Exericises: NLP algorithm

1. Newton-type methods for a boundary-value problem Regarding the scalar dynamic

$$x_{k+1} = \frac{1}{10}(11x_k + x_k^2 + u), k = 0, ..., N - 1$$

with conditions

$$x_0 = 0.1, \ x_N = 0.$$

We fix the horizon length N = 30.

- a) Formulate and solve the problem with Newton's method (exact Jacobian) initialized at u = 0. Plot the state trajectories in each iteration. Also plot the values x_N and the variable u as a function of the Newton iteration index.
- 2. SQP for equality constrained NLP Consider NLP

$$\min_{x \in \mathbb{R}^2} \exp(-x_1^2 - x_2^2) \quad \text{subject to } x_2^3 + x_1^2 - 1 = 0$$

- a) Implement SQP method using exact Hessian matrix with initial guess $[-1;-1]^{\top}$ and $[1;1]^{\top}$. Plot $||x^k x^*||$ with respect to the iteration index k.
- b) Implement the globalization strategy with L-1 penalty function for the SQP implementation in a). Then, test the code by using initial point [100, 100].
- 3. Interior Point Method for Optimal Control Based on the dynamic in Question 2, we formulate the optimal control problem

$$\begin{aligned} \min_{\{x_k\},\{u_k\}} \quad & \sum_{k=0}^{N-1} x_k^2 + u_k^2 \\ \text{subject to} \quad & x_{k+1} = \frac{1}{10} (11x_k + x_k^2 + u_k), k = 0, ..., N-1 \\ & x_0 = 0.5 \\ & x_k \in [-1,1], \ u_k \in [-1,1] \end{aligned}$$

with N=100. Implement the barrier method to solve the OCP and plot the trajectory. (*Hint:* solve the equality-constrained subNLPs via fmincoin in MATLAB.)