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Part I

Optimal Control and
Dissipativity — Connected

on a Turnpike






Getting Started with Optimal Control

Consider a dynamical system

dx(t
U p ), x(t) =x ®)
given as an Ordinary Differential Equation (ODE), whereby f :
R™ x R" — R™ is the vectorfield describing the dynamics, x € R"~
is the state variable, and u € IR is the input (or control) variable.

Moreover, xg is the initial condition and T € lRar refers to the time
variable. In many applications it is of interest to compute control
inputs u : [ty, t1] — R"™ such as to achieve a specific goal. For the
sake of simplicity, consider the problem of steering the state x from
x(ty) = xp to a target set

X f C R™
during some given time interval [y, t1]. Frequently, such a transi-
tion of the system state shall be conducted while constraints on
states and inputs have to be satisfied. Such constraints be denoted
in a set-based fashion as

u(t) e U and x(t) € X

where U € R™ and X C RR™ are given closed sets and the
constraints are required to hold for all t € [ty, t;]. Alternatively,
and with only minor loss of generality, we may assume that the
constraints on input and state variables are modelled by inequality
constraints, i.e., they read

g(x,u) <0

where ¢ : R"™ x R™ — RR"s, where nq refers to the number The term path constraint refers to the
fact that the constraint shall hold along

of inequality constraints. Constraints of this particular form are , ‘
the solution path, i.e., on [t #1].

referred to as mixed input-state path constraints. Likewise, the
terminal constraint can be written via

Xy = {x € R™ | (x) < 0}.

For the statement of optimality condi-
tions, one typically prefers the notation

. . . . . . . using inequality descriptions of the
(OCP) is a criterion, which provides a means of ordering different constraints. However, the analysis of

The final element needed to state an Optimal Control Problem

candidate solutions with respect to their performance. In optimal predictive control schemes in later
parts of this book will benefit from and

control one usually considers functionals | : u(-) — R of the rely on the set-based notation.

following form

5]

1) = [ e(x(1),u(x)) dT + p(x(n)),

0
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where £ : R™ x R"™ — R is called Lagrange function (or stage
cost) and ¢ : R — IR is denoted as Mayer term (or terminal
penalty / cost).

Combining the elements above we obtain an OCP in the follow-
ing prototypical form:

Here we give the names common

in the optimal control literature
(Lagrange term and Mayer term) and
in the predictive control literature
(stage cost and terminal cost).

min /tl U(x(7), u(t)) dt + (x(11))

u(-)€Clto,t]m Jto
subject to VT € [tg, 1] :

dx(T)

Problems of this type have been extensively studied since the
1700s" and they arise in many fields of science and engineering.
Given an OCP the following questions arise naturally:

¢ How to solve (OCP) either analytically or numerically?

e How to certify that a given input u(-) € C[t, t1]™ is indeed an
optimal solution? In which function space shall we search for an
optimal solution?

The former question points towards numerical optimization and
numerical optimal control. Good introductory texts on these topics
are available open source.* The later question points us toward the
need for (necessary and sufficient) optimality conditions.

Necessary Conditions of Optimality

Classic Calculus of Variations allows to state optimality conditions
for (OCP) without major difficulties whenever the mixed input-
state path constraints are dropped.3 Moreover, the 20th century
has witnessed tremendous progress in answering the question for

optimality conditions of OCPs with constraints on inputs and states.

Specifically, the Pontryagin Maximum Principle (PMP) and the
Hamilton-Jacobi-Bellman-Equation (HJBE) provide complementary
answers have been provided. Subsequently, we will briefly recall
first the PMP before—using simplifying assumptions—we turn to
the HJBE.

Our introductory exposition above has avoided giving mathe-
matical details. Turning towards the input signals u : [ty, f1] — R™
it is necessary to be more specific. Here we consider that u(-) €
Lo ([to, t1],R™), i.e., we consider measurable control functions
which are essentially bounded on [y, t1].4

We begin with a statement of our assumptions. San

Assumptions: mixed input state constraints of degree 1, suffi-
ciently smooth f, g.

Statement:

(OCP)

*H.J. Sussmann and J.C. Willems. “300
years of optimal control: from the
brachystochrone to the maximum
principle”. In: IEEE Control Systems
17.3 (1997), pp- 32-44; H.J. Pesch.
“Carathéodory’s royal road of the
calculus of variations: Missed exits

to the maximum principle of optimal
control theory”. In: Numerical Algebra,
Control & Optimization 3.1 (2013),

pp- 161-173.

2 B. Chachuat. Nonlinear and Dy-

namic Optimization: From Theory to
Practice. EPFL, 2009. URL: https:
//infoscience.epfl.ch/record/
111939/files/Chachuat_07(IC32).pdf;
J.B. Rawlings, D.Q. Mayne, and M.
Diehl. Model Predictive Control: Theory,
Computation, and Design. Nob Hill
Publishing, Madison, W1, 2017.

3 Chachuat, Nonlinear and Dynamic
Optimization: From Theory to Practice;
D. Liberzon. Calculus of Variations
and Optimal Control Theory: A Concise
Introduction. Princeton University
Press, 2012.

4 M. Gerdts. Optimal control of ODEs
and DAEs. Walter de Gruyter, 2011.


https://infoscience.epfl.ch/record/111939/files/Chachuat_07(IC32).pdf
https://infoscience.epfl.ch/record/111939/files/Chachuat_07(IC32).pdf
https://infoscience.epfl.ch/record/111939/files/Chachuat_07(IC32).pdf
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Define optimal value function Recall role of adjoint Recall opti-
mal value function Recall principle of optimality
Recall HJBE

Maximum Principle

HJBE
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From Optimal Control to Predictive Control

e give a motivation, turn From Optimal Control to Predictive
Control into the motto for this part

¢ Put quote from Lee-Markus
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¢ References on time-line






Problem Formulation

Next, we turn towards predictive control for a specific and proto-
typical control problem—i.e., set-point stabilization. To this end, we
consider the system

x = f(x,u), x(0)=xp )

subject to input and state constraints U C R™, X C R"*. A plethora
of real-world control problems can be cast as set-point stabilization.

Problem 1 (Constrained set-point stabilization).
Consider system (X) and a reference setpoint X € X C R"x, design a
feedback k : x — u such that the following is achieved:

(i) asymptotic convergence: tlimx(t, xo, k(x(+))) =%, Vxo € Xp
—» 00
(ii) Lyapunov stability: Ye > 0 36 > 0 such that

x(0) =% <6 = |x(txok(x(-)]| <e Vt>o.

(iii) constraint satisfaction: ¥Vt > 0 : u(t) € U and x(t,xo,k(x(-)) € X

Notice that Problem 1 includes three items: (i) asymptotic con-
vergence, (ii) Lyapunov stability, and (iii) constraint satisfaction.
Indeed it turns out that the major strength of NMPC is its ability
to account for all three items for nonlinear systems with multiple
inputs.

To highlight that our feedback strategy is based on the receding-
horizon solution of a specific OCP, we write OCP(x(t)), cf. Figure
2.

Mathematically and in full generality, OCP(x(t;)) reads

min /tk+T€(x(T|tk), u(T)t)) dt + Vi(x (ke + T|ty))

u(:[be) St
subject to VT € [ty t + T : (OCP(x(t)))
dx(t|t
ST f(x(elty), ()

X (te|te) = x(tx)
x(t|tp)e X, u(tlty) € U,
x(te + Tltp) € Xe.

In designing an NMPC scheme one has to specify all ingredients of
the underlying OCP(x(t)) (system model, constraints, objective)

A reference set-point ¥ corresponds
to a controlled equilibrium of (X), i.e.
there exists a not necessarily unique

ii € U such that 0 = f(%,). Cases in
which 7 does not exists are tricky, as ¥
cannot be stabilized.

X0

o=

Figure 1: Set-point stabilization.

u Y x = f(x,u)

OCP(x(t))

Figure 2: Basic NMPC scheme.

s
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and one has to decide NMPC specific aspects (prediction horizon,
sampling period). Hence it makes sense to be clear about which
items and data are assumed to be given and what are our actual
degrees of freedom for controller design. Subsequently, we will
consider the following elements to be known/available:

* an exact system model f : R x R"™ — R™

e a description of the state constraints X C R™

* a description of the input constraints U C R"

e for all sampling instants k € IN state feedback is available x ().

Unless otherwise stated our further considerations are built upon
these base-line assumptions.

However, as is clear from the previous chapters, even if the data
above is given, there remain choices in specifying an OCP. Hence,

the considered degrees of freedom for NMPC design are:
e the stage cost / : R™ x R™ — R
e the terminal penalty V; : R — R (if any),

e the terminal constraint Xy C X C R"* (if any),

the prediction horizon T € IR, and

the sampling period 6 = t; 1 — t, € (0, T].

Why bother about NMPC design?

At this point it is fair to ask, why one should bother about how
to design an NMPC scheme? On the positive side, the fact that
NMPC allows consideration of constraints for nonlinear multiple
input systems subject to constraints is clearly of relevance in many
applications. Moreover, there is promise that via a suitable choice of
the stage cost £ one can as well improve control performance.
Naively, one might expect that as NMPC is built upon receding-
horizon optimal control, the core design challenge is merely of
numerical nature and not a system theoretic one. However, the next
example shows that this is not the case.

Example 1 (Pitfall example). Consider a predictive control scheme based

on the following linear-quadratic (LQ) OCP

. t+T 2 2
mm/ [x(lte) g + lu(tlte) Ik dT
u(-|ty) Sty

subject to
ax T|t 010 0
VT € [t te+ T) : k 0 0 1|x(tltg)+ |0] ul(t|ty),
0 0O 1
x(tilte) = x(te)-

Such a setting is called nominal,
because one requires an exact
plant/system model (hence no plant-
model mismatch) and assumes perfect
state measurements.

We will investigate the choice of
generic cost functions in Part III.

Receding-horizon optimal control is a

synonym for model predictive control,
which stress the under-lying principle
of solving OCP on receding-horizons.

lx(zlte) I = x(tlte) T Qx(ty).
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The weighting matrices are
deiag[S 5 0} and R=1,

the prediction horizon and the sampling period are T = N - § and § = 0.05.
Closed-loop simulation results are depicted in Figure 3. As one can

see in Figure 3 for T = 10 - 6, the closed loop is appears to be stable. In

contrast for T = 8 - § the closed-loop trajectories are increasing oscillations

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
t t t t

-2 -2 —4 -2
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
t t t t

indicating instability, cf. Figure 3.

X1
o
X2
o

X3
o

X3
o
u
°

@ T=10-6 b)) T=8-6

Figure 3: Closed-loop trajectories for

Note that this behavior is not due to any suboptimality or lack of different horizons in Example 1.
convergence in the optimization. Indeed after suitable discretization, due
to strict convexity in u and due to the linear dynamics, the considered
LQ OCP can be solved to global optimality with high accuracy. Indeed,
one could easily compute the analytic solution for the optimal control
via standard LQ theory. Yet, the length of the horizon influences the
closed-loop stability properties.

Figure 4 illustrates the main reason for the lack of closed-loop stability.
It shows the open-loop predictions (in color) along side the closed-loop
trajectories (in blue). As one can see the parts of the open-loop input
predictions, which are not applied to the system, differ substantially from
the closed-loop trajectories. This implies also a difference between predicted
and closed-loop state trajectories. It is this mismatch between prediction
and closed loop which—despite the prediction model being an exact copy of
the plant—in this specific example leads to instability.

6 2

4

X1
X2
o

X3

Figure 4: Closed-loop trajectories and
open-loop predictions for T = 8 - § in
Example 1.
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The lessons learned from the above example are evident:
o Optimality does not imply stability!

o There is a clear need for stability analysis of NMPC, which in turn also
gives design guidelines!

In the development of optimal control, the fact that optimality and
stability do not necessarily coincide had already been observed as
early as 1960. Indeed Rudolf E. Kalman (1930-2016) phrased it as
follows:

In the engineering literature it is often assumed (tacitly and incor-
rectly) that a system with an optimal control law is necessarily stable.

Standing Assumptions

As the previous example has illustrated, in the analysis of NMPC
schemes, one has to distinguish between the open-loop prediction
of input and state trajectories and their closed-loop counterparts.
Hence, for all T € [#, t; + T] the notation

x(tlty) and u(tlty)

refers to the values of controls and states predicted by the controller
given the state feedback information at time #, i.e. x(f).
In contrast the closed-loop system reads

dx
o = f(®),uMC(®)), x(0) = xo. ()
whereby uMPC R — U denotes the control signal generated by

the NMPC scheme, i.e.

uMPC (1) = u(t|ty)  with k = max{k € N |t < t}. (1a)

Hence the state trajectory generated by the NMPC scheme can
formally be written as

xMPC () = x(t, x0; u™MPC (). (1b)

For the sake of readability and whenever no confusion can arise, we
simply drop the superscript (-)MPC.

Before analysing specific NMPC schemes we detail our standing
technical assumptions.

As mentioned, we consider a nominal setting—i.e. the model
f is assumed to be an exact representation of the considered
plant/system and exact state feedback is available at all sampling
instant k € IN. However, from a mathematics point of view it can be
tricky to verify existence of optimal solutions to OCPs as one has to
consider a suitable class of input functions and convexity assump-
tions on ¢, cf. Part 1.5 Hence, in the MPC analysis we assume that,
whenever we need to solve an OCP, a (globally) optimal solution
exists and is attained. Moreover, we suppose that the following
conditions are satisfied.

R.E. Kalman. “Contributions to the
theory of optimal control”. In: Bol. Soc.
Mat. Mexicana 5.2 (1960), pp. 102—-119

Observe that due to the switch from
M(f'tk) to u(t|tk+1) att = tk+1 the
considered closed-loop dynamics
under the sampled-data NMPC
feedback are hybrid, i.e. subject to
switches.

5E.B. Lee and L. Markus. Foundations
of Optimal Control Theory. The SIAM
Series in Applied Mathematics. John
Wiley & Sons New York, London,
Sydney, 1967, XYZ.



Standing Assumptions (For stabilization problems).

A1 (Steady state): Given X, there exists it € U, such that 0 = f(X,1i)
and (x,1) € int(X x U). W.Lo.g. we suppose (%,1) = (0,0).

A2 (Lower boundedness of £): There exists a class-K function o :
Ry — Ry, such that for all (x,i) € X x U,

(x,u) > a(||x—x||), and £(x,d)=4(0,0)=0

holds.

A3 (Absolute continuity of ODE solutions): For all xy € X, and any
u(-) € €([0,T),U), the solution x(-,xo, u(-)) exists on [0, T] and
is absolutely continuous.

Assumption A1 ensures that the considered set-point stabiliza-
tion problem is well-posed, i.e. it guarantees that ¥ is indeed a
controlled equilibrium of f. Assumption Az implies that when-
ever one computes controls u such that the corresponding state
x minimizes the cost functional—i.e. it minimizes the integral of
{—one actually forces the state trajectory to move towards *. Put
differently, A2 ensures that the stage cost / reflects the considered
stabilization problem. It will become evident later that in many
stability proofs Assumption Az plays a fundamental role.

Finally, Assumption A3 is of mostly technically nature as it
enables certain steps in later proofs. In essence, it gives that despite
potential jumps of the input generated by the NMPC controller,
the state trajectory x(-) admits a bounded time derivative almost
everywhere.

Infinite-Horizon NMPC

We begin our investigations on stability of NMPC with the infinite
horizon case (T = o0) combined with instantaneous recalculation
(6 = tgr1 — tr = 0). While OCPs with infinite horizon are typically
not easy to solve numerically—yet alone in instantaneous settings—
the analysis of this scheme will provide helpful insights.

Specifically, we consider NMPC based on

t+oco
min/t (x(|b), u(t|t)) dt

u(-[ty)

subject to VT € [t,t + oo] : (OCPso(x(t)))
BT — fx(elt), utele)

x(t|t) = x(t)
x(t|t) € X, u(t|t) € U.

Due to the instantaneous recalculation, we have dropped the sub-
script k and write t instead of t; in the OCP above. Recall that in
Part I we have introduced the optimal value function of an OCP. In
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Definition 1 (Class-K function).

- Ascalar function a : Ry — Ry
is said to belong to class IC, if it is
continuous, strictly increasing, and
«(0) = 0.

- a: Rf — Ry is said to belong to
class Keo, if & € KC and if it is radially
unbounded, i.e. a(s) — oo as s — co.

Definition 2 (Absolute continuity).
A trajectory x(-) is said to be absolutely
continuous on [to, t1], iff

- x(t) is almost everywhere differentiable
w.r.t. t,

- %(t) is Lebesgue integrable, and
- forallt €[0,T]

x(t) = x(0) +/Ot5c('c) dr
holds.

With slight lack of precision, one can
say that an absolutely continuous func-
tion can be computed by integrating its
time derivative.

To simplify distinguishing different
NMPC schemes from one another, we
encode decisive information in the
OCP labeling. The label OCPs (x(t))
indicates the infinite horizon (subscript
‘«) and instantaneous recalculation
(use of the argument f instead of t.

In further schemes, and whenever
applicable, we will also indicate
terminal constraints etc. (superscripts).
Note that also the notation style for
optimal value functions follows the
same conventions.
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case of OCP(x(t)) the optimal value function Ve : X € R™ — R
is given by

Vax(t)) = /t'”we(x*(ﬂt),u*(ﬂt)) dr. (2)

The following stability result was presented by Jadbabaie et al.®

Theorem 1 (Stability of instantaneous infinite-horizon NMPC).
Let Assumptions A1—-A3 hold and suppose that,

(i) for all x € Xo, the value function Ve (x) is continuously differentiable
and

Brlllxl) < Veo(x) < Ba(llxl)), P12 € Koo

Then, the NMPC scheme based on OCP(x(t)) achieves local asymptotic
stability of (X.;) at x = 0. The region of attraction is given by the set of
initial conditions for which (i) holds.

Proof. A general question which arises in the the analysis of NMPC
scheme is the issue of recursive feasibility, i.e. the question of
whether or not the feasibility of OCP (x(t)) at k implies its feasibil-
ity at k + 1.

Consider the optimal open-loop input u(-|ty) computed at time
instant () which is valid for all t € [ty, 00). Since OCPe(x(t)) consid-
ers an infinite prediction horizon, Bellman’s principle of optimality
implies that the truncation of u(-|ty) to [ty + J,00) constitutes an
optimal open-loop input for OCPs (x(t)) with initial condition
x(to + 6, x(to), u(+|to)). Hence feasibility of OCP«(x(t)) at instant f
implies its feasibility for all ¢ > t.

Without loss of generality we write Vi, as

Voo (x(t)) = /t.oo (x> (t|t), u*(T|t)) dr.

Using Lemma 6 we arrive at

dVoo _ d oo * *
e a/t (x*(t|t), u*(7]t)) dr
d té * * d
-3 (x*(T|t), u*(7|t)) dt

= —L(x*(t|t), u*(t|t)).
Using Assumption A2 we obtain that

A
Woo _ VI Sl w) = ~txw) € —a(flx— ).
In view of Lemma 5 the assertion of local asymptotic stability of

(2¢) at x = 0 follows. O
Some comments on the previous derivations are in order.

* The proof above already establishes a structure that we will
revisit a couple of times: First verify recursive feasibility; second
apply Lyapunov-like arguments to establish convergence or

¢ A. Jadbabaie, J. Yu, and J. Hauser.
“Unconstrained receding-horizon
control of nonlinear systems”. In:

IEEE Trans. Automat. Contr. 46.5 (2001),

pp. 776-783.

Definition 3 (Recursive feasibility).

An NMPC scheme based on OCP(x(ty))
is said to be recursively feasible if the
feasibility of OCP(x(ty)) at sampling
instant k implies its feasibility at k 4 1.



stability. Notice that without recursive feasibility, applying
any NMPC scheme would be hazardous as at any instant #;
the optimization could potentially break down due to loss of
feasibility.

¢ While the considered instantaneous infinite horizon scheme is
clearly not directly applicable, it is worth to be noted that the
optimal value function Vi, turned out to be suitable Lyapunov
function for the closed-loop system. Indeed the vast majority of
stability results for NMPC will resort to use the value function as
the standard candidate Lyapunov function.

* Moreover, we remark that in the presence of state constraints the
differentiability assumption on Vi is quite strong. Hence we will
aim to avoid it for further schemes.

Finally, note that the consideration of an infinite-horizon in NMPC
is mostly conceptual. Indeed, the solution of infinite-horizon OCPs
is in general challenging. While, under certain conditions” one

can approximate the solution numerically, it is clear that from an
engineering and application perspective that one is tempted to
consider finite horizons T < oo and a non-vanishing sampling
period 6.
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normalToDo: ref to sufficient condi-
tions for differentiable V

7 Peter Kunkel and Oskar von dem
Hagen. “Numerical solution of infinite-
horizon optimal-control problems”. In:
Computational Economics 16.3 (2000),

pp- 189—205.






NMPC with Terminal Constraints

The insights obtained in the previous section motivate to analyze
how one may avoid the infinite horizon in OCPe(x(t)).

From Infinite to Finite Horizons in NMPC

To this end, consider the objective function from OCPx(x(t)),
where, for the sake of readability, we drop the notion of predicted
input and state trajectories, and split the time horizon

[} t [}
/0 E(x(’r),u(r))d’r:/o E(x(r),u(r))d’r—i—/t (x(7), u(t)) dr.

cost-to-go

The second integral is referred to as cost-to-go.3
Consider a function V¢ : X — R which satisfies

VVfT f(x,u)+€(x,u) <0 (3)
—_———

-

=Vi(x)

Integrating the inequality from t; to t, yields

+ /tZ ¢(x(7), u(7)) dt < 0.

t tl

Setting t; = t and taking the limit {, — oo we obtain

), u(0)) de < W(x(0) = lim Vi(x(e2))

ty—r0o0

As we consider the problem of stabilizing the set-point ¥ = 0,
it is reasonable to suppose tlim Vi(x(t2)) = 0. Due to the lower
2—>00

boundedness of ¢ (Assumption Az) this implies that, eventually, the
set-point ¥ = 0 is attained (V;(0) = 0).
Moreover, we obtain from these considerations that

| (@), u(x) dr < Vlx(), @)

i.e. the function V; is an upper bound on the cost-to-go which is
tight at x = 0, i.e. Vi(x = 0) = 0. Likewise, one may say that V; is
an upper bound on the infinite-horizon value function Vo (x(t)).

The main message of this derivation is that, modulo technical
assumptions introduced later, the differential inequality (3) means
that V; is an upper bound on the cost-to-go (4).

8 A.E. Bryson and Y.-C. Ho. Applied
Optimal Control. Ginn and Company,
Waltham, Massachusetts, 1969.

Observe that considering 1 = K(x)
and Assumption Az, the differential
inequality (3) can also be interpreted
as a non-linear Lyapunov inequality,
cf. Lemma 5. A point to be addressed
later.
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Quasi-Infinite Horizon NMPC

The derivation above motivates to replace the infinite-horizon
scheme from OCPx(x(t)) with a scheme wherein a finite prediction
horizon T € R and a terminal penalty Vi (= upper bound on the
cost-to-go) are used.

The next OCP specifies such an NMPC scheme

t+T
min | (x(elte), u(rl)) e+ ViGa(t+ T)
ul-|tx) ik

subject to VT € [ty t + T : (OCP%(f(x(tk)))

w = f(x(T|te), u(tltr))

x(E|te) = x(t)
x(7)t) € X, u(t|ty) €U,
X(tk + T|i’k) € X;.
The rationale of considering the terminal penalty V; is for it to act
as an upper bound on the cost-to-go. As such, such bounds are
not easy to attain, i.e. one will usually only be able to find local
bounds. Hence the terminal constraint x(t; + T|t;) € Xy € X can
be understood as a subset of the state constraints on which V; is
indeed an upper bound on the infinite-horizon value function Ve.
Moreover, it is worth noting that in real-world applications

OCP? f(x(tr)) is used with a non-vanishing recalculation time, i.e.

Put differently, OCP%g f(x(tr)) specifies a sampled-data NMPC scheme,
which will require some extra care in the stability analysis. The next
theorem summarizes the convergence properties.

Theorem 2 (Convergence of sampled-data NMPC).
Let Assumptions A1—A3 hold and suppose that there exist Vi, Xy C X
(0 € Xy), and a feedback k : X¢ — U such that

(i) V:Xg— R{ is positive semi-definite and V¢(0) = 0,
(ii) forall x € X :
YV f(xk(x) + £(x,k(x)) <0, (5)
and for all t € [0,6] : x(t,x,k(x)) € X¢,
(iii) OCP%&f(x(tk)) is feasible at k = 0.
Then,
. OCP%gf(x(tk)) is recursively feasible,

* the NMPC scheme based on OCP%& f(x(t)) achieves
tlim |x(t)|| = 0 for (X), and
—00

* the region of attraction is given by the set of initial conditions for
which (iii) holds.
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Proof of Theorem 2

In the literature Theorem 2 appeared in numerous papers in dif-
ferent variants. Hence we provide a detailed proof. Actually, most We comment on bibliographic refer-
MPC stability proofs based on terminal constraints follow a certain ences at the end of this chapter.

blueprint like structure:

e Step 1 — Recursive feasibility of the sequence OCP%& f(x(t)) for
all sampling instants #, k € IN.

e Step 2 — Decrease of the value function V?& f(x(t)) in between two
sampling instants t; 1 and f.

e Step 3 — Decrease of the value function V;f f(x(t)) from one
sampling instant to the next.

¢ Step 4 — Consider the value function V;g f(x(t)) as a Lyapunov-like
function of the closed-loop system.

Step 1 — Recursive Feasibility

The main idea to establish recursive feasibility is to construct a
suboptimal but feasible input for OCP;-( f(x(t)) at time instant k + 1
. X
from the solution to OCPL"(x(t)).
To this end consider

i1 (1) = { w(elte) 7€ [l e+ T)

k(X(T)) T E€ [tk+T,fk+] +T} (6)

which is composed of two parts: on [t; 1, fx + T) the old optimal
input u*(7|t;) is used, while on [ty + T,tx,1 + T] the terminal
control law k(x(7) is considered. As the predicted optimal input
u*(t|t;) has to satisfy the terminal constraint x(t; + T|t;) € X,
it follows that x; = x*(t; + T|tx) € X;. Observe that appending
the optimal input by the terminal control law k : x > u implies
x(tpy1 + T, x;,k(x)) € X;. Hence the construction (6) does not
jeopardize feasibility, see also the sketch in.

) x (b1 + T, xg, k(x))

t te+T tgp1+T

Figure 5: Construction of feasible
initial guesses.

Step 2 — Decrease of the Value Function on [ty, tyi1)

Consider the value function

X . bt T * * *
VR G(t)) = [ Gl (1) AT+ Vi (e TIE)).

te
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As we consider the nominal case (no plant-model mismatch), we
have
x(t) = x*(ttg), Vt € [t tert)-

Due to Assumption Az (lower boundedness of ¢) we have that

V() = V¥ (x0) = [ 4 (el ()

is continuous and decreasing for all t € [fy, t;,1).

Step 3 — Decrease of the Value Function from ty to tyq

Lemma 1. Let the conditions of Theorem 2 hold. For all k € IN, it holds
that

Vit (x (b)) — Vo (x(t)) < 0.

Proof. We use the feasible but suboptimal input from (6). Hence we
have that

VRt (x(tesn)) — Vot (x(t) < J (b)) — Vot (x (k).

As J(x(tgs1), figs1(+) is the evaluation of the objective of (OCP%&f(x(tk)))
for the input ;1 from (6). It reads

tep1+T
J(x(tg1), flgg) = /t (X1 (), g1 (7)) AT+ Ve(Fxpa (b1 +T))
k+1

where the short hand %, 1(7) = x(t, x(#;), fix;1) is used. Due to the
specific construction (6) and due the consideration of the nominal
case, we have that

Fry1(T) = x(7, x(tg), dgyq1) = x*(t|ty) for all T € [tgyq, ty + T).

This allows writing J (x(ty1), fiei1) — Vit (x(k)) as

ot +T
Gt ) = Vi (et = [ £ (el (x) des
b +T B Observe that the color coding matches
/f ((Fa1 (T), i1 (1)) AT + Ve(Fppq (g + T))— the one of Figure 5.
Y H+T

tet1 t+T
[ e et (el de— [ 6 (el () de = Vil (b + TI)).

tk te+1

As the blue integrals cancel each other we arrive at

Jox(ti) ) VR Gete) < [ 0 (1), 80 (0)) AT Vi (e + T) = Vi (e TIR)

Sty
where dropping fti"“ (x*(T|tg), u*(T|tg)) dT > 0 yields the inequal-
ity.
Finally, recall x; = x*(t; + T|t). Hence integrating (5) from t; + T
to tgq + T gives

U(F1 (1), 41 (1)) dT < 0.

B T=tgpq1+T tp1+T
Vi(Zpy1(0)) /t

T:tk+T

T
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As X1 (tx + T) = x*(tx + T|tx) we have

./fkﬂﬁ E(Zx1(7), kg1 (7)) AT + Vi(Fp1 (B + 1)) = Ve(* (5 + Tlly)) =

bt

Vil T=tp1+T /tk+1+T€(~ ( ) ~ ( )) <0

% F1(7), digyq (1)) <0.
(T (n)|__ it T K+l Kt

Hence we conclude that J(x(tg. 1), figi1) — V;ff(x(tk)) <0. O

Step 4 — Convergence
So far we have shown the following properties, see also Figure 6:

e The optimal value function V?( f(x(#;)) decreases in-between two
sampling instants (Step 2), i.e. the decay on [t, f;i1).

e It also decreases from t; to t;,1 (Step 3).

It remains to show that this decay can be bounded from above in an
appropriate manner, cf. Figure 6.

Figure 6: Sketch of results of Step 2
and Step 3, outlook on Step 4.

te tker tep2 tees

To this end, let the closed-loop trajectory generated by the MPC
scheme (OCP?‘(x(tk))) be x(-). Then

t
VMPC(x(1)) = V¥ (x(h)) — [ €0 (), (clt)) dr, k= max{k € Nt < 1)
ty

is our candidate Lyapunov-like function. Due to the exclusion of Actually verifying that V(x(t)) is a

plant-model mismatch, we obtain for t = ty Lyapunov function requires additional
assumptions, cf. Theorem 3.

Nt
VI alon) = Vi Gx(r)) = 1 [ 00 el ()

N
= V¥ (x(t)) = [ e(x(2), (7)) . @
0
Feasibility of OCP%gf(x(tk)) at time tg implies that V;X‘(x(to)) <
co. Moreover, Assumption Az and the condition on the terminal
penalty Vi(x(t; + T|tx)) in Theorem 2 imply that V(x(t)) > 0 for all
x(t) # 0. Hence (7) implies that
t
lim [ €(x(7),u(t)) dT < Vat(x(ky)) < oco.

t—o0 Jt, N————
=VMPC(x(to))
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Assumption A2 gives

t t
. <1 ‘
tlggo ) a(|lx(7)]]) dr < tlggo ; O(x(t),u(t)) dT < 00

Finally, invoking Barbalat’s Lemma directly gives

li t)]| =0.

lim [[x(1)] = 0

This completes the proof of Theorem 2. O
A few comments are in order. Recall that the classic definition of

Lyapunov stability requires

Ve>030>0]|xoll <6 = |x(t to,x0)| <e Vt>ty>0, (8

where x(-, to, xg) refers to the closed-loop system trajectory ().
Note, however, that in the proof above we only establish asymp-
totic convergence but not the ¢ — § argument (8). The reason for
this slightly weaker result is that in Step 4 we invoked Barbalat’s
Lemma. Hence it is justified to ask for how to close the gap to
asymptotic (Lyapunov) stability?

Yet, at the same time, the proof above also has a number of
advantages: It does not require local properties like stabilizability of
the Jacobian linearization at the required set-point. Moreover, the
terminal feedback law k : X; — U does not need to be continuous.
One should also note that the terminal feedback law u = k(x)
is actually never applied to the system. Instead, its purpose is to
enable the construction of a feasible initial guess in Step 1. This
allows to apply the above proof also to systems which cannot be
stabilized by continuous feedback. Indeed in the version above we
have followed the proof given by Fontes.?

Besides the issue of Lyapunov stability, another imperative question
is how one shall compute terminal regions and penalties. We will
comment on both items next.

Closing the Stability Gap

To close the gap from the asymptotic convergence to asymptotic
stability, we consider the following assumption. Consider the set of
feasible initial conditions for OCP%& flx(t))

off = {x € R™ | VXf(x) < oo}. (9)

Assumption (Bounds on the value function).

Agq There exist B1, B2 € Koo and a set D such that, for all x € D C
O, it holds that

Br(llxll) < V(%) < Ba(llx)- (10)

Lemma 2 (Barbalat’s Lemma). Let
M : R"™ — RY bea continuous
positive definite function and x(-) be an
absolutely continuous function on R. If
x(-) e L2, x(-) € L®and
t
lim [ M(x(7)) dt < o0

t—o00 /O

then }Lrilo|\x(t)\\ =0.

The proof of Lemma 2 can be found
in H. Michalska and R.B. Vinter. “Non-
linear stabilization using discontinuous
moving-horizon control”. In: IMA
Journal of Mathematical Control and
Information 11.4 (1994), pp- 321-340.

See Definition 7 in the Appendix
for the full statement of Lyapunov
stability.

Moreover, observe the structural sim-
ilarity between the crucial stability
condition (7) and the decay require-
ment for Lyapunov functions. The
classic requirements for Lyapunov
functions are stated in Lemma 5 in the
Appendix.

9F. Fontes. “A General Framework to
Design Stabilizing Nonlinear Model
Predictive Controllers”. In: Sys. Contr.
Lett. 42.2 (2001), pp. 127-143.
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The upper bound V?& f(x) < Ba(|lx]|) can be regarded as a (weak)
reachability condition as it requires that the cost of reaching the
terminal set X is not excessive. The lower bound B4 (||x||) < V?{ f(x)
can be understood as a continuity requirement on V;( f. This as-
sumption enables the next result which addresses the stability

&ap-

Theorem 3 (Closed-loop stability of sampled-data NMPC).
Let Assumptions A1—Ag4 hold and suppose that there exist Vi, Xy C X
(0 € Xy), and a feedback k : X¢ — U such that

(i) Vi:X¢— R{ is positive semi-definite and V¢(0) = 0,
(ii) forall x € X :
VVi" - f(xk(x)) + £(x,k(x)) <0, (11)
and forall t € [0,6] : x(t,x,k(x)) € X¢,
(iii) OCPy!(x(ty)) is feasible at k = 0.
Then,
. OCP?g f(x(ty)) is recursively feasible,

* the NMPC scheme based on OCP;\-g f(x(tx)) achieves local asymptotic
stability of (X) at x =0, and

* the region of attraction is given by D C Q;(f.

Proof. Observe that the conditions of the proposition are a strength-
ened version of the ones from Theorem 2. Hence the proof of the
recursive feasibility statement and the proof of asymptotic conver-
gence follow the proof of Theorem 2. It remains to establish the ¢ —
argument (8).

Given ¢, choose r € (0, ¢] such that

B, (0) = {x e R™ | |[x]| <r} D

with D from Assumption Ag. Let & = min,cy5 VMIC(x) with
VMPC from (7). Note that Assumption A4 gives that & > 0. Con-
sider v € (0,«) and let

Qy = {x € B,(0) | VMPC(x) < 7},

Then Q) is in the interior of B3,(0), since v < & = min,¢yp, V(x).
Note that (7) implies

VMPC(x(1)) < Vit (x(tg)) < 7-
N———
VMPC(x(tg))

In turn this shows that any solution starting in (), stays in ().,

i.e. the set is positive invariant. Moreover, (), is compact and any
solution with x(0) € Q), is unique and exists for all times. Note that
the upper bound in (10) implies that there exists § > 0 such that

Ix| <6 = VM) <.

If the terminal penalty V;(x) < Ba(]|x]|)
and the state constraints are compact,
one can also show that on Q?‘ the
upper bound exists.

Notice that in a discrete-time setting
the lower bound on V%X fis directly im-
plied by Assumption Az. In contrast,
in a continuous-time setting it is not
easily derived without further technial
assumptions.
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B,(0)
Then B;(0) C Q. C B,(0), cf. Figure 7. | // B5(0) AN
Due to the positive invariance of (), we have that L[ 0 '
| | X = } %7 |
[ \ /
lx(to)]] <o = |[x(t)]| <r<e Vt>t. o\ /
RN ya

This concludes the proof. O ~__

The above result has addressed the stability gap. Yet, it did not
shed light on the question of how to choose the terminal region and
the terminal penalty. Next, we present a classical result which cer- Figure 7: Sketch of B5(0), €y and
. : : . . B;(0).
tifies a particularly easy choice for X¢ and V;. To this end, consider
the variant of OCP?gf(x(tk)) with X¢ = {0}, Vi(x) =0, i.e.

b +T
mq/ o(x(t|), u(t|h)) dr
ul-1h) Jre

subject to VT € [t t + T : (OCPY(x(t)))
d
)  faelt), el
x(t|tx) = x(tx)
*(7lt) € X, u(tlt) €U,
x(t+ Tlty) =0,

and let the counterpart to Q?f from (9), i.e. the set of feasible initial
conditions to OCP;-g f(x(#r)), be denoted as

Of = {x € R™ | VR(x) < o0}, (12)

where V2(x) is the optimal value function of OCP2(x(t;)). This
setting gives rise to the following corollary to Theorems 2 and 3.

Corollary 1 (Stability with zero-terminal constraint).
Let A1-A4 hold and suppose that the terminal penalty is V¢(x) = 0,
the terminal region is Xy = {0}, and

(iii) OCPY(x(ty)) is feasible at k = 0.
Then,
o OCPY(x(ty)) is recursively feasible,

e the NMPC scheme based on OCPY(x(t;)) achieves local asymptotic
stability of (X) at x =0, and

o the region of attraction is given by D C QY.

This corollary illustrates the easiest route—from a design
point of view—to stability guarantees in NMPC as the choice
Xt = {0}, Vi(x) = 0 does not require any further computations.
However, it also comes at a cost as the prediction horizon has to
be sufficiently long as otherwise OCPY(x(#)) will be infeasible.
Indeed any feasible solution to OCPY(x(t)) is also feasible in
OCP? f(x(tx)) but not vice versa. We also remark without further
elaboration that if Assumption A4 is revoked then the setting of
Corollary 1 yields asymptotic convergence.
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Computation of Terminal Constraints and Penalties

So far, we have leveraged upper bounds on the cost-to-go as termi-
nal penalty V;. Yet, besides the trivial choice used in Corollary 1, we
did not discuss how to actually choose or compute V; and X;.

First we consider a special case in which

¢ the system (X) is not subject to state constraints, i.e. X = R,
and

e it is globally asymptotically stable, i.e. it satisfies the conditions
of Lemma 5 and in particular there exists a Lyapunov function
V:R"™ — Ry

vV f(x,0)+£(x,0) <0, Vx#0O.

In this case, the choice V; = V is immediate and for any choice of

T and 4 will satisfy the conditions of Theorem 2. We remark that

in the vast majority of applications it is unrealistic to assume to

global asymptotic stability of the system in question—yet alone
knowledge of a global Lyapunov function. However, in this rare
situation the application of MPC will still be beneficial as one may
expect a performance improvement.

These considerations motivate to investigate structured ap-
proaches to the design of X and V;. We tailor our setting and
require

0(x,u) = 3xTQx + JuT Ru = §|x|f + bl (13)

with Q = 0,R > 0, and that the Jacobian linearization of f(x, u)
at (0,0)—i.e., the pair (A, B)—is stabilizable, while (A, C) with
C'C = Qis detectable.

As we have seen in Part I, the following linear-quadratic OCP

) oo1 5 >
1 + d
rbl?(l_) /to 2<Hx<T)HQ ||”(T)HR> T
subject to

x = Ax + Bu,

(LQR)

x(to) = xo

can be regared as a local approximation to OCPe(x(t)) at the set-
point (0,0). Moreover, the optimal value function of (LQR) is
given by

Vior(x0) = 37 Pxo. (14)

where P > 0 solves the Algebraic Riccati Equation (ARE)

A'P+PA—-PBR'B'P+Q=0, P=P'" »0. (ARE)

Finally, recall that the optimal solution to LOR is given by the
feedback u = Kx = —R™'BT Px. Then, it is straightforward to show
that

¢ 1 = Kx stabilizes the nonlinear system (X) locally, and

Notice that in case of state constraints
X C IR™ one still has to check for
recursive feasibility or make sure that
the state constraints are shrunk to a
level set of the Lyapunov function, i.e.
X={xeR"™|V(x)<p*} CX.

Consider
X x=f(xu), x(0)€Xp
with £(0,0) = 0. Let

az Y

- , B = of
dx (0,0)

Ju (0,0)

Lemma 3 (Local stabilizability). If
the pair (A, B) is stabilizable, i.e., there
exists u = Kx such that the real parts of
all eigenvalues of A + BK are negative,
then the feedback u = Kx achieves local
asymptotic stability of x = X = 0 for the
nonlinear system X.

The solution to the algebraic Ric-
cati equation is readily obtained in
MATLAB using the commands care
(continuous-time) and dare (discrete-
time).
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. %xTPx is a local Lyapunov function of the non-linear system (X)
controlled by u = Kx.
y The first statement is a standard result
in non-linear system theory and can

The proof of these two statements is left as an exercise for the .
be found in several textbooks and

reader. the second statement follows from
Based on these results, the idea to obtain a terminal region is %lisslifal feslults 0; Kalman: ZIK
. P . . alil. Nonlinear Systems. 3rd. Prentice
to consider the infinite-horizon feedback obtained from LQR as Hall, New Jersey, 2002; Kalman,
terminal control law and to consider the value function Vg as “Contributions to the theory of optimal
control”.

terminal penalty V;. Hence it remains to show on which set X; C X
this choice is valid and satisfies the conditions of Theorem 2.
We make the following ellipsoidal ansatz for the terminal region

X¢ = {x e R™ | %xTPx < pz} (15)

with the stage cost from (13) and the terminal penalty V; = Vigor
from (14). Then the radius p of the terminal set can be obtained by

solving
mpin —p (16a)
subject to
VxeX;: KxelU (16b)
xeX (16¢)
Vi(x) + £(x, Kx) <0. (16d)

While the objective is to maximize the size of Xy, the first con-
straint captures the input constraints for the terminal feedback law.
Observe that the state constraints are handled by the second con-
straint, which usually will be inactive as in many cases we will have
X¢ C X. Finally, the constraint (16d) captures the basic stability
condition (3) from Theorem 2. Note that similar arguments as in the
proof of Theorem 3 can be used to show that (16d) implies positive
invariance of X;.

Notice that the optimization problem (16) is subject to an infinite
number of constraints as (16d) has to hold for all x in X;. Moreover,
for generic non-linear system dynamics f the constraint (16d) is
non-convex as it reads

Ve(x) + €(x, Kx) = VV{' f(x,Kx) + £(x,Kx) < 0.

Put differently, unless specific assumptions on the structure of f
are invoked, solving (16) can be computationally intense. On the
other hand, the computation of the terminal penalty V; and the
terminal control law Kx are straightforward. Finally, observe that
any feasible solution p > 0 to (16d) will specify an admissible
choice of X¢ (15) and V;. It is also worth to be remarked that, in
view of Lemma 3, Assumption A1—(X, i) = (0,0) € int(X x U)—
implies that there exist strictly positive values of p feasible in (16).

Before concluding the chapter, we revisit Example 1 and consider a
simple remedy.
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Example 2 (Pitfall example resolved). We reconsider the setting form
Example 1, i.e. MPC based on

. te+T
min [ Celt) I+ (el I de (o4 Tl
Ik k

subject to VT € [ty, ty + T]

axcery |0 10 0
dT" 0 0 1|x(tlty)+ |0 u(t|t),
000 1

where || x(t, + T|t) |5 = x(t|tx) T Px(t|ty). Note that the end penalty
|x(tx + T|tx) |5 uses the solution to the algebraic Riccati equation (ARE).
The numerical setting is as in Example 1, the results are shown in Figure
8. As one can see for T = 10 -0 and for T = 8 - § the solutions are
asymptotically stable. Moreover, as the terminal penalty is not only a
bound on the cost-to-go, but rather it is the exact cost-to-go, we see obsvere
the solutions for both horizon are identical. Indeed one can show that

in both cases they match the ones generated by infinite-horizon LQR
feedback.

K 7, K

0 20 40 60 0 20 40 60 0 20
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20

40 60

0 20 40 60 0 20 40 60 0 20

@) T=10-6
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60

b) T=8-6

20

40 60

Figure 8: Closed-loop trajectories for
different horizons in Example 2.
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Summary

This chapter has recalled classical results that guarantee stability in
NMPC via infinite horizons or via terminal regions and penalties.
However, as the design of terminal regions is often cumbersome—
or in case of zero-terminal constraints their consideration in the
numerical solutions can lead to difficulties—we may conclude that
there is a clear need for stability conditions which do not require
any terminal constraint. As one can already hint from the structure
of the proof of Theorem 2, the question of recursive feasibility has
to be addressed once one drops the terminal constraint X from the
OCP. We will turn towards this issue in the next chapter.
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NMPC without Terminal Constraints

After our discussion of various schemes with terminal constraints
in the previous chapter, we now turn towards the question of how
to avoid them. Key motivations to avoid terminal constraints are:

* As we have seen in the previous chapter the actual computation
of terminal constraints can be quite involved. Moreover, observe
that especially X;,—and to a lesser extend also Vi—are depend
on the considered setpoint .

Intentionally, the subsequent treatment will be kept brief as the
question of NMPC without terminal constraints will be discussed

comprehensively in Part III using a dissipativity framework for
NMPC.

Replaced Terminal Constraints

We consider

. b +T
min / (x(t|ty), u(t|ty)) dT+ BVe(x(tx + Tltg))
u(-|ty) /g

subject to V7 € [t t + T) : (OCP(x(ty)))
d
) _ fx(elte) u(elhe)

x(ttx) = x(t)
x(tlt) € X, u(tlt) € U,

wherein in comparison to OCP;-g f(x(t;)) no terminal constraint is
present and the terminal penalty is multiplied by a positive scalar
B. Our standing Assumptions A1—-A3 are complemented by the
following ones:

Assumption (To replace terminal constraints by the end penalty).

Ag’ There exists By € Koo, such that V2(x) < Ba(||x||) forall x €
(09).

As Forsome y >0, let X¢, = {x € X | Vi(x) < v} and V; satisfy the
quasi infinite-horizon NMPC convergence conditions of Theorem 2
for specific values of 56 > 0,T > 0.

A6 The set QY is bounded and = 0 € int(QY).

Observe that the trick to shift coordi-
nates such that (%,i) = (0,0) does not
alleviate the need to compute/design
a specific terminal region X¢, which is
larger than {x}, for each considered
setpoint X. To see this, for example,
consider the ansatz that Xy is a level
set of V;. The underlying optimization
problem (16) clearly depends on the
distance of the setpoint pair (¥, i) to
the boundary of the constraints X and
U.

cl(X) = 09X U X denotes the closure
of the set X, and 0X denotes the
boundary of X.
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Assumption A4’ is a minor relaxation of A4 from before; indeed
A4’ is again a weak controllability condition. Moreover, in As
observe that the terminal set X; is constructed as a level set of the
terminal penalty V;. Hence if in the objective of OCPﬁ(x(tk)) a
lot of weight is put on Vi—i.e. the scalar f is sufficiently large—
then one should expect that the state at the end of the prediction
horizon x(t; + T|t) will be in X, without the terminal region being
explicitly stated in OCPﬁ(x(tk)).

To the end of verifying this intuitive insight, we draw upon the
NMPC scheme based on OCPY(x(t;)) with zero-terminal constraint
X¢ = {0} and V¢(x) = 0. Recall that V(x) is the associated optimal
value function of OCPY(x(t;)), and QY is the set of feasible initial
conditions, cf. (12). In this light, the first part of Assumption A6
can be expected to hold, because Q‘% is the set of states which can
be steered to x = 0 in time T. The second part of Assumption A6
will usually hold, as set-points on the boundary of Q% would imply
that even after convergence to the set-point a small disturbance can
render the optimization infeasible.

Theorem 4 (Convergence with Replaced Terminal Constraint).
Let Assumptions A1—-A3,A4’, A5, and A6 hold. Then, there exists
B € (0,c0), such that

* the NMPC scheme based on OCPﬁ(x(tk)) achieves

lim [|x(t)| = 0,

t—roc0

for (X), and
o the region of attraction contains QY.

Proof. Consider the optimal value function of OCPﬁ(x(tk)) , V{? (x),
as a candidate Lyapunov function. From the fact that any optimal
solution to OCPY(x(t;)) is feasible in OCP?(x(tk)) we have that

’

Agq
VE(x) < V2(x) < Ba(]x])for all x € Q.

From the fact that Vi(x) is positive semi-definite we obtain that for
all k € Ny we have

BVE(x™ (b + Tlte)) < Ballx” (b + Tti) |-

As Ba(||x]]) is a continuous function it will attain a finite maximum
on cl(QY), which is closed and boudned and hence compact. Thus
there exists g € (0,00) such that

*
[x* (5 + Tt <o
p
with 7 from Assumption As. In other words, one can choose a

finite value for B such that Vi(x*(t; + T|tx)) < < holds for all € IN.
In view of As this implies x*(f; + T|ty) € Xg,, i.e. the terminal

V(e (1 + Tly)) < P2

constraint is satisfied without being explicitly considered in the
proof. Finally, invoking Theorem 2 finishes the proof. O
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Observe that while the approach taken in the above theorem is
elegant, the verification of the conditions underlying still requires
to show that there exists a non-vanaishing value  such that Ag
holds. However, taking the consideration on the computation of
ellipsoidal terminal regions in the previous chapter into account,
it is easy to check that under mild assumptions the existence of
a finite value of § can be deduced without actually computing
Xf,, while a quadratic V¢ can be obtained via the algebraic Riccati
equation (ARE).

Other Approaches

The previous analysis has derived one approach to avoid the poten-
tially tedious computation of terminal regions for NMPC. As we
will see below, there also exist other approaches to avoid terminal
constraints. We brieftly comment on two of them.

Control Lyapunov Functions as Terminal Penalties

We first recall a standard generalization of Lyapunov functions to
systems with controls.

Definition 4. A local Control-Lyapunov Function (CLF) of the system
(X), relative to the considered equilibrium %, is a continuous-function

V : R"™ — R for which there is some neighborhood D of % such that the
following properties hold:

(i) V is proper at %, i.e., the set {x € R"~ | V(x) < 7y} is a compact subset
of D for each v small enough.

(ii) V : R™ — R is positive definite on D.

(iii) Forall X € D, x # X thereexists T > 0 and some control ii :
[0,7) — W C R™ such that the corresponding state trajectory
x(t) = x(t, %,14(-)) satisfies

V(x(t)) < V(%) forallt € [0,T) and V(x(1)) < V(%).
A function V : X — R is said to be a global CLF for (X) is (i) holds for
any v > 0, and (ii) and (iii) are satisfied with D = R"*.

The conceptual value of this concept is highlighted in the follow-
ing theorem.

Theorem 5 (3 CLF = asympt. reachability).

If there exists a local, respectively, global control-Lyapunov function V
for (X), relative to the considered equilibrium X, then the equilibrium X of
(X) is locally, respectively, globally asymptotically reachable.

The proof of this result can be found in*° from where the defi-
nition is taken. Observe that in order to check the conditions for
control-Lyapunov functions, especially (iii) above, one needs to
compute the trajectories x(t, %,i(-)), i.e. one needs to solve an ODE.

V is positive definite < V(%) = 0 and
V(x) > 0foreachx € D, x # *.

Definition 5 (Reachablity). A point
% € R™ is said to be globally reachable,
if for all x € R, there exists T €
RUooand i : [0,t) - U C R™
such that x(T,x, i) = X. If instead
lim;_se0 x(t, x, 1) = X, the point & € R™
is said to be asymptomatically reachable.
Finally, if the above conditions hold
only on e neighbourhood of X, the point
% € R™ is locally (asymptotically)
reachable.

* E.D. Sontag. Mathematical Control
Theory: Deterministic Finite Dimensional
Systems. Vol. 6. Springer, 1998, Chap.

5.7
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Recall that the pivotal advantages of Lyapunov functions for stabil-
ity analysis is that one does not need to solve any ODE in order to
show stability of an equilibrium of a dynamical system. Indeed, as
the classical result of Lemma 5 shows, it suffices to verify a differ-
ential inequality point-wise in the state space. In case of stability of
systems without control input this inequality reads VV f(x) < 0 for
all x € R"*. This reminder lends itself to the question of how one
can derive a similar differential inequality for systems with control
inputs.

Lemma 4 (Differential characterization of CLFs). Let V be a con-
tinuous function and suppose that on D C R"*, V is continuously
differentiable and satisfies item (i) and (ii) of Definition 4. Then, if for all
x € D, x # X, there exists a u € U C R"™ such that

vV f(x,u) <0 (17)

then V is a local CLE, i.e. it satisfies item (iii) of Definition 4. If the
condition holds with D = R"x, then V is a global CLF.

Proof. Choose an arbitrary ¥ € D, ¥ # % and any u € U such that
(17) holds. For small values if T > 0, the constant control ii(t) = u

is admissible. As V is of class C! we may choose ¥ small enough

such that dVix(t, %, () < Oforall t € [0, 7]. Hence we have

t
V(x(t, % (")) < V(x) for all t > 0. O

At this point, one may wonder how the concept of control-
Lyapunov functions relates to NMPC without terminal constraints.
Notice that the requirements for control-Lyapunov functions from
Definition 4 are satisfied by terminal penalties V; as per Theorem 2.
More importantly, any terminal penalty V; satisfying (5) will also
satisfy (17). This highlights two aspects:

* Indeed one may concisely summarize the requirements for termi-
nal penalties V; as them being local control-Lyapunov functions.
Of course one should not forget that the proof of Theorem 2
requires a decay of the terminal penalty which corresponds to
the considered stage cost ¢, cf. (5).

¢ If one imposes the terminal penalty V; to be a global control-
Lyapunov function (with sufficient decay properties), then one
can regard the entire state space IR"* as a suitable terminal
constraint. Hence, under such an assumption, there is no need
for any explicit terminal constraint.

Indeed the later point, i.e. imposing the terminal penalty V; to be
a (suitable) global control-Lyapunov function, has been considered

in the NMPC literature. The results of Jadbabaie and Hauser?! 2t A, Jadbabaie and J. Hauser. “On the
stability of receding horizon control

. . with a general terminal cost”. In: IEEE
to handle in such a setting as the geometry of a control-Lyapunov Trans. Automat. Contr. 50.5 (2005),

formalized this. However, note that state constraints are difficult

function might not be compatible with the geometry of the con- pp- 674-678.
straint set X. Moreover, it is in general not easy to find or to com-
pute control-Lyapunov functions, let alone global ones. We leave
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the formulation of sufficient stability conditions of NMPC based on
a global control-Lyapunov function used as terminal penalty as an
exercise for the reader.

Stability via Suboptimality Estimates

The two preceding sections have discussed how to avoid explicit ter-
minal constraints in the NMPC design. However, both approaches
rely on terminal penalties to ensure convergence and/or stabil-

ity. Yet, this does not answer the questions of whether terminal
penalties are necessary for convergence and stability?

Example 3 (Pitfall becomes motivation). We re-consider MPC based on
the LQ OCP from Examples 1 and 2, i.e.

. t+T 2 2
min [ (et I + () I de
u-lte)  Jt

subject to VT € [ty, ty + T]

dx(t|ty) 010 °
Tk: 0 0 1| x(t|te)+ 0] ult|te),
0 00 1

x(telte) = x(te)-

Figure 9 shows the simulation results for T = N - 6 with N € {16,64}.
As one can see, the performance of the controller increases with increasing
length of the prediction horizon. There is visible difference between the
results for T = 64 - 6 and the results of Example 2, which employ the

exact cost-to-go as end penalty. This fact is easily understood: using Notice that the solution of the alge-
exact cost-to-go as end penalty renders the MPC loop equivalent to an braic Riccati equation (ARE), which we
. ) . ) ) consider in Example 2 is only the exact
infinite-horizon optimal controller, while long horizons do not exactly cost-to-go if not constraints are active
reproduce the infinite-horizon feedback but enforce that MPC is a close over the entire infinite horizon.

approximation. This example motivates the analysis of how to choose the

prediction horizon in order to guarantee stability and performance.
Finally, observe that the example shows (as did Example 1) that neither

terminal constraints nor a terminal penalty are necessary for stability.

2.5 2 2 15

I !

“o 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60

K4 u\/\/\»— = 0{\/\, 2 UJ\ = U(\

-3
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
t t t t

@ T=16-0 (b) T=64-6

Figure 9: Closed-loop trajectories for
different horizons in Example 3.
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Subsequently, we shift the focus to MPC schemes without termi-
nal penalties or constraints. That is, we consider

t+T
min/ O(x(tlty), u(t|t)) dt
u(-|t) St

subject to VT € [ty t + T :
ST _ flx(rite), u(rin)
x(t|t) = x(tx)
x(tlty) € X, u(t|t) € U.

(OCPr(x(t)))

Notice that in the literature schemes without terminal constraints—

but including input and state constraints—are frequently called
unconstrained MPC schemes.??> Here, however, we do not use this
notion, as it could potentially be misleading.

We recall a stability result for such schemes which is based
on so-called suboptimality estimates. Recall that Ve from (2) de-
notes the infinite-horizon optimal value function corresponding to
OCPx(x(t)), i.e. with instantaneous recalculation. With slight abuse
of notation, let Vo now denote the value function for the counter-
part to OCP«(x(t)), wherein some non-vanashing sampling period
5 > 0is used. Moreover, let VMPC(x;) denote the closed-loop MPC
value function for some horizon T and the sampling period J, also
evaluated on an infinite (application/simulation) horizon, which we
defined in (7). Provided optimal solutions exist for all x € X, we
have

Veo(x) < VMPC(x) Vi € X.

Define

x = sup Veolx) (x)

xex VMPE(x)

and observe that, as long as Ve (x) < o0 on X, by optimality it fol-
lows that « € (0,1]. Note that « = 1 implies that the MPC scheme
delivers a performance equivalent to the infinite-horizon optimal
control, while « — 0 means absolute performance degradation of
the MPC scheme. Hence, we may write

aVMPC(x) < Vo (). (18)

Indeed the scalar « is called suboptimality estimate, as it compares
the infinite-horizon optimal performance to the one of the MPC
scheme.

Two questions are immediate:

¢ Can knowledge about a be exploited for stability analysis?
* How to estimate a for given OCPs?

We will first discuss the former point, before turning towards
the latter issue. To this end, we recall a soon to be classical result,
which has its roots in dynamic programming.>3

> M. Reble and F. Allgower. “Uncon-
strained Nonlinear Model Predictive
Control and Suboptimality Estimates
for Continuous-Time Systems”. In:
Proc. IFAC World Congress 2011, Mi-
lano, Italy, 28.08.-02.09.2011. 2011,

pp- 6733-6738; L. Griine. “Analysis
and design of unconstrained nonlinear
MPC schemes for finite and infinite
dimensional systems”. In: SIAM
Journal on Control and Optimization
48.2 (2009), pp. 1206-1228; Jadbabaie,
Yu, and Hauser, “Unconstrained
receding-horizon control of nonlinear
systems”.

Indeed, one can show that for the
nominal infinite-horizon MPC schemes
the feedback obtained with instan-
taneous feedback is equivalent to

the one obtained for non-vanishing
sampling periods § > 0. The reason is
that, independently of the considered
sampling period, once OCPe(x(t)) is
solved at k = 0, all subsequent optimal
solutions can be obtained from the re-
mainder pieces of (x*(-|tp), u*(:|to)), cf.
Bellman'’s Principle of Optimality. We
remark that the stability analysis from
Theorem 1 needs some adjustments, cf.
Corollary 2 below.

3 R. Bellman. “The theory of dynamic
programming”. In: Bulletin of the
American Mathematical Society 60.6

(1954), pp. 503-515.
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Theorem 6 (Relaxed dynamic programming inequality).
Consider OCPr(x(ty)) and let Assumptions A1-A3 hold and let
Vo (x0) < 00 on X. If, for all xy € X,

9
Vr(xo) ZVT(X*(5|tk))+0{/O C(x (lty) w (t]ty)) T (19)

with « € (0,1], then
aVeo (x9) < aVMPC(x0) < Vir(x0) < Vio(0). (20)

Proof. As mentioned before, feasibility of OCPr(x(t;)) and OCPe(x(t))
for all x € X gives Vo(x) < VMPC(x), hence we have aVio(xg) <
aVMPC(xq) for any & > 0.
Moreover, observe that Az—lower boundedness ¢(x,u) > a(||x —
%||)—implies Vr(x) > 0and Ve(x) > 0. As the truncation of
the infinite-horizon optimal pairs (x%,(+), u%(+)) to [0, T] is not
necessarily optimal in OCPr(x(t;)), we have that Vr(xg) < Ve (xp).
Now, consider x(6) = x*(J, xo; u*(-,x(6))) and let

x(k6) = 2% (6, x((k — 1)8); u* (-, x((k — 1)5))).

From (19) it follows that

6
Vr(x(ké)) = Vr(x((k+1)8) > /0 C(x* (tlti), w (t]ti)) dT

This gives

N
Y Vr(x(k8)) — Ve(x((k+1)8) > 2/ ©* (tlty), % (7)) d
k=0

Let xeo = limy_, x(k6). Then, in the limit for N — oo, we obtain
Vi(x0) — Vi(xe0) > & 2/ *(tlty), u* (t]ty)) dt = aVMPC (xp).

As we assumed Vi (xg) < 00 on X, we have Vi (xe) < Veo(xeo) < 0.
Moreover, Vo (Xo) < 0 combined with Az allows to conclude, via
Barbalat’s Lemma, that xe = limy_,q, x(kd) = 0. Hence Voo (x0) =0
and we arrive at Vr(xp) > aVMPC(xg). This concludes the proof.
O

The careful reader may have recognized that the inequalities (20)
provide an avenue for stability analysis. Recall that for the case of
instantaneous recalculation Theorem 1 has established asymptotic
stability with Vi as Lyapunov function. Hence a VMPC(xj) <
Vo (X0) suggests that stability can be shown without any terminal
constraint or penalty. This is formalized next. As a preparatory
step, we give the following corollary.

Corollary 2 (Asymptotic stability via OCPe(x(t)) for 6 > 0).

Consider OCPu (x(t)) with non-vanishing sampling period & > 0 and
suppose Assumptions A1-A3 hold. Let Ag be true for Voo (x) on some set
D C X and let OCPeo(x(t)) be feasible at k = 0. Then,
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* OCPx(x(t)) is recursively feasible,

* the NMPC scheme based on OCPs(x(t)) achieves local asymptotic
stability of (X) at x =0, and

* D C Xis in the region of attraction.

The proof of this result follows by combination of the main
steps from the proof of Theorem 1 (for recursive feasiblity and
convergence via Barbalat’s Lemma) with the one of Theorem 3 (for
the asymptotic stability statement). It is thus omitted.

Theorem 7 (Stability without terminal constraints and penalties).
Consider OCPr(x(ty)) and let Assumptions A1—A3 hold. Let A4 be true
for Vr(x) on some set D C X and let OCPr(x(ty)) be feasible for all
k € N.

If, for the choice of T and ¢, inequality (19) holds with « € (0,1], then

e the NMPC scheme based on OCPr(x(t)) achieves local asymptotic
stability of (X) at x =0, and

* D C Xis in the region of attraction.

Proof. Observe that (19) implies the decrease of V1 from one sam-
pling instant t; to f;; 1. Moreover, combined with the upper bound
on Vr(x) for all x € X, similar to Step 4 of the proof of Theorem 2,
we can conclude convergence of the closed loop (X) to x = 0 via
Barbalat’s Lemma. Finally, local asymptotic stability can be shown
as in the proof of Theorem 3. O

The previous result deserves a discussion. First of all, note that
in contrast to the all other stability/convergence results derived so
far, the last theorem imposes recursive feasibility as an assumption.

But it does not show it. Also notice that in situations with compact The turnpike-based analysis of Part
III will provide a handle to overcome

. L. . recursive feasibility assumptions
not expect that the region of attraction is the entire state space R"*. for problems with input and state

This is due to the fact that, already for linear unstable systems, at constraints.
a distance form the origin the unstable eigendynamics have larger

input constraints and without state constraints one can usually

effect on the system evolution than magnitude constrained inputs.

Moreover, we remark that in view of Theorem 6 suboptimality es-
timates a will usually depend on the chosen sampling period J and
on the horizon length T. This hints towards the most crucial issue
of Theorem 7: how does one compute suboptimality estimates?

Cost Controllability and Suboptimality Estimates

How to compute suboptimality estimate? To this end, we make the
following assumption.

Assumption 1 (Exponential cost controllability).
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Summary
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Basic Definitions and Well-known Results

Stability

Definition 6 (Class-K function). ® A scalar function o : Ry — Ry
is said to belong to class IC, if it is continuous, strictly increasing, and
a(0) = 0.

o «: Ry — Ry issaid to belong to class Ko, if & € K and if it is
radially unbounded, i.e. a(s) — oo as s — oo,

Definition 7 (Stability of equilibria). The system x = f(t,x) with
f(t,0) = 0 is said to be uniformly (locally) stable at x = 0, if for every
€ > 0 there exists an 6 = 6(e) > 0, which is independent from ty, such
that all solutions x(-, ty, xo) fulfill

lxol] <0 = ||x(t,to,x0)|| <€ forallt>ty>0.

If x = 0 is a uniformly stable equilibrium of x = f(t,x), and there
exists a positive constant ¢ = c(tg), and additionally the solutions fulfill
i)

tlim |x(t, to, x0)|| =0  forall ||xo] <c,
—00

ii) and for each 1 > O there exists T = T(1) > 0 such that

lx(t, to, x0)|| <n, forallt >ty+T(n), forall ||xo| <c,

then x = 0 is said to be uniformly (locally) asymptotically stable.

Lemma 5 (Lyapunov stability). Let B1, 82 € K, B3 € K, and the
system x = f(t,x) fulfills f(t,0) = 0. Consider some compact domain X
containing x = 0 in its interior, and a function V : R x X — R{ such
that

Bu(llxll) < Vit x) < Balllx])

%p %f(t,x) < —Ba(llxll)

holds for all t > 0 and all x € X. Then x = 0 is uniformly asymptotically
stable on X.

Lemma 6 (Leibniz). Let £ : R x R — R be differentiable on [t1,t5] x
(111, 2] with respect to y and continuous with respect to t and 1. Let
h: R — R be differentiable on 11, 2] with range in [t;, t7], i.e.,

h: [1/]1,172] — [fl,fz].

Khalil, Nonlinear Systems

D. Hinrichsen and A.]. Pritchard.
Mathematical Systems Theory I. Springer,
2005
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Then it holds that

d i) h(y) d
Sl 0(t, ) dt = ¢, (t,n)dt + £(h ~h(n).
dﬂ/o (t,7) /O y(t ) dt + £( (77),77)01,7 (1)



Bibliography

Bellman, R. “The theory of dynamic programming”. In: Bulletin of
the American Mathematical Society 60.6 (1954), pp- 503-515.

Bohm, C. “Predictive Control using Semi-definite Programming —
Efficient Approaches for Periodic Systems and Lur’e Systems”.
PhD thesis. Universitdt Stuttgart, 2010.

Bryson, A.E. and Y.-C. Ho. Applied Optimal Control. Ginn and Com-
pany, Waltham, Massachusetts, 1969.

Chachuat, B. Nonlinear and Dynamic Optimization: From Theory to
Practice. EPFL, 2009. URL: https://infoscience.epfl.ch/record/
111939/files/Chachuat_07(IC32).pdf.

Chen, H. and E. Allgower. “A quasi-infinite horizon nonlinear
model predictive control scheme with guaranteed stability”. In:
Automatica 34.10 (1998), pp. 1205-1217.

Findeisen, R. Nonlinear Model Predictive Control: A Sampled-Data
Feedback Perspective. Fortschr.-Ber. VDI Reihe 8 Nr. 1087. VDI
Verlag, Diisseldorf, 2006.

Fontes, F. “A General Framework to Design Stabilizing Nonlinear
Model Predictive Controllers”. In: Sys. Contr. Lett. 42.2 (2001),
Pp- 127-143.

Gerdts, M. Optimal control of ODEs and DAEs. Walter de Gruyter,
2011.

Griine, L. “Analysis and design of unconstrained nonlinear MPC
schemes for finite and infinite dimensional systems”. In: SIAM
Journal on Control and Optimization 48.2 (2009), pp. 1206—1228.

Griine, L. and J. Pannek. Nonlinear Model Predictive Control: The-
ory and Algorithms. 2nd Edition. Communication and Control
Engineering. Springer Verlag, 2017.

Hinrichsen, D. and A.]. Pritchard. Mathematical Systems Theory I.
Springer, 2005.

Jadbabaie, A. and ]J. Hauser. “On the stability of receding horizon
control with a general terminal cost”. In: IEEE Trans. Automat.
Contr. 50.5 (2005), pp. 674-678.

Jadbabaie, A.,J. Yu, and J. Hauser. “Unconstrained receding-
horizon control of nonlinear systems”. In: IEEE Trans. Automat.
Contr. 46.5 (2001), pp. 776-783.

Kalman, R.E. “Contributions to the theory of optimal control”. In:
Bol. Soc. Mat. Mexicana 5.2 (1960), pp. 102-119.

Keerthi, S.S. and E.G. Gilbert. “Optimal infinite-horizon feedback
laws for a general class of constrained discrete-time systems:


https://infoscience.epfl.ch/record/111939/files/Chachuat_07(IC32).pdf
https://infoscience.epfl.ch/record/111939/files/Chachuat_07(IC32).pdf

78 NONLINEAR MODEL PREDICTIVE CONTROL — THEORY AND APPLICATIONS

Stability and moving-horizon approximations”. In: Journal of
Optimization Theory and Applications 57.2 (1988), pp. 265-293.

Khalil, H.K. Nonlinear Systems. 3rd. Prentice Hall, New Jersey, 2002.

Kunkel, Peter and Oskar von dem Hagen. “Numerical solution of
infinite-horizon optimal-control problems”. In: Computational
Economics 16.3 (2000), pp. 189—205.

Lee, E.B. and L. Markus. Foundations of Optimal Control Theory. The
SIAM Series in Applied Mathematics. John Wiley & Sons New
York, London, Sydney, 1967.

Liberzon, D. Calculus of Variations and Optimal Control Theory: A
Concise Introduction. Princeton University Press, 2012.

Mayne, D.Q. and H. Michalska. “Receding horizon control of
nonlinear systems”. In: IEEE Trans. Automat. Contr. 35.7 (1990),
pp- 814-824.

Mayne, D.Q. et al. “Constrained model predictive control: Stability
and optimality”. In: Automatica 36.6 (2000), pp. 789-814.

Michalska, H. and R.B. Vinter. “Nonlinear stabilization using dis-
continuous moving-horizon control”. In: IMA Journal of Mathemat-
ical Control and Information 11.4 (1994), pp- 321—340.

Pesch, H.J. “Carathéodory’s royal road of the calculus of variations:
Missed exits to the maximum principle of optimal control the-
ory”. In: Numerical Algebra, Control & Optimization 3.1 (2013),
pp- 161-173.

Rawlings, ].B., D.Q. Mayne, and M. Diehl. Model Predictive Control:
Theory, Computation, and Design. Nob Hill Publishing, Madison,
WI, 2017.

Reble, M. and F. Allgéwer. “Unconstrained Nonlinear Model Predic-
tive Control and Suboptimality Estimates for Continuous-Time
Systems”. In: Proc. IFAC World Congress 2011, Milano, Italy, 28.08.-
02.09.2011. 2011, pp. 6733-6738.

Sontag, E.D. Mathematical Control Theory: Deterministic Finite Dimen-
sional Systems. Vol. 6. Springer, 1998.

Sussmann, H.J. and J.C. Willems. “300 years of optimal control:
from the brachystochrone to the maximum principle”. In: IEEE

Control Systems 17.3 (1997), pp. 32—44-



	I Optimal Control and Dissipativity — Connected on a Turnpike
	Getting Started with Optimal Control
	Necessary Conditions of Optimality
	Maximum Principle
	HJBE

	Dissipativity and Optimal Control
	Dissipation Inequalities in Systems and Control
	Dissipativity of OCPs
	Turnpike Properties


	II Predictive Control for Stabilization
	From Optimal Control to Predictive Control
	Problem Formulation
	Why bother about NMPC design?
	Infinite-Horizon NMPC

	NMPC with Terminal Constraints
	From Infinite to Finite Horizons in NMPC
	Quasi-Infinite Horizon NMPC
	Proof of Theorem 2
	Closing the Stability Gap
	Computation of Terminal Constraints and Penalties
	Summary

	NMPC without Terminal Constraints
	Replaced Terminal Constraints
	Other Approaches
	Summary

	Trajectory Tracking and Beyond
	Summary


	III Economic Model Predictive Control
	Towards Generic Stage Costs
	EMPC with Terminal Constraints
	EMPC without Terminal Constraints
	Bibliographic Notes


	IV Conclusions and Summary
	Comparison of NMPC Formulations
	Guidelines for NMPC Design
	What wasn't discussed
	Research Outlook


	V Appendices
	Basic Definitions and Well-known Results
	Stability



