limited accuracy(3

√eps)2

Nonlinear Programming 155

Numerical Differentiation – Imaginary Trick

The derivative of a continuously differentiable function f : R→ R can be

approximated by

df(x)
dx

≈ Im(f(x+ i · h))
h

, i2 = −1.

The mathematical approximation error is same as central differences, i.e.,∣∣∣∣ Im(f(x+ i · h))
h

− df(x)
dx

∣∣∣∣ ≤ O(h2)

but the computation is cheap.

Sketch Proof:

f(x+ i · h) = f(x) + i · df(x)
dx

h− 1
2
d2f(x)
dx2 h2 −O(i · h3)

Easy to implement in Matlab
Nonlinear Programming 156

Numerical Differentiation – Imaginary Trick

The derivative of a continuously differentiable function f : R→ R can be

approximated by

df(x)
dx

≈ Im(f(x+ i · h))
h

, i2 = −1.

The mathematical approximation error is same as central differences, i.e.,∣∣∣∣ Im(f(x+ i · h))
h

− df(x)
dx

∣∣∣∣ ≤ O(h2)

but the computation is cheap.

Sketch Proof:

f(x+ i · h) = f(x) + i · df(x)
dx

h− 1
2
d2f(x)
dx2 h2 −O(i · h3)

Easy to implement in Matlab
Nonlinear Programming 157

Numerical Differentiation – Imaginary Trick

The derivative of a continuously differentiable function f : R→ R can be

approximated by

df(x)
dx

≈ Im(f(x+ i · h))
h

, i2 = −1.

The mathematical approximation error is same as central differences, i.e.,∣∣∣∣ Im(f(x+ i · h))
h

− df(x)
dx

∣∣∣∣ ≤ O(h2)

but the computation is cheap.

Sketch Proof:

f(x+ i · h) = f(x) + i · df(x)
dx

h− 1
2
d2f(x)
dx2 h2 −O(i · h3)

Easy to implement in Matlab
Nonlinear Programming 158

Numerical Differentiation – Imaginary Trick

The derivative of a continuously differentiable function f : R→ R can be

approximated by

df(x)
dx

≈ Im(f(x+ i · h))
h

, i2 = −1.

The mathematical approximation error is same as central differences, i.e.,∣∣∣∣ Im(f(x+ i · h))
h

− df(x)
dx

∣∣∣∣ ≤ O(h2)

but the computation is cheap.

Sketch Proof:

f(x+ i · h) = f(x) + i · df(x)
dx

h− 1
2
d2f(x)
dx2 h2 −O(i · h3)

Easy to implement in Matlab
Nonlinear Programming 159

Factorable Functions
Many (but not all) functions of our interest can be composed into a finite

list of atom operations from a given library L, e.g.,

L = {+,−, ∗, sin, cos, exp, ...}.

Example

The function f(x) = sin(x1 ∗ x2) + cos(x1) will (internally) be evaluated

as
x3 = x1 ∗ x2

x4 = sin(x3)

x5 = cos(x1)

x6 = x4 + x5

f(x) = x6

Here, the memory for x3, ..., x5 is (usually) allocated temporarily.
Nonlinear Programming 160

Factorable Functions
Many (but not all) functions of our interest can be composed into a finite

list of atom operations from a given library L, e.g.,

L = {+,−, ∗, sin, cos, exp, ...}.

Example

The function f(x) = sin(x1 ∗ x2) + cos(x1) will (internally) be evaluated

as
x3 = x1 ∗ x2

x4 = sin(x3)

x5 = cos(x1)

x6 = x4 + x5

f(x) = x6

Here, the memory for x3, ..., x5 is (usually) allocated temporarily.
Nonlinear Programming 161

Factorable Functions
Consider a given factorable function f : Rn → Rm, we define

augmented state by

s0 = x =

x1
...
xn

 , s1 =

 x1
...

xn+1

 ,, sm =

 x1
...

xn+m


augmented elementary function by Φi : Rn+i → Rn+i+1

Φi(si) =


x1
...

xn+i

φi(x1, .., xn+i)

 , si+1 = Φi(si)

Representation of f given by f(x) = C · Φm−1(Φm−2(· · ·Φ1(Φ0(x))))

with selection matrix C = [0m×n, Im]
Nonlinear Programming 162

Factorable Functions
Consider a given factorable function f : Rn → Rm, we define

augmented state by

s0 = x =

x1
...
xn

 , s1 =

 x1
...

xn+1

 ,, sm =

 x1
...

xn+m


augmented elementary function by Φi : Rn+i → Rn+i+1

Φi(si) =


x1
...

xn+i

φi(x1, .., xn+i)

 , si+1 = Φi(si)

Representation of f given by f(x) = C · Φm−1(Φm−2(· · ·Φ1(Φ0(x))))

with selection matrix C = [0m×n, Im]
Nonlinear Programming 163

Factorable Functions
Consider a given factorable function f : Rn → Rm, we define

augmented state by

s0 = x =

x1
...
xn

 , s1 =

 x1
...

xn+1

 ,, sm =

 x1
...

xn+m


augmented elementary function by Φi : Rn+i → Rn+i+1

Φi(si) =


x1
...

xn+i

φi(x1, .., xn+i)

 , si+1 = Φi(si)

Representation of f given by f(x) = C · Φm−1(Φm−2(· · ·Φ1(Φ0(x))))

with selection matrix C = [0m×n, Im]
Nonlinear Programming 164

Algorithmic Differentiation – Forward Mode

Recall: the representation of a factorable function f : Rn → Rm,

f(x) = C · Φm−1(Φm−2(· · ·Φ1(Φ0(x))))

The Jacobian Jf = ∂f
∂x can be written as

Jf = C · Jm−1 · Jm−2 · · · J1 · J0 with Ji = ∂Φi
∂si

Main idea: the directional derivative Jfp with seed p ∈ Rn given by

Jfp = C · (Jm−1 · (Jm−2 · · · (J1 · (J0p))))

we define p = s̃0 = [x̃1, ..., x̃n]> such that

s̃i+1 = Ji(si)s̃i, i = 1, ...,m− 1

with s̃i+1 = [s̃>i , x̃n+i]>.
Nonlinear Programming 165

Algorithmic Differentiation – Forward Mode

Recall: the representation of a factorable function f : Rn → Rm,

f(x) = C · Φm−1(Φm−2(· · ·Φ1(Φ0(x))))

The Jacobian Jf = ∂f
∂x can be written as

Jf = C · Jm−1 · Jm−2 · · · J1 · J0 with Ji = ∂Φi
∂si

Main idea: the directional derivative Jfp with seed p ∈ Rn given by

Jfp = C · (Jm−1 · (Jm−2 · · · (J1 · (J0p))))

we define p = s̃0 = [x̃1, ..., x̃n]> such that

s̃i+1 = Ji(si)s̃i, i = 1, ...,m− 1

with s̃i+1 = [s̃>i , x̃n+i]>.
Nonlinear Programming 166

Algorithmic Differentiation – Forward Mode

Example: f(x) = sin(x1 ∗ x2) + cos(x1):

x3 = x1 ∗ x2

x4 = sin(x3)

x5 = cos(x1)

x6 = x4 + x5

∣∣∣∣∣∣∣∣∣∣∣∣∣

x̃3 = x1 ∗ x̃2 + x̃1 ∗ x2

x̃4 = cos(x3)x̃3

x̃5 = − sin(x1)x̃1

x̃6 = x̃4 + x̃5

Result: x̃6 = s̃>0 ∇f(x).

Cost(Jf) in forward mode ≤ 2n · Cost(f)

Nonlinear Programming 167

Algorithmic Differentiation – Backward Mode

Recall: the representation of a factorable function f : Rn → Rm,

f(x) = C · Φm−1(Φm−2(· · ·Φ1(Φ0(x))))

The Jacobian Jf = ∂f
∂x can be written as

Jf = C · Jm−1 · Jm−2 · · · J1 · J0 with Ji = ∂Φi
∂si

Main idea: the adjoint directional derivative λ>Jf with seed λ ∈ Rm

given by

λ>Jf = (((((λ>C) · Jm−1) · Jm−2) · · · J1) · J0)

we define C>λ = s̄m such that

s̄i = Ji(si)>s̄i+1, i = m− 1, ..., 0

with s̄i+1 = [s̄>i , x̄n+i]>.
Nonlinear Programming 168

Algorithmic Differentiation – Backward Mode

Recall: the representation of a factorable function f : Rn → Rm,

f(x) = C · Φm−1(Φm−2(· · ·Φ1(Φ0(x))))

The Jacobian Jf = ∂f
∂x can be written as

Jf = C · Jm−1 · Jm−2 · · · J1 · J0 with Ji = ∂Φi
∂si

Main idea: the adjoint directional derivative λ>Jf with seed λ ∈ Rm

given by

λ>Jf = (((((λ>C) · Jm−1) · Jm−2) · · · J1) · J0)

we define C>λ = s̄m such that

s̄i = Ji(si)>s̄i+1, i = m− 1, ..., 0

with s̄i+1 = [s̄>i , x̄n+i]>.
Nonlinear Programming 169

Algorithmic Differentiation – Backward Mode

Example: f(x) = sin(x1 ∗ x2) + cos(x1):

x3 = x1 ∗ x2

x4 = sin(x3)

x5 = cos(x1)

x6 = x4 + x5

∣∣∣∣∣∣∣∣∣
x̄6 = 1, x̄i = 0, i = 1, ..., 5 define seed

x̄4 = x̄4 + x̄6

x̄5 = x̄5 + x̄6

x̄1 = x̄1 − sin(x1)x̄5

x̄3 = x̄3 + cos(x3)x̄4

x̄1 = x̄1 + x2 ∗ x̄3

x̄2 = x̄2 + x1 ∗ x̄3

Result: ∇f(x) = [x̄1, x̄2]>.

Cost(Jf) in backward mode ≤ 3m · Cost(f)

Nonlinear Programming 170

Exercise

Consider function f : R3 → R,

f(x) = sin(x1x2) + exp(x1x2x3)

with x = [x1, x2, x3]>. Write down

its factorable form;

the forward algorithmic differentiation;

the backward algorithmic differentiation;

Nonlinear Programming 171

Exercise

Solution:

x4 = x1 ∗ x2

x5 = sin(x4)

x6 = x3 ∗ x4

x7 = exp(x6)

x8 = x5 + x7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x̃4 = x1 ∗ x̃2 + x̃1 ∗ x2

x̃5 = cos(x4)x̃4

x̃6 = x3 ∗ x̃4 + x̃3 ∗ x4

x̃7 = exp(x6)x̃6

x̃8 = x̃5 + x̃7

Nonlinear Programming 172

Exercises

Solution:

initialize seed

x̄i = 0, i = 1, ..., 7

x̄8 = 1

differentiation of x8 = x5 + x7

x̄5 = x̄5 + x̄8

x̄7 = x̄7 + x̄8

differentiation of x7 = exp(x6)

x̄6 = x̄6 + exp(x6)x̄7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

differentiation of x6 = x3 ∗ x4

x̄3 = x̄3 + x̄4 ∗ x̄6

x̄4 = x̄4 + x̄3 ∗ x̄6

differentiation of x5 = sin(x4)

x̄4 = x̄4 + cos(x4)x̄5

differentiation of x4 = x1 ∗ x2

x̄1 = x̄1 + x2 ∗ x̄4

x̄2 = x̄2 + x1 ∗ x̄4

Nonlinear Programming 173

Summary

Nonlinear programming = optimization in real-valued vector spaces.

KKT-Conditions ↔ first-order necessary conditions of optimality.

Extendable to sufficient second-order conditions (not discussed here).

Non-differentiable functions can cause numerical problems.

Number of active constraints and correct identification of the active set is

more important than the total number of constraints.

Initialization is key for solving non-convex problems.

Efficient derivative computation enables fast and reliable solutions.

Line search (and globalization) are crucial for global convergence.

Nonlinear Programming 174

Summary

Nonlinear programming = optimization in real-valued vector spaces.

KKT-Conditions ↔ first-order necessary conditions of optimality.

Extendable to sufficient second-order conditions (not discussed here).

Non-differentiable functions can cause numerical problems.

Number of active constraints and correct identification of the active set is

more important than the total number of constraints.

Initialization is key for solving non-convex problems.

Efficient derivative computation enables fast and reliable solutions.

Line search (and globalization) are crucial for global convergence.

Nonlinear Programming 175

Literature and References

B. Chachuat. Nonlinear and Dynamic Optimization - From Theory to Practice. EPFL, 2009.
URL:https://infoscience.epfl.ch/record/111939/files/Chachuat_07(IC32).pdf

D. Bertsekas. Nonlinear Programming. 2nd. Athena Scientific, Belmont, Massachusetts, 1999

S.P. Boyd and L. Vandenberghe. Convex Optimization. University Press, Cambridge, 2004. URL:
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

J. Nocedal and S. Wright. Numerical Optimization. 2nd Edition, 2006. URL:
http://www.apmath.spbu.ru/cnsa/pdf/monograf/Numerical_Optimization2006.pdf

A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. SIAM, 2008

W. Squire and G. Trapp. Using complex variables to estimate derivatives of real functions. In:
SIAM Review 40.1 (1998), pp. 110–112

J.R.R.A. Martins, P. Sturdza, J.J. Alonso. The complex-step derivative approximation. In: ACM
Transactions on Mathematical Software (TOMS) 29.3 (2003), pp. 245–262

S. Gros and M. Diel. Numerical Optimal Control(draft). 2020. URL:
https://www.syscop.de/files/2020ss/NOC/book-NOCSE.pdf

Nonlinear Programming 176

 https://infoscience.epfl.ch/record/111939/files/Chachuat_07(IC32).pdf
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://www.apmath.spbu.ru/cnsa/pdf/monograf/Numerical_Optimization2006.pdf
https://www.syscop.de/files/2020ss/NOC/book-NOCSE.pdf

