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Problem Set #1: Nonlinear Programming

Analytic Solutions to NLPs

Exercise 1

Consider the constraints

1‘120
.1‘220
$2—($1—1)220

in R2. Sketch the feasible region. Furthermore, show that the point z; = 1,29 = 0 is feasible but not regular.
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Figure 1: Sketch of the feasible region for Exercise 1.

The feasible region is sketched in Figure 1. The regularity of a point implies that the gradients of the
active contraints at this point are linearly independent. At x = (1,0)7 the constraint g;(x) = —z1 <0
is inactive. The constraints ga(x) = —x2 <0 and g3(x) = (21 — 1) — 25 < 0 are active. Caculating the
gradients of the active constraints yields

0o -1
Velx) = <2(x1 ~1) —1) '

We see that at x = (1,0)” we have rank(Vg(x)) = 1. Thus x = (1,0)7 is not a regular point.

Exercise 2

Find a solution to the problem

min Qx% +2x129 + x% —10x1 — 10x9
x€R2

st. ri+a3<5
3x1+x2 <6.
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Solution:
First, we caculate a stationary point of the unconstrained problem. This yields

4x1+2x9— 10
T __ 1 2 .
Vi) = (21‘2 + 2z — 10) =0.

Solving this equation we obtain a candidate point x = (0,5)”. This point however violates the first
constraint 27 + 23 < 5.

Now, we suppose that at the minimum both constraints are active. If this is the case, there exists a
vector v* € R? such that v >0, v >0

T
4x1+2x9—10 T [221 279 -
<2x2+2x1—10> Ty ) =00
423 —5=0
3r1+x2—6=0

This system of equations has two solutions

¥t +(19—/14) x% (194 /14)

w3 | _ | 52+ V14 zy| _ | 15(2-V14 1)
vt L16-7v14 |7 | vt L(164+7v14 |

Vs 3(—1+/14) s 3(—1—/14)

Observe that in both solutions one of the multipliers 17, is negative. This, however, violates the KKT
conditions. Thus, at the optimal solution both constraints cannot be active simultaneously.

Now, assume that at the optimum the first constraint is inactive while the second one is active. This
yields 7 =0, v3 > 0 and the following equations

T
Azy + 229 — 10 . B
<2x2 4y — 10) +5(3 1)=00

3r1+1x20—6=0.
This linear system of equations has the following solution
(a:;, a5, yg) - (0.4, 4.8, —0.4).

Again the multiplier v3 is negative. Thus we reject this solution.
Finally, we assume that at the optimum the first constraint is active while the second one is inactive.
This yields 7 > 0, v3 =0 and the following equations

41+ 229 —10
2x9+2x1—10

T
) +vf (201 225) = (0,0)
i+ a3 —5=0.
The solution to this set of equations is given by
(w’f, x5, 1/{) = (1, 2, 1).

We see that v > 0 and also the second constraint is satisfied. Thus we have found the KKT point. And
due to the convexity of the problem this is also the optimal solution.
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Exercise 3

Find a solution to the problem

min
x€R?
st. x9=0

x€ X :={x |z} <9}

Solution:
The only feasible point is x = (0,0)7. Thus it is also the optimal solution. Note, however, that x = (0,0)7
is not a regular point.

Exercise 4

Consider the following NLP:

. _3)2 _3)2
min - (21-3)"+ (22— 3)

s.t. 4a 49235 <36
."L‘%+31‘2:3
xeX :={x|x1>-1}.

a) Sketch the feasible region and the contours of the objective function, then identify the optimum
graphically.

b) Using this graphical information, determine the minimum precisely based on first-order necessary
conditions. Are the second order conditions of optimality satisfied at this point?

c) Repeat by replacing min by max.

Solution:

N pr— .
= Contours of f(x)

S h=0

Figure 2: Sketch of the feasible region for Exercise 4.

a) Since the contour lines of the objective function are circles centered at (3,3)7 the optimal solution
is cearly the point inside the feasible region which is closest to (3,3)”. The minimum also has to
satisfy the equality constraint. Thus the optimal solution is easily found graphically at point marked
by the small o.
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b) At the optimum only the equality constraint is active. Thus we use the method of Lagrange multi-

pliers.
L(x,\) = f(x)+ Ah(x).

The first-order necessary conditions yield
T 2(%1——3) 2%1 N
Vet = (2(902—3) s )=
VaL' =23 4325 -3=0.

Solving this numerically yields (z*, A\*) = (1.14336, 0.5642, 1.6238). It is easily verfied that the two
inequality constraints are inactive that this point.

VL= <2+2)\ 0>‘

The Hessian of the Lagrangian is

0 2

This Hessian is positive definite for all x € R? as long as A > —1. In particular, the Hessian of
the Lagrangian is positive definite in the tangent subspace, and therefore the second-order sufficient
conditions for a strict local minimum are satisfied.

Exercise 5*

Given a cardboard of area A to make a rectangular box. What is the maximum volume that can be
attained?

a) Reformulate the problem as an unconstrained one, then find the candidate minima. Hint: Eliminate
x3 and show that x1 = xo must hold at an optimal solution.

b) Solve the problem directly by using the method of Lagrange multipliers. Hint: Show that x1 = xo = x3
must hold at an optimal solution.

Solution:
The problem can be formulated as

min —2x1X9T3
x€R3
s.t. 2($1m2%—x2x34—m1x3)——/1::0
21 >0, w2 >0, 23>0.

Note that the equality constraintimplies that at the same time not more than one x; can be equal to
0. Thus we solve the equality constraint for x3 and obtain

14—-2x1$2
r3=—"—. 2
3 2($1%—$2) ( )
Now we can eliminate x3 from the problem and obtain
. A—2x129
min  —xriro———
x€R? ! 22(€E1 +12)

st. A—2x122>0
2120, x22>0.

Next, we evaluate the gradient of the objective function. We can use the Symbolic Toolbox of Matlab to
help us with the computations.

1 x1 = sym('x1l","'real'); x2 = sym('x2"',"'real'); A = sym('A','real');
2 x = [x1 x2]1°';

3 f = x172%x272/ (x1+x1) — 0.5*%A*x1xx2/ (x1+x2);

4 df = simplify(jacobian(f,x))
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Assuming that no constraints are active, the first-order necessary condition reads

A A
VfT:[z x%(m%—l—z) 2 x%(x%—FQ) =0
; Ty——— 2 T1— o
(x1 4 2) (x1+x2)
From where we obtain

A

(z1 +$2)2—($%+5):0 (3)
A

(1422~ (B34 5) =0 ®)

Computing the difference between both equations we obtain

which proves that x7 = z3. Thus, equation (3) can be rewritten as
A
42 — (x%+2> =0,

The negative solution has to be ruled out due to infeasibility.

from where we have that 27 =+ %.
Therefore we have that ] = 23 = %. Computing z3 from (2) gives x5 = \/%. Hence, we conclude that

the optimal solution is 2] =25 =235 = 1/%
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Numerical Solutions to NLPs

Exercise 6: Computation of Function Derivatives

Consider the Speelpenning’s function f:R"™ — R
n
fx)= le
i=1

The aim is to compute the gradient of f at a point x. Consider n =10 and x = w4 ones(n,1).

a) Write a Matlab-function to compute the gradient using forward, backward and central finite differ-
ences.

b) Write a Matlab-function to compute the gradient using the imaginary trick in Matlab.

c) Repeat the gradient computation via algorithmic differentiation using the CasADi package. The pack-
age can be obtained from https://github.com/casadi/casadi/wiki. The installations instruc-
tions are available on https://github.com/casadi/casadi/wiki/InstallationInstructions.

d) Finally, compare the results a) and b) in terms of accuracy with the ones from c).

Solution:
First, we code Speelpenning’s function and its analytical gradient:

o

1 % Speelpenning's function

2 function f = speel (x)

3 f =1;

4 for i=1:length (x)

5 f=1f % x(1);

6 end

7 end

8

9 % analytic gradient of Speelpening's function

function g.s = gradSpeel (x)
g-s = ones (l,length(x));
for 1 = 1l:length(x)
for j = l:length(x)
if i "= 3
g-s (i) = g-s(i)*x(J);
end
end
end
end

Second, we implement finite differences in forward, backward and central mode, the imaginary trick and
finally the algorithmic differentiation via CasADi:

1 % ex 6.a)

2 n = 10;

3 h = le—o6;

4 x = pi + ones(n,1);

5

6 % compute gradients

7 g-forward = grad(@speel, x, h, 'forward');
8 g-backward = grad(@speel, x, h, 'backward');
9 g.central = grad(@speel, x, h, 'central');
10

11 % ex. 6.b)

=
w N

Q
"
3
©

Q
|

= grad(@speel, x, h, 'imag');
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14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

g-cas = grad(@speel, x, h, 'cas');

% computing gradients by different methods
function g = grad(f, x, h, method)
n = length(x);
g = zeros(n,1l);
if strcmp (method, 'forward'")
for i=1:n

el = zeros(n,1);

el (i) = 1;

g(i) = (f(x+hxei) — f£(x))/h;
end

end
if strcmp (method, 'backward')
for i=1:n

ei = zeros(n,1l);

el (1) =1;

g(i) = (f(x) — f(x~hx*ei))/h;
end

end
if strcmp (method, 'central')
for i=1:n

el = zeros(n,1);

ei (i) = 1;

g (i) = (f(x+0.5%«h*ei) — f(x—0.5%h*ei)) /h;
end

end
if strcmp (method, 'imag')
for i=1:n

el = zeros(n,1);

ei (1) = 1;

g(i) = imag ((f (x+lixhxei) — f£(x)))/h;
end

end
if strcmp (method, 'cas')
import casadi.x

xSym = SX.sym('x', [n 11);
fCas = f(xSym);
fCasG = gradient (fCas, xSym) ;
fCasGfun = Function ('speelCasGfun',{xSym}, {fCasG});
g = full (fCasGfun (x));
end

end

The comparison results can be obtained as follows:

[}

% ex. 6.c)

g-anal = gradSpeel (x) ';

errors [max (abs (g_-forward—g_anal)),max (abs (g.backward—g_anal)), ...
max (abs (g.central—g_anal)),max (abs (g-imag—g_-anal)),

max (abs (g_cas—g-anal))l;

display ('Computational errors (max—norm) for')
display ('forward backward central imaginary CasADi'
display (num2str (errors))

)

The results are:

1
2
3

Computational errors (l—norm) for
forward backward central imaginary CasADi
0.00024277 0.00024277 0.00068855 1.1642e—10 0
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Exercise 7: fmincon Basics

We want to find (analytically and numerically) the maxima of

where

max  f(x)
st. h(x)=0
f(x) :e_m%_”’%, h(x) ::L‘2+x%— =0.

a) Check first if the problem is concave. Hint: Note that we can solve the equality constraint for xo
and plug it into f(x). Plot the resulting function in 3D using 1 as the free parameter.

b) Calculate the Lagrangian, state the first-order necessary conditions of optimality and find candidate
solutions.

c) How could you exclude minima from the appearing solutions?

d) Solve the problem using fmincon from Matlab’s Optimization Toolbox using as initial guesses [0, 0],
[—1,—1] and [1,1]. Try also [100,1000] as initial guess.

Solution:

a)

First, we plot the objective function:

© 0 N O s W N =

e = S Y
w N R O

x1l = [—3:.1:3];
x2 = x1;
F = zeros(length(xl), length(xl));
for i = l:length(xl)
for j = l:length(x2)
F(i,9) = exp(—x1(i)"2 —x2(3)"2);
end
end
figure
mesh (x1,x2,F)
xlabel ("x_1")
ylabel ("x.2")
zlabel ('F(x_1, x_2)")

Second, we plot the set of admissible solutions:

1
2
3
4
5
6
7
8
9

10
11
12

% set of addmissible solutions

x1l = —2:0.1:2;

x2 =1 — x1.72;

plot3(xl,x2,F(x1l), 'Color', 'r', 'Linewidth', 2);
xlabel ("x_1"'");ylabel ('x_.2");zlabel ('F(x)");
grid on

end

%% define cost function as function of x1
function value=F (x1)

x2 =1 — x1.72;

value = exp(—x1."2—x2.72);

end

It

is easy to see that the function is not concave.

b) State the first-order necessary conditions of optimality and find candidate solutions. Plugging the
equality constraint into the objective yields

F(x) = evi-sh — gai-(-aD?)
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Figure 3: Objective function.

The first-derivative with respect to x1 reads

of

D (—43::% + 2m1) et (1=ah)?,
1

The candidate optimal solutions have z; € {0,£5v/2}.

c) By evaluating the the second order conditions.

d)

1 function P1lEX7_d

2 clc;

3 xtest=[0,0;...

4 1,1;...

5 —-1,—-1;

6 100, 100071;

7

8 %loop over initial guesses

9 for i=l:length(xtest)

10 xopt=fmincon (@cost, ... %cost function

11 xtest (i,:),... %$initial guess

12 [1, $A from Au<=B

13 [1,. %B

14 [1,. %$Ae from Ae u=Be

15 [1,... %$Be

16 [1,. $lower bound for u (u.i>=LB)
17 (1, ... $upper bound for u (u_.i<=UB)
18 @constr) $function defining the nonlinear constraints

end

%% define objective

function objective=cost (x)
objective=—exp(—x (1) "2—x(2) "2);
end

N NN N R
w N = O ©

%% define constraints

function [inegconstr,eqgconstr]=constr (x)
egconstr=x(2)+x (1) "2—-1;

inegconstr=[1];

end

NONNNN
0 N o 0 »

fmincon gives the following solutions: (0,1.0),(—0.707,0.5),(0.707,0.5),(14.9,—221.0). From the above
considerations and the solver output message we can infer that the first and the last candidates are numerical

artefacts. Only the second and the third solution correspond to true local maxima.
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Exercise 8*: Interpretation of Lagrange Multipliers

Consider the following minimization problem

min x% +x129 + 250% —6x1 — 220 — 1223
x€R3

st. gi(x) =222 +22<15
gg(x) =T —2$2 — I3 Z -3
z1,22,23 > 0.

a) Find an optimal solution to this problem using fmincon from Matlab’s Optimization Toolbox. Hints:

Set the solution tolerance, the function tolerance and the constraint tolerance in fmincon to
1077,

Use the inital guess Xgyess = (1, 1, n7T;

Make sure that the constraint go : R3 — R is treated as a linear constraint.

First solve the problem by finite-difference gradient approximation for objective and constraints.
Second, resolve the problem by providing explicit expressions for the gradients of objective and
constraints (ask fmincon to check the gradients before running the optimization);

Make sure that the solver terminated succesfully in each case.

b) Repeat the optimization with a different initial guess, for instance Xguess = (14, 0, 0)T. Does
fmincon converge to the same solution? Could this be expected?

c) Get the values of the Lagrange multipliers at x*, as well as the gradients of objective function and
constraints. Check whether the optimal solution is a regular point and that it satisfies the KKT
conditions.

d) Consider the pertubed problem

min :c% +x129 + 235% —6x1 —2x9 — 1223
xcR3

st. gi(x) =2zt +23 <4
92(X) =1 —2w9 — 3 > —3

x1,22,23 >0

where 6 is the pertubation parameter in g; : R> — R. Solve the pertubed problem for N equally
spaced values of 6 € [0,30]. Use a resolution of 0.5 for . Lets denote the optimal solution for some
value of 6 as £€*() and the Lagrange multiplier associated with g; : R? — R as w*(6).

d1)

d2)

Plot the objective f(£*(0)) versus 6 and estimate the slope at # = 15. What does the corre-

sponding value w represent?

Plot w* (@) versus #. Comment this plot and, in particular, explain the behavior at # = 0. What
is the slope of f(£*(0)) at 6 =07

a) Find an optimal solution to this problem using fmincon from Matlab’s Optimization Toolbox. Hints:

Make sure that the SQP algorithm with Quasi-Newton update and line-search is the selected
solver in fmincon;

Set the solution tolerance, the function tolerance and the constraint tolerance in fmincon to
1077;
Use the inital guess Xguess = (1, 1, 1)7;

Make sure that the constraint go : R3? — R is treated as a linear constraint.
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1 function P1lEX8_a

2 clc

3 options = optimoptions ('fmincon');
4 options.TolFun = 1E-7;

5 options.TolCon = 1E—-7;

6 options.TolX = 1E-7;

7 options.Algorithm = 'sqgp'
8 options.GradConstr = 'off'
9 options.GradObj = 'off';
10

11 x_guess = [1 1 1];

-
N

%$linear constraints

-
w

14 A_ineq = —[1, —2, —11;

15 b_ineq = 3;

16 A_eq = [];

17 b_eq = [];

18 1b = [0, 0, 0]"';

19 ub = [];

20

21 [xopt, fval,exitflag, output, lambda, grad, hessian] =fmincon (@objective, ...
22 X_guess, ...
23 A_ineq, ...
24 b_ineq, ...
25 A_eq, ...

26 b_eqg, ...

27 1b, ...

28 ub, ...

N
©

@constr, options);

— First solve the problem by finite-difference gradient approximation for objective and constraints.
Second, resolve the problem by providing explicit expressions for the gradients of objective and
constraints (ask fmincon to check the gradients before running the optimization);

1 %% supplying gradient information ot the solver

2 options.GradConstr = 'on';

3 options.GradObj = 'on';

4 options.DerivativeCheck = 'on';

5

6 [xopt,fval,exitflag,output, lambda,grad,hessian] =fmincon (@objective, ...
7 x_guess, ...
8 A_ineq, ...
9 b_ineq, ...
10 A_eq, ...

11 b_eqg, ...

12 1b, ...

13 ub, ...

@constr, options);

-
i

— Make sure that the solver terminated succesfully in each case.

b) Repeat the optimization with a different initial guess, for instance Xgyess = (14, 0, 0)T. Does
fmincon converge to the same solution? Could this be expected?
The problem is strictly convex. Thus this behavior can be expected.

c) Get the values of the Lagrange multipliers at x*, as well as the gradients of objective function and

constraints. Check whether the optimal solution is a regular point and that it satisfies the KKT
conditions.

The values of the Lagrange multipliers are

A1 =12, Ay =24.7386, A3 =1.1432
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for the linear inequality constraint, the lower bound on x5 and, respectively, the nonlinear inequality
constraint.

%% checking regularity
[gopt,hopt, grad._gopt, grad_-hopt]=constr (xopt);
[fopt, grad_-fopt] = objective (xopt);

rankJac = rank (Jacobian);
display (['The rank of the Jacobian of the active constraints is: ',
num2str (rankJac) ]);

1

2

3

4

5 Jacobian = [grad.gopt, A_ineq', [0;—1;01];
6

7

8

d) Consider the pertubed problem
min a:% +x120 + 23:% —6x1 — 229 — 1223
x€R3
st gi(x) =227 +23<0
g2(x) =21 —2w9 — 3 > —3

L1,L2,23 > 0

where 6 is the pertubation parameter in g; : R> — R. Solve the pertubed problem for N equally
spaced values of 6 € [0,30]. Use a resolution of 0.5 for 6. Lets denote the optimal solution for some
value of 6 as £€*() and the Lagrange multiplier associated with g; : R? — R as w*(6).

dl) Plot the objective f(£*()) versus 6 and estimate the slope at # = 15. What does the corre-

sponding value w represent?

d2) Plot w*(@) versus §. Comment this plot and, in particular, explain the behavior at # = 0. What
is the slope of f(£*(0)) at 6 =07

The plots are shown in Figure 4. The slope of f(£*(0)) can be approximated via finite differences

0f(£*(0)) . f(&(15+60)) — f(£*(15 - 66))

o=15 200

=—1.1434
00 s

The slope of f(£*(0)) at @ = 15 is the sensitvity of the optimal value with respect to a change in 6. It
corresponds to the negative of the corresponding Lagrange muliplier

0f(£(9))

= —)\3 = —1.1432.
00 3

0=15

At 0 = 0 the constraint g1 requires that t1 = xo = 0. Thus, the constraint g1 and the lower bounds on

x1 and xo are active. In addition, the constraint go and the positivity constraint enforce that xs € [0,3].
Since the objective is inversly proportional to xs3 the optimal solution is (0,0,3). Hence, four constraints
are active in this case and thus the constraints are linearly dependent. In other words, (0,0,3) is not a
regular point and the KKT-conditions do not hold for @ = (0. The non-existence of a Lagrange multiplier at
this point can also be observed in Figure 4 since limg_,  gw(0) = +00. Observe that the slope of f(£*(6))
also goes to infinity for § — +0.

Lecture  Optimal Control (EE-715) 12



-20

opt

theta

80

60

theta

omega

Figure 4: Minimum of the objective function for different values of # and the corresponding Lagrange

multiplier for the active inequality constraint.
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