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Problem Set #1: Nonlinear Programming

Analytic Solutions to NLPs

Exercise 1

Consider the constraints

x1 ≥ 0
x2 ≥ 0

x2− (x1−1)2 ≥ 0

in R2. Sketch the feasible region. Furthermore, show that the point x1 = 1,x2 = 0 is feasible but not regular.

Solution:

Figure 1: Sketch of the feasible region for Exercise 1.

The feasible region is sketched in Figure 1. The regularity of a point implies that the gradients of the
active contraints at this point are linearly independent. At x = (1,0)T the constraint g1(x) = −x1 ≤ 0
is inactive. The constraints g2(x) = −x2 ≤ 0 and g3(x) = (x1− 1)2−x2 ≤ 0 are active. Caculating the
gradients of the active constraints yields

∇g(x) =
(

0 −1
2(x1−1) −1

)
.

We see that at x = (1,0)T we have rank(∇g(x)) = 1. Thus x = (1,0)T is not a regular point.

Exercise 2

Find a solution to the problem

min
x∈R2

2x2
1 +2x1x2 +x2

2−10x1−10x2

s.t. x2
1 +x2

2 ≤ 5
3x1 +x2 ≤ 6.
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Solution:
First, we caculate a stationary point of the unconstrained problem. This yields

∇f(x)T =
(

4x1 +2x2−10
2x2 +2x1−10

)
= 0.

Solving this equation we obtain a candidate point x = (0,5)T . This point however violates the first
constraint x2

1 +x2
2 ≤ 5.

Now, we suppose that at the minimum both constraints are active. If this is the case, there exists a
vector ν? ∈ R2 such that ν?1 ≥ 0, ν?2 ≥ 0(

4x1 +2x2−10
2x2 +2x1−10

)T
+(ν?)T

(
2x1 2x2
3 1

)
= (0,0)

x2
1 +x2

2−5 = 0
3x1 +x2−6 = 0

This system of equations has two solutions
x?1
x?2
ν?1
ν?2

=


1
10(19−

√
14)

3
10(2+

√
14

1
10(16−7

√
14

1
2(−1+

√
14)

 ,

x?1
x?2
ν?1
ν?2

=


1
10(19+

√
14)

3
10(2−

√
14

1
10(16+7

√
14

1
2(−1−

√
14)

 . (1)

Observe that in both solutions one of the multipliers ν?1,2 is negative. This, however, violates the KKT
conditions. Thus, at the optimal solution both constraints cannot be active simultaneously.

Now, assume that at the optimum the first constraint is inactive while the second one is active. This
yields ν?1 = 0, ν?2 ≥ 0 and the following equations(

4x1 +2x2−10
2x2 +2x1−10

)T
+ν?2

(
3 1

)
= (0,0)

3x1 +x2−6 = 0.

This linear system of equations has the following solution(
x?1, x

?
2, ν

?
2

)
=
(
0.4, 4.8, −0.4

)
.

Again the multiplier ν?2 is negative. Thus we reject this solution.
Finally, we assume that at the optimum the first constraint is active while the second one is inactive.

This yields ν?1 ≥ 0, ν?2 = 0 and the following equations(
4x1 +2x2−10
2x2 +2x1−10

)T
+ν?1

(
2x1 2x2

)
= (0,0)

x2
1 +x2

2−5 = 0.

The solution to this set of equations is given by(
x?1, x

?
2, ν

?
1

)
=
(
1, 2, 1

)
.

We see that ν?1 > 0 and also the second constraint is satisfied. Thus we have found the KKT point. And
due to the convexity of the problem this is also the optimal solution.
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Exercise 3

Find a solution to the problem

min
x∈R2

x1

s.t. x2 = 0
x ∈ X := {x | x2

1 ≤ x2}.

Solution:
The only feasible point is x = (0,0)T . Thus it is also the optimal solution. Note, however, that x = (0,0)T
is not a regular point.

Exercise 4

Consider the following NLP:

min
x∈R2

(x1−3)2 +(x2−3)2

s.t. 4x2
1 +9x2

2 ≤ 36
x2

1 +3x2 = 3
x ∈ X := {x | x1 ≥−1}.

a) Sketch the feasible region and the contours of the objective function, then identify the optimum
graphically.

b) Using this graphical information, determine the minimum precisely based on first-order necessary
conditions. Are the second order conditions of optimality satisfied at this point?

c) Repeat by replacing min by max.

Solution:

x
1

x 2
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Figure 2: Sketch of the feasible region for Exercise 4.

a) Since the contour lines of the objective function are circles centered at (3,3)T the optimal solution
is cearly the point inside the feasible region which is closest to (3,3)T . The minimum also has to
satisfy the equality constraint. Thus the optimal solution is easily found graphically at point marked
by the small o.
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b) At the optimum only the equality constraint is active. Thus we use the method of Lagrange multi-
pliers.

L(x,λ) = f(x)+λh(x).
The first-order necessary conditions yield

∇xLT =
(

2(x1−3)
2(x2−3)

)
+λ

(
2x1
3

)
= 0

∇λLT = x2
1 +3x2−3 = 0.

Solving this numerically yields (x?,λ?) = (1.14336, 0.5642, 1.6238). It is easily verfied that the two
inequality constraints are inactive that this point.
The Hessian of the Lagrangian is

∇xxL=
(

2+2λ 0
0 2

)
.

This Hessian is positive definite for all x ∈ R2 as long as λ > −1. In particular, the Hessian of
the Lagrangian is positive definite in the tangent subspace, and therefore the second-order sufficient
conditions for a strict local minimum are satisfied.

Exercise 5?

Given a cardboard of area A to make a rectangular box. What is the maximum volume that can be
attained?

a) Reformulate the problem as an unconstrained one, then find the candidate minima. Hint: Eliminate
x3 and show that x1 = x2 must hold at an optimal solution.

b) Solve the problem directly by using the method of Lagrange multipliers. Hint: Show that x1 = x2 = x3
must hold at an optimal solution.

Solution:
The problem can be formulated as

min
x∈R3

−x1x2x3

s.t. 2(x1x2 +x2x3 +x1x3)−A= 0
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Note that the equality constraintimplies that at the same time not more than one xi can be equal to
0. Thus we solve the equality constraint for x3 and obtain

x3 = A−2x1x2
2(x1 +x2) . (2)

Now we can eliminate x3 from the problem and obtain

min
x∈R2

−x1x2
A−2x1x2
2(x1 +x2)

s.t. A−2x1x2≥ 0
x1 ≥ 0, x2 ≥ 0.

Next, we evaluate the gradient of the objective function. We can use the Symbolic Toolbox of Matlab to
help us with the computations.

1 x1 = sym('x1','real'); x2 = sym('x2','real'); A = sym('A','real');
2 x = [x1 x2]';
3 f = x1ˆ2*x2ˆ2/(x1+x1) − 0.5*A*x1*x2/(x1+x2);
4 df = simplify(jacobian(f,x))
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Assuming that no constraints are active, the first-order necessary condition reads

∇xfT =


x2

2−
x2

2

(
x2

2 + A

2

)
(x1 +x2)2 , x2

1−
x2

1

(
x2

1 + A

2

)
(x1 +x2)2

= 0

From where we obtain

(x1 +x2)2− (x2
2 + A

2 ) = 0 (3)

(x1 +x2)2− (x2
1 + A

2 ) = 0 (4)

Computing the difference between both equations we obtain

x2
2 + A

2 −x
2
1−

A

2 = 0,

which proves that x?1 = x?2. Thus, equation (3) can be rewritten as

4x2
1−

(
x2

1 + A

2

)
= 0,

from where we have that x?1 = ±
√

A
6 . The negative solution has to be ruled out due to infeasibility.

Therefore we have that x?1 = x?2 =
√

A
6 . Computing x?3 from (2) gives x?3 =

√
A
6 . Hence, we conclude that

the optimal solution is x?1 = x?2 = x?3 =
√

A
6 .
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Numerical Solutions to NLPs

Exercise 6: Computation of Function Derivatives

Consider the Speelpenning’s function f : Rn→ R

f(x) =
n∏
i=1

xi.

The aim is to compute the gradient of f at a point x. Consider n= 10 and x= π+ones(n,1).

a) Write a Matlab-function to compute the gradient using forward, backward and central finite differ-
ences.

b) Write a Matlab-function to compute the gradient using the imaginary trick in Matlab.

c) Repeat the gradient computation via algorithmic differentiation using the CasADi package. The pack-
age can be obtained from https://github.com/casadi/casadi/wiki. The installations instruc-
tions are available on https://github.com/casadi/casadi/wiki/InstallationInstructions.

d) Finally, compare the results a) and b) in terms of accuracy with the ones from c).

Solution:
First, we code Speelpenning’s function and its analytical gradient:

1 % Speelpenning's function
2 function f = speel(x)
3 f = 1;
4 for i=1:length(x)
5 f = f * x(i);
6 end
7 end
8

9 % analytic gradient of Speelpening's function
10 function g s = gradSpeel(x)
11 g s = ones(1,length(x));
12 for i = 1:length(x)
13 for j = 1:length(x)
14 if i ˜= j
15 g s(i) = g s(i)*x(j);
16 end
17 end
18 end
19 end

Second, we implement finite differences in forward, backward and central mode, the imaginary trick and
finally the algorithmic differentiation via CasADi:

1 % ex 6.a)
2 n = 10;
3 h = 1e−6;
4 x = pi + ones(n,1);
5

6 % compute gradients
7 g forward = grad(@speel, x, h, 'forward');
8 g backward = grad(@speel, x, h, 'backward');
9 g central = grad(@speel, x, h, 'central');

10

11 % ex. 6.b)
12 g imag = grad(@speel, x, h, 'imag');
13
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14 % ex. 6.c)
15 g cas = grad(@speel, x, h, 'cas');
16

17

18 % computing gradients by different methods
19 function g = grad(f, x, h, method)
20 n = length(x);
21 g = zeros(n,1);
22 if strcmp(method,'forward')
23 for i=1:n
24 ei = zeros(n,1);
25 ei(i) = 1;
26 g(i) = (f(x+h*ei) − f(x))/h;
27 end
28 end
29 if strcmp(method,'backward')
30 for i=1:n
31 ei = zeros(n,1);
32 ei(i) = 1;
33 g(i) = (f(x) − f(x−h*ei))/h;
34 end
35 end
36 if strcmp(method,'central')
37 for i=1:n
38 ei = zeros(n,1);
39 ei(i) = 1;
40 g(i) = (f(x+0.5*h*ei) − f(x−0.5*h*ei))/h;
41 end
42 end
43 if strcmp(method,'imag')
44 for i=1:n
45 ei = zeros(n,1);
46 ei(i) = 1;
47 g(i) = imag((f(x+1i*h*ei) − f(x)))/h;
48 end
49 end
50 if strcmp(method,'cas')
51 import casadi.*
52 xSym = SX.sym('x',[n 1]);
53 fCas = f(xSym);
54 fCasG = gradient(fCas,xSym);
55 fCasGfun = Function('speelCasGfun',{xSym},{fCasG});
56

57 g = full(fCasGfun(x));
58 end
59 end

The comparison results can be obtained as follows:

1 % ex. 6.c)
2 g anal = gradSpeel(x)';
3 errors = [max(abs(g forward−g anal)),max(abs(g backward−g anal)),...
4 max(abs(g central−g anal)),max(abs(g imag−g anal)), ...
5 max(abs(g cas−g anal))];
6

7 display('Computational errors (max−norm) for')
8 display('forward backward central imaginary CasADi' )
9 display(num2str(errors))

The results are:

1 Computational errors (1−norm) for
2 forward backward central imaginary CasADi
3 0.00024277 0.00024277 0.00068855 1.1642e−10 0
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Exercise 7: fmincon Basics

We want to find (analytically and numerically) the maxima of

max
x∈R2

f(x)

s.t. h(x) = 0

where
f(x) = e−x

2
1−x

2
2 , h(x) = x2 +x2

1−1 = 0.

a) Check first if the problem is concave. Hint: Note that we can solve the equality constraint for x2
and plug it into f(x). Plot the resulting function in 3D using x1 as the free parameter.

b) Calculate the Lagrangian, state the first-order necessary conditions of optimality and find candidate
solutions.

c) How could you exclude minima from the appearing solutions?

d) Solve the problem using fmincon from Matlab’s Optimization Toolbox using as initial guesses [0,0],
[−1,−1] and [1,1]. Try also [100,1000] as initial guess.

Solution:
a) First, we plot the objective function:

1 x1 = [−3:.1:3];
2 x2 = x1;
3 F = zeros(length(x1), length(x1));
4 for i = 1:length(x1)
5 for j = 1:length(x2)
6 F(i,j) = exp(−x1(i)ˆ2 −x2(j)ˆ2);
7 end
8 end
9 figure

10 mesh(x1,x2,F)
11 xlabel('x 1')
12 ylabel('x 2')
13 zlabel('F(x 1, x 2)')

Second, we plot the set of admissible solutions:

1 % set of addmissible solutions
2 x1 = −2:0.1:2;
3 x2 = 1 − x1.ˆ2;
4 plot3(x1,x2,F(x1), 'Color', 'r', 'Linewidth', 2);
5 xlabel('x 1');ylabel('x 2');zlabel('F(x)');
6 grid on
7 end
8 %% define cost function as function of x1
9 function value=F(x1)

10 x2 = 1 − x1.ˆ2;
11 value = exp(−x1.ˆ2−x2.ˆ2);
12 end

It is easy to see that the function is not concave.
b) State the first-order necessary conditions of optimality and find candidate solutions. Plugging the
equality constraint into the objective yields

f(x) = e−x
2
1−x

2
2 = e−x

2
1−(1−x2

1)2
.
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Figure 3: Objective function.

The first-derivative with respect to x1 reads

∂f

∂x1
=
(
−4x3

1 +2x1
)
e−x

2
1−(1−x2

1)2
.

The candidate optimal solutions have x1 ∈ {0,±1
2
√

2}.

c) By evaluating the the second order conditions.

d)

1 function P1EX7 d
2 clc;
3 xtest=[0,0;...
4 1,1;...
5 −1,−1; ...
6 100, 1000];
7

8 %loop over initial guesses
9 for i=1:length(xtest)

10 xopt=fmincon(@cost,... %cost function
11 xtest(i,:),... %initial guess
12 [],... %A from Au<=B
13 [],... %B
14 [],... %Ae from Ae u=Be
15 [],... %Be
16 [],... %lower bound for u (u i>=LB)
17 [],... %upper bound for u (u i<=UB)
18 @constr) %function defining the nonlinear constraints
19 end
20 %% define objective
21 function objective=cost(x)
22 objective=−exp(−x(1)ˆ2−x(2)ˆ2);
23 end
24 %% define constraints
25 function [ineqconstr,eqconstr]=constr(x)
26 eqconstr=x(2)+x(1)ˆ2−1;
27 ineqconstr=[];
28 end

fmincon gives the following solutions: (0,1.0),(−0.707,0.5),(0.707,0.5),(14.9,−221.0). From the above
considerations and the solver output message we can infer that the first and the last candidates are numerical
artefacts. Only the second and the third solution correspond to true local maxima.
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Exercise 8?: Interpretation of Lagrange Multipliers

Consider the following minimization problem

min
x∈R3

x2
1 +x1x2 +2x2

2−6x1−2x2−12x3

s.t. g1(x) = 2x2
1 +x2

2 ≤ 15
g2(x) = x1−2x2−x3 ≥−3
x1,x2,x3 ≥ 0.

a) Find an optimal solution to this problem using fmincon from Matlab’s Optimization Toolbox. Hints:

– Set the solution tolerance, the function tolerance and the constraint tolerance in fmincon to
10−7;

– Use the inital guess xguess = (1, 1, 1)T ;
– Make sure that the constraint g2 : R3→ R is treated as a linear constraint.
– First solve the problem by finite-difference gradient approximation for objective and constraints.

Second, resolve the problem by providing explicit expressions for the gradients of objective and
constraints (ask fmincon to check the gradients before running the optimization);

– Make sure that the solver terminated succesfully in each case.

b) Repeat the optimization with a different initial guess, for instance xguess = (14, 0, 0)T . Does
fmincon converge to the same solution? Could this be expected?

c) Get the values of the Lagrange multipliers at x?, as well as the gradients of objective function and
constraints. Check whether the optimal solution is a regular point and that it satisfies the KKT
conditions.

d) Consider the pertubed problem

min
x∈R3

x2
1 +x1x2 +2x2

2−6x1−2x2−12x3

s.t. g1(x) = 2x2
1 +x2

2 ≤ θ
g2(x) = x1−2x2−x3 ≥−3
x1,x2,x3 ≥ 0

where θ is the pertubation parameter in g1 : R3 → R. Solve the pertubed problem for N equally
spaced values of θ ∈ [0,30]. Use a resolution of 0.5 for θ. Lets denote the optimal solution for some
value of θ as ξ?(θ) and the Lagrange multiplier associated with g1 : R3→ R as ω?(θ).

d1) Plot the objective f(ξ?(θ)) versus θ and estimate the slope at θ = 15. What does the corre-
sponding value ∂f(ξ?(θ))

∂θ represent?
d2) Plot ω?(θ) versus θ. Comment this plot and, in particular, explain the behavior at θ = 0. What

is the slope of f(ξ?(θ)) at θ = 0?

a) Find an optimal solution to this problem using fmincon from Matlab’s Optimization Toolbox. Hints:

– Make sure that the SQP algorithm with Quasi-Newton update and line-search is the selected
solver in fmincon;

– Set the solution tolerance, the function tolerance and the constraint tolerance in fmincon to
10−7;

– Use the inital guess xguess = (1, 1, 1)T ;
– Make sure that the constraint g2 : R3→ R is treated as a linear constraint.
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1 function P1EX8 a
2 clc
3 options = optimoptions('fmincon');
4 options.TolFun = 1E−7;
5 options.TolCon = 1E−7;
6 options.TolX = 1E−7;
7 options.Algorithm = 'sqp'
8 options.GradConstr = 'off'
9 options.GradObj = 'off';

10

11 x guess = [1 1 1];
12

13 %linear constraints
14 A ineq = −[1, −2, −1];
15 b ineq = 3;
16 A eq = [];
17 b eq = [];
18 lb = [0, 0, 0]';
19 ub = [];
20

21 [xopt,fval,exitflag,output,lambda,grad,hessian] =fmincon(@objective,...
22 x guess,...
23 A ineq,...
24 b ineq,...
25 A eq,...
26 b eq,...
27 lb,...
28 ub,...
29 @constr, options);

– First solve the problem by finite-difference gradient approximation for objective and constraints.
Second, resolve the problem by providing explicit expressions for the gradients of objective and
constraints (ask fmincon to check the gradients before running the optimization);

1 %% supplying gradient information ot the solver
2 options.GradConstr = 'on';
3 options.GradObj = 'on';
4 options.DerivativeCheck = 'on';
5

6 [xopt,fval,exitflag,output,lambda,grad,hessian] =fmincon(@objective,...
7 x guess,...
8 A ineq,...
9 b ineq,...

10 A eq,...
11 b eq,...
12 lb,...
13 ub,...
14 @constr, options);

– Make sure that the solver terminated succesfully in each case.

b) Repeat the optimization with a different initial guess, for instance xguess = (14, 0, 0)T . Does
fmincon converge to the same solution? Could this be expected?
The problem is strictly convex. Thus this behavior can be expected.

c) Get the values of the Lagrange multipliers at x?, as well as the gradients of objective function and
constraints. Check whether the optimal solution is a regular point and that it satisfies the KKT
conditions.
The values of the Lagrange multipliers are

λ1 = 12, λ2 = 24.7386, λ3 = 1.1432
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for the linear inequality constraint, the lower bound on x2 and, respectively, the nonlinear inequality
constraint.

1 %% checking regularity
2 [gopt,hopt, grad gopt, grad hopt]=constr(xopt);
3 [fopt, grad fopt] = objective(xopt);
4

5 Jacobian = [grad gopt, A ineq', [0;−1;0]];
6 rankJac = rank(Jacobian);
7 display(['The rank of the Jacobian of the active constraints is: ', ...
8 num2str(rankJac)]);

d) Consider the pertubed problem

min
x∈R3

x2
1 +x1x2 +2x2

2−6x1−2x2−12x3

s.t. g1(x) = 2x2
1 +x2

2 ≤ θ
g2(x) = x1−2x2−x3 ≥−3
x1,x2,x3 ≥ 0

where θ is the pertubation parameter in g1 : R3 → R. Solve the pertubed problem for N equally
spaced values of θ ∈ [0,30]. Use a resolution of 0.5 for θ. Lets denote the optimal solution for some
value of θ as ξ?(θ) and the Lagrange multiplier associated with g1 : R3→ R as ω?(θ).

d1) Plot the objective f(ξ?(θ)) versus θ and estimate the slope at θ = 15. What does the corre-
sponding value ∂f(ξ?(θ))

∂θ represent?
d2) Plot ω?(θ) versus θ. Comment this plot and, in particular, explain the behavior at θ = 0. What

is the slope of f(ξ?(θ)) at θ = 0?

The plots are shown in Figure 4. The slope of f(ξ?(θ)) can be approximated via finite differences

∂f(ξ?(θ))
∂θ

∣∣∣∣
θ=15

≈ f(ξ?(15+ δθ))−f(ξ?(15− δθ))
2δθ =−1.1434

The slope of f(ξ?(θ)) at θ = 15 is the sensitvity of the optimal value with respect to a change in θ. It
corresponds to the negative of the corresponding Lagrange muliplier

∂f(ξ?(θ))
∂θ

∣∣∣∣
θ=15

=−λ3 =−1.1432.

At θ = 0 the constraint g1 requires that x1 = x2 = 0. Thus, the constraint g1 and the lower bounds on
x1 and x2 are active. In addition, the constraint g2 and the positivity constraint enforce that x3 ∈ [0,3].
Since the objective is inversly proportional to x3 the optimal solution is (0,0,3). Hence, four constraints
are active in this case and thus the constraints are linearly dependent. In other words, (0,0,3) is not a
regular point and the KKT-conditions do not hold for θ= 0. The non-existence of a Lagrange multiplier at
this point can also be observed in Figure 4 since limθ→+0ω(θ) = +∞. Observe that the slope of f(ξ?(θ))
also goes to infinity for θ→+0.
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Figure 4: Minimum of the objective function for different values of θ and the corresponding Lagrange
multiplier for the active inequality constraint.
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