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Nonlinear Program (NLP)

Problem formulation:

i ; bject t
in f(x) subject to
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Nonlinear Program (NLP)

Problem formulation:

i bject t
in f(x) subject to

o Objective f : R"™ — R;

o Equality constraints h(x) : R™ — R™, h(z) = [hi(x),

oo oy, (2)] T

o Inequality constraints g(z) : R" — R"s, g(z) = [g1(2), ..., gn, (z)] T
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Why discuss NLPs in this course?

o Nonlinear Programming = optimization in Euclidian space

o Optimal Control (OC) = optimization in a function space
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Why discuss NLPs in this course?

o Nonlinear Programming = optimization in Euclidian space
o Optimal Control (OC) = optimization in a function space
o NLP techniques are used to solve Optimal Control Problems (OCP)

o Discrete-time optimal control = NLP

Vke{0,...,N—1}

N-1
Tt1 — f(Tr,ur) =0
min Z l(xk,ur) subject to
{z}{ur} =0 To — =0

g(xr,ur) <0

o Continuous-time dynamics — approximate solution obtained via NLPs

Nonlinear Programming



Example — Nonlinear Program
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Example — Nonlinear Program

min (21 — 3)% + (22 — 2)?
zER?

subject to

T2

gi(z) =28 —23-3<0
ga(x) =22 —1<0

g3(r) = —x1 <0

Nonlinear Programming 8



Feasibility

Definition (Feasible Set)

S:={z €R"™ |h(z) =0 and g(z) <0}
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Feasibility

Definition (Feasible Set)

S:={z €R"™ |h(z) =0 and g(z) <0}

o Consider NLP
min f(z)

z€eS

with feasible set S C R"=.

S # () <= NLP is feasible.

Nonlinear Programming



Definition of Optimality — Infimum

Definition (Infimum)

The infimum of a partially ordered set S, denoted as inf S, provided
it exists, is the greatest lower bound for z € S, i.e., a real number «
satisfying

1. 2> a,Vz€S;

2. Ya > «,3z € S such that z < a.
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Definition of Optimality — Minimum

Definition

A point z* € S is said to be a (global) minimizer of f on S C R™= if
fl@) > f(z*), Vx €S,

and f(x*) is called (global) minimum of f on S.

Nonlinear Programming 12



Definition of Optimality — Minimum

Definition

A point z* € S is said to be a (global) minimizer of f on S C R"= if
f@) > f(a*), Voes,

and f(x*) is called (global) minimum of f on S.

It is said to be a strict (global) minimizer of f on S C R™= if
f(x) > f(&"), VzeS, z#a7,

and f(a*) is called strict (global) minimum of f on S.
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Definition of Optimality — Local Minimum

e-ball around Z (or e-neighborhood):

B.(z) :={x e R™ |||z — Z|| < e} CR"
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Definition of Optimality — Local Minimum

e-ball around Z (or e-neighborhood):

B.(z) :={x e R™ |||z — Z|| < e} CR"

Definition (Local minimum)

A point z* € S is said to be local minimizer of f, if
Je>0,Vz eB(z")NS, f(z)> f(z¥).
It is said to be a strict local minimizer of f on S if

Je>0, Vo eB(z") NS, f(x)> f(z").
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Existence of Minima and Maxima

Theorem (Extreme value theorem)

Let S be nonempty and compact and let f be continuous on S.

Then, the following problem has a minimizer in S,

min f(z).

€S
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Existence of Minima and Maxima

Theorem (Extreme value theorem)

Let S be nonempty and compact and let f be continuous on S.

Then, the following problem has a minimizer in S,

min f(z).

€S

_~
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Existence of Minima and Maxima

Theorem (Extreme value theorem)

Let S be nonempty and compact and let f be continuous on S.

Then, the following problem has a minimizer in S,

min f(z).

€S

_~
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Existence of Minima and Maxima

Theorem (Extreme value theorem)

Let S be nonempty and compact and let f be continuous on S.

Then, the following problem has a minimizer in S,

min f(z).

€S

_~

-
~-
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Convex Analysis

Definition (Convex set)

A set C C R™ is said to be convex if

Ve,y e C, VA €[0,1]: z=Xzx+(1-N)yeC.

Nonlinear Programming
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Convex Analysis

Definition (Convex set)

A set C C R™ is said to be convex if

Ve,y e C, VA €[0,1]: z=Xzx+(1-N)yeC.

Definition (Convex function)

A function f : C — R is said to be convex on C if its domain C is

aconvex set and if

Vz,ye C, YA€ [0,1]: fAz+ (1 —=Ny) <Af(z)+ (1 —-N)f(y).
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Convex Program

Definition (Convex program)

Let C be a nonempty convex set, and let f be convex on C. NLP

min f(x)

zeC

is called a convex program or convex optimization problem.

Nonlinear Programming

22



Convex Program

Definition (Convex program)

Let C be a nonempty convex set, and let f be convex on C. NLP

min f(x)

zeC

is called a convex program or convex optimization problem.

Theorem
Let x* be a local minimizer of a convex program, then x* is a also a

global minimizer.

Nonlinear Programming
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Exercises

Given a convex function f : R"* — R and a non-empty compact set
S CR™=. Let dS denote the boundary of the set S.

Which of the following statements are correct? Justify your answers.

a) The minimum of f on S is unique.

Nonlinear Programming
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Exercises

Given a convex function f : R"* — R and a non-empty compact set

S CR™=. Let dS denote the boundary of the set S.

Which of the following statements are correct? Justify your answers.

a) The minimum of f on S is unique.

b) The minimizer of f on S is unique.

Nonlinear Programming

25



Exercises

Given a convex function f : R"* — R and a non-empty compact set

S CR™=. Let dS denote the boundary of the set S.

Which of the following statements are correct? Justify your answers.

a) The minimum of f on S is unique.

b) The minimizer of f on S is unique.

c)
argrxneigf(x) N 9S8 #0

Nonlinear Programming
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Exercises

Given a convex function f : R"* — R and a non-empty compact set

S CR™=. Let dS denote the boundary of the set S.

Which of the following statements are correct? Justify your answers.

a) The minimum of f on S is unique.

b) The minimizer of f on S is unique.

c)
arglxneigf(x) N 9S8 #0

d)
arg max flz) N aS#£0

Nonlinear Programming
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Exercises

Given are the following for optimization problems:

al)

minc-z subjectto0 <z <1
z€eR

with ¢ € R arbitrary.

Nonlinear Programming
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Exercises

Given are the following for optimization problems:
al)

minc-z subjectto0 <z <1
z€eR

with ¢ € R arbitrary.
al) Solution:

o If ¢ > 0, the minimizer does not exist.

o If ¢ =0, any z satisfying 0 < z < 1 is a minimizer.

o If ¢ <0, the minimizer is z = 1.

Nonlinear Programming
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Exercises

Given are the following for optimization problems:

a2)

inf c-x subjectto0<z<1
z€eR

with ¢ € R arbitrary.

Nonlinear Programming
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Exercises

Given are the following for optimization problems:
a2)

inf c-x subjectto0<z<1
z€eR

with ¢ € R arbitrary.
a2) Solution:

o If ¢ > 0, the infimum is 0 and x — 0.

o If ¢ =0, the infimum is 0 with any z satisfying 0 < z < 1.

o If ¢ <0, the infimum is ¢ and z = 1.

Nonlinear Programming
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Notation: Gradients and Partial Derivatives

Consider a function f : R" — R,

o Partial derivative (the Jacobian) of f

oz Oxy "7 0T,

% _ [ﬁ af af } c RIX7e

o Gradient of f

.
Vf= (gi) cR"™

o feC™ fisn-times continuously differentiable on R"=

Nonlinear Programming
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Consider NLP

Peq

Nonlinear Programming

Equality Constrained Problem

min
rER"z

f()

subject to h;(z) =0,i€ & :={1,..,np}

34



Equality Constrained Problem

Consider NLP

Peq : mﬂén f(z) subject to h;(x) =0, i€ & :={1,...,nu}
TER"z
Definition (Regular point)
Consider S := {x € R" |h;(x) =0, i € £} with continuously
differentiable h; : R?* — R, i € £ on R"=.
A vector Z € S is said to be a regular point if the gradient Vh;(Z),

1 € & are linearly independent, i.e.,

oh

— € R™*"= js full row rank.

ox
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Equality Constrained Problem

Consider NLP

Peq : mﬂén f(z) subject to h;(x) =0, i€ & :={1,...,nu}
TER"z
Definition (Regular point)
Consider S := {x € R" |h;(x) =0, i € £} with continuously
differentiable h; : R?* — R, i € £ on R"=.
A vector Z € S is said to be a regular point if the gradient Vh;(Z),

1 € & are linearly independent, i.e.,

oh

— € R™*"= js full row rank.

ox

This is also called linear independence constraint qualification (LICQ).
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Equality Constraints — Example

S={zeR®: hi(z) =0, i€c{1,2}} ‘.

hi(z) = w3 — (2 + 23)

hg(x) = T3 — 1
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Equality Constraints — Example

S={zeR®: hi(z) =0, i€c{1,2}}
hi () = 25 — (af + 23)

hz((E) = T3 — 1

Nonlinear Programming
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Necessary Condition of Optimality

Theorem (1st order optimality condition)
Consider Problem P.q and let f :R"™ — R, h; :R"* - R, i€ &
be continuously differentiable on R™= .

If a local minimizer x* is a regular point of the constraints, then

there exists a unique vector \* € R™ such that

V£(z*) + VA(z*)A* =0.

Nonlinear Programming
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Active Constraints and Active Set

Consider generic NLP

i, f(@)
Pieq : hi(z) =0, i€ &:={1,..,n,}
subject to

gi(x) <0, i €Z:={1,..,n4}

Nonlinear Programming
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Active Constraints and Active Set

Consider generic NLP

i, f(@)
Pieq : hi(z) =0, i€ &:={1,..,n,}
subject to

gi(x) <0, i €Z:={1,..,n4}

Definition (Active Constraint)

A constraint g; is said to be active at z, if g;(z) = 0.

Nonlinear Programming
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Active Constraints and Active Set

Consider generic NLP

i, f(@)
Pieq : hi(z) =0, i€ &:={1,..,n,}
subject to

gi(x) <0, i €Z:={1,..,n4}

Definition (Active Constraint)

A constraint g; is said to be active at z, if g;(z) = 0.

Definition (Active Set)

The active set A(z) at any feasible Z of Pipeq is denoted by

A(Z) = £ U {i € Z|gs(F) = 0).

42
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Regular Points of General NLPs

Definition
Let h;, 2 € £ and g;, © € Z be continuously differentiable on R™= and
let

Vga(x) = [Vgi()], i € TN A(T)

with a feasible point z of Z¢q. Then, Z is said to be a regular point
if
rank([VA(z), Vga(@)]") = |A(@)|-

43
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Karush-Kuhn-Tucker (KKT) Conditions

Definition (KKT point)
Let f, h;, i € £ and g;, i € Z be continuously differentiable on R"™=.
Consider Problem Zi.q, any pair (z, A, k) with € R™*, A € R™*

and k € R™s satisfying

STATIONARITY 0=V f(z)+ Z AiVhi(z) + Z ki Vgi(x)

€€ i€l
PRIMAL FEASIBILITY 0= h;(z), i€ €&, 0> g;(x), i€
DUAL FEASIBILITY 0<&k;, t €T
COMPLEMENTARITY 0 = k;g;(x), i €T

is called a KKT point of Pjeq.

44
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KKT Necessary Conditions of Optimality

Theorem

Consider Problem Zi.q and let f, h;, i € £ and g;, i € L be
continuously differentiable on R™=. If

o z* is a (local) minimizer of Picq and

o x* is a regular point,

then there exist \* € R™ and k* € R"s such that (z*, \*,k*) is a
KKT point of Picq.

Nonlinear Programming
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Consider NLP

. 3
min |(x; — =
Tz€R? 2

Exercises

2
) + (2o —t)*  subject to

$1+1'2—1§0
Ilfl’gflgo
-1+ 22 —1<0

—$1—l‘2—1§0

For what value of ¢ does x* = [1,0] " satisfy the KKT condition?

Nonlinear Programming



Exercises

Consider NLP
932—(1—1’1)3 SO

mig —2x1 + x2 subject to
ek 1—-0.2522 —25 <0

the optimal solution is 2* = [0,1] T, questions:
a) Is z* a regular point?

b) Are the KKT conidtions satisfied?

Nonlinear Programming
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Consider NLP

Nonlinear Programming

Equality Constrained NLP

m}én f(z) subject to h(zx) =0
xeR"x
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Equality Constrained NLP

Consider NLP

rER

min f(z) subjectto h(z) =0

Necessary condition of optimality:

Vi(@®)+ Vh(z)A* =0

h(z*) =0

Nonlinear Programming



Equality Constrained NLP

Consider NLP

m}én f(z) subject to h(zx) =0
rzeR"x

Necessary condition of optimality:
Vi(@®)+ Vh(z)A* =0
h(z*) =0

Question: how does the minimum f(z*) change for varying constraints

h(z) = c?

Nonlinear Programming



Interpretation of Lagrangian Multipliers

Perturbed problem

P min f(z) subjectto h(zx)=c

zER"x

Nonlinear Programming



Interpretation of Lagrangian Multipliers

Perturbed problem

P min f(z) subjectto h(zx)=c

rER"=

Assumption

For each ¢, & has a unique regular solution, i.e.,
€ (c) =argmin f(x) subject to h(xz)=-c
¢*(¢c)= min f(x) subjectto h(x)=-c

with £*(0) = z* and ¢*(0) = f(z*).

Nonlinear Programming



Interpretation of Lagrangian Multipliers

h(E*(0) =c = Vih(€7(c)) TV () =1



Interpretation of Lagrangian Multipliers

h(E*(0) =c = Vih(€7(c)) TV () =1

Vo (c) O=Vc£*(0)Twa($*)

=~ Ve (0) ' Vah(€7(0) " X
I

:—)\*



Interpretation of Lagrangian Multipliers

o The Lagrange multiplier A* can be interpreted as the sensitivity of the
optimal objective function with respect to changes in the constraint

h(z) = 0.

Nonlinear Programming



Interpretation of Lagrangian Multipliers

o The Lagrange multiplier A* can be interpreted as the sensitivity of the

optimal objective function with respect to changes in the constraint
h(z) = 0.

o In Economics Lagrange multipliers are used to characterize marginal

values or shadow prices.
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Interpretation of Lagrangian Multipliers

o The Lagrange multiplier A* can be interpreted as the sensitivity of the

optimal objective function with respect to changes in the constraint

h(z) = 0.

o In Economics Lagrange multipliers are used to characterize marginal

values or shadow prices.

o Can be extended to general NLPs with inequality constraints g(x) < ¢:

multipliers k* & sensitivity of f(z*) with respect to c.
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Interpretation of Lagrangian Multipliers

o The Lagrange multiplier A* can be interpreted as the sensitivity of the
optimal objective function with respect to changes in the constraint
h(z) = 0.

o In Economics Lagrange multipliers are used to characterize marginal
values or shadow prices.

o Can be extended to general NLPs with inequality constraints g(x) < ¢:

multipliers k* & sensitivity of f(z*) with respect to c.

o Inactive inequality constraints k} = 0, i € Z\(Z N A(z*)) = no change

of optimum for small perturbations.
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Interpretation of Lagrangian Multipliers

o The Lagrange multiplier A* can be interpreted as the sensitivity of the
optimal objective function with respect to changes in the constraint
h(z) = 0.

o In Economics Lagrange multipliers are used to characterize marginal

values or shadow prices.

o Can be extended to general NLPs with inequality constraints g(x) < ¢:
multipliers k* & sensitivity of f(z*) with respect to c.

o Inactive inequality constraints k} = 0, i € Z\(Z N A(z*)) = no change

of optimum for small perturbations.

o Active inequality constraints k] > 0, i € Z N A(z*) = enlarged feasible

region, optimal cost cannot increase.
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o Minimal Primer on Algorithms for NLPs
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Algorithm Concepts

Algorithm:

o Given an initial point 2° compute a sequence {x"*} by repeated

application of an algorithmic rule.

o Objective: make {z*} converge to a point Z.
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Algorithm Concepts

Algorithm:

o Given an initial point 2° compute a sequence {x"*} by repeated

application of an algorithmic rule.
o Objective: make {z*} converge to a point Z.

Why do we talk about algorithms for NLPs?

Nonlinear Programming
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Algorithm Concepts

Algorithm:

o Given an initial point 2° compute a sequence {x"*} by repeated

application of an algorithmic rule.
o Objective: make {z*} converge to a point Z.
Why do we talk about algorithms for NLPs?

o Solvers usually require initial guess and termination criteria = basic

understanding of solution algorithms necessary to use solvers.

o Solvers often terminate prematurely = understand and diagnose reasons?
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Global and Local Convergence

Definition (Global convergence)

An algorithm is said to be globally convergent if, for any initial point
20, it generates a sequence of points that converges to a point Z in

the solution set.
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Global and Local Convergence

Definition (Global convergence)
An algorithm is said to be globally convergent if, for any initial point
20, it generates a sequence of points that converges to a point Z in

the solution set.

Definition (Local convergence)
An algorithm is said to be locally convergent if there exists p > 0
such that for any initial point 20 with ||2° — Z|| < p, it generates a

sequence of points that converges to a point x in the solution set.
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Order of Convergence

Definition

The order of convergence of a sequence {xk} with lim z* = Z, is
k—o0

the largest non-negative number p such that

k+1

|l =]
lim 2 I _ .
dm kg P <
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Order of Convergence

Definition

The order of convergence of a sequence {z*}, with klim x
xde el

the largest non-negative number p such that

k+1

[ — ]

lim = < o0.

koo ||zF —z||P

o p=1and 5 <1 = linear convergence
o p=1 and 5 = 0 = superlinear convergence
o p=1and =1 = sublinear convergence

o p = 2 = quadratic convergence

Nonlinear Programming
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Order to Convergence

Definition
The order of convergence of a sequence {z*}, with klim x
—00

the largest non-negative number p such that

N |
1 —
A T =g P
Example:
¥ =1+40.5F
e =14 K7k

Nonlinear Programming
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Newton’s Methd for Nonlinear Equations

Given a function F': R™ — R"™, search for solutions of the nonlinear
equation

F(x) =0 with FeC.

Nonlinear Programming
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Newton’s Methd for Nonlinear Equations

Given a function F': R™ — R"™, search for solutions of the nonlinear
equation

F(x) =0 with FeC.
Main idea:

o Start with xy and solve linear equations

F(z®) + M (@) (2" —2F) =0, ke {1,2,...}.

Nonlinear Programming
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Newton’s Methd for Nonlinear Equations

Given a function F': R™ — R"™, search for solutions of the nonlinear

equation
F(x) =0 with FeC.
Main idea:

o Start with xy and solve linear equations
F(z®) + M (@) (2" —2F) =0, ke {1,2,...}.
o Matrix M (x), € R™*"= chosen in such a way that
F(z®) + M(a")(z — 2%) = F(z)

is an approximation of F.

Nonlinear Programming
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Newton’s Methd for Nonlinear Equations

Given a function F': R™ — R"™, search for solutions of the nonlinear

equation
F(x) =0 with FeC.
Main idea:

o Start with xy and solve linear equations
F(z®) + M (@) (2" —2F) =0, ke {1,2,...}.
o Matrix M (x), € R™*"= chosen in such a way that
F(z®) + M(a")(z — 2%) = F(z)

is an approximation of F.

o M(z*) = OF (2*) corresponds to the so called Newton method.

Nonlinear Programming
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Newton’s Method for Nonlinear Equations

If M (%) is invertible, the method can be written in the form

" =ab — MR R (), ke {1,2,..).

Nonlinear Programming
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Newton’s Method for Nonlinear Equations

If M (%) is invertible, the method can be written in the form

" =ab — MR R (), ke {1,2,..).

o In practice, we usually work with approximations M (z*) ~ OF (z*).
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Newton’s Method for Nonlinear Equations

If M (%) is invertible, the method can be written in the form

" =ab — MR R (), ke {1,2,..).

o In practice, we usually work with approximations M (z*) ~ OF (z*).

o If M(x*) is independent of z*, we only need to decompose M once

(e.g., using LR or QR decomposition).

o Some methods try to update M at every step without re-computing the

Jacobian (e.g., BFGS update).

Nonlinear Programming
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(7]

(+]

Scaling Properties of Newton’s Method

F(z*)=0= 5 F(z*) = 0 with § € R"*" any (invertible) scaling

matrix.

Applying Newton's method to solve scaled equation
F(z)=5-F(z)=0

yields iteration z*+1 = 2k — M (2%)~1S . F(2*).

Using exact Jacobian M (z*) = OF (z*), we have
oF L = aF — 9F (%) F (2F).

Newton's methods with exact Jacobians is invariant under scaling.

Nonlinear Programming ”



Local Convergence of Newton’s Method

Assumption

o There exists a point x* with F(z*) = 0.

o The initial point x° is already in a small neighborhood of x*.

o Matrix M (x*)~*0F () is Lipschitz continuous w.r.t. x in a

neighborhood of x* with constant w > 0.

Nonlinear Programming

78



Local Convergence of Newton’s Method

Assumption
o There exists a point x* with F(z*) = 0.
o The initial point x° is already in a small neighborhood of x*.

o Matrix M (x*)~*0F () is Lipschitz continuous w.r.t. x in a

neighborhood of x* with constant w > 0.

The basic idea is to estimate the distance of the iterates to x*:

e+t o

= ka  — M(Jck)_lF(a:k)H
= sz —a* — M(2F)7! fl OF (z* + s(:ck —z*))(2F — 2*)ds
Ha:k — " — M(2®)"1OF () (2% — 2*

IN

%112

2 Hm -7
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Local Convergence of Newton’s Method

In summary, we have the estimate

41— 2 :

Sn“xk—x* —|—%ka—x*|

as long as |1 — M(2*)"*9F (2¥)|| < n. Here, 1) can be interpreted as a

bound on the accuracy of the Jacobian approximation M.
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Local Convergence of Newton’s Method

In summary, we have the estimate

o+ o) < :

* |

Yk
+2Hx T

as long as |1 — M(2*)"*9F (2¥)|| < n. Here, 1) can be interpreted as a

bound on the accuracy of the Jacobian approximation M.

If we have < 1 and [|2° — z*|| < 2(1 — 1), the iterates contract and we
have

lim z* — z*.
k—o00
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Convergence of Newton’s Method

The convergence rate estimate

ka-s-l e 2

Sn“xk—x* —|—%ka—x*|

implies that

82



Convergence of Newton’s Method

The convergence rate estimate

ka-s-l e 2

Sn“xk—x* —|—%ka—x*|

implies that

o if we have 0 < 1 < 1, the convergence rate is linear.

Nonlinear Programming
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Convergence of Newton’s Method

The convergence rate estimate

ka-u e 2

g k.
+ 3 [|=* — a*|
implies that

o if we have 0 < 1 < 1, the convergence rate is linear.

o if we choose M (z*) = OF(2*), we have = 0 and
o = ot < 5 fl=* — 2"
2

In this case, the convergence rate is quadratic.

Nonlinear Programming
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Exercises

Let scalar function f : R — R be three times continuously differentiable
with bounded third-order derivative. The first and second derivative of f are

denoted by f’ and f”, respectively. We additionally assume:
o f(z*) =0 and f’(z*) =0 at a point z* € R;

o f'(z") #0.

k
Prove that the iterates of the exact Newton method, z*+

1 .k fE&)
=TT TEh)

converge locally with cubic convergence rate, i.e.,

3
! *| , Y < oo.

fa:*|§'y’xkfx

85
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Solution:

1. Locally, we have

’$k+1 —x*

= |T

Nonlinear Programming

k

_:I/'*_

Exercises

f(@*)
f'(@F)

_ k;_ * 1 xk /
= fet = g [ e
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Exercises
Solution:

1. Locally, we have

X

’$k+1 e

k 1 «
=|z" — 2% — —— f(z)dz
f'(@*) /ac
2. For the integral above, we can substitute the Taylor expansion,

F1(2) =f' (@) + f(@®) (2 = %) + O(lz — ™)
=f'(@*) + O(|a* — a*||z = ™) + Oz — ")
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Exercises

Solution:

1. Locally, we have

’,’Ek+1 — 2| =

_ k% _ 1 “ /
=|z" -z e /x fl(z)dz

2. For the integral above, we can substitute the Taylor expansion,
F(2) =f' (@) + f"(a")(z = 2*) + O(|z — 2*?)
—f'(a*) + O(jak — 2|z — 2*]) + O (| — 2*?)

<ok -z _W/z* f'(z®)dz

xk-‘,—l _ Z‘*| <

3. Thus, we have

+0(|z" — 2%

—0(s* —"[?)
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Newton’s Method for Unconstrained Optimization

Problem formulation:

min  f(z)

rER"=

Remark
o If f is twice Lipschitz-continuously differentiable, a minimizer can

be founded by applying Newton'’s method to
Vf(z)=0.

o If a solution x* satisfies V2 f(x) = 0, it must a local minimizer.

Nonlinear Programming 89



Newton’s Method for Unconstrained Optimization

Newton-type iteration for unconstrained optimization problem
af = 2k — M (2P TV f(aF)

with M (2*) ~ V2 f(2*) a suitable Hessian approximation.
o In practice, we often choose a symmetric M.

o If M(z*) is symmetric and positive definite, the iterate 2**! is the

minimizer of the quadratic function

HI}}H f((ﬂk) + vf(xk)'r(l,ka _ l’k) + %(:L,kJrl ka)TM(xk)(ka 7:L'k),

which can be interpreted as a quadratic model of f.
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Line Search Methods

So far, we have only analyzed the local convergence properties of
Newton-type methods. If we start far from a local solution, Newton type

methods are often take “too big"” steps and are divergent.
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Line Search Methods

So far, we have only analyzed the local convergence properties of
Newton-type methods. If we start far from a local solution, Newton type
methods are often take “too big"” steps and are divergent.

One way to fix this problem is to first compute a step-direction by
AzF = —M(2*)"1V f(zF)
and update the iterate as

2T = 2F + oFAZE.

Nonlinear Programming
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Line Search Methods
So far, we have only analyzed the local convergence properties of
Newton-type methods. If we start far from a local solution, Newton type
methods are often take “too big"” steps and are divergent.
One way to fix this problem is to first compute a step-direction by

Axh = —M(2") 7V f(2F)
and update the iterate as

aF T = gk 4 oF Ak

Here, o* € (0,1] is a so-called step size, which is found by (approximately)

solving the scalar optimization problem

: k k k
Az”).
Hpy St akart
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Armijo Linear Search Conditions

In practice the line search optimization
min  f(z" + oFAz®).
ake(0,1]

is not solved exactly (too expensive), but only approximately.
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Armijo Linear Search Conditions
In practice the line search optimization

m Azx").
akeég.,l] f(&® 4+ a"Ax")

is not solved exactly (too expensive), but only approximately.
One way to implement this is by using back-tracking until the Armijo
condition
fz® +afAzP) < f(a®)+c- o V(b)) T AP
—_———
DIRECTIONAL DERIVATIVE

for a constant ¢ <« 1 is satisfied.
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Armijo Linear Search Conditions
In practice the line search optimization
min  f(z" + oFAz®).
ake(0,1]
is not solved exactly (too expensive), but only approximately.

One way to implement this is by using back-tracking until the Armijo

condition

fz® +afAzP) < f(a®)+c- o V(b)) T AP
—_———
DIRECTIONAL DERIVATIVE
for a constant ¢ < 1 is satisfied. This condition ensures that the line search
parameter is not excessively large, although it is not sufficient to prove

convergence in general.
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Quasi-Newton Methods — Preliminaries

One way to represent invertible matrices is by considering matrices of the
form
A= B, + UV’
~—~ ~——
EASY-TO-STORE LOW RANK

with B € R"*™ and U,V € R™™"™, m < n.
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Quasi-Newton Methods — Preliminaries

One way to represent invertible matrices is by considering matrices of the

form
A= B + v’
~— N——
EASY-TO-STORE LOW RANK

with B € R"*™ and U,V € R™™"™, m < n.

If B is easy to invert or B~! is already known, we have A~! as
(B+UV) '=B"'-BlUq+Vv'B'U)"'v B,

which is the so-called "Woodbury's matrix inversion formula".
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Quasi-Newton Methods — Broyden’s Updates

The Newton-type iterates

ot ="t = M@t )TV (@), T = ek - M@R) TV f (),
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Quasi-Newton Methods — Broyden’s Updates

The Newton-type iterates
oF =gt - M(2FHTIV (2R, 2 =2 — MR TV (R, .

We have to compute the gradient V f at each iteration such that we can

obtain the directional estimate

V@)@ = ah) & V) = V).
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Quasi-Newton Methods — Broyden’s Updates

The Newton-type iterates
oF =gt - M(2FHTIV (2R, 2 =2 — MR TV (R, .

We have to compute the gradient V f at each iteration such that we can

obtain the directional estimate
V2 (@ = a®) = V(F) = V f ().
Questions: can we use this relation to improve our next Hessian

approximation M (zF*1) =~ V2 f(zk+1)?
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Quasi-Newton Methods — Broyden’s Updates

Define d* = 2*+1 — 2% and y* = Vf(2**1) — V f(2*), the relation

V2f(:z:k+1)dk ~ yk
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Quasi-Newton Methods — Broyden’s Updates

Define d* = 2*+1 — 2% and y* = Vf(2**1) — V f(2*), the relation
V2f(:z:k+1)dk ~ yk

motivates to improve our current estimate of V2f constructing M™* by

solving

min % Mt — M(;v’“)“j, subject to MTd* = ¢*

with || - || the Frobenius norms (|| X||Z = Tr(X X )).

Nonlinear Programming
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Quasi-Newton Methods — Broyden’s Updates

o Broyden's update

(M (a*)d> —y*)(d") "
113

MT = M(2") -

o Inverse Broyden's update

(d* — M(a*)~ty*)(d") T M (a*) "

(M+)_1 = M(xk)_l + (dk:)'l']\/[(xk)flyk
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Quasi-Newton Methods — Broyden’s Updates

o Broyden's update

(M (a*)d> —y*)(d") "

k
MY = M@") - TG

o Inverse Broyden's update

(d* — M(a*)~ty*)(d") T M (a*) "

(M+)_1 = M(xk)_l + (dk:)'l']\/[(xk)flyk

Remarks:

o both update are rank-1 update.
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Quasi-Newton Methods — Broyden’s Updates

o Broyden's update

(M (a*)d> —y*)(d") "
113

MT = M(2") -
o Inverse Broyden's update

() — (a4 M) @) T )

(d)T M (2F)~TyF
Remarks:
o both update are rank-1 update.

o we don't need to compute any second order derivatives.
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Quasi-Newton Methods — Broyden’s Updates

o Broyden's update

M xk dk_ k dk T

o Inverse Broyden's update

. L (dF = M(eF) ) (dR) T M (k)
art) = e+

Remarks:
o both update are rank-1 update.

o we don't need to compute any second order derivatives.

o we can directly compute M !, no inversion needed.

Nonlinear Programming
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Quasi-Newton Methods — Broyden’s Updates

o Broyden's update

M xk dk_ k dk T

o Inverse Broyden's update

() — (a4 M) @) T )

(dk)T]\/[(l.k)flyk

Remarks:

o both update are rank-1 update.

o we don't need to compute any second order derivatives.
o we can directly compute M !, no inversion needed.

But: M* may be non-symmetric even if M (x*) was symmetric.
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Quasi-Newton Methods — BFGS Updates
Broyden-Fletcher-Goldfarb-Shanno Updates

The idea is to maintain the symmetry of the updates by solving

' Merk :yk

min EHMJr fM(xk)Hz subject to
M+ 2 (M) TdF =y
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Quasi-Newton Methods — BFGS Updates
Broyden-Fletcher-Goldfarb-Shanno Updates

The idea is to maintain the symmetry of the updates by solving

1 ) Merk :yk
min = |[MT - M(xk)H subject to
M+ 2 (M) TdF =y
with [[MF = M (%) |[* = ||WE (M = (k)W i =
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Quasi-Newton Methods — BFGS Updates

Broyden-Fletcher-Goldfarb-Shanno Updates

The idea is to maintain the symmetry of the updates by solving

1 ) Merk :yk
min = |[MT - M(xk)H subject to
M+ 2 (M) TdF =y
with [[MF = M (%) |[* = ||WE (M = (k)W i =

Tr (W%(M+ ~ M(eF)W(MF - M(xk))W%) :

Here, the norm is (mainly for computational reasons) a weighted Frobenius

norm by W any symmetric positive definite weighting matrix satisfying

Wy = d~.

Nonlinear Programming
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Quasi-Newton Methods — BFGS Updates
Broyden-Fletcher-Goldfarb-Shanno Updates

o BFGS update:

M(mk)dk(dk>TM(ajk) k

M* = M(a") - (@) T M (zF)d*

<|S
2
_‘
QU
Ea
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Quasi-Newton Methods — BFGS Updates
Broyden-Fletcher-Goldfarb-Shanno Updates

o BFGS update:

M (z*)d*(d*) " M («¥)  yF (")
k

ME=MEE - =G ihe T )@

o inverse BFGS update:

1 k 4 dk k\T dkdkT
(Mﬂ(l<$%))M“> (- @) + @

Nonlinear Programming



Quasi-Newton Methods — BFGS Updates
Broyden-Fletcher-Goldfarb-Shanno Updates

o BFGS update:

M (z*)d*(d*) " M («¥)  yF (")
k

ME=MEE - =G ihe T )@

o inverse BFGS update:

1 k 4 dk ENT dkdkT
oy = (1= e ) e (1- e ) + ey

Y

o Both are rank-2 update.
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Algorithms for Constrained NLPs

Nonlinear program

hi(z) =0,i€ & :={1,...,n}
min f(z) subject to

velns gi(x) <0, i €T :={1,...,n,}
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Algorithms for Constrained NLPs

Nonlinear program

hi(z) =0,i€ & :={1,...,n}
II%H f(x) subject to
zeR" @

gi(x) <0, 1€Z:={1,..,ny4}

Convert into unconstrained problem: Solve necessary conditions of optimality:

@ Penalty function method; O Newton-like methods;

@ Interior point method. O Sequential quadratic programming.

Nonlinear Programming
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Exterior Penalty Function Methods

Penalty function

O(x) =D (hi(x) + > lgi(x)), ¢, ¢ € C°

€€ i€l

: {1/1(2’)0 ifz=0 {gb(z)o if 2z<0
with and
P(z) >0 else #(z) >0 else



Exterior Penalty Function Methods

Penalty function

O(x) =D (hi(x) + > lgi(x)), ¢, ¢ € C°

€€ i€l
e {1/}(2)0 if z=10 and{gf)(z)O if 2<0
P(z) >0 else #(z) >0 else

Typical choice: ¥(z) = |z|P, p € N5 and ¢(z) = (max{0, z})P.
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Exterior Penalty Function Methods

Unconstrained optimization problem

mﬂén flz)+p- @(z) with p>0.
zeR" @

Nonlinear Programming
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Exterior Penalty Function Methods

Unconstrained optimization problem
min  f(z) + p- ®(z) with x> 0.

rER"=

Remark

o recovering solution of the original problem 1 — oo.

o ill-conditioned for large .
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Sequential Unconstrained Optimization

Main idea:

o Start at an initial 2°, update 2* by solving
2F = arg min  f(x) + p¥ - (2).

zER"=

o If u*®(z*F*1) < ¢, stop. Otherwise, update p**! = Bu* with 3 > 1.
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Sequential Unconstrained Optimization

Main idea:

o Start at an initial 2°, update 2* by solving

zF = arg mlén f(@) + pF - o(2).
zeR"x

o If u*®(z*F*1) < ¢, stop. Otherwise, update p**! = Bu* with 3 > 1.

Remark

o Iterates x* are typically infeasible.

o Remedy? — interior point methods.

Nonlinear Programming
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Barrier Method

Inequality constrained NLPs

min f(z) subjectto g;(z) <0,i€eZ:={1,..

rER"=

Nonlinear Programming
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Barrier Method

Inequality constrained NLPs

mﬁn f(xz) subjectto gi(z) <0, ie€Z:={1,...,n4}
rER"=>

Barrier function

b(x) = Z é(gi(z)) with #(z) >0 ifz2<0

i€T lim, ,o- = o0
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Barrier Method

Inequality constrained NLPs

mﬁn f(xz) subjectto gi(z) <0, ie€Z:={1,...,n4}
rER"=>

Barrier function

b(x) = Z é(gi(z)) with #(z) >0 ifz2<0

i€T lim, ,o- = o0

Typical choice
d(2) = —In(—=2).
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Barrier Method

Main idea:

o Start at an initial feasible point z° with g(z°) < 0, update z* by solving

F1.—arg min  f(x) 4 x* - b(z).

rER?

xT

o If u¥ - b(z**1) < ¢, stop. Otherwise, update p*+1 = gu” with g € (0,1).
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Barrier Method

Main idea:

o Start at an initial feasible point z° with g(z°) < 0, update z* by solving

F1.—arg min  f(x) 4 x* - b(z).

cER"

xT

o If u¥ - b(z**1) < ¢, stop. Otherwise, update p*+1 = gu” with g € (0,1).

Remark

o Iterates x* are always feasible.

o Off-the-shelf solver Ipopt.

Nonlinear Programming 127



Interior Point Method

Inequality constrained NLPs

min  f(z) subjectto g;(z) <0,i€eZ:={1,..

rER"

Nonlinear Programming
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Interior Point Method

Inequality constrained NLPs
min f(x) subjectto g;(xz) <0,i€Z:={1,...,n4}

rER"

KKT condition: Perturbed KKT condition:

Vi(z)+ Vg(z)s =0
Vf(x)+Vg(x)k =0

ki gi(r)=p, i €T

Ki-gi(z)=0,1€T with 1 > 0.
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Interior Point Method
Main Idea:

o Apply Newton's method to deal with nonlinear equations

Vfi(x)+ Vg(r)k
Ful ) = f(x) + Vyg(x) 0
diag(k)g(z) — - 1,,
o Update p with g — 0, ref. [Chapter 19.3, NW06]

o Linear search is necessary, ref. [Chapter 19.4, NW06]
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Interior Point Method
Main Idea:

o Apply Newton's method to deal with nonlinear equations

Vfi(x)+ Vg(r)k
Ful ) = f(x) + Vyg(x) 0
diag(k)g(z) — - 1,,
o Update p with g — 0, ref. [Chapter 19.3, NW06]
o Linear search is necessary, ref. [Chapter 19.4, NW06]
Remark

Log-barrier based unconstrained problem min, f(z) + p - b(z) has
KKT conditions equivalent to the perturbed KKT, i.e.,

+Z

—0=>K,i:

gi(x)

Nonlinear Programming

[NWO6] J. Nocedal and S. Wright, Numerical optimization. 2006.
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Sequential Quadratic Programming (SQP)

Equality constrained NLP

mR@n f(z) subjectto h(x) =0
zeR"x

Nonlinear Programming
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Sequential Quadratic Programming (SQP)

Equality constrained NLP

min f(z) subjectto h(z)=0

rER"=
x
=0 with y =
A

1st order optimality conditions

Vf(x)+ Vh(z)A
piy < [T+ 90

h(x)

Nonlinear Programming
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Sequential Quadratic Programming (SQP)

Equality constrained NLP

min f(z) subjectto h(z)=0

rER"=
x
=0 with y =
A

Main idea: applying Newton's method to solve F(y) = 0, i.e.,

1st order optimality conditions

Vf(x)+ Vh(z)A
piy < [T+ 90

h(x)

Ax
A

V£ (@) + Vh(z)A
h(x)

with H(z) = Vau {f(z) + ATh(z)} and A= Vh(z)".

Non 134
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Globalization

How do we measure progress towards a solution?
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Globalization

How do we measure progress towards a solution?
Recall: in unconstrained minimization, the main idea was to accept the next

iterate zF 1 if f(xF+1) is sufficiently smaller than f(z¥).
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Globalization

How do we measure progress towards a solution?

Recall: in unconstrained minimization, the main idea was to accept the next
iterate zF 1 if f(xF+1) is sufficiently smaller than f(z¥).

In equality constrained optimization we need to measure two things:

1. The objective value f(z) and

2. the constraint violation ||h(z)]]

137
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L1-Penalty Functions

One way to measure progress towards a solution is to introduce the

L1-penalty function

with \; being sufficiently large constants.

Nonlinear Programming
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L1-Penalty Functions

One way to measure progress towards a solution is to introduce the

L1-penalty function

with \; being sufficiently large constants.
An important property of the function ¥(x) is that (under mild conditions)

we have

U(z*) = f(z*) butalso ¥(x)> f(z)

for all 2 € X within a compact subset X C R™= and \; are sufficiently large
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Armijo Line Search Conditions

k

Similar to unconstrained optimization, the line search parameter o can be

found by using back-tracking until the Armijo condition
U(zk 4+ aF AzF) < U(zF) + ¢ o*D(W (), AzF)

for a constant ¢ < 1 is satisfied. Here, D(¥(z*), Az*) denotes the

directional derivative

D(¥(z"), Az") = ||n(z*) + Vh(zF) T Az¥||
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SQP for Equality Constrained NLP

1. Choose initial guesses 2 € R™* and A’ € R™", tolerance ¢ > 0.

2. Repeat:
2.1 Choose Hessian approximation M (z*) ~ V., {f + (2% h(azk)} and
A(z®) = Vh(z").
2.2 Solve subQP

min %(Amk)TH(xk)A:ck + V") A

AzkeRnz

subject to  h(z") + A(z") T Az =0 | AQF

2.3 Terminate If’Vf TAxk|—|—Zleg Xl |hi(z)| < e.
2.4 Choose a line-search parameter o* € (0,1] and set 2*** = z* + o*Az* and

ARHL = \F 4 gF(AQP — \k).
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SQP for Inequality Constrained NLP

o Include linearized inequality constraints in subQPs, i.e.,

1
Aﬁlei%nz i(Axk)TH(xk)Axk + V()T Azk
subject to  h(zF) + A(zF) T Az =0
g(z®) + B2®)TAz* <0
with B(z*) = Vg(z¥).
o Use the following L1-penalty function for linear search
V(@) = f@)+ > llha(@)] + Y Rl (max{0, g;(x)})
= i€Z
with sufficiently large \; and ;.

Nonlinear Programming
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Numerical Implementation

o SubQP infeasible = relax the constraints
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Numerical Implementation

o SubQP infeasible = relax the constraints

o Hessian regularization, e.g., M (2*) = V,.{f(x) + ATh(x)} + ol = 0.
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Numerical Implementation

o SubQP infeasible = relax the constraints
o Hessian regularization, e.g., M (2*) = V,.{f(x) + ATh(x)} + ol = 0.

o Rank-deficient constraints = reformulated the constraints, e.g.,
mmin x subject to 22 =0
with * = 0 but we cannot find a A* since
0=Vf(x")+ Vh(z")A\* =1

is wrong. Replacing 22 = 0 by 2 = 0 can avoid this degeneracy.
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Numerical Implementation

o SubQP infeasible = relax the constraints
o Hessian regularization, e.g., M (2*) = V,.{f(x) + ATh(x)} + ol = 0.

o Rank-deficient constraints = reformulated the constraints, e.g.,
mmin x subject to 22 =0
with * = 0 but we cannot find a A* since
0=Vf(x")+ Vh(z")A\* =1

is wrong. Replacing 22 = 0 by 2 = 0 can avoid this degeneracy.

o Constraint Jacobian ill-conditioned = scaling, e.g., Ruiz equilibration.
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o Computation of Derivatives

Nonlinear Programming
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Why do we need to compute derivatives?

Motivation
h(z)=0
min f(z) subject to
me g(z) <0
o Derivatives of objectives and constraints (gradients);

o Sensitivities of ODE or DAEs (needed later);

o Jacobians to solve implicit equations (e.g. implicit ODEs, DAEs, ..

Nonlinear Programming
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Why do we need to compute derivatives?

Motivation

h(z)=0

i bject t
in f(z) subject to

g(x) <0
o Derivatives of objectives and constraints (gradients);

o Sensitivities of ODE or DAEs (needed later);

o Jacobians to solve implicit equations (e.g. implicit ODEs, DAEs,

Main Possibilities
o Numerical differentiation

o Algorithmic differentiation

Nonlinear Programming

).
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Numerical Differentiation — Finite Differences

The derivative of a twice continuously differentiable function f: R — R can

be approximated by finite differences:

df(a) _ fla+h) -~ f(z)
dx h
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Numerical Differentiation — Finite Differences

The derivative of a twice continuously differentiable function f: R — R can

be approximated by finite differences:

(@) _ fa+h)— i)
dx h

o The mathematical approximation error, given by

fla+h)—flz) df(x)]|  h|d*f(z)
h dx dxz?

= 0(h)

~3

tends to 0 with A — 0.
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Numerical Differentiation — Finite Differences

The derivative of a twice continuously differentiable function f: R — R can
be approximated by finite differences:

df(a) _ fla+h) -~ f(z)
dx h

o The mathematical approximation error, given by
fla+h) = flx) df(x)| h|df(z)
h dx dz?
tends to 0 with h — 0.

~ —0(h)

o How to choose increment h?

h = ,/eps = Limited accuracy,/eps
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Numerical Differentiation — Central Differences

In order to reduce the mathematical approximation error, we can use central

differences:

df(z) _ flz+h)—flz—h)

~

dxr 2h

to approximate the derivative of f.
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Numerical Differentiation — Central Differences

In order to reduce the mathematical approximation error, we can use central

differences:

df(z) _ flz+h)—flz—h)

~

dxr 2h

to approximate the derivative of f.

o The mathematical approximation error is now

flx+h)— fle—h) df(x)
2h dx

< O(h?)
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Numerical Differentiation — Central Differences

In order to reduce the mathematical approximation error, we can use central

differences:
df(x) _ flx+h)— flz—h)

~

dxr 2h

to approximate the derivative of f.

o The mathematical approximation error is now

flx+h)— fle—h) df(x)
2h dx

< O(h?)

o How to choose increment h?

h = ¢eps = Limited accuracy(/eps)’
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Numerical Differentiation — Imaginary Trick

The derivative of a continuously differentiable function f : R — R can be

approximated by

F@)  m(frih) o
dx h ’ ’
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Numerical Differentiation — Imaginary Trick

The derivative of a continuously differentiable function f : R — R can be

approximated by

F@)  m(frih) o
dx h ’ ’

o The mathematical approximation error is same as central differences, i.e.,

Im(f(x+i-h)) B df (z)
h dx

< O(h?)

but the computation is cheap.
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Numerical Differentiation — Imaginary Trick

The derivative of a continuously differentiable function f : R — R can be

approximated by

df (z) ~ Im(f(x+i-h))
dx h ’

i’ =—1.

o The mathematical approximation error is same as central differences, i.e.,
Im(f(z+i-h)) df(z)
h dx

but the computation is cheap.

< O(h?)

o Sketch Proof:

flx+i-h)=f(x)+i- dj;f)h—%d?;(f)hz—ou-h?’)
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Numerical Differentiation — Imaginary Trick

The derivative of a continuously differentiable function f : R — R can be
approximated by

df(x) _Tm(f(x+i-h))

.2
~ - 1.
dr h >

o The mathematical approximation error is same as central differences, i.e.,

Im(f(x+i-h)) B df (z)
h dx

but the computation is cheap.

< O(h?)

o Sketch Proof:

flx+i-h)=f(x)+i- dj;f)h—%d?;(f)hz—ou-h?’)

o Easy to implement in Matlab

Nonlinear Programming
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Factorable Functions

Many (but not all) functions of our interest can be composed into a finite
list of atom operations from a given library L, e.g.,

L = {+, —, *,sin, cos, exp, ... }.
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Factorable Functions
Many (but not all) functions of our interest can be composed into a finite
list of atom operations from a given library L, e.g.,
L = {+, —, *, sin, cos, exp, ... }.
Example

o The function f(z) = sin(z1 * x2) + cos(z1) will (internally) be evaluated

as
Tz = X1 * Ty
x4 = sin(xs)
x5 = cos(xq)
T T4+ T
f(z) = g

Here, the memory for x3, ..., z5 is (usually) allocated temporarily.
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Factorable Functions
Consider a given factorable function f : R™ — R™, we define

o augmented state by

Z1 Z1 1

Tn Tn+1 Tn+m
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Factorable Functions
Consider a given factorable function f : R™ — R™, we define

o augmented state by

Ln Tn+1 Tn+m
o augmented elementary function by ®; : R**+% — RnHitl1
Z1
i(si) = ' , Sip1 = Pi(si)
Ln4s
Gi(T1, s Trti)
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Factorable Functions

Consider a given factorable function f : R™ — R™, we define

o augmented state by

Z1 Z1 1

Tn Tn+1 Tn+m

o augmented elementary function by ®; : R**+% — RnHitl1
Z1

Pi(s;) = : , Siv1 = Pi(s;)

Ln4s
Gi(T1, - Tnpi)
o Representation of f given by f(z) = C - @1 (Pr—2(- - - P1(Po(2))))
with selection matrix C' = [0y xn, L]
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Algorithmic Differentiation — Forward Mode
o Recall: the representation of a factorable function f : R™ — R™,
f(2) =C Oy (Prpa(- - P1(Po())))

The Jacobian Jy = % can be written as

09;
asi

Jf:C'Jm_l'Jm_Q"'Jl'JO with J; =
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Algorithmic Differentiation — Forward Mode
o Recall: the representation of a factorable function f : R™ — R™,
f(2) =C Oy (Prpa(- - P1(Po())))

The Jacobian Jy = % can be written as

09;
332-

Jr=C-Jp_1-JIp—a---J1-Jo with J; =
o Main idea: the directional derivative J;p with seed p € R™ given by
Jip=C - (Jm-1+ (Jm—2---(J1-(Jop))))
we define p = 39 = [Z1, ..., 4] " such that
Siv1 = Ji(8:)8;, i=1,....m—1

s 1aT A T
with ;41 = [8,, Tntd]
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Algorithmic Differentiation — Forward Mode

Example: f(x) = sin(x; * x9) + cos(z1):

T3 = X1 % To T3 = T1*To+ T1 *To
x4 = sin(x3) T4 = cos(x3)is

x5 = cos(xq) 5 = —sin(zq)Z;

T = T4+ Ts Te = T4+ Ts

Result: 76 = 5 V f(2).

Cost(Jy) in forward mode < 2n - Cost(f)
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Algorithmic Differentiation — Backward Mode
o Recall: the representation of a factorable function f : R® — R™,

f(@) =C @1 (Pr2(- - P1(Po(2))))

The Jacobian Jy = % can be written as

0P,

= cJm—1 - Iy - - J 'thJi:
Jf C-J, 1 J, 2 Jl 0o wi 887;
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Algorithmic Differentiation — Backward Mode
o Recall: the representation of a factorable function f : R® — R™,

f(@) =C @1 (Pr2(- - P1(Po(2))))

The Jacobian Jy = % can be written as

0P,
857;

o Main idea: the adjoint directional derivative )\TJf with seed A € R™

Jp=C-Jp_1-Jmo---J1-Jo withJ; =

given by
)‘TJf = ((((()‘Tc) ' Jm—l) : Jm—2) o Jl) . JO)
we define CT A = §,,, such that

T - .
S; = Ji(si) Si+1, L =M — 1, ,0

P T = T
with ;41 =[S, , Tnti]
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Algorithmic Differentiation — Backward Mode

Example: f(x) = sin(x; * x3) + cos(x1):

= X1 * T2 zg = 1, x; =0, i=1,...,5 define seed
sin(z3) Ty = Tg+ g
cos(x1) Ts = Ty + Te
T4 + 5 Z1 = Z1 —sin(z1)Zs
Ty = Tz + cos(x3)Ta
T1 = X1 + T *xT3
Ty = T2+ 1 * T3

Result: Vf(z) = [Z1,Z2]"

Nonlinear Programming

Cost(Jy) in backward mode < 3m - Cost(f)
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Exercise

Consider function f: R? = R,

f(z) = sin(z122) + exp(x12223)

with z = [z1, 29, 23] T. Write down
o its factorable form;
o the forward algorithmic differentiation;

o the backward algorithmic differentiation;

Nonlinear Programming
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Solution:

g4 =

Trs =

Teg =

Ty —

rg —

Nonlinear Programming

X1 * Tg
sin(xz4)
T3 % T4
exp(zs)

x5+ x7

Exercise

Tk To + T * X9
cos(z4)Zy
I3 * Zi'4 + 573 * Ty
exp(z6)To

Ts + T7
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Solution:

INITIALIZE SEED

Exercises

g =1

DIFFERENTIATION OF g = &5 + 7
Ts5 = Ts + Tg
T7 = T7 + Ty

DIFFERENTIATION OF 27 = exp(Zg)

T = Te + exp(xe)T7

Nonlinear Programming

DIFFERENTIATION OF g = T3 * T4
T3 = T3 + T4 * Tg

T4 = Tg + T3 * Te

DIFFERENTIATION OF x5 = sin(z4)

Ta = Ty + cos(z4)T5

DIFFERENTIATION OF T4 = T1 * To
T1 =1 + T2 * Ta

To = Ty + X1 * Ta
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Summary

o Nonlinear programming = optimization in real-valued vector spaces.
o KKT-Conditions <« first-order necessary conditions of optimality.

o Extendable to sufficient second-order conditions (not discussed here).
o Non-differentiable functions can cause numerical problems.

o Number of active constraints and correct identification of the active set is

more important than the total number of constraints.
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Summary

o Nonlinear programming = optimization in real-valued vector spaces.
o KKT-Conditions <« first-order necessary conditions of optimality.

o Extendable to sufficient second-order conditions (not discussed here).
o Non-differentiable functions can cause numerical problems.

o Number of active constraints and correct identification of the active set is

more important than the total number of constraints.

Initialization is key for solving non-convex problems.
Efficient derivative computation enables fast and reliable solutions.

Line search (and globalization) are crucial for global convergence.
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