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Nonlinear Program (NLP)

Problem formulation:

min
x∈Rnx

f(x) subject to

h(x) = 0

g(x) ≤ 0

Objective f : Rnx → R;

Equality constraints h(x) : Rnx → Rnh , h(x) = [h1(x), ..., hnh
(x)]>;

Inequality constraints g(x) : Rnx → Rng , g(x) = [g1(x), ..., gng (x)]>.
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Why discuss NLPs in this course?

Nonlinear Programming = optimization in Euclidian space

Optimal Control (OC) = optimization in a function space

NLP techniques are used to solve Optimal Control Problems (OCP)

Discrete-time optimal control ≡ NLP

min
{xk},{uk}

N−1∑
k=0

`(xk, uk) subject to



∀ k ∈ {0, . . . , N − 1}

xk+1 − f(xk, uk) = 0

x0 − x̄ = 0

g(xk, uk) ≤ 0

Continuous-time dynamics → approximate solution obtained via NLPs
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Example – Nonlinear Program

min
x∈R2

(x1 − 3)2 + (x2 − 2)2

subject to

g1(x) = x2
1 − x2 − 3 ≤ 0

g2(x) = x2 − 1 ≤ 0

g3(x) = −x1 ≤ 0
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Feasibility

Definition (Feasible Set)

S := {x ∈ Rnx |h(x) = 0 and g(x) ≤ 0}

Consider NLP

min
x∈S

f(x)

with feasible set S ⊆ Rnx .

S 6= ∅ ⇐⇒ NLP is feasible.
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Definition of Optimality – Infimum

Definition (Infimum)

The infimum of a partially ordered set S, denoted as inf S, provided

it exists, is the greatest lower bound for z ∈ S, i.e., a real number α

satisfying

1. z ≥ α,∀z ∈ S;

2. ∀ᾱ > α,∃z ∈ S such that z < ᾱ.
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Definition of Optimality – Minimum

Definition
A point x∗ ∈ S is said to be a (global) minimizer of f on S ⊆ Rnx if

f(x) ≥ f(x∗), ∀x ∈ S,

and f(x∗) is called (global) minimum of f on S.
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Definition of Optimality – Minimum

Definition
A point x∗ ∈ S is said to be a (global) minimizer of f on S ⊆ Rnx if

f(x) ≥ f(x∗), ∀x ∈ S,

and f(x∗) is called (global) minimum of f on S.

It is said to be a strict (global) minimizer of f on S ⊆ Rnx if

f(x) > f(x∗), ∀x ∈ S, x 6= x∗,

and f(x∗) is called strict (global) minimum of f on S.
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Definition of Optimality – Local Minimum

ε-ball around x̄ (or ε-neighborhood):

Bε(x̄) := {x ∈ Rnx |‖x− x̄‖ ≤ ε} ⊂ Rnx

Definition (Local minimum)

A point x∗ ∈ S is said to be local minimizer of f , if

∃ ε > 0, ∀x ∈ Bε(x∗) ∩ S, f(x) ≥ f(x∗).

It is said to be a strict local minimizer of f on S if

∃ ε > 0, ∀x ∈ Bε(x∗) ∩ S, f(x) > f(x∗).
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Existence of Minima and Maxima

Theorem (Extreme value theorem)

Let S be nonempty and compact and let f be continuous on S.

Then, the following problem has a minimizer in S,

min
x∈S

f(x).

f
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Convex Analysis

Definition (Convex set)

A set C ⊂ Rnx is said to be convex if

∀x, y ∈ C, ∀λ ∈ [0, 1] : z = λx+ (1− λ)y ∈ C.

Definition (Convex function)

A function f : C→ R is said to be convex on C if its domain C is

aconvex set and if

∀x, y ∈ C, ∀λ ∈ [0, 1] : f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).
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Convex Program

Definition (Convex program)

Let C be a nonempty convex set, and let f be convex on C. NLP

min
x∈C

f(x)

is called a convex program or convex optimization problem.

Theorem
Let x∗ be a local minimizer of a convex program, then x∗ is a also a

global minimizer.
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Exercises

Given a convex function f : Rnx → R and a non-empty compact set

S ⊆ Rnx . Let ∂S denote the boundary of the set S.

Which of the following statements are correct? Justify your answers.

a) The minimum of f on S is unique.

b) The minimizer of f on S is unique.

c)

arg min
x∈S

f(x) ∩ ∂S 6= ∅

d)

arg max
x∈S

f(x) ∩ ∂S 6= ∅
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Exercises

Given are the following for optimization problems:

a1)

min
x∈R

c · x subject to 0 < x ≤ 1

with c ∈ R arbitrary.

a1) Solution:

If c > 0, the minimizer does not exist.

If c = 0, any x satisfying 0 < x ≤ 1 is a minimizer.

If c < 0, the minimizer is x = 1.
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Exercises

Given are the following for optimization problems:

a2)

inf
x∈R

c · x subject to 0 < x ≤ 1

with c ∈ R arbitrary.

a2) Solution:

If c > 0, the infimum is 0 and x→ 0.

If c = 0, the infimum is 0 with any x satisfying 0 < x ≤ 1.

If c < 0, the infimum is c and x = 1.
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Exercises
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Notation: Gradients and Partial Derivatives

Consider a function f : Rnx → R,

Partial derivative (the Jacobian) of f

∂f

∂x
=
[
∂f
∂x1

∂f
∂x2

. . . ∂f
∂xnx

]
∈ R1×nx

Gradient of f

∇f =
(
∂f

∂x

)>
∈ Rnx

f ∈ Cn: f is n-times continuously differentiable on Rnx
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Equality Constrained Problem

Consider NLP

Peq : min
x∈Rnx

f(x) subject to hi(x) = 0, i ∈ E := {1, ..., nh}

Definition (Regular point)

Consider S := {x ∈ Rnx |hi(x) = 0, i ∈ E} with continuously

differentiable hi : Rnx → R, i ∈ E on Rnx .

A vector x̄ ∈ S is said to be a regular point if the gradient ∇hi(x̄),

i ∈ E are linearly independent, i.e.,

∂h

∂x
∈ Rnh×nx is full row rank.

This is also called linear independence constraint qualification (LICQ).
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Equality Constraints – Example

S =
{
x ∈ R3 : hi(x) = 0, i ∈ {1, 2}

}
h1(x) = x3 − (x2

1 + x2
2)

h2(x) = x3 − 1
−1

1
−1

1

1

x1

x2

x3
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Necessary Condition of Optimality

Theorem (1st order optimality condition)

Consider Problem Peq and let f : Rnx → R, hi : Rnx → R, i ∈ E

be continuously differentiable on Rnx .

If a local minimizer x∗ is a regular point of the constraints, then

there exists a unique vector λ∗ ∈ Rnh such that

∇f(x∗) +∇h(x∗)λ∗ = 0.
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Active Constraints and Active Set
Consider generic NLP

Pieq :

min
x∈Rnx

f(x)

subject to

hi(x) = 0, i ∈ E := {1, ..., nh}

gi(x) ≤ 0, i ∈ I := {1, ..., ng}

Definition (Active Constraint)

A constraint gi is said to be active at x̄, if gi(x̄) = 0.

Definition (Active Set)

The active set A(x̄) at any feasible x̄ of Pineq is denoted by

A(x̄) = E ∪ {i ∈ I|gi(x̄) = 0}.
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Regular Points of General NLPs

Definition
Let hi, i ∈ E and gi, i ∈ I be continuously differentiable on Rnx and

let

∇gA(x̄) := [∇gi(x̄)], i ∈ I ∩ A(x̄)

with a feasible point x̄ of Pieq. Then, x̄ is said to be a regular point

if

rank([∇h(x̄), ∇gA(x̄)]>) = |A(x̄)|.
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Karush-Kuhn-Tucker (KKT) Conditions

Definition (KKT point)

Let f , hi, i ∈ E and gi, i ∈ I be continuously differentiable on Rnx .

Consider Problem Pieq, any pair (x, λ, κ) with x ∈ Rnx , λ ∈ Rnh

and κ ∈ Rng satisfying

Stationarity 0 = ∇f(x) +
∑
i∈E

λi∇hi(x) +
∑
i∈I

κi∇gi(x)

Primal feasibility 0 = hi(x), i ∈ E , 0 ≥ gi(x), i ∈ I

Dual feasibility 0 ≤ κi, i ∈ I

Complementarity 0 = κigi(x), i ∈ I

is called a KKT point of Pieq.

Nonlinear Programming 44



KKT Necessary Conditions of Optimality

Theorem
Consider Problem Pieq and let f , hi, i ∈ E and gi, i ∈ I be

continuously differentiable on Rnx . If

x∗ is a (local) minimizer of Pieq and

x∗ is a regular point,

then there exist λ∗ ∈ Rnh and κ∗ ∈ Rng such that (x∗, λ∗, κ∗) is a

KKT point of Pieq.
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Exercises

Consider NLP

min
x∈R2

(
x1 −

3
2

)2
+ (x2 − t)4 subject to



x1 + x2 − 1 ≤ 0

x1 − x2 − 1 ≤ 0

−x1 + x2 − 1 ≤ 0

−x1 − x2 − 1 ≤ 0

For what value of t does x∗ = [1, 0]> satisfy the KKT condition?
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Exercises

Consider NLP

min
x∈R2

−2x1 + x2 subject to

 x2 − (1− x1)3 ≤ 0

1− 0.25x2
1 − x2 ≤ 0

the optimal solution is x∗ = [0, 1]>, questions:

a) Is x∗ a regular point?

b) Are the KKT conidtions satisfied?
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Equality Constrained NLP

Consider NLP

min
x∈Rnx

f(x) subject to h(x) = 0

Necessary condition of optimality:

∇f(x∗) +∇h(x∗)λ∗ = 0

h(x∗) = 0

Question: how does the minimum f(x∗) change for varying constraints

h(x) = c?
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Interpretation of Lagrangian Multipliers

Perturbed problem

Pc : min
x∈Rnx

f(x) subject to h(x) = c

Assumption
For each c, Pc has a unique regular solution, i.e.,

ξ?(c) =arg min
x

f(x) subject to h(x) = c

φ?(c) = min
x

f(x) subject to h(x) = c

with ξ?(0) = x∗ and φ?(0) = f(x∗).
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Interpretation of Lagrangian Multipliers

h(ξ?(c)) = c ⇒ ∇xh(ξ?(c))>∇cξ?(c)> = I

∇cφ?(c)
∣∣∣
c=0

=∇cξ?(0)>∇xf(x∗)

=−∇cξ?(0)>∇xh(ξ?(0))>︸ ︷︷ ︸
I

λ∗

=− λ∗
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Interpretation of Lagrangian Multipliers

The Lagrange multiplier λ∗ can be interpreted as the sensitivity of the

optimal objective function with respect to changes in the constraint

h(x) = 0.

In Economics Lagrange multipliers are used to characterize marginal

values or shadow prices.

Can be extended to general NLPs with inequality constraints g(x) ≤ c:

multipliers κ∗ ≈ sensitivity of f(x∗) with respect to c.

Inactive inequality constraints κ∗i = 0, i ∈ I\(I ∩ A(x∗)) ⇒ no change

of optimum for small perturbations.

Active inequality constraints κ∗i ≥ 0, i ∈ I ∩ A(x∗) ⇒ enlarged feasible

region, optimal cost cannot increase.
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multipliers κ∗ ≈ sensitivity of f(x∗) with respect to c.

Inactive inequality constraints κ∗i = 0, i ∈ I\(I ∩ A(x∗)) ⇒ no change

of optimum for small perturbations.

Active inequality constraints κ∗i ≥ 0, i ∈ I ∩ A(x∗) ⇒ enlarged feasible

region, optimal cost cannot increase.
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Algorithm Concepts

Algorithm:

Given an initial point x0 compute a sequence {xk} by repeated

application of an algorithmic rule.

Objective: make {xk} converge to a point x̄.

Why do we talk about algorithms for NLPs?

Solvers usually require initial guess and termination criteria ⇒ basic

understanding of solution algorithms necessary to use solvers.

Solvers often terminate prematurely ⇒ understand and diagnose reasons?
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Global and Local Convergence

Definition (Global convergence)

An algorithm is said to be globally convergent if, for any initial point

x0, it generates a sequence of points that converges to a point x̄ in

the solution set.

Definition (Local convergence)

An algorithm is said to be locally convergent if there exists ρ > 0

such that for any initial point x0 with ‖x0 − x̄‖ < ρ, it generates a

sequence of points that converges to a point x̄ in the solution set.
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Order of Convergence

Definition
The order of convergence of a sequence {xk}, with lim

k→∞
xk = x̄, is

the largest non-negative number p such that

lim
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖p

= β <∞.

p = 1 and β < 1 ⇒ linear convergence

p = 1 and β = 0 ⇒ superlinear convergence

p = 1 and β = 1 ⇒ sublinear convergence

p = 2 ⇒ quadratic convergence

Nonlinear Programming 67



Order of Convergence

Definition
The order of convergence of a sequence {xk}, with lim

k→∞
xk = x̄, is

the largest non-negative number p such that

lim
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖p

= β <∞.

p = 1 and β < 1 ⇒ linear convergence

p = 1 and β = 0 ⇒ superlinear convergence

p = 1 and β = 1 ⇒ sublinear convergence

p = 2 ⇒ quadratic convergence

Nonlinear Programming 68



Order to Convergence

Definition
The order of convergence of a sequence {xk}, with lim

k→∞
xk = x̄, is

the largest non-negative number p such that

lim
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖p

= β <∞.

Example:
xk = 1 + 0.5k

xk = 1 + k−k

xk = 1 + 0.52k
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Newton’s Methd for Nonlinear Equations

Given a function F : Rn → Rn, search for solutions of the nonlinear

equation

F (x) = 0 with F ∈ C1.

Main idea:

Start with x0 and solve linear equations

F (xk) +M(xk)(xk+1 − xk) = 0, k ∈ {1, 2, ...}.

Matrix M(x)k ∈ Rnx×nx chosen in such a way that

F (xk) +M(xk)(x− xk) ≈ F (x)

is an approximation of F .

M(xk) = ∂F (xk) corresponds to the so called Newton method.
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Newton’s Method for Nonlinear Equations

If M(xk) is invertible, the method can be written in the form

xk+1 = xk −M(xk)−1F (xk), k ∈ {1, 2, ...}.

In practice, we usually work with approximations M(xk) ≈ ∂F (xk).

If M(xk) is independent of xk, we only need to decompose M once

(e.g., using LR or QR decomposition).

Some methods try to update M at every step without re-computing the

Jacobian (e.g., BFGS update).
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Scaling Properties of Newton’s Method

F (x∗) = 0 ⇒ S · F (x∗) = 0 with S ∈ Rnx×nx any (invertible) scaling

matrix.

Applying Newton’s method to solve scaled equation

F̃ (x) = S · F (x) = 0

yields iteration xk+1 = xk −M(xk)−1S · F (xk).

Using exact Jacobian M(xk) = ∂F̃ (xk), we have

xk+1 = xk − ∂F (xk)−1F (xk).

Newton’s methods with exact Jacobians is invariant under scaling.
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Local Convergence of Newton’s Method

Assumption
There exists a point x∗ with F (x∗) = 0.

The initial point x0 is already in a small neighborhood of x∗.

Matrix M(xk)−1∂F (x) is Lipschitz continuous w.r.t. x in a

neighborhood of x∗ with constant ω ≥ 0.

The basic idea is to estimate the distance of the iterates to x∗:∥∥xk+1 − x∗
∥∥ =

∥∥xk − x∗ −M(xk)−1F (xk)
∥∥

=
∥∥∥xk − x∗ −M(xk)−1 ∫ 1

0 ∂F (x∗ + s(xk − x∗))(xk − x∗)ds
∥∥∥

≤
∥∥xk − x∗ −M(xk)−1∂F (xk)(xk − x∗)

∥∥+ ω
2
∥∥xk − x∗∥∥2
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Local Convergence of Newton’s Method

In summary, we have the estimate

∥∥xk+1 − x∗
∥∥ ≤ η ∥∥xk − x∗∥∥+ ω

2
∥∥xk − x∗∥∥2

as long as
∥∥I−M(xk)−1∂F (xk)

∥∥ ≤ η. Here, η can be interpreted as a

bound on the accuracy of the Jacobian approximation M .

If we have η < 1 and ‖x0 − x∗‖ < 2
ω (1− η), the iterates contract and we

have

lim
k→∞

xk → x∗.
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Convergence of Newton’s Method

The convergence rate estimate

∥∥xk+1 − x∗
∥∥ ≤ η ∥∥xk − x∗∥∥+ ω

2
∥∥xk − x∗∥∥2

implies that

if we have 0 < η < 1, the convergence rate is linear.

if we choose M(xk) = ∂F (xk), we have η = 0 and

∥∥xk+1 − x∗
∥∥ ≤ ω

2
∥∥xk − x∗∥∥2

.

In this case, the convergence rate is quadratic.
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Exercises

Let scalar function f : R→ R be three times continuously differentiable

with bounded third-order derivative. The first and second derivative of f are

denoted by f ′ and f ′′, respectively. We additionally assume:

f(x∗) = 0 and f ′′(x∗) = 0 at a point x∗ ∈ R;

f ′(x∗) 6= 0.

Prove that the iterates of the exact Newton method, xk+1 = xk − f(xk)
f ′(xk) ,

converge locally with cubic convergence rate, i.e.,

∣∣xk+1 − x∗
∣∣ ≤ γ ∣∣xk − x∗∣∣3 , γ <∞.
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Exercises
Solution:

1. Locally, we have∣∣xk+1 − x∗
∣∣ =

∣∣∣∣xk − x∗ − f(xk)
f ′(xk)

∣∣∣∣ =

∣∣∣∣∣xk − x∗ − 1
f ′(xk)

∫ xk

x∗
f ′(z)dz

∣∣∣∣∣
2. For the integral above, we can substitute the Taylor expansion,

f ′(z) =f ′(xk) + f ′′(xk)(z − xk) + O(|z − xk|2)

=f ′(xk) + O(|xk − x∗||z − xk|) + O(|z − xk|2)

3. Thus, we have∣∣xk+1 − x∗
∣∣ ≤ ∣∣∣∣∣xk − x∗ − 1

f ′(xk)

∫ xk

x∗
f ′(xk)dz

∣∣∣∣∣+ O(|xk − x∗|3)

=O(|xk − x∗|3)
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Newton’s Method for Unconstrained Optimization

Problem formulation:

min
x∈Rnx

f(x)

Remark
If f is twice Lipschitz-continuously differentiable, a minimizer can

be founded by applying Newton’s method to

∇f(x) = 0.

If a solution x∗ satisfies ∇2f(x) � 0, it must a local minimizer.
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Newton’s Method for Unconstrained Optimization

Newton-type iteration for unconstrained optimization problem

xk+1 = xk −M(xk)−1∇f(xk)

with M(xk) ≈ ∇2f(xk) a suitable Hessian approximation.

In practice, we often choose a symmetric M .

If M(xk) is symmetric and positive definite, the iterate xk+1 is the

minimizer of the quadratic function

min
xk+1

f(xk) +∇f(xk)>(xk+1 − xk) + 1
2(xk+1 − xk)>M(xk)(xk+1 − xk),

which can be interpreted as a quadratic model of f .
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Line Search Methods
So far, we have only analyzed the local convergence properties of

Newton-type methods. If we start far from a local solution, Newton type

methods are often take “too big” steps and are divergent.

One way to fix this problem is to first compute a step-direction by

∆xk = −M(xk)−1∇f(xk)

and update the iterate as

xk+1 = xk + αk∆xk.

Here, αk ∈ (0, 1] is a so-called step size, which is found by (approximately)

solving the scalar optimization problem

min
αk∈(0,1]

f(xk + αk∆xk).
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Armijo Linear Search Conditions

In practice the line search optimization

min
αk∈(0,1]

f(xk + αk∆xk).

is not solved exactly (too expensive), but only approximately.

One way to implement this is by using back-tracking until the Armijo

condition

f(xk + αk∆xk) ≤ f(xk) + c · αk ∇f(xk)>∆xk︸ ︷︷ ︸
directional derivative

for a constant c� 1 is satisfied. This condition ensures that the line search

parameter is not excessively large, although it is not sufficient to prove

convergence in general.
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Quasi-Newton Methods – Preliminaries

One way to represent invertible matrices is by considering matrices of the

form

A = B︸︷︷︸
easy-to-store

+ UV >︸ ︷︷ ︸
low rank

with B ∈ Rn×n and U, V ∈ Rn×m, m� n.

If B is easy to invert or B−1 is already known, we have A−1 as

(B + UV )−1 = B−1 −B−1U(I + V >B−1U)−1V >B−1,

which is the so-called "Woodbury’s matrix inversion formula".
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Quasi-Newton Methods – Broyden’s Updates

The Newton-type iterates

xk = xk−1 −M(xk−1)−1∇f(xk−1), xk+1 = xk −M(xk)−1∇f(xk), ...

We have to compute the gradient ∇f at each iteration such that we can

obtain the directional estimate

∇2f(xk+1)(xk+1 − xk) ≈ ∇f(xk+1)−∇f(xk).

Questions: can we use this relation to improve our next Hessian

approximation M(xk+1) ≈ ∇2f(xk+1)?
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Quasi-Newton Methods – Broyden’s Updates

Define dk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk), the relation

∇2f(xk+1)dk ≈ yk

motivates to improve our current estimate of ∇2f constructing M+ by

solving

min
M+

1
2
∥∥M+ −M(xk)

∥∥2
F

subject to M+dk = yk

with ‖ · ‖F the Frobenius norms (‖X‖2F = Tr(XX>)).

Nonlinear Programming 102



Quasi-Newton Methods – Broyden’s Updates

Define dk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk), the relation

∇2f(xk+1)dk ≈ yk

motivates to improve our current estimate of ∇2f constructing M+ by

solving

min
M+

1
2
∥∥M+ −M(xk)

∥∥2
F

subject to M+dk = yk

with ‖ · ‖F the Frobenius norms (‖X‖2F = Tr(XX>)).

Nonlinear Programming 103



Quasi-Newton Methods – Broyden’s Updates

Broyden’s update

M+ = M(xk)− (M(xk)dk − yk)(dk)>

‖dk‖22

Inverse Broyden’s update

(M+)−1 = M(xk)−1 + (dk −M(xk)−1yk)(dk)>M(xk)−1

(dk)>M(xk)−1yk

Remarks:

both update are rank-1 update.

we don’t need to compute any second order derivatives.

we can directly compute M−1, no inversion needed.

But: M+ may be non-symmetric even if M(xk) was symmetric.
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Quasi-Newton Methods – BFGS Updates
Broyden-Fletcher-Goldfarb-Shanno Updates

The idea is to maintain the symmetry of the updates by solving

min
M+

1
2
∥∥M+ −M(xk)

∥∥2 subject to

 M+dk =yk

(M+)>dk =yk

with
∥∥M+ −M(xk)

∥∥2 :=
∥∥∥W 1

2 (M+ −M(xk))W 1
2

∥∥∥2

F
=

Tr
(
W

1
2 (M+ −M(xk))W (M+ −M(xk))W 1

2

)
.

Here, the norm is (mainly for computational reasons) a weighted Frobenius

norm by W any symmetric positive definite weighting matrix satisfying

Wyk = dk.
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Quasi-Newton Methods – BFGS Updates
Broyden-Fletcher-Goldfarb-Shanno Updates

BFGS update:

M+ = M(xk)− M(xk)dk(dk)>M(xk)
(dk)>M(xk)dk + yk(yk)>

(yk)>dk

inverse BFGS update:

(M+)−1 =
(

I− dk(yk)>

(dk)>yk

)
M(xk)−1

(
I− dk(yk)>

(dk)>yk

)
+ dk(dk)>

(dk)>yk

Both are rank-2 update.
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Algorithms for Constrained NLPs

Nonlinear program

min
x∈Rnx

f(x) subject to

hi(x) = 0, i ∈ E := {1, ..., nh}

gi(x) ≤ 0, i ∈ I := {1, ..., ng}

Convert into unconstrained problem:

Penalty function method;

Interior point method.

Solve necessary conditions of optimality:

Newton-like methods;

Sequential quadratic programming.
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Exterior Penalty Function Methods

Penalty function

Φ(x) =
∑
i∈E

ψ(hi(x)) +
∑
i∈I

φ(gi(x)), ψ, φ ∈ C0

with

 ψ(z) = 0 if z = 0

ψ(z) > 0 else
and

 φ(z) = 0 if z ≤ 0

φ(z) > 0 else

Typical choice: ψ(z) = |z|p, p ∈ N>0 and φ(z) = (max{0, z})p.
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Exterior Penalty Function Methods

Unconstrained optimization problem

min
x∈Rnx

f(x) + µ · Φ(x) with µ > 0.

Remark
recovering solution of the original problem µ→∞.

ill-conditioned for large µ.
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Sequential Unconstrained Optimization

Main idea:

Start at an initial x0, update xk by solving

xk+1 := arg min
x∈Rnx

f(x) + µk · Φ(x).

If µkΦ(xk+1) < ε, stop. Otherwise, update µk+1 = βµk with β > 1.

Remark
Iterates xk are typically infeasible.

Remedy? → interior point methods.
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Barrier Method

Inequality constrained NLPs

min
x∈Rnx

f(x) subject to gi(x) ≤ 0, i ∈ I := {1, ..., ng}

Barrier function

b(x) =
∑
i∈I

φ(gi(x)) with

 φ(z) ≥ 0 if z ≤ 0

limz→0− =∞

Typical choice

φ(z) = − ln(−z).
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Barrier Method

Main idea:

Start at an initial feasible point x0 with g(x0) < 0, update xk by solving

xk+1 := arg min
x∈Rnx

f(x) + µk · b(x).

If µk · b(xk+1) < ε, stop. Otherwise, update µk+1 = βµk with β ∈ (0, 1).

Remark
Iterates xk are always feasible.

Off-the-shelf solver Ipopt.
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Interior Point Method

Inequality constrained NLPs

min
x∈Rnx

f(x) subject to gi(x) ≤ 0, i ∈ I := {1, ..., ng}

KKT condition:

∇f(x) +∇g(x)κ = 0

g(x) ≤ 0

κ ≥ 0

κi · gi(x) = 0, i ∈ I

Perturbed KKT condition:

∇f(x) +∇g(x)κ = 0

κi · gi(x) = µ, i ∈ I

with µ > 0.
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Interior Point Method
Main Idea:

Apply Newton’s method to deal with nonlinear equations

Fµ(x, κ) =

 ∇f(x) +∇g(x)κ

diag(κ)g(x)− µ · 1ng

 = 0

Update µ with µ→ 0, ref. [Chapter 19.3, NW06]

Linear search is necessary, ref. [Chapter 19.4, NW06]

Remark
Log-barrier based unconstrained problem minx f(x) + µ · b(x) has

KKT conditions equivalent to the perturbed KKT, i.e.,

∇f(x) +
∑
i∈I

µ

gi(x)∇gi(x) = 0 ⇒ κi = µ

gi(x)

[NW06] J. Nocedal and S. Wright, Numerical optimization. 2006.
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Sequential Quadratic Programming (SQP)

Equality constrained NLP

min
x∈Rnx

f(x) subject to h(x) = 0

1st order optimality conditions

F (y) =

∇f(x) +∇h(x)λ

h(x)

 = 0 with y =

x
λ


Main idea: applying Newton’s method to solve F (y) = 0, i.e.,H(x) A(x)>

A(x)

∆x

∆λ

 = −

∇f(x) +∇h(x)λ

h(x)


with H(x) = ∇xx

{
f(x) + λ>h(x)

}
and A = ∇h(x)>.
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Globalization

How do we measure progress towards a solution?

Recall: in unconstrained minimization, the main idea was to accept the next

iterate xk+1 if f(xk+1) is sufficiently smaller than f(xk).

In equality constrained optimization we need to measure two things:

1. The objective value f(x) and

2. the constraint violation ‖h(x)‖
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L1-Penalty Functions

One way to measure progress towards a solution is to introduce the

L1-penalty function

Ψ(x) = f(x) +
∑
i∈E

λ̄i|hi(x)|

with λ̄i being sufficiently large constants.

An important property of the function Ψ(x) is that (under mild conditions)

we have

Ψ(x∗) = f(x∗) but also Ψ(x) ≥ f(x)

for all x ∈ X within a compact subset X ⊆ Rnx and λ̄i are sufficiently large
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Armijo Line Search Conditions

Similar to unconstrained optimization, the line search parameter αk can be

found by using back-tracking until the Armijo condition

Ψ(xk + αk∆xk) ≤ Ψ(xk) + c · αkD(Ψ(xk),∆xk)

for a constant c� 1 is satisfied. Here, D(Ψ(xk),∆xk) denotes the

directional derivative

D(Ψ(xk),∆xk) =
∥∥h(xk) +∇h(xk)>∆xk

∥∥
1
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SQP for Equality Constrained NLP

1. Choose initial guesses x0 ∈ Rnx and λ0 ∈ Rnh , tolerance ε > 0.

2. Repeat:

2.1 Choose Hessian approximation M(xk) ≈ ∇xx

{
f(xk) + (λk)>h(xk)

}
and

A(xk) = ∇h(xk).

2.2 Solve subQP

min
∆xk∈Rnx

1
2(∆xk)>H(xk)∆xk +∇f(xk)>∆xk

subject to h(xk) +A(xk)>∆xk = 0 | λQP

2.3 Terminate if
∣∣∇f(xk)>∆xk

∣∣+
∑

i∈E |λi| |hi(x)| ≤ ε.

2.4 Choose a line-search parameter αk ∈ (0, 1] and set xk+1 = xk + αk∆xk and

λk+1 = λk + αk(λQP − λk).
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SQP for Inequality Constrained NLP

Include linearized inequality constraints in subQPs, i.e.,

min
∆xk∈Rnx

1
2(∆xk)>H(xk)∆xk +∇f(xk)>∆xk

subject to h(xk) +A(xk)>∆xk = 0

g(xk) +B(xk)>∆xk ≤ 0

with B(xk) = ∇g(xk).

Use the following L1-penalty function for linear search

Ψ(x) = f(x) +
∑
i∈E
|λ̄i||hi(x)|+

∑
i∈I
|κ̄i|(max{0, gi(x)})

with sufficiently large λ̄i and κ̄i.
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Numerical Implementation

SubQP infeasible ⇒ relax the constraints

Hessian regularization, e.g., M(xk) = ∇xx{f(x) + λ>h(x)}+ σI � 0.

Rank-deficient constraints ⇒ reformulated the constraints, e.g.,

min
x

x subject to x2 = 0

with x∗ = 0 but we cannot find a λ∗ since

0 = ∇f(x∗) +∇h(x∗)λ∗ = 1

is wrong. Replacing x2 = 0 by x = 0 can avoid this degeneracy.

Constraint Jacobian ill-conditioned ⇒ scaling, e.g., Ruiz equilibration.
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Why do we need to compute derivatives?

Motivation

min
x∈Rnx

f(x) subject to

h(x) = 0

g(x) ≤ 0

Derivatives of objectives and constraints (gradients);

Sensitivities of ODE or DAEs (needed later);

Jacobians to solve implicit equations (e.g. implicit ODEs, DAEs, ...).

Main Possibilities

Numerical differentiation

Algorithmic differentiation
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Numerical Differentiation – Finite Differences
The derivative of a twice continuously differentiable function f : R→ R can

be approximated by finite differences:

df(x)
dx

≈ f(x+ h)− f(x)
h

The mathematical approximation error, given by∣∣∣∣f(x+ h)− f(x)
h

− df(x)
dx

∣∣∣∣ ≈ h

2

∣∣∣∣d2f(x)
dx2

∣∣∣∣ = O(h)

tends to 0 with h→ 0.

How to choose increment h?

h = √eps ⇒ Limited accuracy√eps
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Numerical Differentiation – Central Differences

In order to reduce the mathematical approximation error, we can use central

differences:
df(x)
dx

≈ f(x+ h)− f(x− h)
2h

to approximate the derivative of f .

The mathematical approximation error is now∣∣∣∣f(x+ h)− f(x− h)
2h − df(x)

dx

∣∣∣∣ ≤ O(h2)

How to choose increment h?

h = 3
√eps ⇒ Limited accuracy( 3

√eps)2
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Numerical Differentiation – Imaginary Trick

The derivative of a continuously differentiable function f : R→ R can be

approximated by

df(x)
dx

≈ Im(f(x+ i · h))
h

, i2 = −1.

The mathematical approximation error is same as central differences, i.e.,∣∣∣∣ Im(f(x+ i · h))
h

− df(x)
dx

∣∣∣∣ ≤ O(h2)

but the computation is cheap.

Sketch Proof:

f(x+ i · h) = f(x) + i · df(x)
dx

h− 1
2
d2f(x)
dx2 h2 −O(i · h3)

Easy to implement in Matlab
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Factorable Functions
Many (but not all) functions of our interest can be composed into a finite

list of atom operations from a given library L, e.g.,

L = {+,−, ∗, sin, cos, exp, ...}.

Example

The function f(x) = sin(x1 ∗ x2) + cos(x1) will (internally) be evaluated

as
x3 = x1 ∗ x2

x4 = sin(x3)

x5 = cos(x1)

x6 = x4 + x5

f(x) = x6

Here, the memory for x3, ..., x5 is (usually) allocated temporarily.
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Factorable Functions
Consider a given factorable function f : Rn → Rm, we define

augmented state by

s0 = x =

x1
...
xn

 , s1 =

 x1
...

xn+1

 , ...., sm =

 x1
...

xn+m


augmented elementary function by Φi : Rn+i → Rn+i+1

Φi(si) =


x1
...

xn+i

φi(x1, .., xn+i)

 , si+1 = Φi(si)

Representation of f given by f(x) = C · Φm−1(Φm−2(· · ·Φ1(Φ0(x))))

with selection matrix C = [0m×n, Im]
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Algorithmic Differentiation – Forward Mode

Recall: the representation of a factorable function f : Rn → Rm,

f(x) = C · Φm−1(Φm−2(· · ·Φ1(Φ0(x))))

The Jacobian Jf = ∂f
∂x can be written as

Jf = C · Jm−1 · Jm−2 · · · J1 · J0 with Ji = ∂Φi
∂si

Main idea: the directional derivative Jfp with seed p ∈ Rn given by

Jfp = C · (Jm−1 · (Jm−2 · · · (J1 · (J0p))))

we define p = s̃0 = [x̃1, ..., x̃n]> such that

s̃i+1 = Ji(si)s̃i, i = 1, ...,m− 1

with s̃i+1 = [s̃>i , x̃n+i]>.
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Algorithmic Differentiation – Forward Mode

Example: f(x) = sin(x1 ∗ x2) + cos(x1):

x3 = x1 ∗ x2

x4 = sin(x3)

x5 = cos(x1)

x6 = x4 + x5

∣∣∣∣∣∣∣∣∣∣∣∣∣

x̃3 = x1 ∗ x̃2 + x̃1 ∗ x2

x̃4 = cos(x3)x̃3

x̃5 = − sin(x1)x̃1

x̃6 = x̃4 + x̃5

Result: x̃6 = s̃>0 ∇f(x).

Cost(Jf ) in forward mode ≤ 2n · Cost(f)

Nonlinear Programming 167



Algorithmic Differentiation – Backward Mode

Recall: the representation of a factorable function f : Rn → Rm,

f(x) = C · Φm−1(Φm−2(· · ·Φ1(Φ0(x))))

The Jacobian Jf = ∂f
∂x can be written as

Jf = C · Jm−1 · Jm−2 · · · J1 · J0 with Ji = ∂Φi
∂si

Main idea: the adjoint directional derivative λ>Jf with seed λ ∈ Rm

given by

λ>Jf = (((((λ>C) · Jm−1) · Jm−2) · · · J1) · J0)

we define C>λ = s̄m such that

s̄i = Ji(si)>s̄i+1, i = m− 1, ..., 0

with s̄i+1 = [s̄>i , x̄n+i]>.
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Algorithmic Differentiation – Backward Mode

Example: f(x) = sin(x1 ∗ x2) + cos(x1):

x3 = x1 ∗ x2

x4 = sin(x3)

x5 = cos(x1)

x6 = x4 + x5

∣∣∣∣∣∣∣∣∣
x̄6 = 1, x̄i = 0, i = 1, ..., 5 define seed

x̄4 = x̄4 + x̄6

x̄5 = x̄5 + x̄6

x̄1 = x̄1 − sin(x1)x̄5

x̄3 = x̄3 + cos(x3)x̄4

x̄1 = x̄1 + x2 ∗ x̄3

x̄2 = x̄2 + x1 ∗ x̄3

Result: ∇f(x) = [x̄1, x̄2]>.

Cost(Jf ) in backward mode ≤ 3m · Cost(f)
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Exercise

Consider function f : R3 → R,

f(x) = sin(x1x2) + exp(x1x2x3)

with x = [x1, x2, x3]>. Write down

its factorable form;

the forward algorithmic differentiation;

the backward algorithmic differentiation;
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Exercise

Solution:

x4 = x1 ∗ x2

x5 = sin(x4)

x6 = x3 ∗ x4

x7 = exp(x6)

x8 = x5 + x7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x̃4 = x1 ∗ x̃2 + x̃1 ∗ x2

x̃5 = cos(x4)x̃4

x̃6 = x3 ∗ x̃4 + x̃3 ∗ x4

x̃7 = exp(x6)x̃6

x̃8 = x̃5 + x̃7
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Exercises

Solution:

initialize seed

x̄i = 0, i = 1, ..., 7

x̄8 = 1

differentiation of x8 = x5 + x7

x̄5 = x̄5 + x̄8

x̄7 = x̄7 + x̄8

differentiation of x7 = exp(x6)

x̄6 = x̄6 + exp(x6)x̄7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

differentiation of x6 = x3 ∗ x4

x̄3 = x̄3 + x̄4 ∗ x̄6

x̄4 = x̄4 + x̄3 ∗ x̄6

differentiation of x5 = sin(x4)

x̄4 = x̄4 + cos(x4)x̄5

differentiation of x4 = x1 ∗ x2

x̄1 = x̄1 + x2 ∗ x̄4

x̄2 = x̄2 + x1 ∗ x̄4
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Summary

Nonlinear programming = optimization in real-valued vector spaces.

KKT-Conditions ↔ first-order necessary conditions of optimality.

Extendable to sufficient second-order conditions (not discussed here).

Non-differentiable functions can cause numerical problems.

Number of active constraints and correct identification of the active set is

more important than the total number of constraints.

Initialization is key for solving non-convex problems.

Efficient derivative computation enables fast and reliable solutions.

Line search (and globalization) are crucial for global convergence.
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