Problem Set #3: Numerical Optimal Control (cont'd)

Exercise 1: Formulation of OCPs and Solution via CasADi

The aim of this exercise is formulate several optimal control problems. We will use the Optistack Toolbox, which is an extension of CasADi used in the first exercise sheet. Information about this toolbox can be found on https://github.com/casadi/optistack. It is advisable to install CasADi and optistack prior to the exercise.

Consider a chemical continuous stirred tank reactor (CSTR) in which the exothermic irreversible reaction

$$A \to B$$

takes place. The dynamics of the CSTR are as follows, see [1] for details.

$$\dot{c}_A = \frac{q}{V}(c_{Af} - c_A) - k_0 e^{\frac{-E}{RT}} c_A \tag{1a}$$

$$\dot{T} = \frac{q}{V}(T_f - T) + \frac{-\triangle H}{\rho C_p} k_0 e^{\frac{-E}{RT}} c_A + \frac{UA}{V\rho C_p} (u_1 - T). \tag{1b}$$

The states c_A and T describe the concentration of subtance A and the reactor temperature in K. The coolant stream temperature u is the considered input variable. The objective is to compute an input signal such that the system reaches the set-point $c_{As} = 0.159[mol/l], T_s = 374.985[K]$. The coolant stream temperature u is subject to the input constraint $u \in [270, 330]$. The system parameters are listed in the following table.

Table 1: Parameters for CSTR.

q	100	[L/min]	c_{Af}	1	[mol/L]
T_f	350	[K]	$\parallel V$	100	[L]
ρ	1000	[g/L]	C_p	0.239	$[J/(g\cdot K)]$
$-\triangle H$	$5 \cdot 10^4$	[J/mol]	$\begin{bmatrix} C_p \\ \frac{E}{R} \end{bmatrix}$	8750	[K]
k_0	$7.2\cdot10^{10}$	$[min^{-1}]$	$\parallel UA$	$5 \cdot 10^4$	[J/(minK)]

- a) We want to calculate optimal open-loop inputs which steer the system (1) to the considered set-point. Formulate three different optimal control problem, such that the solution of each of these problems yields the considered open-loop inputs. Justify and explain your choices.
 - Hint: We already discussed this part in Problem Set # 2, Ex. 1a).
- b) Calculate (i.e. compute numerically) the stationary value for the coolant stream temperature u_s corresponding to the set-point $c_{As} = 0.159[mol/l], T_s = 374.9854[K]$.
- c) Solve of one your formulated optimal control problems for $(c_A(0), T(0)) = (0.25, 370)$ using Optistack and CasADi.

Hint: Use the templates RK4.m, parameters.m, P3Ex1_template.m, CSTR_ODE.m provided on the course moodle page.

References

[1] M. Henson and D. Seborg. Nonlinear Process Control. Prentice Hall, Upper Saddle River, NJ, 1997.