
Optimal Control (EE-715)
Dr.Timm Faulwasser
www.iai.kit.edu/control

EPFL
Spring 2018

TF

Problem Set #2: Numerical Optimal Control

Exercise 1: Formulation of OCPs

The aim of this exercise is formulate several optimal control problems. We will re-use the results in a later
exercise where we implement solutions numerically.

Consider a chemical continuous stirred tank reactor (CSTR) in which the exothermic irreversible reaction

A→B

takes place. The dynamics of the CSTR are as follows, see [2] for details.

ċA = q

V
(cAf − cA)−k0e

−E
RT cA (1a)

Ṫ = q

V
(Tf −T )+ −4H

ρCp
k0e

−E
RT cA + UA

V ρCp
(u1−T ). (1b)

The states cA and T describe the concentration of subtance A and the reactor temperature in K. The
coolant stream temperature u is the considered input variable. The objective is to compute an input
signal such that the system reaches the set-point cAs = 0.159[mol/l],Ts = 375[K]. The coolant stream
temperature u is subject to the input constraint u ∈ [270,330]. The system parameters are listed in the
following table.

Table 1: Parameters for CSTR.

q 100 [L/min] CAf 1 [mol/L]
Tf 350 [K] V 100 [L]
ρ 1000 [g/L] Cp 0.239 [J/(g ·K)]

−4H 5 ·104 [J/mol] E
R 8750 [K]

k0 7.2 ·1010 [min−1] UA 5 ·104 [J/(minK)]

a) We want to calculate optimal open-loop inputs which steer the system (1) to the considered set-point.
Formulate three different optimal control problem, such that the solution of each of these problems
yields the considered open-loop inputs. Justify and explain your choices.

Exercise 2: Direct Discretization

The aim of this exercise is to solve an easy optimal control problem. Specifically, we will use Yalmip. It is
advisable to install the toolboxes prior to the exercise.

In this exercise we will solve an optimal control problem (OCP) via a (naive) direct simultaneous approach.
We consider the following OCP:

min
u(·)

∫ 1

0
xT (t)x(t)+0.005u2(t)dt (2a)
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subject to ∀t ∈ [0,1]:

ẋ(t) =
(

0 1
0 c

)
x(t)+

(
0
1

)
u(t) c ∈ R (2b)

u(t) ∈ [−20,20] (2c)
g(t,x) = 8(t−0.5)2−0.5−x2 ≥ 0 (2d)

x(0) = (0,−1)T . (2e)

A simple procedure to integrate an ODE ẋ(t) = f(t,x(t)), x(0) = x0 is given by the Euler forward
discretization

x(t+h) = x(t)+hf(t,x(t)), (3)

where h > 0 is the integration step size.

a) Integrate the system (2b) for the given initial condition (2e) from t= 0 to t= 1. Consider ∀t∈ [0,1] :
u(t) = 0, c= 1 and h= 0.02.

b) Assume that you discretized the dynamics (2b) via (3) and the inputs are parametrized as piecewise
constant. Furthermore, suppose that the constraints are evaluated the discretization points tk+1 =
tk +h and the objective is approximated as

∑N−1
k=0 h(x(tk)T x(tk) + 0.005u2(tk)). Of which type is

the resulting NLP?

c) Solve the OCP (2) via a direct simultaneous approach. Use a piecewise constant parametrization of
the input

For t ∈ [tk, tk+1] : u(t) = wk+1, tk+1 = tk +h, k = 0 :N −1

Plot the optimal input profile. Plot x1(t) versus t and x2(t),g(t,x) +x2(t) versus t. Hint: Define
the constraints and the objective as optivar variables.

d) In order to verify your solution integrate (2b) subject to your optimal solution u?(t) with a variable
stepsize integrator from MATLAB. Add the obtained trajectories to the plots from part c). Hint: Use
the solver ode45 and set the relative and absolute error tolerances to 10−12. Integrate over the
intervals [tk, tk+1], k = 0 :N −1 separately by keeping u constant.

e) Now, set the model parameter set c= 3. Repeat c) and d) for this value of c. What do you observe?
Try to explain your results. Can you suggest remedies?

f) Now, replace the Euler forward discretization by a second-order Runge-Kutta integration scheme.
Use Heun’s method1 which reads

x̃(t+h) = x(t)+hf(t,x(t)) (4)

x(t+h) = x(t)+ h

2
(
f(t,x(t))+ f(t+h, x̃(t+h))

)
. (5)

Repeat c) and d) for this value of c. What do you observe? Compare your results to ones obtained
in f).

Exercise 3: Direct Collocation

Next, we will try to solve a simple OCP via a simple collocation method. Consider

min
u(·)

∫ 1

0

1
2u

2(t)dt (6a)

1Heun’s method is also known as trapezoidal rule.
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subject to ∀t ∈ [0,1]:

ẋ(t) =−x(t)+u(t), x(0) = 1, x(1) = 0. (6b)

For simplicity, we consider a piecewise constant parametrization of the input

for t ∈ [tk, tk+1] : u(t) = wk+1, tk+1 = tk +h, k = 0 :N −1,

where h is the length of each collocation stage. On each stage the state trajectory is to be approximated
by Lagrange polynomials of degree 3:

x(t) =
3∑

i=0
ξk

i φ
(3)
i

(
t− tk

tk+1− tk

)
, t ∈ [tk, tk+1], k = 0, . . . ,N −1 (7)

with

φ
(3)
i =

3∏
q=0
q 6=i

τ − τq

τi− τq

and the following collocation points {τ0, τ1, . . . , τ3}= {0, 0.25, 0.5, 0.75}.

a) Reformulate the OCP in Mayer form. Discretize the reformulated problem via collocation. State the
corresponding expressions for states and constraints of the resulting NLP.

b) Write a MATLAB script to solve the integration of the reformulated dynamics via Yalmip. Consider the
given initial condition x0 = 1, t= 0 to t= 1, the number of stages N = 10 and ∀t ∈ [0,1] : u(t) =
0. Hint: Define the collocation parameters ξk

i as sdpvar variables. Use the files lagrange.m,
dlagrange.m to evaluate the Lagrange polynomials.

c) Extend your code in order to solve OCP (6).

d) Compare your results with the analytical solution which can be found in the class textbook [1, Example
4.23 (p. 133-134)]. Consider different numbers of collocation stages N ∈ {5,10,20}.
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