TF

Dr. Timm Faulwasser

www.iai.kit.edu/control

Problem Set #1: Nonlinear Programming

Analytic Solutions to NLPs

Exercise 1

Consider the constraints

$$x_1 \ge 0$$

$$x_2 \ge 0$$

$$x_2 - (x_1 - 1)^2 \ge 0$$

in \mathbb{R}^2 . Sketch the feasible region. Furthermore, show that the point $x_1=1, x_2=0$ is feasible but not regular.

Exercise 2

Find a solution to the problem

$$\min_{\mathbf{x} \in \mathbb{R}^2} \quad 2x_1^2 + 2x_1x_2 + x_2^2 - 10x_1 - 10x_2$$

$$s.t. \quad x_1^2 + x_2^2 \le 5$$

$$3x_1 + x_2 \le 6.$$

Exercise 3

Find a solution to the problem

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^2} & x_1 \\ & s.t. & x_2 = 0 \\ & \mathbf{x} \in \mathcal{X} := \{ \mathbf{x} \mid x_1^2 \le x_2 \}. \end{aligned}$$

Exercise 4

Consider the following NLP:

$$\min_{\mathbf{x} \in \mathbb{R}^2} \quad (x_1 - 3)^2 + (x_2 - 3)^2$$
s.t.
$$4x_1^2 + 9x_2^2 \le 36$$

$$x_1^2 + 3x_2 = 3$$

$$\mathbf{x} \in \mathcal{X} := \{\mathbf{x} \mid x_1 \ge -1\}.$$

- a) Sketch the feasible region and the contours of the objective function, then identify the optimum graphically.
- b) Using this graphical information, determine the minimum precisely based on first-order necessary conditions. Are the second order conditions of optimality satisfied at this point?
- c) Repeat by replacing \min by \max .

Exercise 5*

Given a cardboard of area A to make a rectangular box. What is the maximum volume that can be attained?

- a) Reformulate the problem as an unconstrained one, then find the candidate minima. Hint: Eliminate x_3 and show that $x_1 = x_2$ must hold at an optimal solution.
- b) Solve the problem directly by using the method of Lagrange multipliers. Hint: Show that $x_1 = x_2 = x_3$ must hold at an optimal solution.

Numerical Solutions to NLPs

Exercise 6: Computation of Function Derivatives

Consider the *Speelpenning's* function $f: \mathbb{R}^n \to \mathbb{R}$

$$f(\mathbf{x}) = \prod_{i=1}^{n} x_i.$$

The aim is to compute the gradient of f at a point \mathbf{x} . Consider n=10 and $x=\pi+ones(n,1)$.

- a) Write a Matlab-function to compute the gradient using forward, backward and central finite differences.
- b) Write a Matlab-function to compute the gradient using the imaginary trick in Matlab.
- c) Repeat the gradient computation via algorithmic differentiation using the CasADi package. The package can be obtained from https://github.com/casadi/casadi/wiki. The installations instructions are available on https://github.com/casadi/casadi/wiki/InstallationInstructions.
- d) Finally, compare the results a) and b) in terms of accuracy with the ones from c).

Exercise 7: fmincon Basics

We want to find (analytically and numerically) the maxima of

$$\label{eq:force_eq} \begin{aligned} \max_{\mathbf{x} \in \mathbb{R}^2} \quad & f(\mathbf{x}) \\ s.t. \quad & h(\mathbf{x}) = 0 \end{aligned}$$

where

$$f(\mathbf{x}) = e^{-x_1^2 - x_2^2}, \quad h(\mathbf{x}) = x_2 + x_1^2 - 1 = 0.$$

- a) Check first if the problem is concave. Hint: Note that we can solve the equality constraint for x_2 and plug it into $f(\mathbf{x})$. Plot the resulting function in 3D using x_1 as the free parameter.
- b) Calculate the Lagrangian, state the first-order necessary conditions of optimality and find candidate solutions.
- c) How could you exclude minima from the appearing solutions?
- d) Solve the problem using fmincon from Matlab's Optimization Toolbox using as initial guesses [0,0], [-1,-1] and [1,1]. Try also [100,1000] as initial guess.

Exercise 8*: Interpretation of Lagrange Multipliers

Consider the following minimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^3} \quad x_1^2 + x_1 x_2 + 2x_2^2 - 6x_1 - 2x_2 - 12x_3$$
s.t.
$$g_1(\mathbf{x}) = 2x_1^2 + x_2^2 \le 15$$

$$g_2(\mathbf{x}) = x_1 - 2x_2 - x_3 \ge -3$$

$$x_1, x_2, x_3 \ge 0.$$

- a) Find an optimal solution to this problem using fmincon from Matlab's Optimization Toolbox. Hints:
 - Set the solution tolerance, the function tolerance and the constraint tolerance in fmincon to 10^{-7} :
 - Use the inital guess $\mathbf{x}_{guess} = (1,\ 1,\ 1)^T$;
 - Make sure that the constraint $g_2:\mathbb{R}^3 \to \mathbb{R}$ is treated as a linear constraint.
 - First solve the problem by finite-difference gradient approximation for objective and constraints.
 Second, resolve the problem by providing explicit expressions for the gradients of objective and constraints (ask fmincon to check the gradients before running the optimization);
 - Make sure that the solver terminated succesfully in each case.
- b) Repeat the optimization with a different initial guess, for instance $\mathbf{x}_{guess} = (14, 0, 0)^T$. Does fmincon converge to the same solution? Could this be expected?
- c) Get the values of the Lagrange multipliers at x^* , as well as the gradients of objective function and constraints. Check whether the optimal solution is a regular point and that it satisfies the KKT conditions.
- d) Consider the pertubed problem

$$\min_{\mathbf{x} \in \mathbb{R}^3} \quad x_1^2 + x_1 x_2 + 2x_2^2 - 6x_1 - 2x_2 - 12x_3$$

$$s.t. \quad g_1(\mathbf{x}) = 2x_1^2 + x_2^2 \le \theta$$

$$g_2(\mathbf{x}) = x_1 - 2x_2 - x_3 \ge -3$$

$$x_1, x_2, x_3 \ge 0$$

where θ is the pertubation parameter in $g_1: \mathbb{R}^3 \to \mathbb{R}$. Solve the pertubed problem for N equally spaced values of $\theta \in [0,30]$. Use a resolution of 0.5 for θ . Lets denote the optimal solution for some value of θ as $\xi^*(\theta)$ and the Lagrange multiplier associated with $g_1: \mathbb{R}^3 \to \mathbb{R}$ as $\omega^*(\theta)$.

- d1) Plot the objective $f(\xi^{\star}(\theta))$ versus θ and estimate the slope at $\theta=15$. What does the corresponding value $\frac{\partial f(\xi^{\star}(\theta))}{\partial \theta}$ represent?
- d2) Plot $\omega^*(\theta)$ versus θ . Comment this plot and, in particular, explain the behavior at $\theta = 0$. What is the slope of $f(\xi^*(\theta))$ at $\theta = 0$?