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A new robust control design procedure based on a PE identification
uncertainty set

Xavier Bombois Gerard Scorletti
Dept. of Applied Physics LAP ISMRA, Caen, France
Delft University of Technology, The Netherlands
Email: X.J.A. Bombois@tnw.tudelft.nl

Brian Anderson
Australian National University, Canberra, Australia

Michel Gevers
CESAME, Universite Catholique de Louvain, Belgium

Paul Van den Hof
Dept. of Applied Physics, Delft University of Technology, The Netherlands

1 Abstract Ao) with all systems in{D, and thus in particular witl@o.
The choice of a particular controller within that class can
This paper is part of the wide-spread effort to connect time- then be made on the basis of additional considerations such
domain prediction error (PE) identification and robustness as lowest complexity.
theory. In the present paper, we propose a new and uniform
robust control design procedure which is based on the model

Gmod and the parametric uncertainty regi@ndelivered by New experiment design. Conversely, in the case where
PE identification and whose key step is a quality assessment the quality of{Gmoq D} is not judged satisfactory (the ro-
procedure of the identified paimod D} bustness test fails), we propose some guidelines (based on

the results of the robustness test) in order to perform a new
PE identification experiment providing a new pair “model-

The new robust control design procedure As just stated, uncertainty region” that is likely to be better tuned for robust

the key step of our new robust control design procedure is control design.

a method to check whether the identified pdinoq D} is

tuned for robust control design. This verification is based

on the analysis of the behaviour of a set of controllers

C(Gmod) over all systems in the uncertainty regiab.

This setC(Gmog) is defined as the set of all controllers

achieving a performance level g with the identified

model Gmog-  This performance levelAmog (Used for

control design with the nominal mod€ln,qg) is, as usually

done in model-based control, chosen slightly better than

the prescribed performance levah. By definition, the

controllers inC(Gmog) are therefore those that can result

from a controller design step based on the mad@glyg;

they are thus the only ones that are relevant in order to

establish the quality of the pajGmoq £D}. We then state

that an identified paif{Gmog D} is tuned for “robust

control design” if all controllers in the s&(Gmog) Which

achieve the performance lev&},oq With Gnog, achieve the

prescribed performancgg with all systems inD.

Determination of the robust controller C. In the case
where the identified pair has been termed tuned for robust
control design, all controllers i®(Gmog) are appropriate
robust controllers for the true syste@y since they are
guaranteed to achieve the prescribed performance level (i.e.

15
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Imposing positive realness in subspace models by using
regularization

Ivan Goethals, Tony Van Gestel, Paul Van Dooren
Johan Suykens, Bart De Moor UCL - CSAM
K.U.Leuven ESAT - SCD - SISTA Batiment Euler
Kasteelpark Arenberg 10, B-3001 Heverlee Avenue Georges Lemaitre 4,
{igoethal,vangeste,suykens, B1348 Louvain-la-Neuve
demooi@esat.kuleuven.ac.be vdooren@csam.ucl.ac.be
Abstract realness property is not satisfied. Furthermore, the problem

) o - ) of positive realness arises in many cases, especially when
with systems and models of the form circle [2]. In such cases, stochastic subspace identification
methods will fail to calculate correct error covariance matri-

Xk f éxk :r_ Wk 1) ces for state and output noise. The obtained model will also
Yoo = e Uk have no physical relevance and is therefore of limited use in
with practical applications.
wp t ot Q S In order to deal with the problem, we propose a regular-
E [ wy Vg ]) = 3 Spg=0 (2 — } "
vp R ization approach to impose positive realness on a formerly

identified deterministic subspace model that is conceptually
whereyi € R symbolizes the outputxc € R" the state, quite similar to the approach used in [3] to impose stability
andwx € R" andwvk € R' the state and output noise of  on subspace models. A numerically fast and reliable method
the system at time stdp In the last decade, so-called sub- s conceived using this approach. The performance is in gen-
space identification methods have been developed [1]. Typi- eral better or equal to that of already existing techniques.

cally in a first step, Kalman filter state sequenigs= 9"/ Furthermore the approach is found to be more reliable and
andX;;1 € ") of the system are estimated directly from  (gpyst.

input-output data using geometric operations. After the es-
timation of the state sequences the ‘deterministic’ model is
easily obtained. For instance, matrickeandC can be cal-

culated using simple least squares. Also available from the |yan Goethals is a research assistant with the FWO. Dr. Jo-
measurements and the Kalman states is the covariance se-han Suykens is an associate professor with the FWO. Our re-
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1 Background and problem formulation

The necessity of providing control-relevant models has be-
come well established in the field of system identification.
Acknowledging the approximate nature of any model, re-
search focussed on the tuning of the undermodelling error
towards improved nominal control design. The develop-
ments in robust control then urged the employment of un-
certainty bounds either for a robustness analysis of a nomi-
nal controller design or even directly for a robust controller
design [1, 2]. This trend is resulting in the perception that
system identification explicitly has to provide sets of mod-
els. The freedom in a system identification setup as exper-
imental conditions, the objects to be identified (e.g. plant
or Youla parameter) and the type of uncertainty structures
should be exploited to provide model sets most suited for
high performance controller design. A clear understanding
of the interaction between an uncertainty set and associated
achievable performance becomes most important.

Various uncertainty structures can be employed in describ-
ing a model set. Robust control provides robust stability
and performance results for linear fractional transformation
based structures as additive, (inverse) multiplicative and co-
prime uncertainty. The latter allows for more explicit results
in terms of a Youla parameter uncertainty, the gap metric and
the v-gap metric [6]. From an identification point of view a
parameter uncertainty structure follows naturally [1]. On the
other hand, dealing with undermodelling effects leads to ad-
ditive nonparametric bounds in the frequency domain [3, 4].
Here again the object to be identified (e.g. the plant directly,
its coprime factors or a closed-loop transfer function) further
determines the properties of the resulting model set. The
problem addressed here is what arguments can be formu-
lated justifying a particular choice of uncertainty structure
when identifying for robust control.

2 Observations

Consider linear time-invariant single-input-single-output
systems. A circular uncertainty region over a frequency grid
can exactly and explicitly be described in all of the afore-
mentioned uncertainty structures. All linear fractional trans-
formations of the uncertaint (wj) with |A(wj)| < yj can

be transformed into one another unconservatively. Clearly,
the nominal model and the uncertainty weighting function
will change and might require a more complex description.
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Ellipses or boxes do not retain their shape under these trans-
formations. Moreover, probability density functions change
under transformation [5].

Each uncertainty structure comes with a robust stability con-
dition formulated in terms of a nominal stability, a frequency
domain condition and a winding number condition (number
of unstable poles and zeros) on the plants in the uncertainy
set. When considering systems underlying the frequency do-
main uncertainty regions it is the last condition which poses
the differentiation amongst uncertainty structures. In fact,
during system identification an assumption on the stability
of the identified object or an assumption of a continuous pa-
rameter perturbation is required in order to form the system
sets.

While (worst-case) robust performance can be calculated,
more explicit relationships between an uncertainty and the
associated performance is required when tuning a system
identification experiment. Results based on the Youla pa-
rameter uncertainty and thegap in combination with a
loop-shaping procedure prove useful in this context [2, 6].
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1 Introduction

Combined Autoregressive Moving Average (ARMA) mod-

els can be used to characterize the statistical properties of
signals. Examples of applications are radar target detection,

speech coding and spectral analysis of climatologic data. In
most theoretical results on ARMA parameter estimation it

is assumed that the correct model order is know. In this

paper we examine what happens if this assumption is re-
jected. Then, the model structure has to be determined from
the data. This is typical for many practical situations, where

accurate knowledge about the model order is lacking.

2 Error measure

An error measure is used to establish the quality of an es-
timated model. It compares the estimated signal properties
(the pdf f) to the true signal properties (pdf). It cannot
be calculated in practice because then only the realisation
X={(X1 X XN ) of the stochastic signal is given,
instead of the pdf . The error of the model pdf with respect
to the true pdf will be expressed using the Kullback-Leibler
discrepancy KLDI . The Kullback-Leibler Index (KLI) is
given by

i(fﬁ f):Ef {—2|n fA(X)} 1)
whereE; {-} indicates the expectation over the probability

function f. The KLI is minimal for the true distribution.
The KLD is given by

|(f2f)=i(fﬂf)—i(f,f). @)
The KLD is zero for the true pdf. An accurate approxima-
tion in the frequency domain is the spectral distort®b

of the estimated power spectrumwith respect to the true
power spectrunh:

+

A (fﬁ f) ~ SD(ﬁ, h) - %/_

3 The Likelihood

N 2
(ln A(w)—Inh (a))) do.
3

T

The likelihoodL is defined as the probability density func-
tion of an estimated ARMA{,q/) model f for the realisa-
tion x from which the model has been estimated:

L (x; é) =nfx=Inf (x; é) . 4)
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An accurate approximation in the frequency domain is the
spectral distortion of the model spectrunwith respect to
the raw periodograrhpgr.
L(X;é)%SD(ﬁ,hpER>. (5)
The frequency domain approximations for the KLD (3) and

the likelihood (5) provide an illustration of the difference
between the error measure and the fit criterion.

The likelihood is used as a criterion to fit an ARMA model
to data in parameter estimation. The maximum likelihood is
denotel max.

The likelihood is also used in statistical order selection.
With order selection, a model order is selected from the data
as the model order where an order selection criterion is min-
imal. A well-known order selection criterion is the Akaike
Information Criterion AIC:

AIC = —2L max+ 2 (P’ + /) (6)

whereL max is the maximum likelihood.

4 Results

Simulation experiments show that the actual behavior of the
likelihood and the KLD for model orders greater than the
true model order deviates considerably from the asymptotic
predictions. Given this result we can revert to the original
question: Can data determine the best ARMA-model using
the likelihood?

Order selection is a critical factor in answering this ques-
tion. In the practical case where the optimal model order
is not known exactly, overcomplete models are also consid-
ered for selection. For these models the likelihood tends
to indicate that the model fits very well to the data. As a
result these models are often selected with order selection.
Unfortunately, the quality of overcomplete models is very
poor. Therefore, the resulting model is less accurate than
predicted by asymptotic theory. These result shows that the
behavior of ARMA estimators changes considerably if the
true model order is not known.
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Perspective observations arise naturaly in the study of
machine vision [1]. The observation via one or two
cameras consists of the perspective projection of points
in the 3-D scene onto the image plane. Thus, points in
3-D space are observed up to a homogeneous line. In
the study of machine vision, observing the position of a
moving object in the space by the image data with the
aid of a CCD camera has been studied in the past years.
A very typical method is the application of the extended
Kaman filter (EKF) [2]. It is well known that the EKF
may fail in some rea applications, and the algorithm is
very complicated. To overcome these difficulties, a
very simple method is proposed by the authors in [4]
recently.

Another important topic in the study of machine vision
is the identification of the motion parameters by using
the observed image data. This problem has received
minor attention except the results in [3], where the EKF
is applied to the identification problems for the time
invariant motion parameters.

In this paper, we consider the position and the
parameter estimation problem for a class of movements
by using the perspective observation, where the
parameters are dl timevarying. The formulated
problem can be converted into the observation of a
dynamical system with nonlinearities. The algorithm
proposed by the authors in [4] is extended to identify

this class of nonlinear system. First, the parameters
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relating to the rotation of the motion are identified,
where the perspective observation obtained by only one
camera is needed. Then the position of the moving
object isidentified, where the stereo vision is necessary.
In the third step, the parameters relating to the straight
movement are identified. The estimation errors of the
position and the motion parameters are guaranteed to
decrease exponentialy until they become very small.
Further, the ultimate estimation errors are controlled by
the design parameters. The proposed algorithm is very
simple and easy to be implemented. It is considered that
the new observer can cope with a large class of
practical perspective systems. Simulation results show
that the new method is very effective.
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1 Introduction space. The vectan(q) describes the direction of the desired

o ) . curve at point.
Many robot applications demand a robot to interact with an

environment that is not exactly known beforehand. In these
situations, the controller should be careful not to make the

robot unstable, i.e. keep its kinetic energy bounded. We want to obtain a controller that makes the robot move
along the curves defined hy (first constraint), while the
change in kinetic energy is determined by the potential field
(second constraint).

3 Control Law

One way to accomplish this is to use a form of impedance
control (introduced by Hogan [1]): the control torques are
taken equal to the gradient of an (artificial) potential field
with the minimum at the desired position. Thus, the con-  The first constraint results in a desired acceleratignif a
troller mimics a spring connected between the robot and the gjirection perpendicular to the current velocity, i.e.
desired position. The kinetic energy of the robot is deter-
mined by the potential field, and if this field has a global ((Vga) a- q)g =0 )
minimum, the kinetic energy is bounded.

with the inner product, -)g defined by the metric. The sec-

However, if we ‘release’ the robot in the potential field, cori-  onq constraint results in a desired acceleratiBy ip the
olis and centrifugal forces cause it to oscillate around the game direction as the current velocity, i.e.

minimum in a seemingly chaotic way. We want to improve
this behavior, such that the robot oscillates along a prede- (qu)B =a( 3
fined curve instead of on the whole potential field. A&

want to keep the nice passivity properties of the impedance With « @ real number depending on the current state. The
controller, though, so we look for power-continuous (i.e. total controller is just the sum of these two parts. Additional

energy-conserving) extensions of the potential field. terms can be added to be able to recover from disturbances
or to add collinear damping.

2 Mathematical Framework The resulting controller can be easily explained by the con-
trol of a simple system like a point mass moving in the plane:
‘we can change its direction by applying a force perpendic-
ular to the current velocity (similar to Equation 2), and we
can independently change its speed by applying a force in
the same direction as the current velocity (similar to Equa-
tion 3).

In order to have all results be coordinate-independent (and,
as a pleasant side-effect, keep the equations short and read
able), we use the mathematical framework of differential ge-
ometry [2] to describe the dynamics of the robot as well as
the controller.

We use coordinatesand velocities) to describe the current
state (configuration and velocity) of the robot. We can then
describe the dynamics of a robot as

In the presentation, we derive the actual control law and
show some simulation results.

Veg =91t 1) References

where V44 is the covariant directional derivative that de- 1] N. I-!,ogan, “Impedance control: An approach to ma-
scribes the ‘acceleratiorgis the metric (inertia tensor), and ~ Nipulation” Journal of Dynamical Systems, Measurement
¢ are the control torques (one motor per joint). In this way, and Control 107(1)pp. 1-24, 198S.

we can relate the necessary control torques in a one-to-one [2] M. Spivak, A Comprehensive Introduction to Differ-
way to the desired accelerations. ential GeometryBerkeley: Publish or Perish, second edi-

tion, 1979.
We describe the desired curves using a vector fieiid joint
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Abstract

Flexible effects in robotic systems are under permanent
study for the last two decades [1]-[5]. They became espe-
cially important after recognizing that the use of lightweight
materials for robot construction may enable faster robot mo-
tions with the same actuators applied. Lightweight materi-
als are used to improve efficiency in task execution and re-
duce power consumption. However, commonly these mate-
rials have low rigidity, that is, they bend during faster move-
ments. The bending leads to vibrations at the robot tip that
reduce the accuracy of trajectory tracking.

We propose a control concept that compensates for vibra-
tions at the robot tip caused by structural flexibility. It is ap-
plicable to general spatial robot configurations. The number
of translational and rotational directions along which reduc-
tion of vibrations is possible equals the number of degrees-
of-freedom. This method requires knowledge of the robot
dynamics including flexibilities [5], and the use of additional
sensors for detecting vibrations. We explain how to extract
vibration information from sensor outputs. This informa-
tion is used for identification of elastodynamics and for ro-
bust compensation of tip vibrations using feedback control.
Elastodynamics enters the rigid-body dynamic model as a
description of dynamic interaction between the end-effector
and environment [5]. The combined model enables regula-
tion of tip vibrations directly in the coordinate frame where

the vibrations are measured. Accelerometers attached at the [5]

tip of the robot are used as vibration sensors.

This control concept is experimentally verified on a spatial
RRR type of robot system [6]. The last link of the consid-
ered RRR robot is a slender beam. It is a dominant source
of flexibility. Its elasticity causes profound vibrations at the
tip. Angular oscillations do not arise. The rigid-body dy-
namics [7] of the RRR robot is derived in closed-form and
identified with sufficient accuracy [8]. Elastodynamics is
identified along each direction of tip movements using white
noise excitations. To achieve attenuation of tip vibrations
during commanded tip motions, we propose a robot control
system having two complementary sub-systems: a nominal
motion controller and a vibration compensator. The former
one realizes joint motions in accordance with a prescribed
tip trajectory. The latter one reduces oscillations at the tip.
In our experiments we utilize a proportional-derivative feed-
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back motion controller in addition to the feedforward com-
ponent realized using the rigid-body dynamic model. For
vibration compensation, ansregulator [9] was used. Its
practical usability and robust performance are experimen-
tally verified.

The key contributions of the suggested control method are:
(i) time-efficient identification of elastic effects that are ap-
pended to the model of rigid-body dynamics, (ii) use of the
resulting non-linear dynamic model to simplify the problem
of vibration compensation to an ordinary regulation prob-
lem, solvable using a well-developed linear theory, and (iii)
robust compensation of tip vibrations.
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Abstract

Several authors proved that PD controlled positioning
systems with single rigid joint and Coulomb friction
cannot exhibit limit cycling [1]. This paper shows that if
we take the joint flexibility into account the PD controlled
positioning system can exhibit both stick-slip limit cycles
and non-stick-slip limit cycles even though the PD
controller parameters are tuned to locally stabilize the set
point. The occurrence of limit cycles is caused by the
interaction between Coulomb friction and flexibility in the
closed loop system.

The shooting method and describing function method
allow us to predict coexistence of a stable and an unstable
limit cycles of the controlled system. The shooting
method finds a limit cycle by solving a two-point
boundary value problem iteratively. The stability analysis
of limit cycles is done via fundamental solution matrix,
which is obtained from a sensitivity analysis that is
incorporated in the shooting method such that the stability
of the computed limit cycle can be determined directly.

We combine the shooting method with a path following
technique to trace branches of stable limit cycles and
unstable limit cycles in order to get a bifurcation diagram
of those limit cycles. The computed bifurcation diagram
shows that the branch of stable limit cycles and the branch
of unstable limit cycles collide and disappear at a certain
gain value of the PD controller. This type of bifurcation of
limit cycles is called fold bifurcation. The location of the
fold bifurcation gives a guideline to tune the controller
gain such that the controlled system does not exhibit limit
cycling.

The flexible joint, which is depicted in Figure 1, is
modeled by a spring with the stiffness K and a damper
with the damping factor D that connect the link with the

inertia J, to the driving motor with the inertia J, [2].
The frictional torque 7, , which consists of viscous and

Coulomb frictions, counteracts the applied torque 7, ,

which is produced by the PD controller.
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o

Figure 1 A model of flexible joints

Feedback signals to the PD controller are position and
velocity of the link. We choose this controlled
configuration because the objective is to control the
position of the link without a necessity of an observer and
to focus on the effect of interaction between friction and
flexibility in the closed loop system.  Moreover,
Bonsignore et. al. [2] showed that output feedback
controlled of such positioning systems exhibit limit
cycling for some sets of pole placement. The Coulomb
friction is given by

Fsign(s,)  if %, #0
To = T, if x,=0and [ |<F,
F sign(t,) otherwise

where Fc is the Coulomb friction level, )'Cm is the motor

velocity, and T, is the sum of the controller and potential

spring torques, which are acting on the motor.
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Introduction

The objective of this work is the design of a feedback con-
trol system for the laser welding process, which is able to
control the penetration depth of the weld. Firstly the pos-
sihilities to control the penetration depth of a weld when
only partial penetration is demanded, for instancein the case
of overlap configurations, will be discussed. Furthermore a
controller which is able to guarantee full penetration will be
introduced. Full penetration is an important quality in the
production of Tailor Welded Blanks.

Experimental set-up
Optica signals emitted from the weld pool area are used
as an indication of the status of the welding process, see
figure 1. With four, co-axially placed, sensorsit is possible
to detect the transition from afully to a partially penetrated
weld in the thin mild steel sheets used. Also during partia
penetration welding it is possible to relate the sensor signa
strength with the penetration depth of the weld, seefigure 2.

HAAS 2006d
Nd:YAG laser

Figure 1: The experimental set-up.

System | dentification

Detailed knowledge of the dynamic behaviour of the sys-
tem is essential when designing a feedback control system.
With the use of system identification dynamical models of
the laser and the welding process (including sensor dynam-
ics) have been obtained, in both afully as well as in a par-
tially penetrating parameter region.

Feedback control

Two feedback systemswill be discussed. Thefirst controller
has been designed based on the identified dynamic model
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Figure2: Weldwatcher sensor signal versus|aser power at a speed
of 100 mm/s. Typical weld cross-sections are included.

of the process. With this system the penetration depth in
an overlap weld is controlled [1]. The objective here was
to make a weld without penetrating the bottom plate. The
system has been tested by varying the welding speed. In
figure 3 an example of an experiment using this feedback is
shown.

Watt Laser Power
1300 T T T T

1100 b
900 | )

700

35 40 45 50 55 60

35 40 45 50 55 60 mm
|<— speed 100 mm/s —)l% speed 60 mm/s Hl

Figure 3: Longitudina section of a controlled overlap welding
experiment and the corresponding laser power.

A second kind of feedback was developed to maintain full
penetration, based on a threshold condition indicating the
difference between partial and full penetration. This con-
troller is able to maintain full penetration near the edge be-
tween partial penetration, using the minimum laser power
required for full penetration at a certain welding speed.
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Abstract vibration of the rest of the structure is not significantly at-
tenuated. At least three actuators are necessary to get the

. . , expected performance.
This paper concerns the design of an active control system

for a hot-dip galvanizing line. The control system aims at
reducing the vibrations of the steel strip in order to improve References
the quality of the product. [1] A. Preumont.Vibration Control of Active Structures

. _ . _ _ Kluwer Academic, 1997.
The mechanical structure is quite flexible and many vibra- [2] W. K. Gawronski.Dynamics and Control of Struc-
tion modes need to be controlled. The actuators and the sen- ;

. . > tures Springer, 1998.

sors are collocated and the control law is a direct velocity S ) )
feedback [1], which doesn't require any model of the plant. [3] M. Géradin and A. Cardonélexible Multibody Dy-
This control law adds damping on all the vibration modes hamics : A Finite Element Approacohn Wiley & Son,
and it guarantees the stability of the system. 1997.

The position of the actuators is chosen to maximize the con-
trollability and the observability [2]. The relevance of this
strategy is discussed.

The natural frequencies of the mechanical system are eval-
uated using the Finite Element Method. In this particular
example, it was found that the frequencies of the flexion vi-
bration modes almost match the frequencies of the torsion
modes. The corresponding pole/zero pattern leads to very
small root loci where the damping increment is strongly lim-
ited.

A simulation of the closed loop system is required to evalu-
ate the performance of the active control and to choose the
feedback gain. The time-domain evolution of the mechani-
cal structure is computed using the Finite Element Method
and an implicit integration scheme, as described in [3]. As-
suming that the control system is digital and neglecting the
dynamics of the actuators, the control system is introduced
into the mechanical simulation as a users’ routine called
at each sampling time of the digital controller. This quite
general approach allows to deal with nonlinear effects ei-
ther in the mechanical structure or in the control system,
what opens new perspectives in integrated simulation of
controlled flexible mechanisms.

The simulation shows that a single actuator is not able to

control the whole steel strip. Even if the gain increases,
the controlled point becomes quickly a fixed point, and the
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1 Abstract

The aim of this study is to optimize the production of an
allergen (pro-Derpl) produced from CHO-K1 cell cultures.
In order to achieve this optimization, a model of batch cell
cultures in a two liter tank reactor is identified in a three
step procedure. In a first step, all the identifiable reaction
schemes are generated [1]. In the next step, the pseudo-
steechiometric coefficients of each scheme are identified. Fi-
nally, the kinetic coefficients are identified from the best re-
action scheme [2]. The identification procedure is made on
the basis of a set of three experiments that can be distin-
guished according to their initial concentration in glucose,
the dissolved oxygen setpoint and the stirrer speed setpoints.
A fourth experiment is used in order to submit the model to
a cross validation test. Since the validations tests lead to
very satisfactory results, the model is used to determine the
optimal experimental condition. In this algorithm, the op-
timization criterion is the final concentration in pro-Derpl
and the optimization variables are the initial concentration in
glucose and glutamate and the dissolved oxygen and stirrer
speed setpoint. In order to remain within a realistic domain
of experimental conditions, the cost function minimization
is submitted to constraints on each optimization variable.
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1 Abstract

One-dimensional models for describing the secondary
settler in activated sludge wastewater treatment are im-
portant with respect to process control and optimization.
The usual starting point for one-dimensional modelling of
the dynamics of settlers is the solids flux theory of Kynch
(1952) [3], which assumes that the settling process can be
determined entirely by a continuity equation. The theory
can be made operational in computer programs by splitting
up the secondary settler into horizontal layers of equal
height, and by discretizing the continuity equation on these
layers. A major problem of the flux theory is the fact that
the continuity equation predicts a constant concentration
profile to occur in the settler at steady state, which is in
contradiction with experimental observations. Several
models have been proposed that overcome this difficulty.
Today, the model published by Taéset al. (1991) [5] is
widely used [1, 4].

In this contribution, the model of Takset al. is thoroughly
studied at the simulation level. Simulations have been
performed to analyze the dynamic behavior of the concen-
tration profile and to examine the influence on the steady
state concentration profile of) (the loading characteristics
(influent concentration and flow rate), ant) the number

of layers considered in the settler.

Simulating the model of Talcset al. (1991) with different
values of the feed concentration and the influent flow rate
shows that at a low influent flux, the amount of solids trans-
ported to the effluent is negligible. woderateincrease of
the influent solids flux induces a higher steady state con-
centration in the underflow, while the effluent concentration
remains unaffected. However, a large influent flux increase
overloads the settler, resulting in an non-negligible steady
state effluent concentration (after breakthrough of the inlet
layer).

Simulations for different values ofi reveals a major
shortcoming of this model, namely, the inconsistency of
the predictions with respect to the number of layers. This
results in an identification problem: the parameter values
need adjustment each time the resolution of the model is
changed. The model of Hamiltogt al. (1992) [2] is put
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forward as an alternative, because of its ability to describe a
non-constant concentration profile on which the number of
layers only has a resolution effect.
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1 Introduction

The purpose of metabolic modeling is, in the first place, to
understand the in vivo kinetics of the metabolism of a
(micro) organism, and in the second place, to possibly
reprogram this metabolism. The models often describe the
metabolism under the assumption that the amount of
enzymes remains constant, e.g. [1]. Both to reveal the
metabolism and to verify the metabolic models, pulse
experiments are conducted to a steady state culture of the
particular organism. In order to be able to neglect the
biosynthesis of new enzymes, the data should be collected
within a time window of a few minutes after the pulse.
This motivates the development of rapid sampling
techniques for analyzing the dynamics of the different intra
and extra cellular metabolites in this time window, e.g. [2].
Besides, often measurements are available of the oxygen
(O,) and carbon dioxide (CO,) concentrations in the off-
gas of a fermenter, measured by a gas analyzer, and of the
dissolved oxygen (DO) concentration in the fermentation
broth.

The latter measurements can be used to reconstruct the
dynamics of the oxygen uptake rate (OUR) and carbon
dioxide evolution rate (CER) after the pulse [3], and in turn
can be used to analyze the metabolism and to verify the
metabolic models. To reconstruct the OUR and CER first a
model is required that describes the dynamic relation
between the OUR and CER (the inputs of the model) and
the measured quantities provided by the gas analyzer and
the DO sensor (the outputs of the model). Using this oft-
gas model, the OUR and CER can be reconstructed from
the data (collected during the pulse experiment) by using
estimation techniques.

2 Modeling

The OUR and CER cannot be directly manipulated or
measured. However, in order to retrieve information about
the off-gas subsystem of a fermenter, the O, and CO,
concentrations of the gas feed can be varied in an
identification experiment. In [3] a black-box modeling
approach has been adopted. Alternatively, this research
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considers a white-box modeling approach. The white-box
modeling approach has several benefits:

1. for the identification of the model parameters the
restriction that only the O, and CO,
concentrations of the gas feed can be varied
requires no approximation.

2. it is easy to incorporate the nonlinearity into the
model that is due to a net gas production or
consumption during the pulse experiment.

3 Estimation

Given an accurate model of the off-gas system, the OUR
and CER can be reconstructed from measurements of the
0, and CO, concentrations in the off-gas and the DO
concentration. In this research the OUR and CER are
modeled as integrated white noise. By augmenting the
model of the off-gas system with these integrators, OUR
and CER can be recovered by using Kalman filtering. It
can be demonstrated that the influence of the nonlinearity
of the model (due to a net gas production or consumption)
on the estimate of the OUR, is significant. The measured
responses of the outputs can be tracked accurately using
Extended Kalman filtering for the nonlinear white-box
model. In this way the dynamics of the OUR and CER, that
are states of the augmented model, can be reconstructed
accurately.
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Nitrogen removal is an important step in the treatment
of municipal wastewater. Over the past several years,
biofilter systems have received considerable attention;
see for instance the conference proceedings and journals
of the International Water Association (IWA) (e.g. [4].
The main advantages of these wastewater treatment
systems are their ease of use, compactness, efficiency,
and low energy consumption. New biofilters including
dual-column systems have recently been proposed to
achieve pretreatment, nitrogen and/or phosphorus re-
moval [3, 5].

Based on experimental data collected from a pilot-scale
fixed-bed biofilter, the objective of this work is to de-
velop and validate a dynamic model, which allows the
evolution of the several component concentration pro-
files to be reproduced. This model can be used for sim-
ulation purposes (e.g. for system analysis and design)
or as a basis for the development of a software sensor
(which can be used to estimate unmeasured variables
on-line).

The modeling task involves the selection of appropriate
reaction scheme and kinetics and the derivation of mass
balance partial differential equations (PDEs). The un-
known model parameters are estimated by minimizing
an ad-hoc error criterion measuring the deviation be-
tween the experimental signals and the model predic-
tion. Particular attention is paid to the assumptions on
the measurement errors, and the corresponding formu-
lation of an error criterion.

Actually, this work builds upon a previous modeling
study reported in [1, 2], which was carried out using the
same pilot plant. However, this study was based on the
assumption that steady state operations were achieved
after a few hours, which is not in agreement with exper-
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imental observations (in fact, the biofilter experiences
very long transient phases due to the variations in the
input flow rate and concentrations). As a consequence,
the parameter estimation problem was not properly for-
mulated, leading to severe model inaccuracies. Here, a
new model structure is proposed, and a criterion tak-
ing into account the measurement errors is minimized
to estimate the unknown model parameters and initial
conditions.
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1 Abstract

Mathematical modelling of bioprocesses can be based on

is not known. For that reason, the not completely known
Emskare usually rejected.

mass balances at a macroscopic reaction scheme level. ThisHowever these not completely knovémsk do contain in-

paper deals with the use of incomplete data in the exper-
imental identification of the pseudo-stoichiometric coeffi-
cient matrix. Data are made of measured component con-
centrations obtained at different times in different culture

formation relative to the pseudo-stoichiometry. The present
paper proposes a method to use this information anyway.
Instead of an unique matrigg, different matricesGsi are

used. They are still solutions of eq. (3) but their rows corre-

experiments. Incomplete data correspond to measurement sponding to the missing componentsgfkare zero, which

times for which some component concentrations are not
available.

A reaction scheme [1], involving\ components, is of the

form

D (—viwE = > vikE]

ieR« jePx
for k = 1,...M where M is the number of reactiong;
thei-th componentgy the reaction ratey; x andvj k the
pseudo-stoichiometric (yield) coefficients ¢ < 0 if & is
consumed in reactiok andvj x > 0 if & is produced in
reactionk), Ry the set of indices of the components which
are reactants (or catalysts) in reactioand Py the set of in-
dices of the components which are products (or catalysts or
autocatalysts) in reactidn The mass balance is written as

)

where & e %N is the vector of concentration¥ e
nN*M s the pseudo-stoichiometric coefficient matrix &
M), ¢ € %M is the vector of reaction rate§ e % is the
dilution rate ancu € %N is the vector of the net flow rates
(incoming minus outgoing).

1)

di(t)/dt = Ke(§, t) — D) + u(t)

It is possible to identifyK independently of the knowledge
of . Let G be a matrix such that
G'K=0 (3)
By multiplying the mass balance B$" a ¢—independent
differential equation is obtained. Its analytical solution is
easily calculated and this allows one to identifyusing a
maximum likelihood method [3]. The identifiel is the
one that minimizes a cost functidnwhere the experimental
dataémsk appear.émsk is thek-th measured point in the
th culture experiment. Eachnsk appears inL combined
with G in the productGémsk. This product is generally
impossible to calculate if each of tit components ofmsk
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allows the calculation of thélkgmsk. The matrice$sgk are
computed by performing a singular values decomposition of
a suitable matrix deduced frok.

A four component case study has been presented by Bo-
gaerts and Vande Wouwer [2]. They simulated the growth
of a biomassX on two substrate§; andS, with production

of a productP. Details are given in [2]. The simulation re-
sults, corrupted by noise, were used as pseudo-experimental
results in order to test their method of systematic generation
of reaction schemes [2]. In the cabk = 2 reactions, six
reaction schemes were obtained.

These pseudo-experimental results were modified by sup-
pressing one of the 4 measurements in each of the pseudo-
experimental points: in a quarter of the points, the data rel-
ative to X were suppressed, in a second quarter those rela-
tive to S; were suppressed, and so on. These modified re-
sults were used to perform systematic generation of reaction
schemes. The six schemes obtained were remarkably simi-
lar to the ones obtained using the complete data.
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1 Introduction

As scientists manage to control the structure of materials
on an ever-finer scale, more and more materials are being
developed with interesting properties, which are mainly
related to their nanostructure. In paralel, one sees an
evolution in solid-state theory where materials properties
are increasingly better understood from first principles
theoretical calculations. The merging of these fields will
enable materials science to evolve into materials design
[1], that is, from describing and understanding towards
predicting of materials properties. If thisevolution isto be
continued, it is imperative that the characterization
techniques keep pace. In order to correlate real properties
with theoretical simulations, characterization methods in
the future need to be able to determine atom positions in
aperiodic structureswith aprecision of the order of 0.01A.

2 Method

In principle, high-resolution electron microscopy (HREM)
is the most appropriate technique to provide the required
precision, in spite of the fact that the resolution of modern
electron microscopes does not exceed 1 A. Oneisinclined
to think that a precision of 0.01 A requires aresolution of
0.01 A, which is far beyond the present possibilities.
However, precision and resolution are different things. It
should be realized that it is precise measurement of the
structure parameters of the specimen under study that one
is interested in, and not the HREM images as such.
Therefore, the el ectron microscope should beregarded asa
measurement system and not as a pure imaging instrument.
Extraction of structure information from (noisy) HREM

images can then be formulated as a parameter estimation
problem. For this purpose, a physical modd is required

describing the electron object interaction, the transfer in
the microscope, aswell as theimage detection. This model
contains unknown parameters characterizing the structure
of the object, such as the positions of the atom columns.

These parameters are estimated by fitting the model to the
experimentally obtained images using a criterion of
goodness of fit. This is usually a non-linear optimisation
problem, since most structure parameters enter the model
non-linearly.

3 Precision and experimental design: recent results

The attainable precision may be further increased if
guantitative structure determination is accompanied by
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statistical experimental design. Use of the concept of
Fisher information allows one to derive an expression for
the highest precision with which structure parameters can
be estimated unbiasedly from a set of observations (i.e.,
image pixel values) assumed to obey a certain statistical
distribution [2]. This expression can be used to evaluate
the sensitivity of the precision to severa adjustable
experimental parameters. The optimum design of an
HREM experiment is found in the sense of the experiment
producing the highest attainable precision. Clearly, the
availability of an expression for the attainable precision
dlows quantitative evauation and comparison of
microscopic settings and new instrumental developments.
Toillustrate this principle, suppose that the microscopeis
ableto visualize an atom (or an atom column in projection)
and that d is the width of the image of the atom, i.e,, the
‘resolution’ in the sense of Lord Rayleigh. The thus
defined resolution will depend on both object parameters,
such as the weight of the column, and microscope
parameters, such as defocus, and spherical aberration
congtant. Then it can be shown that the highest attainable
precision (i.e., the lowest standard deviation) with which
the Bosition of the atom can be estimated is of the order of
d/N"?, with N the total number of (detected) electron
counts forming the image of the atom. It is now clear that
if one wants to optimise the design of an HREM
experiment in terms of precision, it is not only the
resolution that matters but also the electron dose. For
example, it turns out that although the incorporation of a
monochromator in a transmission electron microscope
(TEM) does improve the resolution, it usually doesn't pay
off in terms of precision, since the improvement of
resolution is accompanied by aloss of electrons and thus
signal-to-noise ratio [3]. Another result is the finding that
although the correction of the spherical aberration in a
TEM improves the resolution, it does not generally result
in ahigher precision [4].
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Abstract

The purpose of a hot finishing mill is to turn reheated
sted dabs into strips which have the required thickness
as constant as posshle. Several pases of rolling are
exeauted by tandem rolling with six or seven stands.
Between ead stand a motor driven looper is used to
keep the dtrip tension at the reference The looper fulfils
an important role in tension control : it can absorb the
excess amount of stored strip by adjusting the loop
length of the strip between the stands. Tension and
looper control is the key of successful operations in hot
strip mill. Proper positioning of the looper is aso
important for stable operations, so the problem is
simultaneous control of the looper position and the
interstand tension.

In this ledure, a complete modelling of the processis
presented. The modelling is applied to the Carlam hot
strip mill of the sted maker Usinor (Charleroi, Belgium).
Processng industrial data show the presence of strong
nonlineaities (friction phenomenon, ...). Friction and
espedally static friction can severely limit the
performance in terms of increasing tracking errors and
the occurrence of limit cycle. In that way, a simple
model of the friction charaderistic is proposed and a
method to identify the model parameters during fast
industrial experiments has been developed on the basis
of hysteresis cycle. The results show the importance of
static friction levels.
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1 Constructing a model wi # wj, Vi, j € {1,..., N}, this behaviour is called in-
) . o coherent. Anincoherent motioris defined as follows: all
Nowadays a lot of interest in Systems Theory is directed phase difference — 6, i # j are unbounded. IK # 0
to problems in which separate systems are coupled to each the cells start to mutually influence each other. As long as

other. We put some restrictions on the networks/populations  this coupling strength is smaller than a threshold vaiye
that we want to investigate [1]. The term “cell” is used  the cells act incoherently.

to indicate an indivisible subsystem of the network. We
only consider networks where each cell interacts with all For K between the valu& p and some valu&, one can
the other cells. The coupling is assumed to be uniform, i.e. discern a partially synchronizing of the population. A net-
between every pair of cells the interaction is of the same work of cells exhibitgartial synchronizationvhen between
type and has the same strength. Each cell of the network at least two cells of the network the phase difference has a
is assumed to be stable limit cycle oscillatar This means lower and an upper bound. Those cells are said to entrain
that each cell executes a periodic behaviour with a standard each other.
waveform to which it returns after small perturbations. The
interaction between separate cells is assumed to be weak in If the parameteK exceeds the threshold valée, the sys-
order to ensure that each cell keeps moving on its limit cycle, tem starts to exhibifull synchronizationfor all timet > T,
without this cycle getting deformed. Therefore we assume for someT > 0. Full synchronization of the network means
that the state dynamics that the phase difference between every two cells of the net-
work is constant in time.
x = fi (x), xeR", fi:R"—> R"
) If K increases further, the constant phase differences be-
of each cell reduces to a “phase dynamics” come smaller. IfK — oo, the phase differences tend to
6= hesl weR zero and all the cells possess the same phasg. For a network
’ ’ ’ of three cells, one can calculate the valu&gfwith the aid

with i indicating the index of the cell. When the limit cycle ~ ©f bifurcation theory and in principle this can be done for
is parametrized properly i@, w; is constant in time. This any number of cells.

constantw; is called the natural frequency of theh cell.

The only difference between the cells of the population is 3 Relation to the literature

the difference in natural frequency.
Our results can be compared to existing results in the lit-

The system equations of a population consistingNagells erature. In [2], an analytical expression is obtained for a
are threshold valueKc between incoherence and partial syn-
N chronization. From our detailed model we realize that such
: K : . a bifurcation indeed exists, but we do not have an analytical
%=oityg Xism(ej —6), I=1--.N result. On the other hand, we can prove the existence of a
J:

bifurcation valueKt between partial and full synchroniza-
The parameteK denotes the strength of the coupling and  tion. This seems to be an original result.

N is the number of cells. The interaction is implemented

by a sine function. We study the model as such. Our model References

is therefore more detailed than the current approach in the [1]

: Y. Kuramoto. Cooperative dynamics of oscillator
literature [1], [2]. b y

community.Prog. Theoret. Phys. Suppr9:223—-240, 1984.
[2] S.H. Strogatz. From Kuramoto to Crawford: Explor-
ing the onset of synchronization in populations of coupled

By changing the parametét the behaviour of the system  ©Scillators.Physica [ 143:1-20, 2000.
can change as well. Fé& = 0, the state of each cell moves
on its limit cycle with its own natural frequency. In the case

2 Partial and Full Synchronization
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Abstract

In Support Vector Machines (SVMs) [7] and Least Squares
Support Vector Machines (LS-SVMs) [3, 4] for nonlinear

classification and function estimation the solutions are ob-
tained from a convex quadratic programming problem and
a linear Karush-Kuhn-Tucker system, respectively. As the
Least Squares Support Vector Machines involve the use of a

demoor,vdw@lesat.kuleuven.ac.be

box and applied on UCI data sets like, e.g., the the adult data
set with 45222 data points. The use of the Ngistrmethod
allows to perform hyperparameter selection for LS-SVMs
on the so-called second and third level of inference. This
selection criterion yields comparable performances with hy-
perparameter selection from cross-validation. It also allows
to infer the optimal kernel parameters of the kernel func-
tion, which can be related to the relevance of the different
inputs. This inference is called Automatic Relevance Deter-

least squares cost function, the sparseness property of SVMS mination and is used for input selection in nonlinear kernel-

is lost. On the other hand the LS-SVMs have been related
to regularization networks, Gaussian Processes and kernel
Fisher Discriminant Analysis [1, 6, 8]. Sparseness in the
LS-SVM can be obtained by sequentially pruning the sup-
port value spectrum, while robustness is obtained by using
a weighted least squares cost function. Compared to mul-
tilayer perceptrons (MLPs), the SVMs have the advantage
of solving a convex optimization problem, while the cost
function for MLPs typically has multiple local minima. On
the other hand the SVM formulations involve the use of a
square kernel matrix with size equal to the number of data
points. This makes a straightforward implementation of ker-
nel methods computationally less attractive for large data
sets. Therefor, large scale methods like conjugate gradient
algorithms have been developed and implemented in LS-
SVMIlab in order to solve the optimization problem on the
first level of inference.

A powerful tool to estimate the uncertainties on the predic-
tion and classification of MLPs is the evidence framework
[2]. Bayesian inference can also be used to select the regu-
larization hyperparameters within the statistical framework
and to perform model comparison. In Bayesian methods for
LS-SVMs the kernel matrix also appears in expressions for
Bayesian hyperparameter inference [5, 6]. The inverse ker-
nel matrix is also needed when calculating error bars or class
uncertainties on the output of the regressor or classifier, re-
spectively.

Here we discuss large scale approximations for Bayesian in-
ference for LS-SVMs. A practical implementation using the
Nystrom method is implemented in LS-SVMIlab which al-
lows to obtain approximate expressions at the different lev-
els of inference within the evidence framework. Although
being a sampling method, it can be shown that the approx-
imation is exact when the sample feature space spans the
feature space of the whole training data set. The Niystr
method was implemented in the matlab LS-SVMlab tool-
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based function estimation and classification.
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1 Abstract system. An algorithm is discussed for the causality assign-

ment of a heat-conduction RS-element and for the three-port

The port-based approach that can be represented by C.

bond graphs or iconic diagrams optimally supports a

multidomain-modeling context. This approach is for me- A model of a dual-sided air cylinder, see figure 1, will used

chanical, hydraulic and electrical systems clearly described as an example to illustrate the various approaches and rep-

in the literature. However, thermal systems or in particular resentations.

thermo-fluid systems can be described by various port-based

. mechanical | thermal _ =
approaches. Some of these approaches are discussed. 0 C= 0
Two bond graph approaches are useful for modeling thermo- TJ;F‘A
fluid systems in a simulation package (e.g. 20-sim). The T 3 5
pseudo bond approach (effort and flow are dynamically con- g0 — L ]—]., R * E{"] )(
jugated instead of power conjugated as in true powerbonds), ’ o
by Karnopp et al [1] is easy to implement and therefore often TFIA_; =
used as its use of variables coincides with the common ap- :
proach. However, it may lead to wrong results, e.g. in com- 0 C B
bination with transformers it becomes invalid. Breedveld’s a. True bond graph b. Iconic diagram

approach [2] provides insight and a more systematic way to

model the convection process, unlike Karnopp’s approach. Figure 1: Dual sided air cylinder in two representations
(The term convection is used for energy transport by a mov-
ing fluid.) A drawback is that the engineer is not always ac-
quainted with the conjugate power variables in this domain. References

Apart from the above-mentioned approaches, Brown’s con- [1] Karnopp, D. et al (1990pystems Dynamics: A Uni-
vection bond approach [3] is investigated; he proposes to fied Approach2¢ edn, John Wiley and Sons, NY.

use a convection bond in order to cancel the redundant in- [2] Breedveld, P.C. (1984Physical Systems Theory in
formation. The result of this new representation is a notation Terms of Bond GraphsUniversity of Twente, NL, dis-
that differs significantly from conventional bond graphs and  tipyted by the author.

is not easily incorporated into most bond graph modeling :
environments. Finally, Shoureshi’'s approach [4] is exam- [8] Brown, F.T. (1991)Convection bonds and bond

ined for incompressible fluids, which does not correspond graphs Journal of the Franklin Institute 328(5/6): 871-886.
to thermodynamics and is simply incorrect. A major con- [4] Shoureshi, R et al (1984Analytical and experi-
clusion concerning the different approaches is that the three mental investigation of flow-reversible heat exchangers us-
correct approaches can be transformed into each other, anding temperature-entropy bond graphransactions of the
give exactly the same results in the test case of an ideal gas ASME 106: 170-175.

with irreversible convection [5]. [5] Feenstra, P.J. (200@)Library of Port-based Thermo-
Fluid Submodeld\.Sc. Report 040R2000, Control Labora-

A second, but related topic is the causality assignment pro- tory, University of Twente, NL.

cedure of thermal elements. Causality assignment is neces-
sary in order to get assignment statements in a form that is
optimal for numerical simulation. The conventional causal-
ity assignment algorithms do not handle all assignments of
thermal elements. A heat conduction- or RS-element has a
particular causal constraint. A comparable situation occurs
for a multiport C-element representing a single component
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1 Abstract [3] J.A. Bergstra and A. Ponse and S.A. Smolka Hand-
book of Process Algebra Elsevier 2001, Amsterdam

The fcheory of hg/?jrld systebmrs] Stl.Jd'eS thﬁ mtgractlon be;ween [4] A.J. van der Schaft and J.M. Schumacher An Intro-
.contlmf)qusdan. h |scrert]e € lawodur.IW ?nl Iscrete software duction to Hybrid Dynamical Systems Lecture Notes in
Is combined with mechanical and electrical components, O o1 ang Information Sciences, Volume 251 Springer-
is interacting with, for example, chemical processes, an em- Verlag 2000
bedded system arises in which the interaction between the
continuous behaviour of the components and processes and[5] ~ N. Lynch and R. Segala and F. Vaandrager Hybrid
the discrete behaviour of the software is important. Al- /0 automata revisited In: Proceedings Fourth Interna-
though there are good methods for analizing continuous be- tional Workshop on Hybrid Systems: Computation and
haviour (control science / system theory) as well as for anal- Control (HSCC'01) Editors: M.D. Di Benedetto and A.L.
izing discrete behaviour (computer science / automata and Sangiovanni-Vincentelli Lecture Notes in Computer Sci-
process theory), the interaction between those two fields is €nce, Volume 2034, p. 403-417 Springer-Verlag 2001
largely unexplored. There are only a few models that can
handle (some) interaction, and often these models are still
focussed on one of the two original fields.

In practice, often the discrete part of a system is described
and analysed using methods from computer science, while
the continuous part is handled by control science. The de-
sign is such that interaction is surpressed to a minimum. Be-
cause of this surpressed interaction, analysis is possible to
some extend, but it limits the options during the design pro-
cess. This is the main reason for the development of a theory
on hybrid systems that allows for analysis of broader types
of interaction.

In this presentation, we work on the mathematical modelling
of hybrid systems, from a semantical point of view. We fo-
cus on two main existing semantical models for describing
dynamics, namely the behavioural models, introduced by
Polderman and Willems [1] and the (timed) transition sys-
tem approach, known from computer science [3]. These
two classical models are combined in three different ways,
resulting in: hybrid automata [5], rich time behaviours [4]
and a new model originating from the machines introduced
by Sontag [2]. We compare the expressivity of these three
models, and discuss their useability as models for hybrid
systems.
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1 Introduction

We are concerned with the mathematical modelling of
macroscopic physical-chemical-biological processes for the
purpose of modelling chemical or biological plants. The
ultimate goal of our research is to implement a structured
modelling methodology in a computer program, called the
Mooeller, which aims at effectively assisting in the develop-
ment of first principle based dynamic process models. The
underlying methodology of such a computer program must,
of course, be well structured and put on a firm scientific
foundation, such that it can handle a wide range of prob-
lems. The output of the computer program is a first princi-

other important application of identifying structures in the
modelling process, is to use the extra available information
to perform efficient model manipulations in order to achieve,
for example, superior numerical performance. Ideas to use
model structure for DAE index reduction, for example, can
be found in [1], [2] and [3].

Furthermore, it is shown that the separation of the dynam-
ics and statics of the process model makes it possible to do
far reaching analysis (such as completeness checks, consis-
tency, causal order) at the level of the individual systems
and connections (during the modelling session). This is dif-
ferent from what is being done by current modelling lan-

ples based mathematical model, which can serve as an input guages (such as Modelica, ABBACUS Il, ASCEND): they

to existing modelling languages and/or simulation packages,
such as gProms, ASCEND, Modelica, Matlab, Maple, Chi.

2 Modelling Methodology

The modelling methodology we use is based on the hier-
archical decomposition of processes into networkelef
mentary systemandphysical connectiongl]. Elementary

systems are regarded as thermodynamic simple systems andA
represent (lumped) capacities able to store extensive quanti-
ties (such as component mass, energy and momentum). The
connections have no capacity and represent the transfer of (2]

extensive quantities between these systems.

3 Presentation

In this presentation we show that the dynamic part (i.e. the
differential equations) of physical-chemical-biological pro-

cesses can be represented in a concise, abstract canonica

form, which can be totally isolated from the static part (i.e.
the algebraic equations). This canonical form, which is
the smallest representation possible, incorporates very vis-
ibly the structure of the process model as it was defined by
the person who modelled the process[5]: The system de-
composition physical topologyand the species distribution
(species topologyare very visible in the model definition.
The transport and productions rates always appear linearly
in the balance equations, when presented in this form. The
nonlinearities of a process will therefore always emerge in
the algebraic realations of the model. This formalization
allows us to develop formal model reduction procedures,
which are suitable for computer-based model reduction. An-
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all gather all information from a modelling-session, then
throw it all on one big stack and then the symbolic analy-
sis is done.
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Abstract

When a fault occurs in a certain transmission or distribution
network, circuit breakers must automatically open switches
to ensure that power is no longer fed to the faulty line or to
the smallest possibile zone including the fault.

The circuit breakers (CBs) are controlled at the local level
by relays. When a relay detects a fault in its covering zone
it automatically triggers the appropriate circuit breaker to
clear the fault. Relays are also responsabile for sending sig-
nals about their observation and about their action to the dis-
patching center (via separate comunication links).

The monitoring system in the dispatching center can receive
several tens of messages per second making the interpre-
tation difficult, especially in the case of multiple faults or
incorrect operation of protective devices (PDs) [1, 2].

Automatic interpretation of alarms (messages from different
substation about CBs and PDs activity) may have either of
the following objectives:

e to determine the causes of a dysfunction, to provide
explanation to the operator or to predict future behav-
ior of the system (e.g. to assess the degree of emer-
gency of a situation)

e toreactautomatically like a back-up protection in case
of circuit breaker failure or missoperation of any pro-
tective device. Expert systems have been proposed for
this back-up fault detection and protection [4].

In the last years the model based approach to fault detec-
tion has become more and more important thanks to the ad-
vances in available tools. We design fault diagnosis algo-

rithms based on mathematical model, describing the power
systems as a timed discrete event systems. Although the
power system itself is a continous time system, its protec-

tion scheme may be viewed as a discrete event system.

Petri Nets are basicaly developed for describing and
analysing information flow, and they are excellent tools for
modeling asynchronous concurrent systems such as com-
puter systems and manufacturing systems, as well as power
protection sytstems [3, 5, 6].

We have developed a timed Petri Net model of the PDs in a
substation. Some of the events in this model are observable,
while others (e.g. short-circuits) are unobservable. Using
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timed Petri Nets models for different substations (capturing
the interactions between PDs and CBs) and a model of the
information they exchange, we derive a hierachical fault di-
agnoser. The first level contains local diagnosers that anal-
yse the behavior of the PDs and CBs using only information
from the substation in which they are placed. They send a
“condensed report” to the high level diagnoser. Based on the
information from different substations, the high level dis-
patching center may decide the proper action for the faulted

This fault diagnoser allows fast location of any modelled
fault even when some of the sensors and actuators are unreli-
able. The method can be used for on-line aplications in both
transmission and distribution networks to assist dispatching
center operators during emergencies. It can e.g. be used
to determine the circuit breakers to be triggerd so as to dis-
connect the smallest possible zone needed to prevent unsafe
operations of the power system.
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1 Introduction 3 Design procedure

Piecewise affine systems received considerable amount of Sufficient conditions for global asymptotic stability of the
attention recently, because they frequently arise, for exam- state observation error, based on Lyapunov arguments, are
ple, as an approximation for more complex nonlinear sys- obtained, and presented in the form of linear matrix inequal-
tems, or as a simple class of hybrid systems. ities.

Stability analysis for piecewise affine systems has been cast Following the same line of reasoning basic observer struc-
as a set of linear matrix inequalities in [1]. Stabilizing state ture (3), (4) can be extended, to include output prediction
feedback design, essentially based on the results in [1], was errory — ¥ in the observer switching surface, to improve
presented, for example, in [3]. convergence of the estimate.

In [2] stabilizing output feedback design was presented. An illustrative example is presented.
Proposed output feedback controller consists of an observer
and a state feedback controller. However, observer and con-
troller design are not separated steps, and can not be sepa-
rated. The observer is proposed that has a simple structure, and can

) ] ) ) ) ] be easily implemented in practice. Also, design procedure
In this work we consider a simple class of piecewise affine s nymerically efficient.

systems and propose an observer design procedure. The pro-
posed observer does not require information about the cur- Future work will focus on generalizations of presented ob-
rently active linear dynamics. Related, but far less general, server design procedure to include more general class of

4 Conclusions

approach was presented in [4]. piecewise affine systems, and hybrid systems. Also, another
important research issue is the design of a control strategy
2 Problem statement on the basis of the observed state.
\S/\)//estceﬁss.lder the following class of bimodal piecewise affine References
' [1] Johansson M., Rantzer A., Computation of Piecewise
% = Ai1x + Bu, HTx <0 1) Quadratic Lyapunov Functions for Hybrid Systems, IEEE
Axx + Bu, HTx>0 Transactions on Automatic Control, vol 43, no 4, pp. 555-
y = Cx, ) 559
wherex € R", y € RP, u € R™ A;, Ay € R”", B ¢ [2] Rodrigues L., How J., Output Feedback Controller
RVM C ¢ RPXM andH e R ' Synthesis for Piecewise-Affine Systems with Multiple Equi-

libria, Proceedings of the 40th IEEE Conference on Deci-
Proposed observer for the System (1),(2) has the fo”owing sion and Contr0|, Ol’|and0, Florida USA, December 2001

structure: [8] HassibiA., Boyd S., Quadratic Stabilization and Con-
i AR+ Bu+ Li(y — 9), HTR <0 @) trol of Piecewise-Linear Systems, Proc. 1998 American
= Aok + BUu+ La(y — 9), HTR = 0 Control Conference, pp. 3659-64
g = C%, 4) [4] qle Goeij GW Ok_Jserver Design for a Beam Sys-
A A tem with One-Sided Spring, M.Sc. Thesis, Vakgroep Fun-
wherex € R", § € RP, Ly, Lo e R™*P. damentele Werktuigkunde, TUE, November 1999

Design problem for the observer structure (3), (4) is to de-
termine observer gairisy, L2, such thaf|X(t) — x(t)|| — O
ast — oo, for everyx(0), x(0).
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1 Abstract It is also proved that the iteration follows some tree struc-

ture and that this tree terminates, hence guaranteeing con-
In this paper, controlled invariant sets of switched linear sys-  vergence of the iteration after just a finite number of steps.
tems are studied. In particular, the problem of finding the The |imit set of the iteration turns out to be the union of the

maximal controlled invariant set (MCIS) contained in alin-  maximal controlled invariant subspaces of each individual
ear space is addressed. mode.

Control of dynamic systems by switchings have been stud- | nfinitely often switchings are allowed, then the following
ied intensively. Typical results include stability properties  jieration is used instead

[1], sliding mode analysis [2][3] and reachability and con-
trollability issues [4]. Vo=, (2a)

The study of controlled invariance in this paper is moti- Vs = I e Vi el N Ty () # 9} (2b)

vated by controller design paradigm based on viability the- The symbolvel(x) denotes the polyhedral set of possible
ory. See, for example, [5] and [6]. velocity vectors andy (x) denotes the tangent cone\fat
X respectively. As in the other case, it is proved that if the

The dynamics of the systems considered in this paper can iteration converges, it will be to the MCIS.

be described by a family of state-space representations with

shared state-space Another result is that (2) is a generalization of (1), and by
() = A Xt + B ut imposing certain conditions, both (1) and (2) boil down to

x®) X+ Bud), the well known algorithm for the construction of maximal

he{l2---,m) controlled invariant subspace of linear systems [7].
The system admits two inputs, namely the continuous input
u(t) and the discrete inpuhy that induces the switchings References
between the dynamics in the family. [1] DeCarlo, R.A., Branicky, M.S., Pettersson, S., &

Th . died in thi The f Lennartson, B., Perscpectives and Results on the Stability
ere are two main cases studied in this paper. The firstcase 5, gyapilizability of Hybrid SystemsProc. of the IEEE

deals with the situation where infinitely often switchings are 88(7):1069-1082, 2000.

not allowed. The second case deals with the situation where
they are allowed. [2] Bernhardsson, B., Johansson, K.H. & Malmborg, J.,

Some Properties of Switched Systeritsthe IFAC World
If infinitely often switchings are not allowed, consider the = Congress, Beijing1999.

following iteration. [3] Johansson, K.H., Rantzer, A. & Astrom, K.J., Fast
. Switches in Relay Feedback SysterAsfomatica 35:539-
Vo=V (18 555 1099,
nj m ™
o\ g 1 ey [4] Ge, S.S., Sun, Z. & Lee, T.H., Reachability and
Vigr=Vin (U U Vij N AC (Vij +1m Bk)) - (1) Controllability of Switched Linear Discrete-Time Systems,
J=Tk=1 IEEE Trans. Aut. Control46:1437-1441, 2001.
HereVj is a linear space and = (J; Vi;. The following [5] van der Schaft, AJ. & Schumacher, J.MAn In-
theorem can be proved about this iteration. troduction to Hybrid Dynamical SystemSpringer-Verlag,

London, 2000.

Theorem 1 Let the iteration (1) convergeto V, i.e. thereis  [6] Ramadge, P.J. & Wonham, W.M., Supervisory Con-
a p > 0such that trol of a Class of Discrete Event ProcessssAM J Contr.
Opt,, 25:206-230, 1987.

[71 Wonham, W.M. Linear Multivariable Control: a Ge-
Then V is the maximal controlled invariant set contained in  ometric ApproachSpringer Verlag, New York, 1985.
V.
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1 Abstract

Kalman Filters (KFs) are often used as minimum mean
square error (MMSE) state estimators. Although these es-
timators are known to give optimal estimates only when the

nonlinear and the linearized function in the sampling points.

Besides some well known issues, such as the consistency of
the LRKF state estimates and the inconsistency of the EKF
state estimates, some less known, but important results are

system’s process and measurement functions are linear, theyclarified: (i) a good performance of an estimator in the pro-

are quite often used for systems with nonlinear functions.
Different KF estimators linearize these functions in different
ways. In order tahoosean estimator for a certain problem,
it is important to have a good insight in the performance of
each of the estimators on this kind of problems.

cess or measurement update, does not guarantee a good per-
formance in the other update; therefore, it can be interesting
to use different estimators for both; (ii) the LRKF measure-
ment update often returns consistent, but non-informative
estimates; and (iii) the IEKF measurement update yields
consistent and informative state estimates when the state—

The performance of the estimators is expressed in terms of or at least the part of it that causes the nonlinearity in the
the consistency of the state estimates (the state vector and measurement function—is instantaneously fully observable.

its covariance matrix) and their information content. An es-
timate isconsistentf the covariance matrix is large enough
to reflect the uncertainty on the estimate. In order to obtain
consistent estimates, one could artificially increase the co-
variance matrix. However, increasing the covariance matrix
too much corresponds to loosing information about the real
accuracy of the estimate. Therefore, the quality of an esti-
mate is not only determined by its consistency, but also by
its information contentThe larger the covariance matrix of
an estimate is, the smaller is its information content.

The first part of the presentation analyzes the performance
of some well-known KFs—i.e., the Extended Kalman Filter
(EKF), the Iterated Extended Kalman Filter (IEKF) and the
Linear Regression Kalman Filter (LRKF)—when they deal
with nonlinear process and measurement upddtes.EKF

The second part of the presentation proposes a “Cascading
Kalman Filter”, consisting of multiple stages of KFs. The
core idea of this new estimator is to estimate different state
variables than the desired ones, but which defdamaarly

on the measurements. There can be more “new” state vari-
ables than the original problem has. In this case, (nonlinear)
constraints between the “new” state variables exist; but, are
not introduced in the (linear) KF. Whenever necessary, the
desired state can be estimated from its initial state estimate
(prior) and the last “new” state estimate. This last step is
performed by an IEKF which gives good results if the mea-
surements up to that time step fully observe the desired state
estimate. The Cascading Kalman Filter can easily be imple-
mented for static state estimates. Although they can not be
extended in general to dynamical systems, some examples

linearizes the process and measurement functions around of dynamical state estimation are also given.

the previous state estimate. The linearization errors are not

taken into account, except if the user provides some approx-
imation of these errors, e.g. obtained by extensive off-line
tuning. The IEKFlinearizes the process function in the same
way as the EKF. The measurement function is linearized
around thenextstate estimate (obtained by iteration). Again,
the linearization errors are not taken into account, except
if the user approximates thes&he LRKFis a unified de-
scription of a class of KFs, including the Unscented Kalman
Filter (UKF, [1, 2]). The LRKF (i) linearizes the process

and measurement functions by a statistical linear regression and

of the functions through some sampling points in the un-
certainty region around the state estimate; and (ii) defines
the uncertainty due to linearization errors as the covariance
matrix of the deviations between the function values of the
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1 Introduction

The presentation is devoted to the problem of asymptotic
regulation of the output of a dynamic system, which is sub-

such that for the closed-loop system (1)-(3) for small ini-
tial conditions(x(0), £(0), w(0)) the regulated output con-
verges to zero: @) — 0ast— oo. Once a controller solv-
ing the local output regulation problem is found, we have to

ject to disturbances generated by an external system. Many estimate the region of initial conditior((0), &(0), w(0)),

problems in control theory can be considered as particular
cases of the output regulation problem: tracking of a class
of reference signals, rejecting a class of disturbances, stabi-
lization, partial stabilization or controlled synchronization.
For linear systems, the problem is completely solved result-
ing in the well-known “internal model principle”. For non-
linear systems, the problem is much more complicated and
the complete solution is found only in the case of the lo-
cal problem setting. In particular, necessary and sufficient
conditions for the solvability of théocal output regulation
problem were obtained and a procedure for designing a con-
troller, which solves the problem, was found [1]. A con-
troller resulting from this procedure solves the output regu-
lation problem only for small initial conditions of the closed-
loop system. From an engineering point of view, such solu-
tion is not satisfactory, since the region of admissible initial
conditions is not specified. Thus, once a controller solving
the local output regulation problem is found, there is a need
to determine this region.

In this presentation, we first review the conditions for the
solvability of the local output regulation problem, as well as
the procedure of constructing a controller solving the prob-
lem and, second, explain a method for estimating the set of
initial conditions, for which the controller solves the prob-
lem.

2 Local output regulation problem

In the context of the output regulation problem, we consider
systems modelled by equations of the form

f(x,u, w)
hm(xs u)),

@)

e=hr(x, w),

with statex € X c R", inputu ¢ U c R™, measured
outputy € R', regulated outpue € RP and exogenous
disturbance inpuiv € W C R" generated by the exosystem

)

The local output regulation problem can be formulated as
follows: find an output feedback controller of the form

E=nEy), u=0(E,y), 3)

w = s(w).
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for which the regulated outpetconverges to zero.

3 Estimation of the convergence region

For the region of admissibke (0) we present an estimate in
the form of a ballB: |w| < r, for somer > 0. The number

r is chosen such that solutions of the system (2) starting in
B are defined and small for al € R. The region of ad-
missible (x(0), £(0)) is estimated by an ellipsoi& of the
form (xT,e")P(x"T,eT)T < R for someR > 0 and some
positive definite matriX?. The ellipsoid is chosen such that
for any w(t), a solution of (2) passing through the bl

the closed-loop system (1), (3) has a unique soluki¢n,
such that it lies inE for all t € R and all other solutions
of (1), (3), starting inE, converge tax(t). Such property
of the closed-loop system is callednvergencd2]. The
conditions for convergence allow to find the mat®xand
the numbersR > 0,r > 0, which determine the balB
and the ellipsoidE. The conditions for the solvability of
the local output regulation problem and the form of the con-
troller solving the problem imply that the regulated output
e = hy (X, w) is equal to zero orx(t), w(t)). Thus, the
regulated outpue tends to zero on any solution of (1)-(3)
starting in(x(0), £(0), w(0)) € E x B.

4 Conclusions

We have proposed a method for estimating the region of con-
vergence for a controller solving the local output regulation
problem.
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Abstract

Central pattern generators play an important role in
the control of animal locomotion. They consist of an
intraspinal network of neurons able to generate and to
sustain a cyclic activity. Although animals have neural
networks composed of a huge number of neurons, Gol-
ubitsky et al [1, 2] studied the smallest network able to
reproduce basic rhythmics of gaits. They have proved
that eight ”cells” correctly connected are able to repro-
duce standard gaits' phase relations of a quadruped.

T O— =0

[ I

BRCCao

Figure 1: Central Pattern Generator : network model
developed by Golubitsky et al [1, 2]

In the network displayed in Fig 1, each "cell” is a non-
linear oscillator. We choose for this oscillator the sim-
plest model of "neural” oscillator [3] consisting in the
feedback interconnection of an inhibitory state with an
excitatory state :

T2y = —xp +sat(cy — x5 + input)
T % = —x;+sat(xg)

For networks made of such oscillators, we address
the synthesis problem of selecting the interconnection
structure such as to impose a specific rhythmic pat-
tern in the network, i.e. phase differences between each
oscillator. Moreover, we constrain the interconnection
structure to satisfy Dale’s principle, i.e. that excita-
tory (resp. inhibitory) states, may have only excitatory

IStandard gaits are composed of walk, trot and pace
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(resp. inhibitory) actions on other states. Our synthe-
sis method uses averaging theory for the analysis of two
interconnected oscillators, following [4]. This analysis
is extended to the complete network using symmetry
considerations.

To conclude we designed a central pattern generator
able to reproduce rhythmics patterns of gaits, with cell
models matching the basics biological features of animal
neurons.
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1 Abstract

The behavioral approach to systems and control theory has
led to an elegant characterization of the set of all behaviors
which are achievable by interconnecting (on a sethafred
variable9 a given linear time-invariant system (tipéant)

with another arbitrary linear time-invariant system (tom-
troller). This characterization (in some circles known as
Willems’ lemmagtakes the form of a double inclusion

NCRCP

with & denoting an achievable behavior, &idnd3 denot-
ing, respectively, theiddenand themanifesiplant behavior,
seee.g.[1,2,3].

Purpose of this presentation is to give an alternative, and
supposedly simpler, proof of this lemma, and to show how
this alternative proof directly leads torenlinear general-
ization of Willems’ lemma. Also some implications to the
control of port-Hamiltonian (nonlinear) systems will be in-
dicated.
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1 Summary

Singular values and singular value decompositions are
among the most important tools in linear algebra that have
played a key role in systems analysis, control system de-
sign, model reduction, data compression, perturbation the-
ory, signal analysis and many applications in numerical lin-
ear algebra [1]. The purpose of this presentation is to pro-
pose a definition of a set of singular values associated with
a linear operator defined @mwbitrary normed linear spaces
This generalizes the usual notion of singular values and sin-

gular value decompositions to operators defined on spaces

equipped with thgp-norm, wherep is arbitrary. Basic prop-

erties of these generalized singular values are derived and

Siep Weiland
Department of Electrical Engineering
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven
The Netherlands
s.weiland@tue.nl

3 Problem formulations

The above singular values turn out the key tool in the solu-
tion of the following problems.

3.1 Rank deficiency
A reliable numerical implementation to determine rduk

usually calculates theumerical rankdefined as
rankM, e) := min rankM’)
IM—M’||<e

wheree > 0 is an accuracy level angldefines the norm of

interest.

we consider their relevance in the problem of optimal rank 3.2 Rank approximation

approximation and a problem of optimal system identifica-
tion. We give sufficient conditions for the existence of opti-
mal rank approximants in thp-induced norm and provide

a characterization of autoregressive models which are opti-
mal in the sense that they minimize a misfit criterion which
reflects thep-norm of a residual signal.

2 Definitions

Let X and¥ be two finite dimensional vector spaces of di-
mensionn andm and letM : X — Y be linear. For anyp,
let

(Zinzl | Xi |p)1/p if p<oo

Xl := )
P Imax—1._nlx| if p=oo

and define thinduced p-norm of Mas

IMXIl,

M = :
X1,

sup
0#XxeX

Theinduced p-norm singular valued M are the numbers

M x
sup M|l

o o
oxxes IXlp

inf
LCX,
dim£>n—k+1

wherek runs from 1 tilln. It is easily seen that these num-

bers are ordered accordingdd” > ... > o” > 0 and
that (for anyp) the firstr singular values are non-zero if and
only if M has rank .

44

The problem of approximating/ by a linear mapM’ :
X — Y of rank at mostkk (k < rankM), such that the
p-induced norm

M — M|
is minimal. We refer to this problem as tlogtimal rank
approximation problem

3.3 System identification
Given dataw(t),t = 1, ..., N, we consider the problem of
finding autoregressive models of the form

n
doriwt+i)=0,  telZ, (1)
i=0

where the unknown parameter vectoe (ro, ..., ) min-

imizes the identification criterion
lellp

~rllp

wheree is the residual of (1). Note the relevance of this
problem for different values gp. In particular, forp = oo
this problem minimizes the amplitude of the residual signal
e.

u(r, w) :

We will show the relevance of generalized singular values
for each of these problems.

References

[1] G.H. Golub and C.F. van Loan, “Matrix computa-
tions”, The John Hopkins University Press, 1989.



21st Benelux Meeting on Systems and Control

Book of Abstracts

An LMI Approach to Multiobjective Robust Dynamic
Output-Feedback Control for Uncertain Discrete-Time Systems

Stoyan Kanev
Faculty of Applied Physics, SCE group
University of Twente,
P.O. Box 217, 7500 AE ENSCHEDE
The Netherlands
S.K.Kanev@TN.UTwente.NL

1 Abstract

This note discusses an LMI framework to the design of ro-
bust multiobjective dynamic output-feedback controllers for
discrete-time systems with structured uncertainty. The con-
trol objectives considered are guarante®d norm, guar-
anteed#,, norm and regional pole-placement. The uncer-
tainty that can be dealt with by the proposed approach is al-
lowed to have a quite general structure — it is just assumed to

be such that the state-space matrices of the uncertain system

belong to a given convex set.

2 Introduction

Much attention has been focused on controller and filter de-

Michel Verhaegen
Faculty of Applied Physics, SCE group
University of Twente,
P.O. Box 217, 7500 AE ENSCHEDE
The Netherlands
M.Verhaegen@TN.UTwente.NL

to explicitly deal with structured uncertainties in the system.

The approach discussed here makes use of the results ob-
tained in [1], and focuses on the designmiiltiobjective
dynamic output-feedback controllers for discrete-time sys-
tems with structured uncertainties. A sufficient condition,
based on LMls, to the existence of solution to the following
mixed #>/ #H./pole-placement control problem is proposed

H; objective:  supLaTE @Rl < v,
A

(1)

Hoo Objective:  SUBILoo TS (2 ReollZ < oo
A

Pole-placement: A(A}) € D, VA.

given anyy, > 0, andys > O, wherech‘(z) is denoted

sign based on LMIs in the last decade due to the recent de- the closed-loop transfer function, denotes the (structured)

velopment of computationally fast and numerically reliable
algorithms for solving convex optimization problems sub-
ject to LMI constraints. Due to the well-known separation
theory, in the case when no uncertainty is present these fil-
ters can directly be coupled with their dual state-feedback
controllers to yield optimal output-feedback controllers. For
uncertain systems, trying to solve the coupled problem of
output-feedback controller design for system with structured
uncertainty one immediately faces a nonlinear, non-convex
problem.

3 Outline of the approach

In [1] a novel approach to the design of guaranteed-cost ro-
bust#f, and #., dynamic output-feedback controllers was
proposed. It is well-known that both objectives define a non-
linear, non-convex problem. To circumvent this difficulty, a
two-stage design approach is proposed. First, a multiob-

jective robust state-feedback is designed, represented by the

state-feedback gain matrix, and second, the matrik is
fixed constant in the design of the other matrices of the dy-
namic output-feedback controller. Although the second step
remains non-convey, it is shown that by restricting the Lya-
punov function for the closed-loop system to have a certain
block-diagonal structure, this problem can be recast into an
LMI feasibility problem. The conservatism that is sacrificed
by imposing this structural constraint on the Lyapunov func-
tion is, however, well justified by the ability of the approach
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uncertainty in the system, and the matrites Ry, L o, and
R, are used to select the desired input-output channels in
the mixed control objective above. The superscriptie-
notes dependence on the uncertainty. The complex region

D, inwhich the closed-loop eigenvalues, denoteﬁi(aﬁﬁ),
are required to lie, is assumed to have the form

D={zeC: L+zM+2zM" <0, L=L"}.

Due to the fact that the system of LMIs, which implies the
constraints (1), is affine in botjp and y.,, one may also
wish to consider the optimization problem

min a2y2 + aso Yoo SUbject to (1).
Y2: Voo

for given positive numbera,; anda,. The approach has
been tested on a case study with an aircraft model with six
uncertain parameters.
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1 Introduction

One of the reasons thadt,, synthesis has not yet been
widely used in industry is the high order (i.e. the Mc Millan
degree) of the resulting controller. The order equals the or-
der of the dynamical model plus the order of the weighting
functions. The computation of the controller action becomes
more expensive with increasing controller order. In view
of real-time implementation on electro-mechanical systems
with a very high sampling rate, the need for low-order con-
trollers is obvious. This research aims at facilitating the im-
plementation oH, controllers by developing a direct syn-
thesis method for reduced-order controllers. Although lot of
work has been published on this topic in the literature [2],
[3], [4], there is no method that works well for high-order
models, i.e. order 50.

2 Fixed-order control problem

We consider the following problem:

Problem 1 (fixed-order #,, synthesis) Given a transfer
matrix P of the plant, find a controller with transfer matrix
K of order n. such that the closed loop inter-connection is
asymptotically stable and satisfigS(P, K)|l < v, where
S(P, K) denotes the lower linear fractional transformation
of P and K and| - ||« denotes the#,,-norm.

Problem 1 is equivalent to the following minimization
problem:

Problem 2 (BMI formulation)
min
XK,y Y

subject to:

Al Xel + X Ag - Xei By Cqu
B Xl -yl D} < 0

Cal Dci -yl
Xc| > 0

where the quadrupl@Ag|, Bel, Cel, Dei] is the closed loop
state-space system description.
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The first inequality constraint in Problem 2 is a bilin-
ear inequality in the unknown Lyapunov matr¥; and

the state space matrices of the controller. These bilinear
couplings make the problem nonconvex.

3 Interior point method

We propose to use an Interior Point method to solve Prob-
lem 2 as suggested by Gehal.[5]. The approach is based
on the predictor-corrector method for nonconvex semidefi-
nite programming of Jarre [1]. This method uses a curved
line-search in the corrector to deal with the nonconvexity.
Because the¥,-norm is invariant under similarity trans-
formations of the controller, we can reduce the number of
decision variables by keeping a part of the Lyapunov matrix
X¢ fixed.
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1 Introduction

In automotive industry, durability tests are used to investi-
gate whether a vehicle endures a long sequence of repeated
cyclic loading. On a so-called "half-axle” test rig, a suspen-
sion is mounted and loaded in vertical and lateral direction.
In order to subject the suspension to a realistic loading, one
tries to reproduce the vertical and lateral forces measured
on the suspension during a test drive on a special test track.
The reproduction of these forces on the rig, by controlling
the excitation, is a multivariable tracking problem.

Figure 1: Half-axle test rig, with suspension.

The present-day solution for this tracking problem applies
only feedforward, which is generated in an off-line iterative
process, based on the measured open loop Frequency Re-
sponse Function (£ RF’) of the test rig. An iterative process
is necessary due to the nonlinear dynamics of the suspen-
sion: the measured F'RF' can’t exactly predict the response
of the test rig. Based on the difference between the target
signal and the measured response, the feedforward control
signal for the next iteration is updated, until the desired ac-
curacy is obtained. [2] explains this method, and determines
its convergence properties. Current research tries to intro-
duce a feedback controller to accelerate this process. In [2]
it is shown that the convergence is faster when a performant
feedback controller is used.

Nonlinearities, measurement noise and spill-over result in
modeling errors, which necessitates a robust feedback con-
trol design. This research considers H ..-control design.

2 H feedback control and resultson thetest rig

The design method used is the so-called "Mixed sensitivity
loop shaping” design method described in [1], which mini-
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mizes:

M

with K the controller, S, 7" and K S the sensitivity, the
complementary sensitivity and the input sensitivity function
respectively. T, W, and W; are user-defined weighting
functions. A good choice of the weighting functions tries
to meet the performance, robustness and input-limitation re-
quirements as good as possible.

[[mis wr wiks )|

oo

This presentation discusses the design of a robust and per-
formant multivariable controller for the test setup. The use
of this controller yields a reduction of the number of itera-
tions from 7 (without feedback) to 3 (with feedback). Figure
2 shows these results by means of the evolution of the dam-
age ratio as a function of the iteration number. The damage
ratio is a measure for the difference (in per cent) between
the damage caused to the suspension during the test and by
the desired loading. It is an important evaluation criterion
for durability tests.

Tracking error [% damage]

Figure 2: Evolution of the damage-ratio over the iterations.
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1 Introduction

In many chemical plants, the use of P and PI control is still
widely used. Tuning of these controllers is a time consum-
ing matter, because a detailed process model or extensive
plant tests are needed. For this reason, we propose a new
tuning method based on adaptive control and we use it to
determine the parameters in the P and PI controllers. Our
purpose in this paper is twofold. First, we investigate the
needs in process industry and based on that, we develop our
adaptive controller. For a number of examples, the useful-
ness of the developed controller is illustrated. Second, we
use this controller for tuning and derive a set of tuning-rules.
The obtained tuning-parameters are used in a model of an in-
dustrial plant. We emphasize that the developed controller
is only used for tuning and after that replaced by the con-
ventional P or Pl controller.

2 Adaptive A-tracking control

In adaptivei-tracking, the main goal is to keep some vari-
ables within bounds. The basic structure (Alger and
llchmann [1]) is that of a P-controller (a Pl-structure is also
possible) with a time-varying gak-):

ut) = —Bk® [y® — yret ()] +8
ket) { Y (Y1) = Yret )2 1Y) — Yref D] = 2
0 L Y® — Yret O < AL

@)

In this controller, the gaik(-) is strictly monotonically in-
creasing as long as the difference between the output
and the reference signgles () is larger than the given. If

this difference enters thie-strip the adaptation is switched
off and the gain is kept constant. The parameges A > 0
andy > 0 are left to the choice of the designer. The assump-
tions on the plant and the proof that the gkirn) converges

to a constant value and thgf-) — yref (-) converges to the
A-strip are given in [1]. We make plausible that the assump-
tions on the plant are satisfied in many practical cases. In-
vestigating the needs of process industry, we concluded that
A-tracking within prespecified time and with input satura-
tion is needed. We incorporated the combination of these
two in the controller (1) and we were able to proof that
lime_ 1 k(t) = kr € R=o and lim_[y(t) — yret ()] = 0,

in which T is the prespecified time.

48

3 Tuning and results

Here, we used the modifiedtracking controller (1) for tun-
ing purposes on three different cases. The reasons to use this
controller for tuning are

e A process model or plant tests are not required and the
tuning of the parameters is done on-line.

e The controller itself does not require much tuning, is
very robust and is easy to implement.

First, we compared the results of Vi@net al. [4] with our
controller and concluded that the results were only slightly
worse, but much faster obtained because of the reasons
above. We also derived a set of tuning-rules. An activated
sludge process (Georgieva and lichmann [2]) that not ful-
filled the assumptions completely, has been controlled and
tuned by the proposedtracking controller. In this case, we
also incorporated the modifications proposed by Polderman
and Mareels [3] in our controller. Finally, because all of the
examples above were single-input, single-output, we tested
the A-tracking controller in multiple-input, multiple-output
setting on a model of an industrial plant.
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1 Abstract

REGLA project deals with the control and optimization of
glass melting furnaces. The desired applied control scheme
for the glass melting furnace is the Model-Based Predictive
Control. Currently, a simulating first-principle based model
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empirical data collection [4],[1]. The degree of the reduc-

tion is determined from the number of eigenvectors taken.
An error minimization criteria is applied to determine the

time-varying coefficients for each eigenvecterg).

has been built in a software package and considered as aTo test the feasibility of this approach, several test cases

good model that approximates the real furnace behaviour.
Since the model of the glass melting furnace comprises
mainly of nonlinear partial differential equations, numerical
implementation of this model will require discretisation of
the computation domain in enormous amount of grid cells
that leads to a slow model. Model reduction becomes an
inevitable need to provide a good simulating model for the
controller that employs much less computational effort, yet
provides a good agreement with the original model. Cur-
rently the Proper Orthogonal Decomposition technique is
investigated for feasibility and after analyzing the results for
some test cases, this method offers an extremely promising
tool for model reduction of glass melting furnaces.

2 Proper Orthogonal Decomposition

It is well-known that the dynamics of a system can be
approximated as linear combinations of its basic modes.
This has been employed for example in the Fourier and
Taylor series.

Consider a general form of a PDE [2]:

du =D()

T @)

In the Proper Orthogonal Decomposition (POD) technique,
the solution of the PDE in Eqg. 1 can be expressed as [2]:

0 =28 1) )

The basic modes in POD are the corresponding eigenvectors

obtained from the Singular Value Decomposition of the
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have been built, among others Navier Stokes Equation for
2-D flow and a heat conduction problem. Despite of the

nonlinearity of these physical phenomena, the reduced
model shows good agreement with the original model

although the number of modes taken is very few compared
to the original order of the model. In many examples,

the POD method adapts quite well with the changing of
working points.

In the near future, mathematical properties of the POD
method are going to be investigated and application to the
rigorous software is planned.
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1 Abstract

In industrial plants, many control loops have poor perfor-
mance which implies a decrease of the product quality, un-
necessary high energy consumption, waste of raw material...
An important indication of deterioration of the control per-
formance is the presence of oscillations in the control error
especially due to friction in valve, oscillating load distur-
bances, or badly tuned controller. In this work, a review of
existing approaches, that help to distinguish oscillations due
to valve stiction from oscillations due to other causes, is per-
formed. These methods only use the set point, the process
output and the control signal.

Many methods rely on the shape of the output signal and
of the control signal to determine the origin of an oscilla-

tion. Indeed, usually, in case of stiction, the control signal
is always triangular and the output signal is rectangular for
non-integrating processes and triangular for integrating pro-
cesses.

The method described in [3] compares the output signal with
a set of primitives representing the trends that can appear in
a signal (linear increasing, linear decreasing, curved increas-
ing...). Another method [1], dedicated to self-regulating pro-
cesses, is based on the shape of the correlation function be-
tween process output and controller output. In [2], diagnos-
tic is performed using the shape of the probability density
function of the first or of the second derivative of the output
signal. In cascade loops, some hardware problems can be
diagnosed by studying the plots of the set point against the
output signal [5].

Other methods that do not use the shape of the signals have
also been developed. Such an approach is proposed in [5]
and in [6] where the presence of a nonlinarity inside a con-
trol loop is detected and in [6] where diagnosis of the root
cause of plant-wide oscillations caused by a nonlinearity is
performed.

The results obtained with some of these approaches are il-
lustrated via simulations. To this end, a typical model of a
control loop including a phenomenological model of a con-
trol valve [4] is used. The latter is a nonlinear first-order
model including non-linearities like dead zone, dead time
and velocity saturation. This model allows one to simulate
a control valve in healthy condition and to introduce stic-
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tion and hysteresis. Possible limitations of the methods are
pointed out.
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Clinker and raw material grinding is a fundamental
step in cement manufacturing. This highly energy-
consuming operation is usually performed in closed-
loop grinding circuits, including a ball mill and an air
classifier [4].

Modeling of industrial grinding circuits is a delicate
task due to the lack of reliable measurements of some
key variables, such as material hold-up and particle size
distribution inside the mill, which are function of space
and time [1].

In previous studies [2, 3], the authors have developed
and validated a first-principle model of a closed-loop
grinding circuit of the cement manufacturer CBR (Bel-
gium). This first-principle model, which consists of sets
of partial differential equations (PDEs) and algebraic
equations (AEs), can be used as a tool to investigate
process dynamics, to study the effect of changes in ma-
terial properties, and to test control schemes.

Even though this approach has proved quite successful,
the resulting model is too complex in nature to allow
model-based control to be readily implemented. As a
next step, it is therefore required to develop simplified
models and, in [5], a reduced-order model is proposed
for a laboratory-scale fed-batch process.

The objective of the present study is twofold:

e to extend the results presented in [5] to a full-scale
closed-loop grinding circuit. This objective in-
volves the development of a low-order distributed-
parameter model for a continuous ball mill, which
would allow the description of the particle size
distribution along the mill axis, the estimation of
the unknown model parameters, and the valida-
tion of this model with respect to the previously
developed, more complex, first-principle model.

e to design a nonlinear predictive control (NMPC)
based on the low-order distributed-parameter
model.

The main advantage of the proposed modeling approach
— which is still based on elementary mass balances for
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several particle size intervals — is that it enables the
description of the particle size distribution inside the
grinding circuit, whereas black-box approaches often re-
fer to some global variables only (such as the material
flow rates or the total mass content of the mill).
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1 Abstract

We consider an estimation problem for dynamical system
described with an errors-in-variables model (see Figure 1).
We give a recursive solution of the smoothing problem, i.e.,
the estimation problem when all data is available before-
hand. The problem statement is given in Section 2 and the
solution is given in Section 3.

$ Tini

at (Aa Ba C) th

Ut Yt

Figure 1: Errors-in-variables model

2 Optimal EIV smoothing problem

Given is a discrete-time LTI state-space system

A%, + By

T4 =
g Ciy,

Yt =

fort = 0,1,...,7 — 1, and with given initial condition
To = Tini. The signals % and y are not measurable. The
measured signals are

ug = Uy + Uy and Yy =Yg + Ye,
where @ and y are white, centered, and uncorrelated ran-

. . . ~ A
dom processes with known covariance matrices var(t;) =
R™'>0andvar(§;) 2 Q' >0,fort =1,...,T.

The optimal EIV smoothing problem is: find sequences
{ay = {932t and {@:}]_, that solve the following
optimization problem

T-1

3 ((uT — i) R(uy — i)+

..... g, T=0 \T .
ygo....y,:gng + (y‘r - yT) Q(y‘r - y‘r)) (P)
ot i’t+1 = Aﬁft + B{Lt
yt = Ci’h
fort =0,1,...,T7 —1, and with initial condition g = xip;.
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3 Solution

Let { P}, be the solution of the Riccati difference equa-
tion

P=—AT"P, . B(B"P,, 1B+ R)'BTP, A+
L AT A+ CTQC,

fort =T —1,...,0, with final condition Py = 0, and let
{5:}7=," be the solution of the recursion

sy =—ATP, \B(BT'P, 1B+ R)"Y(BTs,11 — Ruy)+
+ ATSt+1 — CTQyt,

fort =T —1,...,0, with final condition s = 0. Then the
optimal smoothed signals solving problem (P) are obtained
from the forward recursion

flAft+1 = Afit + .B’LALt7 :l}t = C.’%t,

iy = —(B"Py1 B+ R) 'x
X (BTPt+1A£%t + BTSt+1 — Rut)

fort =0,...,T — 1, with initial condition £(0) = Zip;.
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1 Abstract

In this paper we study systems that can occur in a finite num-
ber of partly overlapping states, where the state directly de-
fines the (set of) appropriate control action(s) required to
bring the system back in its ground or equilibrium state. We
describe an approach for the real-time control of such sys-
tems, based on the concurrent aggregation and classification
of numerous heterogeneous noisy sensor data. Starting point
for the approach is a large set of empirical observations of
the given system, represented in the space of the sensor pa-
rameters. The relevant states of the system are identified
with parametric clustering techniques like Gaussian mixture
decomposition. Using this parametric representation, a hy-
pothesis on the actual state of the system can be expressed
in terms of the currently obtained sensor data. The real-
time control approach is based on determining the state of
the system as fast as possible. This is realized by itera-
tively determining the most informative sensor-parameter,
and consequently reading the associated sensor. The newly
collected information will give rise to a new hypothesis on
the system state. This iteration is continued until a specified
confidence level has been met, or all sensors have been red.
Central in our approach is the notion of the most informa-
tive parameter. This entity is defined as the parameter which
has the highest potency for deciding between the competing
hypotheses. This parameter is computed with dynamic pa-
rameter selection, using the optimization of functionals that
express relative state separation and relative parameter rel-
evance, involving the actual hypothesis on the system. The
approach is analysed theoretically, and an application is de-
scribed on real-time production quality control using com-
putational vision.
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1 Abstract

We describe decentralized control laws for the coordi-
nation of multiple vehicles performing spatially distrib-
uted tasks. The control laws are based on a gradient
descent scheme applied to a class of decentralized navi-
gation functions that encode optimal coverage and sens-
ing policies. The approach exploits the computational
geometry of Voronoi diagrams.

Our central motivation in this note is provided by dis-
tributed sensing networks in scientific exploration or
surveillance missions. The motion coordination prob-
lem is to maximize the information provided by a swarm
of vehicles taking measurement of some process.

1.1 Setting up the coverage control

Let {p1,...,pn} be the location of n sensors moving
in a Riemannian manifold (with boundary) Q. Let
¢ 1 @ — R, be a distribution density function. The
measure ¢ plays the role of an “information density”.
Assume each vehicle has a sensor that provides accurate
local measurements and whose performance degrades
with distance. Formally, let f (dist(q,p;)) (with ‘dist’
the distance defined through the Riemmanian metric)
describe the performance degradation, e.g., noise, loss
of resolution, etc, of the measurement at the point
q € @ taken from the ith sensor at position p;. The
function f : Ry — Ry is monotone increasing.

The overall “sensing performance” is given by,

Ulpi,...,pn) = i
(P1,---pn) /Q{m}

This function (common in geographical optimization
science [1]) measures the ability of a collection of ve-
hicles to provide accurate distributed sensing. The lo-
cational optimization problem is to minimize U.

[ (dist(q, pi)) #(q)dg. (1)

1.2 Voronoi diagrams

Let the Voronoi region V; = V(p;) be the set of all
points ¢ € @ such that dist(q,p;) < dist(g, p;) for all
j # i. The set of regions {Vi,...,V,} is called the
Voronoi diagram for the generators {py,...,pn}. When
the two Voronoi regions V; and V; are adjacent, p; is
called a (Voronoi) neighbor of p; (and vice-versa).
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1.3 Decentralized control protocols
We propose the gradient descent as a decentralized con-
trol law that achieve “uniform coverage” of @,
ou
i (t) = — . 2
Bt = -5 @

The following result [2, 3] shows that indeed the con-
trol law is decentralized, in the sense that only depends
on local information, i.e. the location of p; and of its

neighbors,
-/ 3)
Vi

ou
Opi

Hence, U provides us with a decentralized navigation

function [4] in the setting of multiple vehicle networks.

o (dist(a,p1)) dofo).

12000

11000

10000
9000
8000}
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Figure 1: Distribution of sensors obtained by 16 vehicles in
a polygon. The vehicles’ initial positions are in a
tight group in the lower left corner and their final
positions are optimally distributed.
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Abstract

In state-space, the discrete-tintty-approximation prob-
lem can be stated as follows. L&t be a given (linear
time-invariant causal) stable system withinputs andp
outputs and an associated minimal state-space realization
(A, B,C, D) of ordern. Fork < n, find an approximat-

ing stable systent and an associated minimal state-space
realization(A, B, C, D) of orderk which minimizes theH,-
distance betweeR and¥, specified by

1= - 213, = wf{o-D0)0-0}+
(P P \( C
e (g B)( %))

where P, P, and P3 are the (unique) solutions of the
discrete-time Lyapunov and Sylvester equations

P, — APLA* = BB",
P, — ARA* = BB,
P; — AR A" = BB*.
This criterion is quadratic with respect to the each of the
entries of bothC and D, so that unique optimal values for
€ and D corresponding to éixedchoice forA and B, are
easily computed as
|5opt =D,
éop[ = C Fbpg_l.
Substitution of these values into th#-criterion to be min-
imized yields the following ‘concentratdd,-criterion’

1T — 3, =tr{CPC*} —tr {C Pnglpz*c*} .

which is to be minimized over all controllable input pairs
(A, B) with A asymptotically stable of sizk x k and B
of sizek x m. Note that the first term of this expression
is equal to theH>-norm squared of the given systemand
provides an upper bound for the expressiiA, B) :=

tr IC PZP:;lPZ*C*} to be maximized.

In this paper we present a case study of a nontrivial multi-
variable example of a given systemof order 4 with 2 in-
puts and 2 outputs together with an accompanying approx-
imating systems of order 2. This example was designed
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in a systematic way such that the entries in the matrices of
the state-space realizations of battand > are available in
exact rational format. This makes the example suitable for
testing recently developed exact algebraic methods that can
be employed to decide on global optimality of the approx-
imant. The property of stationarity of the approximant

for the concentratedH,-criterion is part of the design pro-
cedure, but local optimality has to be verified explicitly. For
the case of our example this is achieved by establishing pos-
itive definiteness of the Hessian at the approximant.

To establish global optimality of, the algebraic form of
the concentrated,-criterion, involving 4 free parameters,
still happens to be far too complicated to be handled directly
by available state-of-the-art algebraic methods and software,
despite the seemingly low valuesmof p, n andk. (This il-
lustrates the intrinsic complexity of the problem, which may
indicate to some extent why a general method to compute
global Hp-approximants is still lacking in the literature.)

However, by means of a ‘second concentration step’, con-
sisting of an (unsuccessful) attempt to rewrite the concen-
trated Hp-criterion into a form which allows for a general
characterization of all optimal matricés for a fixedgiven
matrix A, we are able to derive a functioh'(A) WhICh acts

as an upper bound on the achievable valué.of\, B) when
keepmgA fixed and varying onIyB These computations
involve the use of so-called Faddeev reachability matrices,
which allow one to express the solution of a discrete-time
Lyapunov or Sylvester equation as a finite sum of matrices.
The upper bounW(A) turns out to be rational in the entries
of A. SinceA can be chosen to be in canonical (companion)
form, the number of free parameters is reduced to 2, and the
complexity of W becomes considerably less than thaVgf

We are finally in a feasible position to apply algebraic tech-
niques for global optimization of rational functions. We
then will show, for the case at hand, that: (i) the upper
bound W(A) is sharpat the approximant, and (ii) the
upper bound has a global maximum at the approximant
3. This leads us to conclude global optimality of the
H>-approximant, providing (to the best of our knowledge)
the first nontrivial multivariable instance of this nature de-
scribed in the literature.
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1 Abstract

Iterative Learning Control (ILC) [1] deals with the problem
of finding the optimal input* to an unknown planP by
utilizing information from previous trials. The optimal in-
put is defined in terms of the plant’s output in the sense that
it minimizes the distance between the actual outpaind
some desired outpyt. From a mathematical point of view,
the problem boils down to defining a recursion relation on
the space of input&L. This relation should define a con-
vergent sequence and moreover it is generally required that
liMmy_ oo U(K) = U*.

At first sight, this seems like a difficult, if not impossible
problem to solve. Nevertheless, many papers on ILC have
addressed this problem and a variety of 'solutions’ has been
proposed [2]. The main idea that is common to all these
solutions can easily be explained by means of a simple ex-
ample.

Consider a recursion of the following type

uk+1) u(k) + e(k) 1)
whereeis defined agyy — y. Assume there existsigy € U
such thatPuq yq. If this sequence is convergent, then
necessarily limp.,  e(k) = 0. Assuming thaP is bounded

on U, it is not hard to show that a necessary and sufficient

condition for convergence is given by

ImM-Pl<1 (2)

This implies thatP—1 exists and is bounded. In fact, if this
condition holds, the recursion defined by (1) can be shown to
converge to the fixed poit= P~1yy = P~1 (Pug) = ug.

In the context of linear systems this means that, as a neces-
sary condition for convergencé& should be invertible in
RH>. Clearly only a very limited subclass of LTI plants
satisfies this condition. This makes us wonder whether in
general there exists at all a scheme that converges to the op-
timal inputu* = uq. If the answer would turn out to be
negative, the limits of performance have to be taken into ac-
count from the start, which means that aiming for perfect
tracking is not a good idea.
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In its full generality, there is no way we can answer this
guestion. One way to constrain the problem is to consider
only recursions that are linear in

In this presentation, we will propose a framework for the
analysis of linear recursions of arbitrary order. Within this
framework, the Iterative Learning Control problem reduces
to a discrete time controller design problem on an infinite di-
mensional state space. Then, using the internal model prin-
ciple, we are able to show that a zero steady state error can
only be achieved if the controller has some integral action.
This is illustrated in Figure 1 for the recursion defined by
(2). We will elaborate on the implications of this result.

Yd

+ f
Figure 1: The internal model principle for ILC. The controller
contains a model of the reference input.

1 y(2)

1-z
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1 Abstract

In this paper we present a behavioral interpretation of
the list decoding approach that was proposed in [1].
We concentrate on the behavioral elements and keep
the coding details to a minimum that is just sufficient
to appreciate the lines of thought. A more elaborate
treatment will be presented in a forthcoming paper.
The paper is a follow up of [2] and works out the sugges-
tion made there to put list decoding in the perspective
of multivariable behavioral interpolation.

Briefly, an (n, x) Reed-Solomon code is defined as fol-
lows. Let F be a finite field, say F = {&1,...,&,}. The
message word is a k-tuple (mg,m1,...,m,_1) € F~.
With this k-tuple we associate the polynomial m(&) =
mo+mi€+ ... +me_ 16571 € F[¢]. The codeword c is
then the n-tuple of the evaluations of m(€) in the ele-
ments of F: ¢ = (m(&),...,m(&,)). The codeword c
is transmitted through a channel where errors may oc-
cur so that the received word r is not necessarily equal
to the transmitted codeword c. The decoding problem
consists of reconstructing the original polynomial m(§)
from the received word r.

In a recent paper, [1], a list decoding scheme based on
bi-variate interpolation was proposed. In list decoding
a list of possible polynomials m(&) is derived from the
received word. Subsequently a unique member is se-
lected on the basis of secondary criteria. This second
step is not discussed in the present paper.

The idea put forward in [1] is as follows. Denote the
received word by r = (1,...,7,). Let Q(&,n) € F[¢, ]
be a bivariate polynomial of (1, — 1) weighted degree,
defined below, such that Q(&;,n;) =0fori=1...,n.

1.1 DEFINITION .
Let Q(&n) € Fl&n], say Q(&:n) = Xicres @&
The (we, w,) weighted degree of Q(&,n) is defined as
wdeg Q(&,n) = max {iwe + jwy | g5 # 0} (1)
iel,jed

In fact, in most but not all cases, the weighted degree is
just the normal degree of Q(£*¢,£%). In the sequel we

1Faculty of Mathematical Sciences, University of Twente,
P.O.Box 217, 7500 AE Enschede, The Netherlands. E-mail:
J.W.Polderman@math.utwente.nl

2Department of Electrical and Electronics Engineering, The
University of Melbourne, VIC 3052, Australia. E-mail:
m.kuijper@unimelb.edu.au
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are only concerned with the (1,x — 1) weighted degree
and therefore we refer to it as just the weighted degree.
Let £ = wdeg Q(&,n). Suppose now that the received
word contains less than n — ¢ errors. Then there ex-
ists a polynomial m(§) of degree less than x such that
m(&;) = n; for at least £41 values of i. In fact, the orig-
inal polynomial m(§) does this, but there can be more.
We conclude that Q(&,m(£)) has at least £+1 zeros. On
the other hand, deg Q(&, m(€)) cannot exceed £ since by
assumption wdeg Q(&,n) = £ so thatdeg Q(&, m(§)) < L.
Since a polynomial of degree not exceeding ¢ can only
have more than ¢ roots if it is the zero polynomial, it
follows that Q(&,m(&) is indeed the zero polynomial.
But this implies that n — m(§) divides Q(&,n). In par-
ticular n —m(§) divides Q(&,n). The list decoding now
consists of constructing a polynomial Q(£,n) such that
Q(&,1m;) = 0 and such that deg Q(&,£571) is minimal.
Once Q(&,m) has been constructed all factors of the
form n — m(€) are extracted thus producing a list of
candidate polynomials m(€). Roughly, our approach is
structured as follows. We write the polynomial Q(&, )
to be constructed as Q(&,n) = Zjvigl d;j(&)n? for an ap-
propriate choice of M. With the data (&;,7n;) we asso-
ciate n trajectories w; : Z, — FM. We then determine
the Most Powerful Unfalsified Model 9B of these n tra-
jectories. Then we construct a weighted degree row re-
duced matrix R(§) € F[¢] that represents B. From R()
we select a row d(£) of minimal weighted row degree
and finally we define Q(¢,n) = ZjMzgl dj(&)n?, where,
of course, the d;(§)s are the entries of d(£). It turns
out that Q(&,n) constructed is this way is a bivariate
polynomial of minimal (1,x — 1) weighted degree that
interpolates the data points (&;,7;).
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Abstract

We establish relations between system theory, information

theory and signal processing by computing the principal an-

gles between linear subspaces. Our main result is the equiv-
alence of a weighted cepstral norm of a Gaussian autore-
gressive moving average (ARMA) process and the mutual

information of its past and future.

1 Principal angles between subspaces

Principal angles between linear subspaces were defined by
Camille Jordan [3] in the nineteenth century and statistically
interpreted by Hotelling as canonical correlations [2]. In
systems and control, the principal angles occur in subspace
identification methods [5] and also in damage location [1].
We start with the definition of the principal angles between
linear subspaces and show how the canonical correlations
of two stochastic processes can be interpreted as principal
angles.

2 Principal angles between input and output spaces of a
linear model

We obtain expressions for the canonical correlations of

the past and future input and output processes of a linear
stochastic model, in terms of the model parameters. From
these parametric expressions, the relations between the
different sets of principal angles can easily be deduced,

which are also corroborated by geometric insights.

For single-input single-output (SISO) models, we give a

3 A cepstral norm for ARMA models and the mutual
information of past and future

We treat one particular cepstral norm for ARMA models,
derived from a metric in [4]. We show that the cepstral norm
of a model can be characterized as a function of the principal
angles between the row spaces of the controllability matrix
of the model and the controllability matrix of the inverse
model. By using the insights of the first part of the talk,
the norm is related to the canonical correlations of the past
and the future of the output process and hence to the mutual
information of these processes.
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Abstract

wherez € R", u € {—amaz, +amaz} iS the control law
described in figure 1.

This paper describes the design of a control structure based The energy of the free pendulum is equal to :

on bang-bang control laws in order to generate acrobatic tra-
jectories. As an illustration, we consider the swinging-up of

the free pendulum of the pendubot system and the cart-pole

system.

The goal is to get simple control laws allowing analytical
approximations while minimizing the computation efforts in
practical implementations.

Swing-up specifications

We are interested in swinging-up the free pendulum of the
cart-pole system and the pendubot system by controlling re-
spectively the acceleration of the cart and the angular accel-
eration of the actuated arm.

By choosing an appropriate bang-bang law, we obtain the
following parametrised bang-bang control law :

u

Umaz

34 time

2A
1 4A

—0ma

Figure 1: Control law : acc. of the cart/actuated arm

The shape is chosen symetric in order to satisfy an additional
constraint : we want the cart or the actuated arm to come

Eyq = %JwQ —mgl(1 4+ cosf) (2)
wherem is the mass of the penduluiis its length and/ its
moment of inertia. The energy levemgl corresponds to
the vertical down position of the pendulum (at rest) and the
energy leveD corresponds to the vertical up position of the
pendulum (at rest). The goal to reach is to supply the free
pendulum a quantity of energy equal2mgl. We decide

to fix the maximum value,, ., Of the acceleration and we
play only on the switching time parameter. Then we derive
ananalytical relationbetween the energy levél,q; andA :

E,a = E(A)

To obtain this relation, we proceed as follow :

1. We approximate non-linear functighof equation (1)
by an integrable one ; we consider different system
approximations over successive time intervals.

2. We solve the approximated systems and find analytic
approximations of(¢), w(t) over the interval0, 4A]
which areA dependent.

. We introduce the result in expression (2) and find the
minimum value ofA which zeroes it at time = 4A,
i.e. when the end of the energy transfer is reached.
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is bounded.

Design methodology

The system equations are of the form :
&= f(t,z,u) 1)
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1 Introduction
Consider theextended chained fornsystem (ECF)
1)

which can also be written @s= bg(x) +u1 b1 () +uzba ()
Wlth‘ bo(:l’,‘o) = xgaiwl + 1‘4% + xﬁf;, bl(m> = Bing +
azga%ﬁ andb,(z) = 2. This canonical form can be used

- 8{1}4'

T1 = U, T2=uU2, I3=U1T2,

to model the dynamics of several mechanical underactuated

systems, for instance the PPR manipulator with unactuated
third joint, the planar VTOL system in the absence of grav-
ity, and the planar, parallel-drive RRR manipulator with any
two joints actuated. Asymptotistabilizationof the ECF to

the origin is a challenging problem solved in [1] by means of
time-varying, homogeneous feedback. A limitation of con-
trollers of this class, however, is the lack of robustness with

used to steer the system. Under appropriate conditions, this
iterative scheme stabilizes the origin of a dynamic exten-
sion to (2), and is robust to a class of perturbations. System
(2) is thus controlled by applying(t) = a(x(kT),t), for

te kT, (k+1)T)andk € K = {[to/T], |to/T]+1,...}.

This can be represented by complementing (2) with a dy-
namic extension whose solutigff-) coincides withz(t) at

the sampling instant&T) ek, and by controlling the sys-
tem withu(t) = a(y(¢),t), namely

= bo(@) +h5(@) + Y, auly, )(0i(@) + hi(@)) (g
y = Z;O:[to/TJ+1 6(t — KT)x(t).

This system is initialized by choosingo, o) € R® x
R® and then settingz(ty), y(to)) equal to(xg,xo) if t
mod T' = 0, or equal to(zg, yo) otherwise. We propose
the following feedback law

respect to unmodeled dynamics. Uncertainties in the phys- ai(z,t) = a2y + a2z + bp(x) cos(wt)

ic_al parameter valugs, fo_r example, may introduce additive ay(x,t) = azrs + asry — %(%% + agxg) cos(wt)
disturbance vector fields in the actual system, and these may -

cause instability of the origin. We are thus led to consider whereb > 0 and p(z) = (Z?:l |x;|m )2 with r =

theperturbedsystem

jj =

bo(z) + h(z) + iy wi(bi(@) + hi (@), (2)

where thalisturbance vector fields; —analytic both in: €

R® ande R—satisfyh?(-) = 0 (their magnitudes tend to
zero ax — 0) andh§(0) = 0 (the origin is an equilibrium

for the perturbed system). Roughly stated, a feedback law
(x,t) — a(z,t) is considered robust if, for any family of
disturbanceshs);—o,1,2 Of a given class, the origin of (2)
with u; = «;(x, t) is locally asymptotically stable whenever
le| is small enough. Obviously, this notion of “robustness”
is limited since more general sources of disturbance cannot
be modelled by (2).

2 Robust control law for the ECF

Inspired by existing results, we propose a hyboen-
loop/feedbackapproach. The principle is simple and
based on a time-varying (indeddperiodic) feedback-law
(z,t) — afz,t). «is designed so that = a(x,t),t €
[0,T), drives the system’s state from{0) = z, to a point
xz(T) that is “closer” to the origin (in some particular met-
ric). The control isperiodically updated in terms af, and

60

(1,1,1,1,2,2). One checks easily that when (1) is initial-
ized atz, and controlled byu(t) = a(xo,t), t € [0,T),
the solution satisfies(T') = Azo + o(||zo||). In the sequel
we assume thatl € R%*% is discrete-stablgi.e., 0(A) C

{z € C : |z|] < 1}. This can be achieved by a proper choice
of the gainsz = (ay, .. ., ag).

Proposition 1 For any family of disturbanceghs);—o 1.2
such thathg ;. (z) = O(||z||*), k = 1...,6, the origin of
(3) is locally exponentially stabléor || small enough.
The proof of this, our main result, is rather elaborate in part
because it requires the Chen-Fliess series expansion of the
solutionz(t), t € [0,7). We show that the influence of
the potentially “destabilizing” perturbation terms in the ex-
pansion can be made negligible by considering initial values
x sufficiently near the origin, and disturbance parameters
sufficiently near zero. This control strategy has been verified
in simulation; experiments on a real PPR manipulator with
passive third joint are currently underway at our research
group.
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Active surge
control law
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performance
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Figure 1: Active surge control using drive

1 Introduction

Traditionally, centrifugal compressor surge has been
avoided using surge avoidance schemes that use various
techniques to keep the operating point of the compressor
away from the surge line. Typicaly, a surge contral line
is drawn at a specified distance from the surge line, and
the surge avoidance scheme ensures that the operating point
does not cross this line. Usually arecycle valve around the
compressor isused as actuation. This method workswell, as
has been proved by numerousinstallations. However, dueto
the presence of the surge margin, the method restricts the
operating range of the machine, and achievable efficiency is
limited. In this study, which is on compressors with electri-
cal drives, we propose to use the electrical drive as a means
of active surge control, as depicted in Fig. 1. The advantage
of thisisthat the drive is already present, and no additional
actuation deviceisrequired. Thismeansthat the compressor
can be operated at |low flows without recycling, and thereis
apotential for reduced energy consumption of the compres-
Sor.

2 Modeling

A Greitzer model with varying speed [1] is used:

po= agV, (h ) (1a)
Th = Ach (iI\]c (d}v m) Po1 — pp) ’ (1b)
O = JYFa-7). (10)
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Figure 2: Stabilized operating point using torque.

3 Control

The control isderived in two steps. First, the angular speed,
@, is used as control, and then the drive torque 74, with its
additional dynamics (1c) is used.
Theorem: Using the speed as control, the control law

W= —cm, 2
where the gain ¢ is chosen according to ¢ > ?9\1\1//1 //%Z‘ makes
the origin of (1a) and (1b) globally exponentialy stable.
Sketch of proof: Consider the Lyapunov function candidate
V= QZglfﬁ + Lom2 > 0, (1, p) # (0,0).Using (2) it
canbeshownthat V < —k,p* — kin? < —kV,Y (1, p) #
(0, 0) and the result follows.

A simulation of active surge control on aindustrial size nat-
ural gas pipeline compressor using drive torque is shown in
Fig. 2. The complete analysis and additional simulations
can befoundin[2]
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1 Abstract

Nowadays CD/DVD players are mainly controlled by lin-

ear feedback based on the concept of bandwidth. Depend-

ing on the type of disturbance, the bandwidth is set to meet
certain specifications. Within the automotive industry, this

imposes a trade-off. Namely in case of shocks, for exam-
ple due to road excitation, increasing the bandwidth com-
monly results in an increased low-frequency disturbance re-

tude part, the maximum absolute values of the periodic non-
linear responses subjected to harmonic excitations are de-
picted within a frequency range of interest. These responses
are obtained numerically using efficient periodic solvers [2].
With this amplitude measure, improvements in disturbance
rejection are studied for varying parameter values.

Experimental results performed on a lab-scale setup of a
DVD (video) drive subjected to additional vibration exci-
tation are shown to illustrate the possibilities of the nonlin-

jection. However the playability [1], a performance measure ear control design within a real-life application. The results
related to deteriorated error signals during disc deficiencies largely correspond to the numerical results obtained with the
like scratches or fingerprints, decreases due to sensor noisesimpnﬁed lens model and, therefore, provide a sufficient ba-
tracking. To overcome this trade-off, the merits of nonlinear sjs for further research.

control design will be studied. Nonlinear control enables a
different amount of disturbance rejection, or playability, de-

pending on: 1) the amount of disturbance, and 2) the type of
disturbance.

References

[1] Baggen, C.P.M.J., and Nijhof, J.EA, Compact Disc
IC Concept Enhancing PlayabilityProc. Conference on

Ideally a nonlinear controller may offer the ability of im- ~ Consumer Electronics, IEEE, pp. 48-49, 1985.

proving both disturbance rejection and playability within a 2]  Heertjes, M.F., Sperling, F.B., and van de Molengraft,
single control design. Here, it will be shown that improve-  \1.3.G., Computing Periodic Solutions for a CD-Player with
ments in disturbance rejection can be obtained without nec- Impact using Piecewise Linear Shootiryoc. 40th IEEE
essarily affecting the playability. Hereto a hardening control - conference on Decision and ContraVeP03-4, 2001.

strategy is presented that switches to a higher value for the . . .
; afi ; [3] Sastry, S.Nonlinear Systems; Analysis, Stability, and
controller gain beyond a pre-defined radial error level. As Control, Springer-Verlag, New York, 1999,

a result, large shocks correspond to a large amount of ad-

ditional control effort giving improved disturbance rejection  [4] Stan, S.G.The CD-ROM Drive; A Brief System De-
while, at the same time, small shocks hardly correspond to scription Kluwer, Boston, 1998.

additional control thus leaving the playability unaffected.

The nonlinear control design is discussed regarding stabil-
ity and performance. Closed-loop stability is derived on the
basis of the circle criterion [3]. Especially the graphical rep-
resentation of the circle criterion will serve as a tool for non-
linear design. Performance is quantified using a generaliza-
tion of the linear sensitivity function. Based on the ampli-
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1 Abstract

A discrete time sliding-mode controller is designed with the
reaching law method. To build up a tracking controller, a
feedforward part is added outside the closed-loop sliding-
mode controller. The robust performance of this tracking
controller in the presence of plant model uncertainty and in-
put disturbance is proved theoretically, and verified on the
X-Y table driven by linear motors.

In continuous-time sliding-mode controller design, a switch-
ing surface is defined as a function of the system state:

s(t) = Csl - X(1). (1)

A continuous-time sliding-mode controller can be designed
such that the evaluation of the scatasatisfy a prescribed
differential equation:

§(t) = —q - s(t). (2

Discretizing the continuous-time reach law in Equation (2)
yields:

sk+D)=@1-q-T)-skK. 3)
Given a plant mode as:
{ X(K+1) = (A+AA)-x(K) + B-uk) + P -d(kj;
y(k) = C - x(k).
4)

Calculating the command signal with reaching law (3):
u(k) = K-x(K)—(CsiB) - Csi- [AA-X(K)+ P-d(K)] (5)
Where

K=(CaB){[(1-q-T)-Csi—Cs-Al.  (6)

The command in (5) is not implementable, becatigeand
d(k) are unknown. But if we know the boundary of the
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model uncertaintyA A and the input disturbanaik) such
that:

ICsi - [AA-X(K) + P -d(K)]] <Uqg-T,

Ug >0 (7)
and modify the command (5) as:
uk) = K - x(k) — (CgiB)™-Uq - T - sign(s)  (8)

The command in (8)is implementable now, and it can be
proved that a quasi-sliding-mode bound under this com-
mand satisfies:

2Uq-T

sl < 1 q T (9)

Outside this bound, the plant state trajectory moves
monotonously towards this bound. Inside this bound, the
zigzag motion of the system state around the switching line
is not guaranteed because the reaching law in (3) is changed
to:

sk+1) = (1—q-T)-s(k)+Cg -[AA-x(K)+
+P-d(k)] —Uq - T -sign(s).

(10

The closed-loop system can be derived by substituting Equa-
tion (8) into Equation (4), which yield:

x(k+1) = Ay -xKk) +AAxK) + P -dk)— (11)
—B-(CgiB)"1-Uq - T -sign(s).
Ay =A+B-(CeB)[(1—-q-T) Cs—CyA] (12)

Notice that if the plant system matriXis written in the con-
troller canonic form, it can be proved that, is only depen-
dent on the switching line paramet€g; and the reaching
law parameteq. This property allow us to build a tracking
controller by adding a robust feedforward part based on the
closed-loop system matri&,,.
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Motivation

charge controlled, while the BM equations impose the re-
striction that the elements are current and voltage controlled.
One reason to work with PH systems is that the equations
very suitable and natural framework to describe the dynam- are formulated in natural physical variables. However, the
ics of a broad class of nonlinear electrical, mechanical and inclusion of static elements, like sources and resistors seems
electro-mechanical systems. In this presentation we present not so natural in this framework. In principal, the constitu-
a dual formulation of the dynamics of nonlinear electro- tive relations of voltage sources, current sources and resis-
mechanical systems in terms of the power variables. The tive elements are rather considered in terms of currents or
method is based on the classical Brayton-Moser [1] equa- voltages (Ohm’s law), instead of fluxes or charges. It seems
tions parameterized by the generalized mechanical config- therefore more natural to use the BM equations. In the

It is well-known that the Port-Hamilton [4] equations form a

uration coordinates (positions). The main ingredients are
the kinetic, magnetic and electric co-energy and the defini-
tion of a mixed-potential function. Originally, this frame-
work stems from the early sixties and is very little known
in the systems and control community. In the new set-
ting the mixed-potential function exists of power preserv-
ing potentials and the mechanical, magnetic and electric ap-
plied power and dissipated power. The main advantage of a

context of feedback controller design for electro-mechanical

systems, an additional advantage of using the BM equations
for the electrical part of the system is that the dynamics are

directly expressed in measurable quantities. Similar argu-
ments hold for the mechanical part of the system, where it is

more common to measure velocity instead of momenta.

Contribution

well-defined dual formulation is that essential and important

properties can be translated from one framework to another. The results of this research are very useful to overcome the
One of these useful properties is that the mixed-potential dissipation obstacle in electro-mechanical systems that can-
function is used as a Starting pOint to derive a new famlly of not be stabilized by the energy_ba|ancing technique as re-
storage functions. Instead of using the total stored energy as cently proposed in [3]. At a more general level, our objec-
a storage function, as with Port-Hamiltonian (PH) systems, tjve is to put forth the mixed-potential function and the dis-

we use the dissipative structure. This will lead to osver
balance:

t
/o [F(2) + 2(x(x)] " x(1)d7 = Q(x(1) — Q(x(0)),

wherex is the stateQ(x) the dissipated poweF the exter-

nal forces andb (x) reflects the interconnection variables of
the different subsystems. Consequently, the system defines a
passive port with respect to the port variabl€s ® (x), X}.

The motivation behind the use of the generalized Brayton-
Moser (BM) framework is the following. In the context

of electrical circuits it is shown in [2] that the BM equa-
tions bear a marked similarity in structure to the PH equa-
tions. The most trivial duality between the two frameworks
is that PH systems assume the circuit elements to be flux and

1Sponsered by Marie Curie Control Training Site (CTS)
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sipative structure as a new building block for analysis and
controller design.
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Abstract

The joint research program in cooperation with TNO-TPD
called "Hybrid Isolation of Structure Borne Noise” studies
the possibilities of reducing the sound radiation at certain
locations in a structure, due to the presence of a vibration
source. A ship engine is such an example of a vibration
source, which causes noise annoyance due to the vibration
transmission through its carrier structure.

The existing passive isolation methods (e.g. rubber mounts)
are insufficient to achieve the desired sound reduction. A
promising approach for this type of applications is the use
of so called hybrid isolation techniques, being a combina-
tion of passive (spring, damper) and active (controlled ac-
tuator) isolation methods. Important issues are optimal per-
formance and integration in the existing construction.

Source M’ ke (8
Mass (B)
Hybrid mount Piezo (C)
(active & passive) Accderation
fffffff j 1 sensor 0) ] |_
Receiving structure [ 1 Clamped metal plate (E) 1
feedforward
accdleration
Filtered LMS
Reference

Figure 1: Schematic of 1-DOF demonstrator set-up

The experiments are performed with an experimental set-up
for a one degree of freedom (1-DOF) system (see fig. 1). An
electrodynamic shaker(A) serving as a vibration source ex-
cites a mass(B) with an unknown (harmonic) disturbance.
The mass is mounted on a clamped metal plate(E) by a
piezoelectric actuator(C) which operates as a hybrid isola-
tion mount. Setting the frequency of the disturbance close
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to the1* or 37 eigenfrequency of the receiver construction
results in significant sound radiation from the metal plate.
Remark that the mount is designed to transfer only forces
perpendicular to the plate. This means that the mount can
completely isolate the source from the receiver by ensur-
ing that the external force in the mount-plate interconnec-
tion point equals zero. Effectively the hybrid mount needs
to generate an internal force to counteract the force induced
by the mount stiffness and the displacement of the vibration
source. As a consequence the source vibration remains un-
changed while the receiver remains silent.

An adaptive feedforward LMS controller is used for online
calculation of the optimal piezo force which minimizes the
signal measured with the acceleration sensor(D). The two
filter coefficients in the vectow are updated according to
the LMS weight update equation[1,2]

1)

in whichn is the current sample numberthe convergence
step sizeg the filtered reference signal andhe measured
acceleration (error signal). The reference signal needs to
be filtered by an estimation of the transfer function from the
piezo force to the measured acceleration in order to compen-
sate for the mechanical delays in this transfer path. Without
this, the controller may exhibit slow convergence or may
even show divergent behavior, even for appropriate selec-
tion of the step size:. In general, a smaller results in
lower convergence speed but diminishes the residual error
and therefore the radiated sound levels.

w(n+1) = w(n) + uZa

For the presented configuration the source is almost com-
pletely isolated for the frequency of the harmonic distur-
bance.
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1 Introduction

High-precision machines typically suffer from small but per-
sistent vibrations. As it is difficult to damp these vibrations
by passive means, research at the Drebbel Institute is aimed
at the development of aactive structural elemerthat can

be used for vibration control. The active structural element,
popularly referred to as ‘Smart Disc’, is based on a piezo-
electric position actuator and a piezoelectric force sensor.

One of the main problems in active control is to ensure sta-
bility. In this respect it is often advantageous to consider
the use of so-calledollocatedactuator-sensor-pairs, as this
enables to actively implement a passive control law, which
is robustly stable, irrespective of structural modeling errors.
Within the context of vibration control for lightly damped
structures, collocated actuator-sensor-pairs are known to be
well-suited to obtain robust active damping [1, 2].

2 Example: wafer stepper lens vibrations

A wafer stepper, i.e., the advanced microlithography system
that is at the heart of Integrated Circuit manufacturing, is
an excellent example of a high-precision machine the per-
formance of which is limited by the lack of damping within
the machine frame. Badly damped vibrations of the lens of
the wafer stepper limit the attainable line width of the circuit
patterns.

The lens of the wafer stepper is conventionally suspended
by means of three (passive) lens support blocks, consti-
tuting a kinematically well-designed interface to the so-
called metroframe of the wafer stepper. In order to perform
Smart Disc experiments, the lens support blocks have been
equipped with two piezoelectric stacks, both comprising a
position actuator and a collocated force sensor. Each of the
resulting ‘Piezo Active Lens Mounts’ has two perpendicular
active degrees of freedom.

By applying collocated control to the individual piezoelec-
tric stacks, all six ‘suspension modes’ of the lens can be
damped. Due to the passivity of the control laws, unmod-
eled flexible modes of the lens and the metroframe are also
stabilized.
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3 Collocated control versus modal analysis

Control based on collocated actuator-sensor-pairs is inher-
ently in terms ofocal coordinates. Vibration problems how-
ever are usually analyzed in terms mwidal coordinates,
corresponding to a limited number of vibration modes, as
captured in a simplified model of the mechanical structure.

In terms of the wafer stepper example: we are primarily
interested in the six suspension modes of the lens. From
a modal analysis point of view, it is therefore desirable to
have six SISO control problems, each one directly related to
a single suspension mode. However, due to the symmetry
in the set-up, the frequency response functions from a single
actuator to the collocated sensor are all similar. Tuning of
the local control laws, such that damping for the individual
modes is optimal, is therefore not straightforward.

4 Modal control through decoupling

The above-mentioned problem can be solved by realizing
that decoupling of collocated actuator-sensor-pairs, i.e, the
transformation of the original control problem into modal
coordinates, yields control loops that again enable the im-
plementation of a passive control law. Stability of ‘decou-
pled collocated control’ does not depend on the accuracy of
the model that has been used for decoupling.

This implies that, for the case of the wafer stepper, a simple
‘rigid-body’ model may be used for decoupling of the six
collocated control loops. Obviously, in contrast to stability,
theperformanceof active damping based on ‘decoupled col-
located controldoesdepend on the accuracy of the model.
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1 Abstract

In classic passive suspension design, comfort and road han-
dling are conflicting design criteria. An active or semi-active
suspension offers the possibility to vary the damper charac-
teristics along with the road profile. Such systems have dis-
crete settings or are limited in bandwidth up to 10Hz. This
paper discusses the development of a controller for a pas-
senger car using a recently developed active shock absorber,
were two current controlled valves continuously vary the
damper characteristics. The aim is to control the cars rigid
body modes heave, roll and pitch, as well as wheelhop and
the first bending and torsion modes. The control design is
based on damper and car models that are valid up to these
frequencies. Since the shock absorber is a highly nonlinear
hydraulic system, several nonlinear modeling techniques,
such as neural networks and Wiener-Hammerstein models
are derived. Using the active shock absorber as an actua-
tor, the car itself is identified using linear ide! nt! ification
techniques based on random multisine excitations to find the
best linear approximation of its dynamic behavior. Based
on the identified linear car model, linear controllers are de-
rived. These controllers calculate the actuator forces that
have to be generated by the active shock absorber. Based on
the nonlinear damper models, these desired forces are con-
verted into appropriate currents to be applied at the damper
valves. This requires a nonlinear model inversion. The pa-
per presents experimental results of the proposed controllers
on a quarter car test setup. The performance of several linear
car controllers in combination with nonlinear damper model
inversion strategies are compared.
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I ntroduction

In the pasttenyears,vehiclesafetybecomesnoreandmoreimportant. Passve safetyrefersto the components
of avehiclereducingthe occupaninjurieswhenan accidentoccurs. Thesecomponentanbe dividedin two
groups;componentsvhich do have contactwith theoccupanturinga crashandcomponentsvhich do nothave
contactwith the occupanduringthe crash.Thelattergroupis referredto asrestraintsystemg.g.theairbag.
Currently restraintsystemsareadaptve only in the sensehatthe mostappropriatesettingfor the actuatorsof
therestraintsystems choseronce directly aftera crashhasbeendetected Obviously, occupaninjurieswill be
lesssevereif it is possibleto manipulatethe restraintsystemduring the crash. The goal of this projectis to set
up a methodto controlthe occupaninjuries by manipulatingthe restraintsystemonline. The methodis setup
usingmodelsin thefinite elementandmultibody packageMAD YMO, seeFigurel.

Problem statement

Theproblemto startwith is to developadesignmethodto control
andminimizethechestacceleratiory onlinemanipulatiorof the
beltforcein one standardizedrashtest. The control algorithm
will be basedon feedback. The adoptedinjury measures the
maximal value of the chestaccelerationj.e. J = max|Z(t)|.
An appropriatereferencetrajectoryis setup, basedon a simple

representationof acrash. Figure1: Numericalmodelof aBMW

Approach

Thenumericaimodelin Figurel is complex andnonlinear Theproblemis how to getinsightinto thebehaiour
of this model, suchthatit is possibleto designa controller Two problemsarise. The first hasto do with the
compleity of therestraintsystem.This problemis partly solved by excludingthe airbag. The secondhasto do
with MADYMO. MADYMO hasnofacilitiesfor modelreductionor linearization.

Therefore,it is chosento identify the transferfunction from beltforceto chestacceleratiorby analyzingthe
disturbedchestacceleratiorto a stepwise perturbationin the beltforce. The transferfunction of a LTI SISO
systems identifiedonthedifferencebetweertheoriginalchestacceleratiorndthedisturbedchestacceleration.
Theidentified SISOsystemhasthe beltforceasinput andthe chestacceleratiorasoutput. Basedon this SISO
systemacontrollercanbe setup andthenbe validatedin thecomplex andnonlinearMAD YMO model.

Results

Application of the controllerin the nonlinear MAD YMO modelresultsin areductionof theinjury measuref
approximately60% with respecto the noncontrolledsituation.
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Abstract: Estimation of a single-input single-output block-oriented model is studied. The
model consists of a linear block embedded between two static nonlinear gains. Hence it is
caled N-L-N Hammerstein-Wiener model. First the model structure is motivated and the
disturbance model is discussed. The paper then concentrates on parameter estimation. A
relaxation iteration scheme is proposed by making use of a model structure in which the error
is bilinear-in-parameters. This leads to a ssmple algorithm which minimizes the original loss
function. The convergence and consistency of the algorithm are studied. In order to reduce the
variance error, the obtained linear model is further reduced using frequency weighted model
reduction. Simulation study will be used to illustrate the method.

Key words: ldentification, nonlinear process, block-oriented model, parameter estimation,
relaxation algorithm
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Local linear modeling is one of the many possibilities to
approximate a nonlinear dynamical system. It is based on
partitioning the whole operating range of the nonlinear sys-
tem into multiple, smaller operating regimes and modeling
the system for each of these regimes by a linear model.
By making a weighted combination of these linear models,
one hopes to describe the complete nonlinear behavior suffi-
ciently accurately. In this talk, the following weighted com-
bination of local linear models is considered:

> i) (Aixk + Biug + Oz’)
i=1
CiL’k,

Tk4+1 =
Y =

where s is the number of local models, =, € R™ represents
the unknown state, u;, € R™ is the input, v, € R? is the out-
put, and p;(éx) € R is the weighting for the ith model. The
weighting vectors p; are unknown functions of the schedul-
ing vector ¢, € RY. This scheduling vector corresponds to
the operating point of the system, typically it will depend
on the input and the state. The weighting functions can be
interpreted as model validity functions: they indicate which
model or combination of models is active for a certain op-
erating regime of the system. A weighted combination of
local linear models can be used to approximate a smooth
nonlinear system up to arbitrary accuracy, by increasing the
number of local models.

The identification of local linear model structures has been
studied mainly for input-output systems and for state-space
systems of which the full state vector is measured. The
case where only part of the state is measured is of course
of more general interest. This talk addresses the identifica-
tion of local linear state-space systems where the state is not
measured directly; only an observable linear combination
of some of the states is available as an output. Normalized
radial basis functions are used as weighting functions that
combine the local state-space models to obtain a global de-
scription of the input-output behavior.

For the local linear model structure, an optimization-based
identification procedure has been developed. The system
matrices of the local models are fully parameterized. An
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iterative projected gradient search method is used to iden-
tify the local models and the centers and widths of the ra-
dial basis functions. The method deals with the nonunique-
ness of the fully parameterized state-space representation by
first calculating at every iteration the directions in which a
change of parameters does not influence the input-output be-
havior of the model, and subsequently projecting these di-
rections out of the parameter update.

Because of the recurrent nature of the local linear models,
the gradient calculations needed in the projected gradient
search method are governed by dynamic equations. For suc-
cessful identification, these gradient calculations need to be
stable. The stability is discussed for two special cases of
scheduling. When the scheduling is based only on the in-
put signals, stability of the dynamic gradient calculations
can be guaranteed, and hence the training is well-behaved.
In the more general case where scheduling is also based on
the output signals, two training methods are possible, each
having their own advantages and disadvantages. One train-
ing method is based on scheduling with the measured out-
puts; this method behaves well during training, but the re-
sulting model can perform poorly when simulated in free
run. The other training method that uses the model output
for scheduling, does not have this problem, but can suffer
from stability problems during training.

Because the identification procedure is based on solving a
nonlinear optimization problem, an initial estimate of the
local linear models is required. It is proposed to estimate
a global linear model, and use it to initialize all the local
models; in addition the weighting functions are uniformly
distributed over the operating range of the scheduling vector.
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1 Introduction

Glutamine is a nonessential amino acid which supports the
function of the gut and the immune system. Several organs
and tissues can both synthesise and degrade glutamine,
dependent on the physiological condition. Skeletal muscle
is considered to be the main glutamine producing tissue in
man. Quantitative assessment of glutamine kinetics is
required to understand its physiology and to diagnose
pathology. Tracer dilution experiments with infusion of
stable isotope amino acids are used to study in vivo
transport and metabolic processes in human subjects.
Experimental enrichment data are interpreted in context of
(linear) compartment models to yield synthesis and
degradation rates. Under steady-state assumption for both
tracee and tracer the calculations reduce to algebraic
equations only requiring measurement of the steady-state
plateau enrichment. In literature experiments have been
reported with tracer infusion periods of 8 [2] and 6 or 11
[3] hours. The obtained rates have caused controversy
identifying skeletal muscle either as net producer or
consumer of glutamine. In this paper it is shown that,
based on non-steady-state identification of new data, the
tracer steady-state assumption cannot be valid for the
reported experiments.

2 Model

The tracee and tracer (*) are assumed to be homogenously
mixed in two compartments: a blood plasma (p) and
Whole-Body Free (WBF) pool (). The mass balances of
tracee and tracer have the same structure (2 sets of 2
differential equations):

X =Ax +Bu X" =Ax +BuU’

(€]
with x = [[gIn]p, [gInfe]” and X = [[gIn],, [gInTe]"
[nmobkg™]. Vector u®” [mmobkg™ ] contains the fluxes
which are independent of the model states. Tracee inflow
is assumed to be constant u = [rinfiows O]. The tracer
infusion rinfuse iSexperimentally set: U™ = [Finfuse, O]

For the other fluxes a first—order exchange between the
compartments is assumed, described by rate constants k;
[h™}], which are the same for tracer and tracee:

K- Ko Kz u
u

Kip

A= B=f 1 @

D:D (Pw

- k21|:|

Stationarity constraints In tracer experiments it is usually
assumed that the tracee pool concentrations remain
constant throughout the experiment, i.e. x =0. The tracee
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submodel reduces to a static representation and the plasma
and WBF tracee concentrations become constants V = [V,
V,] [mmolkg™]. The stationarity condition for the tracee
yields a set of algebraic equations which set the values of
V; and V,, given a specific realisation for the parameters g
= [Finflow K10, K12, K21]:

A@)V +Bul@=0 0 V=-A@Q)'Bu) 3

To estimate the unknown parameters q the remaining
model states X need to be linked to experimental data. The

model outputs y are the same quantities as experimentally
accessible: plasma pool enrichment. y = Cx with

C= dia\g(\/il 0)

3 ldentification

4)

During 24 h a [5-'°N]-glutamine tracer was supplied to 7
healthy, male subjects by a continuous intravenous
infusion in the arm, ripfuse = 0.68 [umobkg ™ h™]. During 36
h 46 blood samples have been taken from the artery
femoralis (leg) at non-equidistant times. Since the tracer
infusion is started at t = 0, the initial values xj =[0 o]'.

For each subject the parameters q T R ™ have been
estimated with a weighted least squares output error
criterion using SAAM 1l (software for identification of
compartment models based on tracer data [1], [4]) and
Matlab. The datasets contained both the infusion (load)
period and the wash-out curve (N=46). The average time
constants of the 2 pools for the 7 subjects are t; = 32+12
min and t, = 18.1+2.2 hour. The stationarity condition of
the tracee poolswas verified.

4 Conclusion

The traditional calculations applied to tracer data are
usually not based on time series data and system
identification. The model realisation obtained here, shows
that the required tracer steady-state is not reached during
the reported experiments. Instead, an infusion of at least
90h is required to apply traditional calculations, which is
hardly feasible with human subjects. The tracer steady-
state calculations are not applicable.
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1 Abstract

Current advanced controller synthesis methods are base
on a mathematical representation of the system to be con-
trolled. Clearly there is a strong correlation between the
performance achieved by the designed controllers and the
accuracy of the essential-dynamics model [1].

The approximation of real systems by means of models can
be applied in any process or mechanism. This approxima-
tion is done by a representation of the relationships between
variables of interest, usually physical quantities that can be
measured or manipulated. The system identification tech-
niques look for a representation based in the real plant to
be modelled. In general these techniques estimate a best-fi
model based on measurements from the real system. This
approach allows the simplification of the representation of
systems whose theoretical model is excessively complex or
uncertain to describe.

Moreover, non-linear mechanical systems with several me-
chanical degrees of freedom that require high dynamical
performance over their whole operating envelope must be
based on dynamic models that carefully represent both the
global non-linear dynamic behavior, the representation of
dominant structural flexible modes and the inclusion of rel-

evant other parasitic dynamic phenomena.

Within this framework, the objective of the SIMONA re-
search Simulator project (SIMONA stands for the Insti-
tute for research in Simulation, MOtion and NAvigation)
is the research in the field of simulation with an advanced
flight-simulator. The SIMONA Research simulator is a
lightweight multi-vehicle-re-configurable cockpit mounted
over a six-degrees-of-freedom motion platform. It is desired
that this simulator work with a wider bandwidth, from 10
Hz to 15 Hz, (actual simulators work in the range of 3 to
5 Hz) that would allow the simulation of special conditions
[2]. The simulation of special conditions make necessary the
high dynamical performance over the flight simulator work
space, which is achieved by means of a model based con-
troller. At present, an approximation of the real system con-
sidering only the motion platform dynamics has been used
for an initial control design. A better approximation of the
dynamics of the whole system is necessary for increasing
the performance in all the working envelope and fulfill band-
width requirements [3].
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In the case of the SIMONA research simulator project, sys-
tem identification procedures are applied to the motion sys-

d tem that can be described as a Stewart Platform with 6 DOF

(Degrees of Freedom). The objective is to provide a linear
simplified model of the motion of the Stewart Platform. The
proposed model can be used to design a multi variable con-
trol or a Linear Parameter Varying Control of the complete
motion system, the last would require the modelling of the
parameter dependence over the global operating domain.

In order to obtain an adequate model with system identifi-
cation procedures attention should be given to the experi-
ment design. The proper excitation of the system is crucial
in order to obtain measurements with enough information

over the relevant dynamics of the system for the subsequent

use in identification routines. For the particular system of
the SIMONA Research Simulator motion system, subspace
identification techniques provide state space models with
a straightforward application to Multi Input Multi Output
(MIMO) Systems. The Subspace Techniques are used in
combination with optimization routines [4] to obtain mod-
els with good characteristics in terms of analysis of residuals
and prediction of signals in the time domain.
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Introduction

Robotised laser welding, figure 1, is an application which
requires high speed combined with high precision. Off-
line programming is used to reduce the expensive down-
time while programming the accurate and high-speed mo-
tion. Unfortunately, the robot will deviate from the pro-
grammed trajectory due to dynamic limitations at the high
welding speed.

Figure 1: Robotised Laser Welding.

Goal

In order to a priory predict the dynamic performance of the
robot during laser welding of a specific product, realistic
dynamic simulations are combined with Off-line Program-
ming. Realistic dynamic simulations require realistic mod-
els of the robot and controller. Robot identification tech-
niqueswill be used to find the unknown model parameters.

Robot Identification

A 3 degree of freedom (3DOF) robot model has been for-
mulated which includes lumped inertia parameters, stiffness
parameters of the gravity compensation spring and a -three
parameter- friction model to describe joint friction. The
equations of motion are expressed in the vector of gener-
alised coordinates g and the vector of model parametersp

T=M(q,p)§+C(q,4,p)d + K(g,p)a+g(g:p),

where M (q, p) is the reduced mass matrix, C(q, ¢, p)q rep-

resents the Coriolis and the centrifugal forces as well as the
friction model, K(q,p)q includes stiffness properties and

g(g, p) is the vector with external nodal forces, including
gravity, and the driving torques are expressed by vector .
The model parameters p are estimated using experimental

parameter identification. The set of model parameters is
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found using alinear least squares method. This linear least
squares method requires that the robot dynamic model is
rewritten in a parameter linear form

T = ‘I’(g, g.a Q)Ba
where ®(q, ¢, §) is known as the regression matrix. Eval-

uation of the dynamic model in a number of samples i =

1...naongthetrajectory (g, ¢, ) yieldsthe data-set
b= Ap,
where
o ®1(g,,4,4,)
: A= : )
Tn ®u(q,.4,4,)
The least squares solution is given by:
p o= (ATA)TATh = ATp.

and

To be able to apply a least squares fit, A should have full
rank. Conseguently, the regression matrix should also have
full rank. Thisis obtained when the set of parametersp that
will be estimated is minimal. B

The quality of the least squares fit depends strongly on the
condition of matrix A. Using excitation trajectories (g, 4, §)
consisting of a Fourier series with 5 frequencies, this condi-
tion can be manipulated by choosing the phases and ampli-
tudes. Non-linear optimisation techniques are used to find
the best phase and amplitude combination while obeying

motion constraints.

Results & Conclusion

A parameter estimation for a 3DOF model has been per-
formed. The torques are obtained by measuring the servo
currents and transforming them to joint torques. The trajec-
tories are programmed in the robot control software. All ex-
periments are done without modifications to the original in-
dustrial robot. The simulationsare performed using SPACAR
and MATLAB. Simulation of the 3DOF robot model shows
good agreement with the experimental results. The identi-
fied model parameters closely match the values given by the
robot manufacturer. The end goal is arealistic 6DOF robot
model which enables the accurate and realistic simulations
needed with off-line programming for laser welding.
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Abstract

In general it can be useful to identify disturbances that dete-
riorate the closed-loop behaviour of a control system. Often
the only way to detect disturbances is using a measurement
that is also used in the closed-loop. We can design the con-
troller in a way to effectively deal with disturbances, but in
some cases this will not be enough. When large disturbances
corrupt the measurement, a supervisory control strategy is
sometimes used which adapts the closed-loop controller in
order to cancel the effect of the disturbances. In that case
fast detection of the disturbance is beneficial in minimizing
performance losses.

Feature detection is a technique to extract or isolate infor-
mation from a signal that is important to a certain appli-
cation. It is well known in the field of image processing
were algorithms to detect edges (one dimensional feature
detection) and corners (two dimensional feature detection)
are used. Wavelet analysis [1] shows good results in iso-
lating features (time-patterns in signals), especially short-
living events. Therefore wavelets are already used in several
fields for this purpose, even in engineering [2]. However, ap-
plications found in literature are not time critical: the signals
are processed off-line or quasi on-line in a delayed security
loop.

The need for an on-line feature detector is born within re-
search to improve playability of compact discs. A CD-
player is a complex system in which high-tech mechanical,
control and digital signal processing techniques are com-
bined. In the playback process of discs two servo-loops are
involved: one for focusing and one for radial positioning
of the laser-unit. The radial positioning loop controls the
following of the track and receives input from a reflected
laser beam, which is also used for reconstructing the data on
the disc. Scratches on the disc have much influence on this
measurement and disturb the radial-positioning servo-loop.
Since the actual mechanical system is not disturbed, the con-
troller gets the wrong information: disc-scratches imply ra-
dial tracking errors, which are not present in real. It would
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Figure 1: CD-player setup used for feature detection

be beneficial to detect this kind of disturbances in an early
stage to adapt the servo-loop to cancel the consequences of
these effects. For this purpose wavelets are used to build an
on-line feature detector.
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1 Abstract

A deadbeat observer based generalized likelihood ratio
(GLR) test is proposed for the detection and estimation
of a jump in discrete time linear time invariant (LTI) sys-
tems. The proposed approach overcomes the difficulty in
the choice of the window size for the online detection pro-
cedure. The marginalized GLR test is also discussed as the
offline procedure to overcome the difficulty in the choice of
the threshold.

2 Problem Formulation

The problem is to detect and estimate the jump v and the
jump time ¢, from the given sequence of observations {y(¢)}
of the discrete time LTI system

z(t+1) =
y(t) =

where x(t) is the state, y(¢) is the observation, and {w(¢)}
and {v(t)} are independent, zero mean, Gaussian sequences
with variance E[w(t)w(t)T] = W > 0 and E[v(t)v(t)T] =
V > 0. The term d,, ; v represents a jump in the state. Here
to is an unknown positive integer, which assumes a value if
a jump occurs and takes the value +occ if there is no jump.
Also ¢; ; is the Kronecker delta and v is the unknown size
of the jump (see [2, 8, 4, 3] for surveys).

Az(t) + Gw(t) + 64t v
Cz(t) + v(t)

One of the most powerful methods for the jump detection is
the GLR test proposed in [7]. The key points of the GLR
test are summarized as follows. Based on the state estima-
tion of the Kalman filter, the residual can be computed at
each time instant. It does not depend on the initial state and
becomes independent Gaussian sequence with/without the
jump. If no jump has occurred, the mean value of the resid-
ual is 0. Once a jump occurs, the mean value of the residual
is linearly dependent on the jump at each time instant. This
linear dependence of the mean value together with the vari-
ance of the residual can be computed utilizing the Kalman
filter gain. Since the log likelihood ratio (LLR) becomes a
function of the unknown jump and the unknown jump time,
they can be estimated by maximizing the LLR over a fixed
interval. The choices of the window size and that of the
threshold have been recognized as key problems.
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3 Solution

This paper proposes a deadbeat observer based GLR test to
detect and estimate the unknown jump in discrete time LTI
systems, i.e. we apply the deadbeat observer to generate the
residual as a substitute for the Kalman filter [7] and estimate
the unknown jump and the unknown jump time. Compared
with the Kalman filter based approach, it can be shown that
we can follow the same procedure of the GLR test, and fur-
thermore the small window size at most the McMillan de-
gree of the LTI system is enough for the detection and esti-
mation. Assuming the noninformative prior information for
the size of the noise variance, the marginalized GLR test is
discussed as an offline procedure to overcome the difficulty
in the choice of the threshold (cf. [5, 6]).
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1 abstract

Most adaptive control systems have been derived from
the certainty equivalence principle: at each new itera-
tion of the design, a model of the plant is obtained from
the previous model, and a new controller is designed
on the basis of this updated model. Unfortunately, in
case the uncertainty about the system parameters is too
large, the stability of the real plant controlled by the
model-based controller can not be guaranteed. How-
ever, if the uncertainty about the true system is such
that no matter where we believe that the true system is
and no matter where it actually is, the controller based
on the model stabilizes the actual plant, then we can
safely apply a certainty equivalence type of strategy.

Therefore, we propose to build a test checking at each
iteration whether the parameter uncertainty set is such
that for any models P;, P, in this set, the controller
based on P stabilizes P». If this condition holds, the
uncertainty set is then said to be strongly robust [?].
Hence, our adaptive scheme splits in two phases de-
picted in Figure 1. In the first phase, we put effort on
identification of the system to be controlled, and once
the condition of Strong Robustness is verified, we switch
to the second phase where the emphasis is gradually put
on control.

Our objective is to present the general structure of our
algorithm, irrespectively of computational issues. In
particular, we show that, for the class of systems we
specity, if we can compute an input sequence such that
the parameter uncertainty set is converging to the point
set {09}, where {6°} denotes the true parameter vec-
tor, then there exists a finite time at which the con-
dition of strong robustness is fulfilled, dismissing the
situation where we would stay in the first phase indef-
initely. Next, assuming that the condition of Strong
Robustness is verified in finite time, since the stabil-
ity of the controlled system is now guaranteed, we can
proceed as in classical adaptive control, i.e. we can de-
sign the controller on the basis of the updated model.
At each new data measurement, the model is updated
into a new model closer to the real system, leading to
an updated controller expected to show better perfor-
mance. Although this is still under investigation, the
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Figure 1: Iterative scheme.

main improvement brought by the introduction of our
multiphase adaptive control system is expected to be
the decrease of undesired transients of the control sys-
tem.
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Abstract: In this work, identification based PID tuning is studied. The proposed approach
consists of the identification of linear or nonlinear process model and model based control
design. The identification test can be performed in both open loop and closed-loop. The so-
called ASYM method is used to solve the identification problem. The method can identify a
low order process model with a quantification of model errors (uncertainty). The PID tuning
is based on the internal model control (IMC) tuning rules. Two case studies will be performed
to demonstrate the proposed methodology. The first one is the adaptive control of the
dissolved oxygen (DO) of a bioreactor; the second one is the nonlinear PID control of a pH
process. Practical problems will be discussed and new research topics are highlighted.

Key words: PID control, adaptive control, identification, performance, robustness
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1 abstract design.

In many servo control application the same task is repeat- This finite time ILC design has been applied to an industrial
edly performed in the same way. Iterative learning control grade wafer stage, showing the value of this extrapolated
has been shown to be a very effective way to obtain con- solution.
trol signals to greatly reduce the errors during these tasks
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1This research project is being sponsored by Philips CFT

78



21st Benelux Meeting on Systems and Control Book of Abstracts

Application of Learning Feed-Forward Control to Cam-Follower
Systems

B. Demeulenaere and J. Swevers
Katholieke Universiteit Leuven
Department of Mechanical Engineering
Division of Production Engineering, Machine Design and Automation (PMA)
Celestijnenlaan 300B, B-3001 Heverlee, Belgium
Email: bram.demeulenaere@mech.kuleuven.ac.be

1 Abstract follower systems are nonlinear systems performing repet-
itive motions, Repetitive Control (RC), Iterative Learning
Cam-follower mechanisms are often used for realizing fast, Control (ILC) and (Time-Indexed) Learning Feed-Forward
periodical motions, as they occur in e.g. car engines and Control (LFFC) [4] seem applicable. This paper reports on
weaving machines. Traditionally, cam profiles are synthe- the application of LFFC to an experimental set-up, consist-
sized based on the assumption that the camshaft speed ising of a DC motor driving a cam-follower system. The cam-
constant. Nevertheless, many cam-follower systems, es- follower system is strongly nonlinear, that is, it cannot be
pecially high-speed systems, exhibit substantial camshaft accurately modeled as an underlying linear system with non-
speed fluctuation, due to the high inertial torques that result |inear distortions. Consequently the LFFC stability analysis

from the exchange of kinetic energy between the flywheel presented in [4] is not applicable as it is based on the transfer
on the camshaft and the follower inertia. The fluctuation of = function of the underlying linear system. Nevertheless, sim-

the camshaft speed causes the follower motions to be inac- ylation and experimental results point out that controlling
curate, since the cams are designed for constant camshaftthe set-up using LFFC yields satisfactory results.

speed. As a result, the follower accelerations exhibit unde-
sired harmonics that may excite machine resonances, caus-
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Two fundamentally different approaches exist to obtain ac-
curately realized follower motions. The first, more tradi-
tional approach consists of taking measures in order to re-
duce the camshaft speed fluctuation. Several methods have
been proposed. First of all, the flywheel size can be in-
creased. The main disadvantage of this method is the re-
sulting bad start/stop behaviour of the machine. A better
method is the application of an advanced control technique References
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This paper presents a new approach towards the design of it- ence 28, 215pp., Acta Univ. Ups. Uppsala., 1989

erative learning control (ILC, Moore, 1993). ILC improves [2] K. Moore, Iterative learning control for deterministic

the tr_acking accuracy of a (c_losed-loop) _cc_mtrol system by systems, Springer Verlag, London, 1993
learning from previous experience prescribing the same tra- . . ,
jectory. This is done by updating the feedforward signal in [3] M. Tomizuka, Zero phase error tracking algorithm for

an iterative way according to a learning law. This process digital control, ASME Journal of Dynamic Systems, Mea-
makes use of a learning filter that is optimal if it equals the Surementand Control, 109, 65-68, 1986
inverse model of the process sensitivity. In linear motion
control systems the design is often complicated by the in-
verse plant sensitivity being non-causal and unstable. We
assume that we have a reliable (linear) model of the inverse
process sensitivity. To evaluate such non-causal system we
splitit up in a causal and a non-causal part. The non-causal
part can be written as a linear combination of differentiating
filters. Since in ILC the whole input series is known, we
can use high-performance differentiating filters for this part
(Carlsson, 1989). The output of this non-causal part serves
as the input for solving the causal part. By choosing a solver
for mixed boundary value problems we can put extra con-
straints on begin and end values of the output signal. The ad-
vantages of this new approach over the existing techniques
are demonstrated by examples. First, the new approach is
applied on an academic non-minimum phase system. At this
point, contrary to another widely used technique (ZPETC,
Tomizuka, 1986), the new approach succeeds in calculating
inverse responses of non-minimum phase systems. Next,
both the new approach and ZPETC are applied to an indus-
trial motion system, i.e. an H-drive. Using a tenth order
model of the process sensitivity, the resulting tracking error
for both methods is of the same order of magnitude. Further
exploring the use of mixed boundary value constraints will
be a major issue for future research. In particular, creating
cyclic feedforward signals seems a very attractive option in
motion control. Furthermore, research will focus on opti-
mizing the numerical implementation of the solver to make
this method more efficient and suitable for higher order sys-
tems.
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1 Abstract

Reinforcementearning(RL) takesits origin in the optimal
control theory and the dynamicprogramming. It consists
of a collectionof methoddor approximatingoy experience
optimalsolutionsto problemsof unknovn dynamicg3].

We focuson how to apply thesemethodsto discretetime
optimal control of systemswith continuousstate-spaces.
The mainideaof the approachusedis to tranformthe dis-
crete time control probleminto a Markov Decision Pro-
cess(MDP) by discretizingthe state-spacéthe discretiza-
tion techniquewe useis known astriangularisatiorj2]) and
thento solve the MDP by meansof classicaldynamicpro-
grammingtechniques.

First we concentrateon how a MDP structurecan effec-
tively representhe discretetime optimal control problem
andhow to computethis structurethroughthe knowledgeof
the dynamicsof the system. Thenwe explain how to esti-
matethis structureby interactingwith the system.Validity
of the approximationsand corvergenceof the methodsare
discussed Moreover an applicationof thesereinforcement
learningmethodsto power systemcontrolis usedasillus-
tration[1].
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1 Introduction

x105

learnt

Linear motors are typically used in applications that require
high speed, high force and high precision actuation. A lin-
ear synchronous motor consists of two parts, the moving part WW w
and the stationary part. The motor we investigated had per- W\‘WWWWMWW ( ‘ -
manent magnets fixed on the stationary part. To generate not-leant
a force, a three phase current has to be applied with a cer- N "
tain phase depending on the position. To increase this force,

iron-core coils are used that bundle the flux. The permanent (a) good magnets (b) inferior magnets
magnets in the stationary part attract these iron which re-
sults in cogging forces. The motor has preference positions
due to this attraction. By skewing the permanent magnets
this effect can be minimized [1], however, at the cost of & - of the linear motor with a high quality magnetic field was
smaller peak force. If the magnets are placed with small - getermined. This force was stored in a B-spline network as a
tolerance and the generated magnetic field would be equal, fynction of position and used for compensating the cogging
the cogging force would be periodic. This would mean that  force in the next run. Next the same procedure was applied

the cogging force is known before-hand and can be com- for the set of magnets with inferior specifications.
pensated for. However this would require a set of tightly

toleranced magnets that are placed accurately. The result are given in figure 1. The scales of the inferior
) ] magnets are slightly larger. From these figures itis clear that
The downside of precise placement and a good set of perma- the tracking error of the configuration with inferior magnets
nent magnets is that it is costly. It would be advantageous to s worse than the tracking with the good magnets. After the
use a set of inferior magnets and place them with a large tol- |earning of the individual cogging force, they can be com-

erance. This would result in a cogging force that cannot be pensated for. The tracking error after the learning is about
calculated beforehand, thus introducing a disturbance force gqual for both set of magnets.

that depends on the position of the moving part. Tracking er-
rors will be introduced by this force and these are unwanted
in scanning motions that are performed in semiconductor

=)
o

error [m]
error [m]

Figure 1: Error on evaluation path with constant velocity.

3 Conclusion

manufacturing. The tracking error of a linear synchronous motor stems
among others form cogging forces. These forces can be

By identifying the current that is required to compensate for limited by precise construction. However by identifying and

the cogging force as a function of the position and by apply- compensation for these forces, it is shown to be possible that

ing this as a feedforward signal, precise magnet placement the tolerances on the construction can be loosened without

is not necessary and a set of less costly magnets can be useoIintroducing larger tracking errors. By investing time identi-

fication and control, the construction becomes less costly.
2 Method
References

Identification of the required compensating currents can be [1] J.F. Gieras and Z.J. Piechiinear Synchronous Mo-

done with Learning Feed Forward Control [2]. By moving tors, Transportation and Automation Systen@RC Press,
the translator over the stationary part, the extent of the cog- .
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ging force can be determined. This force can be stored in a

linear neural network or in a different function approxima-  [2] ~ W.J.R. Velthuis. Learning Feed-Forward Control,
tor. Theory, Design and ApplicationsPhD thesis, University

of Twente, Enschede, Febuary 2000.
This method has been applied on a linear motor in which the
set of magnets could be exchanged. First, the cogging force
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In previous work [1], we developeda new numericalsta-
bilization procedurefor linear time-delaysystems,called
the continuouspole placemenmethod,which canbe con-
sideredas an extension of the classical pole placement
methodfor ordinary differential equations. One of its ap-
plicationsis the calculationof a stabilizing feedbackgain
for linearsystemswith aninput delay

@(t) = Az(t) + Bu(t — 1), u=KTz(t),

Sincethe closed-loopsystemhasinfinitely mary eigerval-
ues,theprocedureonsistof controllingonly therightmost
or unstableeigervalues,which are moved to the left half
planein a quasi-continuousvay by applyingsmallchanges
to thefeedbaclgain K andmeanwhilemonitoringthe other
eigervalueswith alargereal part. The rightmosteigerval-
uescanbe computedwith the methoddescribedn [2]. The
procedureendswhen the rightmosteigervaluescannotbe
furthershiftedto theleft usingthe availablecontrollerpara-
metersfor stabilizablesystemghis meanghattheexponen-
tial decayrateof the solutionsis maximal.

However, theresultingcontrolleris oftennotvery robust.

For this reasonwe considerin this talk someperturbations
on the parameter®f the (stabilizable)systemand discuss
a numericalprocedureto determinethe value of the feed-

backgain,which maximizessomerobuststability measures.

Thesemeasurearequantitively expressedy stability radii,

which canbeinterpretedasthe sizeof thesmallestdestabil-
azing perturbations. The procedureconsistsof two steps.
First the continuouspole placementnethodis applieduntil

stability is reached.In caseof complex perturbationswe
then optimize complex stability radii basedon shapingof

somefrequeng responselots.

Thetalk consistsof threeparts. First we motivatethe im-
portanceof robustnessonsiderationén the stabilizationof
delay equationswith the analysisof a scalarand a two-
dimensionalexample. Thereby it turns out that the feed-
back gain and the configurationof the eigervaluescanbe
completelydifferentin the casesvheresomerobust stabil-
ity measuregare maximalandwherethe exponentialdecay
rateof thesolutionsis maximal.Moreover, in thelattercase,
robustnesganbepoor. Secondlywe describehenumerical
proceduran detail andfinally we applyit to arealisticex-
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1 Abstract

Genetic programming (GP) is the technique for finding so-
lutions to problems by imitating processes as seen in nature
during the evolution. Starting with a population (i.e. a set of
random generated solutions, also called individuals) opera-
tions as crossover, mutation and reproduction are applied to
create new generations, until a suitable solution is found. To
make this process converge to a suitable solution, the indi-
viduals need to be evaluated for their "fitness’, i.e. how well
they are able to solve the problem. Individuals with a good
fitness are allowed to evolve, individuals with a bad fitness
are not. In a way this is similar to breeding. Lyapunov’s the-
ory provides a way of proving stability of equilibrium points
for all kinds of systems. If a Lyapunov function exists for
a system, one can draw conclusions regarding the stability.
However, the difficult part is tfind such a function, as there
exists no universal method for finding a Lyapunov function.
On the other hand, itis a well known fact that for the systems
that we study, stability of the system implies that a Lyapunov
function exists that proves it. Consider the set of (non)linear
differential equations representedias: f(x), with f locally
Lipschitz. The Lyapunov theorem for local stability states
that the equilibrium at the origin is locally asymptotically
stable when two conditions are met.

Theorem 1 (Local stability) If, in a ball By, there exist
a scalar functionV (x) with continuous first partial deriva-
tives such that

e V(x) is positive definite (locally iBz,)

e V(x) is negative semi-definite (locally By, )

then the equilibrium poind is locally stable. If actually the
derivativeV (x) is locally negative definite iBg,, then the
stability is asymptotic.

Merging the theories above, we present an algorithm that
helps finding Lyapunov function in many cases. Besides
stability, also performance issues such as the region of at-
traction of an equilibrium point can be addressed within this

framework. To find a Lyapunov function using GP, an as-

sessment of thikelinessof the function of evolving into a

Rere van de Molengraft
Eindhoven University of Technology
m.j.g.v.d.molengraft@tue.nl

of the grid, while checking if the inequalities of Theorem
1 hold. The best function is the function with fithess value
zero. The fitness of a GP-generated Lyapunov function can-
didate can be conceptually evaluated as follows:

1. EvaluateV/(x) and V(x) for all fitness casep. In-
crease the fitness value for evgryvhereV (x) < 0
and/ orV(x) > 0.

2. Evaluate performance (i.e. the region of attraction).
Increase the fitness value according to how well the
performance criteria are met (a small value being
good performance).

This way, the individuals are graded to the likeliness of them
becoming a Lyapunov function. Individuals that fail in most
points on the grid, will end up with a high fitness value.
Whereas individuals that fail on few points, i.e. individuals
that are near being a Lyapunov function, receive a low fit-
ness value. As a benchmark problem, the problem posed by
Johansen [1] is used. For the system:

= —31'1 + T2
2w§
0.34+(z2+0.4)(z2—0.6)

1

1)

i’z — 2.@2
Lyapunov functions are to be found. The Lyapunov func-
tions found by Johansen and by GP are compared in terms
of the region of attractiom or the decay rater. Contour
curves of the Lyapunov function found by GP together with
a vector plot of Eg. (2) are shown in the figure below. As
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the table shows, GP succeeds in finding better values for
anda.
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value (quantification of likeliness) a grid is created in the

search space. The individuals are evaluated on every point
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M otivation

Nonlinear passivity-based control (PBC) agorithms for
power converters have proven to be an interesting aterna
tive for other, mostly linear, control techniques. The con-
trol objectiveis usually achieved through an energy reshap-
ing process and by injecting damping to modify the dissipa-
tion structure of the system. However, a key question that
arises during the implementation of the controller is how to
tune the various parameters. The first attempt to develop
some guidelinesto adjust the damping parametersisto study
the disturbance attenuation properties using £ »-gain analy-
sistechniques[5]. Unfortunately, the necessary calculations
become quite complex, especialy when dealing with large
converter structures. In previous works, see e.g. [4], the
location where to add the damping is mainly motivated by
the form of the dissipation structure, in the sense that damp-
ing is added to those states that do not contain any damping
termsapriori. For example, in the boost converter case this
means that only damping is injected on the input current, as
the output voltage already contains a damping term due to
the load resistance. However, this leads to a PBC regulated
circuit that is highly sensitive to load variations and also
needs an expensive current sensor to measure the inductor
current. This disadvantage holdsfor many other (switching)
networks too. Another disadvantageis that in general more
states have to be measured than is strictly necessary, result-
ing in amore expensive controller from both afinancial and
computational point of view.

Contribution

In this presentation a solution to these problems is pro-
vided. The method uses the classical Brayton-Moser equa-
tions [1] stemming from the early sixties. First, these equa-
tions are accommodated to include controllable switches.
Due to the passive nature and their close relation with La
grangian and Port-Hamiltonian dynamics [3], the Brayton-
M oser equations appear to be naturally suited for application
of passivity-based control. Secondly, because the PBC de-
sign is based on the energy and the interconnection structure
of thecircuit, it is not surprising that this allows an interpre-
tationin similar physical terms of the controlled closed-loop
system. From a circuit-theoretic point of view, as is dis-
cussed in [2], the controller produces a computed duty ratio
function (switch control) which forces the closed-loop dy-
namicsto act asif there are virtual resistors connectedin se-
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riesand/or in parallel tothereal circuit elements. Inthisway
the characteristic impedance(s) of the filter elements can be
matched dynamically by the controller [2]. However, this
method is quite conservative and not easy to extend to gen-
era circuits with nonlinear elements. In this talk we present
an alternative methodology to tune the various control pa-
rameters based on modified versions of the stability theo-
rems developed in [1]. These fairly sharp criteria follow-
ing from these theorems form a systematic and straight for-
ward tool for solving the tuning problem for a general class
of PBC controlled power electronic circuits. Both criteria
are compared and tested using the elementary single switch
buck and boost converters. Interestingly enough, the idea of
dynamic parallel damping injection (see figure) provides a
method to control non-minimum phase circuits based on the
corresponding non-minimum phase output(s) only.

PWM ]—b[Power Converter]——»f,:;’"‘f,‘g,i"f’
Passivity-Preserving .
Duty Ratio Synthesizer E:_Se*‘”'"'

Dynamic Tuning]—
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In the behavioral approach, a system is studied as the set sented by. The above results along with the proofs can also

of trajectories that the system allows. We call this set as
the behaviorof the system. There is no a priori distinc-
tion among the system variables as inputs and outputs. De-
tails of this general approach of studying systems can be
found in [2]. Further, in this context, control of a given sys-
tem is viewed as interconnection of this system with another
system (called the controller) such that the interconnection
brings about a (desired) restriction on the set of allowable
trajectories. This view of treating control problems has been
introduced in [5].

In contrast to [5], where the problems of stabilization and
pole placement were considered for the casedhaystem
variables are available for interconnection (the so-called full
information case), we work in the generality that we are al-
lowed to use only some of the system variables for the pur-
pose of interconnection. These variables are called the con-
trol variables. Restricting oneself to using only the control
variables for interconnection brings in the notionimiple-
mentabilityinto the control problem. Necessary and suf-
ficient conditions for implementability of a behavior have
been obtained and they can be found in [4] and [3].

Another important role is played by the notionregularin-
terconnection. This too was introduced in [5]. We deal with
interconnections that are regular in this paper. Regular in-
terconnections turn out to be precisely the interconnections
that bring about a restriction oonly the controllable part

of a behavior and thus do not interfere with the autonomy
within a plant. This captures the intuitive idea that a plant’s
autonomy must not be interfered upon by a controller.

We combine these notions of regular interconnection with
that of implementability and establish necessary and suf-
ficient conditions for the existence of ragularly imple-
mentablesubbehavior. This result is then applied to solve
the problems of stabilization and pole placement by inter-
connection.

A noteworthy feature here (like in most other literature on
behaviors) is that the results have been formulated in terms
of properties of the behaviors themselves aantin terms of

any particular set of equations that the behaviors are repre-
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be found in [1].
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1 Abstract Problem: Minimization of the fuel consumption applying
bi-elliptic transfers subject to time constraints:
In this article the authors deal with the optimization of the
fuel burned during orbit plane change corrections under time Minimize AV = f(ry, 6, n) subject to
constrained situations. A necessary and sufficient condition
. . g(r1, N) < tmax 1)

for which a three impulse maneuver burns less propellant
than the standard non-coplanar Hohmann transfer (the single With & the plane change angle, the radius of the orbit in
impulse plane change maneuver) is given. For the case when Which the satellite is coastingy = [2,n > 1, 121 the
the condition is satisfied, the authors derive the (optimal) Semi-major axis of the transfer orbits agc function that
value of the transfer orbit semi-major axis for which the fuel ~expresses the duration of the orbit plane change transfer ma-
expenditure during the maneuvering is minimized. Some heuver in terms ofy andn.

practical applications of these results are delineated in the o ) _ )
contribution as well. The optimization problem is solvable iffax > Pr;, with

Pr, the period of the orbit of radiug .

2 Introduction 1. For > 4894 the ration = 2 is determinecbnly
' inti i L

The majority of investigations carried out on satellite or- by the time constraint inequality < 7 (v/tmax — 1)
bital plane changes have been concentrated on techniques with e = 3 % The optimal value oh, denoted by
that minimize the fuel_consumptlon. Thisis an opt|m|;at|on n*, isn* = £ (Jmax— 1.
problem, which, to this day, hamly been posed consider- 1
ing as a cost function thexpenditure of fuetegardless of 2. Forf < 48.94° we have:
the time needed to perform the maneuver. However, in a 2% —1— 22

*

number of situations, it might be desirable to optimize the

"= _— -~ 2
X X : : 202440 -2 2)
maneuver fuel consumptlon subject to time constraints.

wheren* is the solution that maximizes the difference
in AV when performing a three-impulse maneuver in-

3 Results stead of an one-impulse maneuver=£ sin(%)). The
optimal value of is given by(2) if n* < %(«S/tmax—
The fuel burned during an orbital maneuver is often ex- 1), otherwise it isn* = ra_l(m_ 1).

pressed in terms of thehange in velocitpeeded to achieve
the new location and conditions. It can be easily proved that
this AV is a direct measure of such propellant consumption.

In this contribution the authors use the same criterion. Orbiting satellites need orbit corrections several times dur-

. ) ing their lifetime. We studied some satellite formation
Although the standard orbit plane change maneuver is the gights guaranteeing that at each time one of the satellites
so-called simple impulse maneuver (or the non-coplanar ex- s gperational while the others are in stand-by to replace the
tension to Hohmann transfer maneuver) in the paper the au- operational one. The maneuver needed to put in the opera-
thors propose to make use of another type of maneuver, the iqna| orpit one of the stand-by satellites is cost inexpensive
so-called Bi-elliptic plane change maneuver (see [1]). We ¢ the time for doing this operation is long enough. This

apply the latter to obtain better results regarding less fuel procedure can be repeated several times giving as a result a
consumption when compared with the standard manuever. patar overall performance.

The problem we solved can be formulated as follows:

4 Applications

T : References

This paper presents research results of the Belgian Programme on
Inter-University Poles of Attraction, initiated by the Belgian State, Prime  [1] J. E. Prussing and B. A. Conway, “Orbital mechan-
Minister's Office for Science, Technology and Culture. The scientific re-  jcs”, Oxford University Press, 1993.
sponsibility rests with its authors.
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1 Abstract

Dynamic system such as an aircraft is best described with
non-linear stochastic models, possibly with correlation be-
tween process and measurement noise. Estimation of aero-
dynamic parameter of aircraft from this kind of model gives
closer approximation to reality of the system. The objective
of this work is therefore to develop an algorithm of param-
eter and state estimation for non-linear stochastic systems,
considering correlation of process and measurement noise
into account.

Investigation of the nature of noise has been conducted for
aircraft dynamic model. Correlation can happen if control
input measurement is noisy, hence corrupts both state- and
measurement equations. By taking a similar approach to
Sage and Melsa[1], an extended Kalman filter has been de-
veloped to obtain state estimates for this system. Further-
more, Maximum Likelihood parameter estimation algorithm
was established to identify aerodynamic parameters of the
system.

The algorithm is implemented in MATLAB environment. It
has been validated by using Citation Il short period motion
simulation and gave a desired performance in identifying the
aerodynamic parameters. Applying the algorithm to flight
test data completed the validation of the software. The re-
sults shows superior performance compared to linear Max-
imum Likelihood algorithm. Further improvement can be
obtained as non-linear aerodynamic model is implemented
to the algorithm, especially in the estimation of x-axis aero-
dynamic parameters.

References
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Problem for mulation

The problem of slow moving targets detection by means of
a moving pulsed radar is examined for monostatic radars,
where the transmitter and the receiver are co-localized. The
radar uses a linear antenna and transmits a train of coherent
pulses. Combining this space (antenna) and time (train of
pulses) informations can enhance target detection.

The signal received from reflexions on the ground is divided
in range gates. For a given range gate, the signal is a space-
time snapshot. Applying a 2D FOURIER transform to the
snapshot allows us to determine the spatial and DOPPLER
frequencies f,; and f, of the scatterer under interest.

The most important challenge is the rejection of interfer-
ences coming from the fixed background (clutter). The
space-time repartition of the clutter power is found by plot-
ting the clutter DoPPLER frequency as a function of the clut-
ter spatial frequency. (direction-DOPPLER trajectories).

The optimum clutter rejection is provided using Space-Time
Adaptive Processing (STAP) [1, 3]. For each range gate r, a
new processor is applied. The optimum processor (OP) for
agivenris[1]

wopt(r)(f& fd) = g_l(r)g(r)(f& fd)7

where Q is the space-time clutter-plus-noise covariance ma-

trix and v, the space-time steering vector. The construction
of the OP implies the estimation of @, based on informa-

tion contained in neighboring snapshﬁs [3]. The estimator

~

Q(r) for the range gate r is obtained by using IV,- snapshots

centered about r, i.e.,

Q) = =

- N Zy(Tk)QT (Tk)
Tk

N.—1

forr — el <k <+ Ne—land k # r. y(rs) is the
received snapshot for the rth range gate.

y(rx) being a random process, the clutter spectrum is the
2D FOURIER transform of Q(r) (or y(re)yt(ry)) for a
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given r. An accurate estimator is found by applying the
MVE to y(rx)yt(rx) [1]. The resulting clutter spectrum
is composed of a clutter ridge that has the same shape as
the corresponding direction-DOPPLER trajectory. A non-
biaised estimator is obtained only if the clutter spectrum is
range-independant in the N, range gates. This is not the
case for non-sidelooking monostatic radars. The only exist-
ing method to compensate for this range-dependence is the
DopPPLER warping [2]. However, the performance decreases
as the crab angle of the antenna increases.

Proposed solution

This method appies to each y(r )y’ (rx) a non-linear trans-
formation that fit the clutter ridge of each y(ry)y'(r:) to
that of the range gate of interest, before application of STAP.
The deformation studied here is a 2D dilatation.

After estimation of @, the OP must be applied in the space-
time domain. However, the clutter spectrum is found by
a non-linear power spectrum estimator that has no inverse
transformation. The dilatation must then be done in the
space-time domain. Working with discrete snapshots, 2D
replicas of the clutter spectrum must first be suppressed in
the space-time domain by applying a 2D interpolation filter

to y(rr)yt(rs).

The optimum trade-off between low sidelobes and reduction
of high frequencies amplitudes is the 2D-KAISER window.
This solution is examined and compared to the DOPPLER
warping technique.
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1 OPTIMAL PARAMETRIC SENSITIVITY CONTROL:
AN EXAMPLE

In bioprocess modelling substrate limitation is usually mod-
elled in terms of the well-known Monod kinetics with
unknown coefficientsum.x and Kg, that is u(Cs)
fmax iy WHErefiyay (1/min) is the maximum spe-
cific growth rate K's (g/l) the half-saturation coefficient and
Cs (g/l) the substrate concentration. A natural question is

how the input sequence should be chosen in such a way that

the parameters can be optimally estimated. This is the well
known problem of ‘optimal’ input design, which is a classi-
cal problem in the identification literature. Recently, Stigter
and Keesman (2001) [1] have shown how a closely related
problem for a fed-batch reactor can be solved analytically
using the minimum principle of Pontryagin. In that paper
only the simplest case,e. input design for eitheds or
Imax IN @ fed-batch reactor using direct state measurements,
has been considered.

In this presentation the emphasis is now on finding a ‘feed-
back’ control law that maximizes the parameter sensitiv-
ity 59 = a% for the specificparameterd,, from the set
{0;,i = 1,...,p} related to the model structuld, g), to
allow more or less simple analytical solutions, under indi-
rect state measurements, continuous flow in the bioreactor
and input or state weighting.

Define the following simple cost function, with= z, that
has to be maximizedf = [/, x7(r)dr under the dynamic
constraints given by state equation(t) = f(x(¢),0) +
bu(t) and related sensitivity equation. Using Pontryagin’s
minimum principle [2] the singular arc condition (or inte-
rior boundary condition) can be derived ag(t) = — =2

e
Under the interior boundary condition the optimal mput is
— [f feat+ffzaotx (t)(fmfxz"!‘ffra:r)}]
found fromu*(t) = £ b[ffwfze(t)fm]
wherefy =

of

R

Jé)
07{;7.]‘-7" =

Let us illustrate the procedure for estimatiAg; in a prac-

tical context using the dilution rate for compensating the
growth in the biomass to avoid growth effects. Hereto, the
following equations of the fed-batch reactor are introduced:

dg;s - Y)SSS)C + E (U—Cs)
PLx — p(C’S)CX - Loy 1)
dt =F

whereYx, s (-) is the yield coefficient/" (I/min) the flow
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rate,V (I) the volume of the reactor and= C' ;,, (9/l) the
variable substrate concentration in the influent. The biomass
concentratiorCy is kept constant af’%,, the biomass set-
point, by selecting” = ;(Cs)V. Consequently,

ac Cx
. =H(Cs)[=Cs = 2+l @)
X/S
The following singular arc condition is foundy(t) = %
The corresponding simple optimal control law is(t) =

Ck
Yx/s

. Hence, an experiment could be organized as:

(i) Apply an impulsive input at = 0, such thatC's o = 20
g/l. From the first measurements 6%, givenYy,s and
C%, the unknown parametes,,,., can be estimated.

(i) Keep u(t) = 0, so that pure water is fed into the reac-

tor with flow F(t) = fimax ey V () Using initial es-
timates of bothu,,.x and K and measured substrate con-
centrations and volumes. Observe whether the singularity

conditionzy (t) = £= with z4(0) = 0 holds.

(iif) Once the singularity condition is satisfied, switch to the
controlu*(t) = Cg in = YC—’/{ v.e.feed the reactor with a
Vs c =X F' (I/min) from a buffer withconstant
concentratiorCs (g/l) and a pure water flow;, = F — F,
(I/min), such that the substrate concentration in the continu-
ously stirred buffer tank i€’s ;, (= u*) and estimate(s.

flow F = -2

2 CONCLUDING REMARKS

Analytical solutions to the generahe-dimensionadptimal
parameter sensitivity problem have been found. For the es-
timation of the Monod constarit g, under fed-batch condi-
tions with regulated biomass concentratiGg, the simple

control law:u*(t) = YC—XS has been derived. Solutions with

input or state weighting or with nonlinear output relation-
ships and under different flow conditions can be derived in
a similar way.
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1 Abstract

The measurements of the main component concentrations
in bioprocesses are useful for on-line monitoring and con-
trol of the process. But in most cases, hardware sensors in-
volve several problems (cost, sterilization, sample destruc-
tion, time delay, discrete time measurements, etc.). These
problems encourage the use of software sensors which give
on-line measurement estimates (in continuous time) based,
on the one hand, on the available hardware sensors signals
and, on the other hand, on a mathematical model. The algo-
rithm is called a state observer whose goal is thus to provide
a state estimate converging towards the true state of the pro-
cess.

Many state observer techniques have been applied to bio-
processes, trying to deal with the nonlinear models involved
in this field. Bastin and Dochain [1] distinguish the expo-
nential state observers from the asymptotic observers. The
former ones allow to handle a tuning parameter for the rate
of convergence towards the true state. The main drawback
is that the results are strongly dependent on the model qual-
ity. The extended Kalman filter, extended Luenberger ob-
server and high gain observer are exponential observers. On
the other hand, the rate of convergence of the Bastin and
Dochain’s asymptotic observer [1] is completely determined
by the experimental conditions (namely the dilution rate)
and does not own any tuning parameter. This may lead to
a very slow convergence in the case of a low dilution rate or
even, in the limit case of a batch process, to a constant state
estimation error. However, the main advantage is that the
kinetic model is not necessary anymore, this model being
most of time badly known.

In order to combine both advantages of exponential ob-
servers (i.e., fast convergence with a good model) and
asymptotic observers (i.e., convergence without any knowl-
edge on the kinetic model), hybrid observers have been de-
veloped. They estimate the state of the bioprocess together
with a confidence parameter § w.r.t. the kinetic model qual-
ity. The structure of the hybrid observer evolves continu-
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ously between the two limit cases, namely § = 1 (100% con-
fidence in the kinetic model) which then corresponds rigor-
ously to the exponential observer and § = 0 (0% confidence
in the kinetic model) which then corresponds rigorously to
the asymptotic observer. Two cases of such hybrid observers
have already been proposed, the former using an extended
Kalman filter as exponential observer [2] and the latter us-
ing a full horizon (or optimization based) observer [3]. This
contribution tackles the case of a hybrid observer based on
the extended Luenberger observer. Its basic principle and
properties are given and the performances are illustrated in
simulation in the case of a bacterial fed-batch fermentation
with substrate measurement and no biomass measurement.
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In a first approach available physiological knowledge is 3357

incorporated into a mass balance equation model with 3
states and 14 parameters.

The large differences in order of magnitude of the identified
parameter values, is a clear indication that not all these
parameters are significant. A careful sensitivity function
analysis revealed that a reduced model with only 6 parame-
ters is almost as accurate as the original model.
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1 Abstract

Much effort has been put towards the mathematical descrip-
tion of mammalian cell cultures during the last few decades.
Early attempts revealed a very global view of the cells acting

as biocatalysts that reproduce themselves, excrete metabo-

lites and often overexpress proteins of interest, e.g. for phar-

maceutical purposes. Simple models have been developed,

which give a phenomenological representation of the cell
activities. Their validity for describing eucaryotic cells is,
however, limited to a relatively small range of culture con-
ditions.

Nevertheless, simple models have been successfully used

for process design [1]. A survey on unstructured models for
hybridoma cell growth and metabolite production is given
by Portner and Scéifer [2]. The authors also discuss the
structured kinetic model of Batt and Kompala [3] distin-
guishing four compartments inside the cell. The major sub-

strates (glucose and amino acids) and metabolites (lactate [2]

model reduction procedure is systematic and allows an
equivalent ‘input—output’ representation of the system (i.e. a
representation in terms of extracellular components, such as
substrates and products) to be derived. The resulting macro-
scopic reaction scheme can be useful for system analysis as
well as for the development of model-based optimisation,
sensor and control techniques.
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Abstract

We generalise the optimisation technique of dynamic pro-
gramming for discrete-time systems with an uncertain gain
function. The main objective in optimal control is to find
out how a system can be influenced, or controlled, in such
a way that it its behaviour satisfies certain requirements,
while at the same time maximising a given gain function.
A very effective method for solving such problems, is the
well-known recursive dynamic programming method, intro-
duced by Richard Bellman [1].

Figure1: A Simple Example

To explain the ideas behind this method, we refer to Fig-
ure 1. If the optimal paths from b, ¢ and d to the final state
e are known to be «, y and n, respectively, then to find the
optimal path from a to e, we only need to compare the paths
Aa, wy and vn. This follows from Bellman’s principle of
optimality, by which A8, v8 and ve cannot be optimal, since
in that case 8, § and ¢ would be optimal. Based on these
observations, an efficient recursive algorithm can be con-
structed to calculate optimal paths.

We now wish to weaken the assumption that the gain associ-
ated with every path is exactly known. This problem is most
often treated by modelling the uncertainty about the gain
function by means of a probability measure, and by max-
imising the expected gain under this probability measure,
rather than the (unknown) gain itself—we could call this the
Bayesian approach. It turns out that, due to the linearity of
the expectation operator, this approach does not change the
nature of the optimisation problem, and the usual dynamic
programming method can therefore still be applied to find
the “optimal” controls.

But it has often been argued that uncertainty cannot always

Matthias Troffaes
SY STeM S Research Group
Universiteit Gent, Belgium

mat t hi as. trof faes@ ug. ac. be
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be modelled adequately by probability measures, because,
roughly speaking, there will in certain cases not be enough
information in order to identify a single probability measure.
In those cases, the available information can be represented
through so-called imprecise probability models (see [3] and
references therein), such as comparative probability order-
ings, Choquet capacities, belief functions, possibility mea-
sures, lower previsions, sets of desirable gambles, or convex
sets of probability distributions.

This approach naturally gives rise to a strict preference or-
der on paths. But, in contradistinction to the Bayesian ap-
proach, this order is only partial. This means that two paths
will not always be comparable and that there may be no
maximally preferred path, i.e., there may be no path that
is strictly preferred or equivalent to all other paths. How-
ever, we have shown [2] that the principle of optimality still
holds, if we look for undominated paths, these are paths for
which there is no other path that is strictly preferred to it. An
efficient recursive dynamic programming-like algorithm fol-
lows. It turns out that as imprecision increases, more paths
become undominated, and consequently, decisions based on
the model also become more indeterminate. As imprecision
decreases, we recover the classical theory of dynamic pro-
gramming as a special case.
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1 Introduction

Many problems in system theory can be reformulated as op-
timization problems where the criterion function is a poly-
nomial or rational function. For example in system identifi-
cation of linear systems, one may try to estimate the transfer
function of a system, which is a rational function, from the

Corollary 3 Let p(x)/q(x) be a rational function with
p(x), q(x) relatively prime polynomials. If () changes
sign onR" thenminycrn p(x)/q(Xx) = —oo.

Note that the reciprocal is not true. However, we can refor-
mulate now the problem (1). Suppose théx) > 0 Vx €

data by the least squares method. The function to be esti- R". Then problem (1) is equivalent to
mated depends in general on some parameters that need to

be identified. This procedure is nothing else that minimiza-
tion of a rational function.
Another application area is the model reduction of the order

of a system. There one tries to approximate a given transfer

function by one of a lower degree which reduces again to
optimization of a rational function.

We believe however that the applications are much more nu-
merous.

In this paper we study unconstrained global optimization
of rational functions. We give first few theoretical results.
Then we give a relaxation of the initial problem which can
be solved using LMI techniques. Therefore, in general our
procedure will produce a lower bound of the infimum of the
original problem. However, under no degeneracies, it is pos-
sible to check whether the relaxation was in fact exact.

2 Main results

Lemma 1 Let a(x)/b(x) be a rational multivariate func-
tion, with a(x), b(x) relatively prime polynomials. If
ax)/b(x) > 0, ¥x € R"\ {x € R" | b(x) = 0}, then
one of the two following statements holds:

e a(X) >0, b(x) >0 Vx e R",

e a(X) <0, b(x) <0 Vx e R".

Next, we discuss the application of Lemma 1 to rational op-
timization problems.

Consider the problem

min w

relatively prime

1)

Theorem 2 Let p(x)/q(x) be a rational function with
p(X), q(x) relatively prime. If gx)/q(x) is bounded from
below, then g has constant sign BAf.
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max «o 2)
s.t. p(X) —aq(x) >0, VxeR".
Obviously the largestr satisfying the condition is the
infimum of p(x)/q(x).

Note that the feasibility domain of (2) may be the empty set.
Thatis, there is ne € R satisfying the polynomial inequal-
ity for everyx € R". In this case the maximum will beco.

Using the technique described in [2], [1], one can
construct a relaxation of (2)

max o

st Q. 4) = 0. 3)

HereQ(a, 1) is a symmetric matrix, affine in € Randx e

RK andk + 1 is the dimension of the affine space (see [1]).
Therefore (3) is a standard LMI problem . The solution of
(3) is in general a lower bound on (2). However, in general,
there are ways to check whether the relaxation was exact.

3 Conclusions

The rational optimization problem is rewritten as con-
strained polynomial optimization. A relaxation of the latter
problem can be subsequently solved using LMI’s.
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1 Abstract

We consider the Newton method on Riemannian manifolds
and its application to the particular case of finding a sta-
tionary point of the (generalized) Rayleigh quotient on the
Grassmann manifold of-dimensional subspaces &".
This yields an iterative method that cubically converges to
the p-dimensional invariant subpaces of a symmetriay-

n matrix. Emphasis will be laid in the presentation on the
intuitive meaning of the Newton method, and illustrations
will be given in the casg@ = 2,n = 3.

In R", thekth iteration of the Newton method for a smooth
cost functionf : R" — R computesx®*D ¢ R from
x® e R" in the following way (see e.g. [2]):

(a) solveH ¥ N = —gradf (x®) for N € R" (1a)
(b) setx®tD = x® 4 N (1b)

where grad (X) denotes the Euclidean gradientbfatx

R", namely grad (X) @f/9x1(X), ..., 0f/axn ()T,

and H® s the Hessian off at x®, that is H®

(agradf /ax1(x®), ..., dgradf/ax,(x®)). Note that the
term H ® N appearing in (1a) is nothing else than the direc-
tional derivative of grad in the direction ofN. An intuitive
interpretation of (1) is that we compute by (1a) a “direction
of motion” N in which the gradient varies as the opposite of
gradf (x¥), and then make a step in this direction (1b), the
aim being to find a new point®*D where the gradient ap-
proximately vanishes. And indeed, it can be proved (see e.g.
[2]) that, under mild hypotheses o the Newton method

is well defined and quadratically converges to a stationary
point of f, i.e. a pointx* such that gradl(x*) = 0.

The following generalization of the Newton method to a
Riemannian manifoldM is due to Smith [5]:

(@) solvevygradf = —gradf (x®)  (2a)
forN e Tx(k) M
(b) setx®*D = ExpN (2b)

whereTx M denotes the tangent spaceMoat x, V the Rie-
mannian (also called Levi-Civita) connection, and Exp the
exponential mapping. All these differential geometric con-
cepts are explained in introductory books on Riemannian ge-
ometry (see e.g. [3]). The terWiygradf can be thought of

as the variation of graflin the direction ofN, while the ex-
ponential generalizes the concept of step in the direction of
N. Again, this iteration quadratically converges to station-
ary points off, provided f does not behave too badly.

96

Rodolphe Sepulchre
Universié de Lege, Belgium
R.Sepulchre@ulg.ac.be

We will show how this applies to the following case. The
manifold M is the Grassmann manifold @, n), i.e. the
set of thep-dimensional subspaces®f. Note that any ele-
mentY of Gr(p, n) can be represented as the column span of
ann-by-p matrix Y with full rank. Let A be a symmetrio-
by-n matrix. The cost function considered is the generalized
Rayleigh quotienpa(spanY)) := tracd(YTY)"1YT AY].
This cost function has the interesting proprety that its sta-
tionary points are thg@-dimensional invariant subspaces of
A. The Newton iteration in this case maps a subspéate a
new subspac&: . according to the following procedure [4]:
(a) Pick an orthonormaln-by-p matrix X such that
spanX) = X.
(b) Solve the following Sylvester equation
XTAX K — KXTAX = —XT AX 3)
for K e RM=PXP whereX | is any orthonormah-by-(n —
p) matrix such thaX™ X, = 0.
(€) X4 :=spanX + X  K).

We will show how this iteration compares to the generalized
Rayleigh quotient iteration we presented last year [1].
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1 Introduction
Consider the infinite-dimensional system
X(t) = AXx(1), y(t) = Cx(),

with initial conditionx(0) = Xg on the infinite-dimensional
state spacéd (Hilbert space). We assume thatis the in-
finitesimal generator of &g-semigroupr (t) on the Hilbert
spaceZ, and thatC is a bounded operator from the domain
of A to another Hilbert spac¥. Furthermore, we assume
that for every initial conditiorg the outputy is square inte-
grable.

We want to derive necessary and sufficient conditions for
exact observability. The above system is (by definition) ex-
actly observable if and only ify” ||y(t)||2dt > ml|xo||?, for
some positiven.

2 Conjecture

Some ten years ago, Russell and Weiss posed the following
conjecture: The system is exactly observable if and only if

I(s — Ax|I? + |Re®)|ICX|1? > mRes)?|x||?

for somem; > 0, all x in the domain ofA, and all complex
s with negative real part.

We show that in general this conjecture is not true. Further-
more, we show that this conjecture should be reformulated.
This new conjecture is still open.
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1 Motivation where the coefficients; (¢) are calculated by, (t) =
(Z(t),pi). Define® = [ o1 92 -+ ¢ | anda =
[a1 a2 - @ ]T to find an approximate model for
the coefficientsy; (¢):

This presentation describes the control of temperature pro-
files using model predictive control (MPC) based on re-
duced models obtained by proper orthogonal decomposition
(POD). A simple heat transfer problem will be used as an a(t) =T f(®a(t),u(t)) (5)
example. The basic ideas will in future be extended to (parts o

of) glass melting furnaces, where the behaviour of physical Fur_thermore, assume a finite number of measureme_nts at lo-
variables, such as temperature, is described by partial differ- Cations thatare given igy,,, y (&, t) = g (« (€m, 1)) which
ential equations (PDE). The main processes taking place in 9V€S¥ (t) = g (®a(t)). A reduced control problem is for-
the glass melt (melting, fining and mixing) must take place Mulated using a discretised reference trajectofy:

in different parts of the domain. This results in requirements

o I
on the temperature profile in the glass melt.

@ (t) = argmin ||ayes (t) —a(t)
wherea,cs; (t) = (7 (t), ;) Of ares (t) = ®T7(¢) and
Numerical models that are used to simulate the temperature a,.f,a € R!. An observer is used to estimate the vector
behaviour are based on discretisation of the spatial domain. of coefficientsa (¢) rather than the state. To demonstrate
The number of state variables in these models is high?}” the approach a 1D heat transfer example will be presented
to achieve acceptable accuracy. Therefore reduced modelswith a considerable reduction of state space dimension in the
are nescessary for controller design. Next it is explained controller,l << n.
how these by POD reduced models are used in a controller.

3 Conclusions

2 Strategy o . ]
The original control problem (2) iR™ can be translated into
Consider the following partial differential equation: a reduced control problem di!. Results achieved up to
now are promising and the strategy may also be feasible for
9z (§,1) _ D(z(6,1),u(fa,t)) 1) more difficult 3D problems.

ot

wherez (¢, 1) is the stateD (-) is an operator (e.g. partial  Future work on this subject will be done on the incorpora-
derivatives ofz (¢, t)) and¢, is a finite dimensional vector tion of.equahty and inequality contraints and the effects of
of actuator positions. Suppose the control problem is given Modeling errors (e.g; (t)).

by: ,
|

u (&g, t) = argmin ||r (&,t) — z (€, 1) 2 References

that is, track a reference profilg(&, ¢) as close as possible. ~ [1]  P- Astrid. Model reduction by proper orthogonal de-

If (1) is discretised with respect to space, then: composition. Submitted to Benelux meeting on Systems and
B Control, December 2001.
dz (t) =f(z(t),u(t) 3) [2] J. A. Atwell and B. B. King. Proper orthogonal
dt decomposition for reduced basis feedback controllers for
wherez € R?, v € R™ and f : R" x R™ — R"™. parabolic equations. Mathematical and Computer Mod-

Through the snapshot method a set of orthogonal basis vec- elling, 33:1-19, 2001.
tors {; };_, is found (POD basis, [1], [3], [2]) to approxi-  [3] K. Kunisch and S. Volkwein. Control of burgers’

mate the state: equation by a reduced order approach using proper orthog-
l onal decomposition.Journal of Optimization Theory and
Z(t)=> ai(t)pi+ea(t) 4) Applications 102(2):345-373, 1999.
=1
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Spectral factorization is a paramount problem in feedback University of Namur (FUNDP), Belgiuminternal Report
control system design, see e.g. [10], [7] and the references 2002; in preparation.

therein. In particular, the spectral factorization problem of R.F. Curtain and H. Zwart, ” An introduction
the so-called Popov function constitutes an essential step {4 infinite—dimensional linear systems theory”, Springer—
in the solution of the Linear-Quadratic optimal control Verlag, New York, 1995.

problem for infinite-dimensional state-space systems, see

e.g. [1], [3], [6], [9], [11] and the references therein. [6] P. Grabowski, " The LQ - cqntroller problem: An ex-
ample”,IMA Journal of Mathematical Control and Informa-

tion, Vol. 11, 1994, pp. 355—-368.

This contribution is devoted to the analysis of the spectral [7] B. Jacob, J. Winkin and H. Zwart, "Continuity of the

factorization problem for a large class of distributed param-  spectral factorization on a vertical strifBystems & Control
eter system transfer functions, [4]. More specifically, this | etters Vol. 37, 1999, pp. 183-192.

guestion is studied for (coercive) spectral densities which . " . L .
. . g - [8] R. Nevanlinna, “Analytic functions”, Springer-

are meromorphic functions of finite order, see e.g. [8], in Verlag. Berlin - Heidelbera. 1970

the framework of the Callier-Desoer algebra of distributed 9, 9 T

parameter system transfer functions, see e.g. [2],[5]. [9] 0.J. Staffans, " Quadratic optimal control through co-

prime and spectral factorizationg®bo Akademi Reports on
In particular, criteria for the elementary rational factor Computer Science and Mathematigsl. 29, 1996, pp. 131-
infinite product representation of a coercive spectral density 138.

and for the convergence of the spectral factorization pro- [10] M. Vidyasagar, " Control system synthesis: A factor-
cedure based on such representation are developed. Thesg,ation approach”, MIT Press, Cambridge, MA , 1985.
criteria are based on the knowledge of the comparative ’ ’ T

asymptotic behavior of the spectral density poles and zeros, [11] M. Weiss and G. Weiss, " Optimal control of stable

i.e. on the pole-zero absolute and relative errors. weakly regular linear systems¥ath. Control Signals Sys-
tems Vol. 10, 1997, pp. 287-330.
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1 Abstract infinite-dimensional systems. Consequently, there were sev-

_ o eral slightly different versions presented.
The sub-optimal Hankel norm approximation problems have

been studied extensively in the literature and we have noth- The results presented in this paper refines and/or generalizes

ing to add in this direction. The new contribution of this  the preceding lemmas in Sasane and Curtain [4] and lftime

paper is to present an elementary derivation of the reduc- and Zwart [2]. We use in an essential way the notion of

tion of the sub-optimal Hankel norm approximation prob- equalizing vectors, introduced by G. Meinsma [3].

lem to a J—spectral factorization problem. We do this for

the Wiener class of matrix-valued functions. The solution of R
) o ) eferences

this J—spectral factorization problem can then be obtained _

solving two equations involving projection operators, hence [t ~J-A. Ball and J.W. HeltonA Beurling-Lax Theorem

obtaining an explicit parameterization of all solutions to the ~fOr the Lie Group Um, n) which contains most Classical In-
sub-optimal Hankel norm approximation problem. terpolation TheoryJournal of Operator Theory, 9:107-142,

1983.
The first source of the connection between the sub-optimal [2] O.V. Iftime and H.J. Zwart,J-spectral factorization
Hankel norm approximation problem and & —spectral and equalizing vectorSystem and Control Letters, 43:321-

factorization problem is Ball and Helton [1], although 327 2001.
it is not stated explicitely there. Various corollaries of . o .
. . [3] G. Meinsma,J-spectral factorization and equalizing

this abstract paper have been stated, but there is a gap

. vectors Systems and Control Letters, 25, 243-249, 1995.
between the abstract theory in [1] and the elementary _ _
looking corollaries.  This motivated the search for an [4] R.F. Curtain and A.J. Sasan&ub-optimal Hankel
elementary self-contained proof in many papers. These Norm Approximation for the Pritchard-Salamon Class of
elementary proofs were important steps along the way to Infinite-Dimensional Systemintegral Equations and Oper-
solving the sub-optimal Nehari problem or the sub-optimal ator Theory, 2001
Hankel norm approximation problem for specific classes of
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Abstract

We address the design of nonlinear feedback controllers for
the set point control of Euler-Lagrange (EL) systems

P

oL d 9L Nz
—(@,9) — — [—(@, ] — —(¢ Mu=0 (1
8q(qq) dt[aq(q )l aq(q)+ u 1)
with vector of generalized coordinatgse R™ and input
u e R". £(q, q) is the Lagrangian ang (q) is Rayleigh's
dissipation function, which satisfies

9F

4——(@=>0; vqeR" 2

Cle
We consider the case of collocated actuator-sensor control.
This implies that the output is

w=MgeR ©)

We study controllers for EL systems that allow the existence
of several closed loop equilibrium points. We rely on princi-
ples from dissipativity and Liapunov theory. The controllers
contain a linear dynamic output feedback component and
several nonlinear components. They have the general form

7 = Az—Bf(o)+ n(w) 4)
o = C'z (5)
u = ¥z w (6)

in the case of displacement feedback, while the controller’s
input and output reag(w) andu = v (z, w) in the case of
velocity feedback. The controller stazec R"; A ¢ R™N

is nonsingular;B, C € R™S and (A,B) is controllable;
f(o) =col[fi(oj); i =1...8];0 =collgj; i =1...s].

n € R"andy € R are suitably designed nonlinearities.

Our approach is to find conditions that ensure the con-
vergence of every bounded solution to one of the closed
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loop equilibria. Systems having this property behave in a
nonoscillating way : As time increases every solution either
tends to infinity or it converges to an equilibrium state. If
all solutions remain bounded then the set of the equilibria is
globally convergent. The results constitute a basis for con-
trol systems synthesis in such cases where the existence of
several stable closed loop equilibria is acceptable or desir-
able.

The conditions for convergence of the closed loop involve
a frequency domain criterion on the tranfer mat@xs) of

the controller’s linear component and some restrictions on
the nonlinear amplifier characteristics. Several possibilities
are investigated : First we consider velocity feedback, using
controllers with sector-type bounds on the amplifier charac-
teristics and a corresponding Popov-type criteriorGas).

A second class of controllers is characterized by slope re-
strictions on the nonlinearities resulting in a modified fre-
quency condition or3(s). Subsequently we consider dis-
placement feedback instead of velocity feedback. Finally we
develop controllers possessing hard constraints on the con-
trol force amplitude. The four proposed types of controllers
are compared w.r.t. their conditions of applicability and the
local and global dynamic behaviour of the closed loop. They
are applied to the example of a rotational-translational proof
mass actuator which has been proposed as a benchmark
problem for nonlinear control systems design.
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Abstract

The proliferation of scientific contributions in the field of
synchronization of coupled dynamical systems reflects the
importance of this subject. The reason for this importance
appears to be threefold: synchronization is common in na-
ture, it displays a very rich phenomenology, and, finally,
synchronization may be useful in applications [1].

In this paper we study the existence and stability of linear
invariant manifolds in a network df diffusively coupled
dynamical systems:

Xj = f(Xj) + Bu;

1

{ yj =Cx W

wherej =1,...,k, xj(t) € R"is the state of thg-th sys-
tem,u;j(t) € R™andy;(t) € R™ are, respectively, the input
and the output of thg-th system, and, C are constant
matrices of appropriate dimension. The coupling between
the systems is assumed to be in the form of static relation
between systems’ inputs and outputs:

Uj = —yja(yj =Y —vj2(yj —y2) = .. —¥ik(¥Yj =¥ (2)

whereyij = yji = 0 are constants such th@'j‘#i vjii >0

foralli = 1,...,k. Let us rewrite the collection of the
dynamics of the elements (1),(2) in the more compact form
X =F(X)+ Gx 3

where we denotedx col(Xq, ..., Xk), FX)
col(f (x1), ..., f(x) € Rk"andG = —I" ® BC with the
coupling matrix defined as follows:

k
Yo Vi

K —Y12 —Y1ik
—Y21 D iiiix2 Vi — Yk
r= , = . @)
i i k-1
— 1 —2 2io1 Wi

whereyij = yji > 0 and all row sums are zero.

Let us recall here that given a dynamical system as (3), the
linear manifoldAym = {x € R" : Mx = 0}, with M €
RKMKN is invariantif Mx = 0 wheneveiMx = 0, that is,
if at a certain timdg a trajectory is on the manifold(tg) €
AwM, then it will remain there for all timex(t) € Ay for all
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t. The problem can be summarized in the following terms:
givenG andF(-) find M a solution to
MF(x(tg)) + MGx(tg) =0 (5)
for all x(tg) for which Mx(tg) = 0. There is no general so-
lution to this, however, if these objects satisfy certain prop-
erties, it is possible to find a class of matriddsthat solve
(5). A natural way to do this is to exploit the symmetry of
the network.

For this sort of systems we are able to prove the following
result related [2] to the existence of linear invariant mani-
folds: i) given a permutation matriXl that commutes with
I, the seker(lkn — IT ® Iy,) is a linear invariant manifold
for system (3and ii) suppose there is a permutation matrix
IT commuting with", and an nx n constant matrix J sat-
isfying Jf(x) = f(Jx) for f(.) in (1), with J commuting
with the nx n matrix BC. Then the s&er(lxn — 1T ® J) is

a linear invariant manifold for system (3).

Once the existence of the linear invariant manifolds is estab-
lished it is possible to study its stability. We preent sufficient
conditions guaranteeing the existence of globally asymptot-
ically stable invariant compact subset of the invariant mani-
fold. The stability criterion is formulated in terms of eigen-
values of the coupling matrik [3].

The consequences of the stability test are discussed by a
number of examples.
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1 Abstract

The study of systematic tools for model reduction of dy-
namic systems has been an early topic of interest in the sys-
tems and control fields. Model approximation based on the
Hankel norm and the balancing method have shown to be
useful tools for model reduction for linear systems. Today
singular values-based balancing, LQG balancing and #
balancing are important practical tools for linear model re-
duction. Therefore the study of model reduction for linear
systems can be considered a mature topic.

For nonlinear systems, there has been important progress
with the continuous nonlinear extensions of systematic
methods of balancing (singular-value-based, LQG and
Hoo), Mainly based on the controllability and observabil-
ity functions [2], [3]. Rougly speaking, in such procedure
a Hamilton-Jacobi equation and a Lyapunov-like partial dif-
ferential equation have to be solved in order to determine
the energy functions. Then a nonlinear transformation trans-
forms the system in balanced form. The mathematical com-
plexity in solving such partial differental equations has stim-
ulated the search for alternative methods to determine the
energy functions [4].

In [1] energy functions for stable nonlinear discrete-time
systems are discussed with the purpose of extending the
continuous-time theory exposed in [2], [3]. Since the deter-
mination of such energy functions are a fundamental con-
dition for nonlinear balancing and model reduction, the im-
portance of this results lies on the establishment of firm steps
towards a methodology suitable for computer implementa-
tion for the reduction of nonlinear discrete-time systems.

Consider the following discrete-time nonlinear system,

f(mkauk),
h(‘z‘k)a

Tk+1
Yk

keZ

The energy functions of this system are naturally defined:

UEEQ(_()O’O)v
z(—00)=0, z(0)=z¢
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as the controllability function and
Lo(x0) = 1illykll2 z(0) = o, up =0,k € Z*
o 2 k_o b b b b

as the observability function. These discrete time versions
of the energy functions are discussed and analized, provid-
ing necessary existence conditions. Instead of looking for
the solution of a Hamilton-Jacobi-lsaacs and a Lyapunov-
like partial differential equations as in the continuous-time
case, an optimization approach and an iterative algorithm
are proposed to find L. and L, respectively.

Moreover, since the resulting energy functions are continu-
ous in its arguments, several tools originally developed for
balancing of continuous-time systems are directly applica-
ble to discrete-time systems.

Although the applicability of one of these methods depends
on the invertibility of an associated nonlinear map, this is
not really a strong restriction since discrete-time systems
that result from discretization of continuous-time systems
are invertible. The relevance of these results lies on its ap-
plicability to model reduction and system identification for
discrete-time nonlinear systems.

Furthermore, with the availability of nonlinear discretization
procedures, such methods may provide alternative balancing
algorithms for continuous-time systems. This is presented
with an ad hoc application example consisting on the non-
linear balancing of a universal motor.
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Abstract

This paperstudiesthe feedbackinterconnectiorof a pas-
sive systemwith the nonlinearproportional-intgral block

u(t) = —k; [y(t) dt — ky(([y(t) dt)* — Dy(2).

V=0~ (")—=  paSSIVE |y
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In theparticularcasewherethe passie systems anintegra-
tor, thefeedbackinterconnectiomeducego the VanderPol
equation.

For ary k; > 0, this equationis well known to possess
limit cyclein thephaseplanefor k, > 0. Thislimit cycleis
globally asymptoticallystable(all solutionscornvergeto the
limit cycle exceptfor the unstablezeroequilibrium).

In this paperwe prove that for ary k; > 0, thereexists a

stablelimit cycle for abroadrangeof valuesfor the parame-
terk, in thegenerakaseof alinearpassie systemwhichis

controllable obsenable,of relative degreeoneandwhithout
ary purelyimaginaryzero.

The paperdiscussessome implications of this result for
roboticapplications.
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Abstract

In the Netherlands, soft fruit vegetables such as tomatoes,
cucumbers and sweet pepper are produced at large
guantities in greenhouses. The total production area for
these three vegetables is 3000 ha. The average size of the
nursery has increased throughout the last decades to more
than 1 ha and large production facilities of around 5 ha
are quite common today.

Today, labour is the largest cost factor of a modern
greenhouse holding. More than 30% of the total production
costs are spent on wages for the grower and his employees.
Obvioudy, to cope with saturating market demands and
increasing competition, the grower is looking for ways to
improve the over-al efficiency of the production process.
Improving the efficiency of human labour or even reducing
the amount of human labour seemsto be akey issue.

Therefore, in 1996, IMAG began research on the
development of an autonomous cucumber harvesting
robot supported by the Dutch Ministry of Agriculture,
Food and Fishery ([1]). The task of designing robots for
agricultural applications raises issues not encountered in
other industries. The robot has to operate in a highly
unstructured environment in which no two scenes are the
same. Both crop and fruit are prone to mechanical
damage and should be handled with care. The robot has
to operate under adverse climatic conditions, such as high
relative humidity and temperature as well as changing
light conditions. Finaly, to be cost effective, the robot
needs to meet high performance characteristics in terms
of speed and success rate of the picking operation. In this
project these challenging issues have been tackled by an
interdisciplinary  approach in  which  mechanical
engineering, sensor technology (computer vision),
systems and control engineering, €electronics, software
engineering, logistics, and, last but not least, horticultural
engineering partake.

This paper describes the concept of an autonomous robot
for harvesting vegetable fruit in greenhouses. To facilitate
automatic harvesting a new cultivation system was
adopted, the so-called high wire cultivation system. A
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description is given of the working environment of the
robot and the logistics of harvesting. It is concluded that
for a 2 ha Dutch nursery, 4 harvest robots and one
docking station are needed during the peak season. Based
on these preliminaries, the design specifications of the
harvest robot are defined. The main requirement is that a
single harvest operation may take at most 10 s. Then, the
paper focuses on the individual hardware and software
components of the robot. They include the autonomous
vehicle, the manipulator, the end-effector, the two
computer vision systems for detection and 3D imaging of
the fruit and the environment, high-level control of the
manipulator including collision-free path planning and
low-level control of the whole robot. A task analysis
revealed the sufficiency of a 7DOF manipulator. The end-
effector handles soft fruit without loss of quality. The
thermal cutting device used prevents transport of viruses
through the greenhouse. The computer vision system is
able to detect up to 95% of the cucumbers in a
greenhouse. Using geometric models the volume
(ripeness) of the cucumbers can be estimated with an
accuracy of 97%. A motion planner based on the A*-
search algorithm assures collision-free eye-hand co-
ordination. For more details refer to [2].

In 2001 system integration took place and the robot was
tested in an experimental greenhouse. With a success rate
of 80%, field tests in the experimental greenhouse at
IMAG b.v confirmed the ability of the robot to pick
cucumbers without human interference.
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1 Introduction

At Philips CFT controllers for electromechanical position-
ing systems, such as wafer stages and component mounters,
traditionally have been designed manually in a loop-shaping
fashion, even for multivariable systems. However, in or-
der to meet the increasingly stringent specifications for con-
troller performance , a lot of research has been conducted to-
wards model based design of multivariable controllers. Ro-
bust controller design was investigated initially to cope with
position dependent dynamics, but very recently modern LMI
based synthesis mehtods [1] are used to design multivariable
LPV controllers. At present however, the theory of system
identification of LPV models is still underdeveloped.

2 Project goal

The main objective of this research project is to develop the-
ory for LPV identification that is applicable in the first place
to electromechanical positioning systems. First, the research
is focussed on frequency domain identification, which is
common practice for electromechanical systems. Frequency
domain identification can be viewed as the problem of in-
terpolating complex valued numbers in a set of frequency
points, using a real rational function of given order. The
observation that the closely related problem of real valued
interpolation with real rational functions can be translated
to a linear program (LP) motivates a convex programming
approach. Analysis of thet, optimal frequency domain
identification problem has shown that the solution set is non-
convex. However, we propose a relaxation that renders the
solution set convex, at the expense of conservatism. Us-
ing this relaxation the frequency domain identification prob-
lem can be translated to a so-called conic quadratic pro-
gram [2] that can be solved efficiently using interior point
(IP) solvers. The method can be directly extended to multi-
variable, frequency weighted identification for some classes
of LPV models.
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Introduction

At the group Advanced Mechatronics we are investigating
the possibilities of using Active Magnetic Bearings (AMBS)

in a so-called CD-mastering device. These machines make
the master CD (DVD), used in the (mass) production of the
CDs. The most restricting factor for further increasing the
data density of CD and DVD mastering systems is the so-
called Non-Repetitive Run Out (NRRO) of the rotor.

For the next generation of optical storage devices, the pitch
of the tracks will further decrease. With a pitch of 300 nm
the NRRO needs to be around 1 nm. The currently used air
bearings have a NRRO of about 10 nm (at 6000 rpm), which
seems to be the limit of the current technology.

Also, the decrease in pitch distance, might well require vac-
uum production of the master CD. These two reasons make
AMBs an attractive candidate.

Reduce Bias Flux

The force a single standard E-core actuator generates, is de-
scribed by the following equation:

2

F = 3DKamby. (1)

Xg

wherekamp represents some properties of the AMBs the
current through the coil, and; the air gap. Common prac-
tise in operating the AMBs is to linearise around a work-
ing point, using two opposite AMBs which preload the rotor
with a bias currentif). This gives:

. .
whereky = 3D4kamp:3, andk; = 3D4kamb.3.
9 g

@)

In machines with extreme positioning demands, the accu-
racy is limited because of the vibrations in the frame. Sep-
aration of the measurement and force frames is then used to
further increase the positioning accuracy.
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In these kind of machines the use of actuators like (2) has
two disadvantages. First, the position dependent term intro-
duces disturbances to the rotor, since in practise the machine
frame is not without vibrations. Secondly, the preloading
introduces a bias flux through the rotor. When rotating this
introduces Eddy-currents. This will heat up the rotor (defor-
mation) and will introduce (velocity) coupling between the
frame and the rotor.

Non-Linear Compensation

If we want to reduce the position coupling, we have two
options; increase the airgap and/or decrease the bias current.
It follows from (1) that the air gap cannot be increased too
much, which leaves reducing the bias current.

Ideally we would have no bias current. This forces us to
deal with the zero gain around= 3D0. From (1) it is sus-
pected that a square root should be used in the drive. Indeed,
the square root function shows an infinite gain at 3DO0,
compensating the zero gain of the actuator.

If the current to the AMB would be set to:

i = 3Dxgv, (3)

with « the output of the controller, then the actuator would
reduce toF = 3Dka.

The method described above has two disadvantages. Thirst,
the infinite gain of the square root function at 3DO0 is im-
plemented on a discrete system, which does not have infinite
gain. Secondly, since an AMB always has attracting forces
(1), two opposite AMB are used. This implies a switching
behaviour, which could limit the position accuracy.

A practical preliminary investigation was performed using
a 1 DoF AMB. The performance of 3 different methods are
compared in terms of achievable bandwidth and accuracy.
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1 Background

For the production of Integrated Circuits (ICs), wafer scan-
ners are used. Positioning of the wafer with respect to the
imaging optics is accomplished with a so called wafer stage.
Keeping the servo errors within nanometer accuracy is cru-
cial for obtaining satisfactory overall performance of a wafer
scanner.

As often in servo systems, varying (anti)-resonances are
present. In the case of the wafer stage, plant dynamics al-
ter with different operating points. Therefore, this effect is
referred to as “position dependent dynamics”. Making the
controller robust against position dependent effects can be
used to tackle this problem, yet at the expense of perfor-
mance. However, for the next generation wafer scanners,
performance specifications become even tighter and this ro-
bust control strategy might fail to accomplish the desired
performance level.

Therefore, more advanced controller techniques are investi-
gated, among others Linear Parameter-Varying (LPV) con-
trol. Based on a system description which accurately cap-
tures the position dependent dynamics of a system, LPV
control offers a framework to compute a controller which
adjusts its dynamics to the operating position, thereby avoid-
ing the conservatism which is present with robust control.
Guarantees for stability and performance for each position
can be given as well. However, conservatism due to tech-
nical assumptions necessary for the LPV controller synthe-
sis and numerical problems therein could prevent achieving
the expected performance improvement compared to robust
control. Another major issue is LPV modeling which is still
at its infancy. Generating an LPV model is therefore not a
straightforward task.

2 Approach

To implement LPV control for an experimental wafer scan-
ner, the following steps are taken. First of all, an accurate
LPV model has to be obtained. To use this model for LPV
controller synthesis, it is transformed into the so called LFT
structure: a structure similar to that used foisynthesis.
Second, an LPV controller is designed. To investigate the
effect of numerical problems and conservatism, various al-
gorithms are used and results are compared. Finally, the
LPV controller is implemented for the wafer stage and its
performance is compared to a standard PID-like LTI con-
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troller.

3 LPV modeling

For LPV modeling, a rather custom-made approach is cho-
sen. For a finite number of positions, frequency response
functions are measured and transfer functions are fitted and
transformed into a canonical form. By the specific arrange-
ments of the varying elements in that form, an LFT model
can be constructed. For intermediate positions, an interpo-
lation technique is used and consequently this pragmatic ap-
proach does not lead to a model with guaranteed validity for
all positions. Besides, if more positions were used the re-
sulting LPV model would become more complex, which is

a serious threat for the synthesis algorithms. To deal with
these two effects, as an extra ingredient physical knowledge
of the setup is used. First of all, the “smoothness” assump-
tion for interpolation is justified. Second, taking into ac-
count that mode shapes cause the position dependent effects
might reduce the number of parameters needed to describe
the phenomenon resulting in an LPV model with fewer pa-
rameters.

4 Synthesis

Numerical problems and conservatism play an important
role in LPV synthesis algorithms. Numerical problems are
handled mainly by trial and error. Unfortunately, a generic
systematic approach is currently unavailable. There is a
trade-off between conservatism and complexity of the LPV
controller synthesis inequalities. For example, the rate of pa-
rameter variations can assumed to be unbounded to limit the
complexity of LPV controller synthesis, although it might
cause conservatism for most practical applications. Re-
search on reducing conservatism and complexity might in-
volve extensions and alterations of the currently used design
inequalities.

5 Presentation

The stepwise approach to implement LPV control for the
wafer stage will be discussed and illustrated with experi-
mental results. Shortcomings in LPV modeling and prob-
lems in the LPV synthesis step will be given special atten-
tion.
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Abstract

Ramp metering is an advanced traffic management system
that can be implemented quickly and easily on motorways
in Belgium as well as in the Netherlands. It consists of a
traffic light that is placed at the on-ramp of a motorway.
Vehicles are allowed to enter the motorway in a controlled
way, avoiding 'bursts’ of cars that would disrupt the traffic
flow on the motorway too much.

In this talk we start with the discussion of the poten-
tial benefits of ramp metering on a qualitative level. What
is ramp metering and how is it implemented? Why does
ramp metering work and what can be expected of it? We
answer these questions using the notion of the fundamental
diagram, a well known concept in traffic theory.

After the qualitative approach, we quantify the perfor-
mance of the motorway system under study by defining
a cost function corresponding to the traffic state. The
motorway system is simulated using a second order traffic
flow model that is discretised in time and space [1], [2]
and [4]. The cost function that we study in this talk is
the total time spent by all the vehicles in the network and
can be calculated based on the simulated traffic density on
the motorway. The cost function can then be minimized
by optimizing the metering rate at the on-ramp or, stated
otherwise, by temporarily limiting the number of vehicles
allowed to enter the motorway through the on-ramp [3].
This boils down to a non-linear optimization problem with
constraints. In order to illustrate the potential benefits of
ramp metering, we simulate a motorway stretch with an
on-ramp without control and compare this to a simulation
with a ramp metering set-up in a model predictive control
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framework.
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1 Abstract

The steadily increasing number and length of traffic jams
on motorways has led to the use of several dynamic traf-
fic management measures all over the world such as ramp
metering, incident warning, and route information. Usu-
ally these measures operate based on local data (occupancy
or intensity measurements). However, recently more and
more researchers and practitioners have started to recognize
that considering the effect of the measures on the network
level has many advantages compared to local control. We
apply model predictive control to optimally coordinate vari-
able speed limits and ramp metering. It is clear that ramp
metering is only useful when traffic is not too light (other-
wise ramp metering is not needed) and not too dense (oth-
erwise breakdown will happen anyway). The basic idea is
that speed limits can increase the range in which ramp me-
tering is useful. For the prediction we use a slightly adapted
version of the METANET [1] traffic flow model that takes
the variable speed limits into account. The optimal control
signals aim at minimizing the total time that vehicles spend
in the network. The coordinated control results in a net-
work with less congestion, a higher outflow, and a lower
total time spent. In addition, the receding horizon approach
of model predictive control results in an adaptive, on-line
control strategy that can take changes in the system auto-
matically into account. We illustrate our approach using a
simple network for which we compare the cases ‘ramp me-
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Figure 1: Ramp metering at the A13 near Delft.

tering only” and ‘coordinated ramp metering and speed lim-
its” for a typical demand scenario.
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1 Introduction

Throughout the world, combustion of municipal solid waste
(MSW), better known as household waste, is used for there-
duction of its volume, otherwise being disposed of by means
of landfilling, and for the production of energy. An MSW
combustion plant, see figure 1, is subject to both economic
operational objectives and environmental regquirements be-
ing enforced by law. In the fulfillment of these objectives,
the control system plays an essential role.

Boiler

combustion
control

Bunker

Fly ash, gypsum,
and others

Stack

Bottom ash

Figure 1: Schematic view of an MSW combustion plant.

Among many MSW combustion plant managers there is a
need to optimize the process operation performance. Thisis
due to the ever becoming more stringent environmental reg-
ulations and ever growing higher energy efficiency demands.
As a result, research is being carried out in order to im-
prove this operation performance. One important research
direction aims at improving this performance by investigat-
ing the feasibility of advanced control strategies of which
fuzzy control and Model Predictive Control (MPC) are at
present the main representatives. The motivation for thisre-
search is that the conventional (PI(D)) combustion control
systems are not able to fulfill properly the present and fu-
ture energy efficiency and environmental needs of an MSW
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combustion plant.

2 Outline of thetalk

A feasibility study is presented on the application of MPC
as atool for obtaining an improved operation performance
for MSW combustion plants. First, the main operational
and control objectives for these plants are identified. Sub-
sequently, a specific MSW control problem is selected. On
the basis of this control problem a comparison is made be-
tween the control performance of a conventional (PI(D))
control system, as determined by measurements, and that
obtained with alinear model predictive controller, as deter-
mined through simulations. Thelatter were performed using
an estimated process and disturbance model. These were
obtained from a large scale MSW combustion plant in The
Netherlands via a specific system identification procedure
whichisdiscussed in [1].

The presented results are also discussed in [2]
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1 Introduction mented. At the next sampling time, the optimization prob-
lem is reformulated and solved with new measurements ob-

Model Predictive Control (MPC), also known as moving  tained from the system. Given the initial status of the pro-
or receding horizon control, has originated in industry as a cess, estimates of disturbances and the reference trajectories,
real-time computer control algorithm to solve linear multi-  the optimizer in the MPC module produces the manipulated
variable problems that have constraints and time delays. The variable such that input and output trajectories follow the
various MPC algorithms differ mainly in the type of model  reference trajectories as close as possible subject to the con-
used to represent the process and its disturbances, as wellstraints imposed in the optimization.
as the cost functions to be minimized, with or without con-
straints. The on-line optimization can be typically reduced To reduce computational complexity quadratic program-
to either a linear program or a quadratic program. The MPC ming problem is solved using a structured interior-point
controller solves on-line a constrained optimization problem method (see [3]). The described above MPC problem was
and determines an optimal control input over a fixed future properly reformulated to apply this optimization algorithm.
time-horizon, based on the predicted future behaviour of the The cost of this approach is linear in the horizon length,

process, and based on the desired reference trajectory. compared with the cubic growth for the standard approach.
A discrete Riccati recursion is used to solve the linear
2 MPC algorithm equations efficiently at each iteration of the interior-point

method. We can expect this recursion to be numerically sta-
In this presentation we consider a nonlinear MPC scheme ble although it was motivated originally by structural rather
where the predicted future process behaviour is represented than numerical considerations. The effectiveness of this ap-
as a cumulative effect of a nonlinear prediction component proach will be demonstrated in the presentation by applying
and a component based on linear time-varying models de- this MPC algorithm to a distillation process.
fined along the predicted trajectory ([4]). The first compo-
nent constitutes a future output prediction using nonlinear References
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tions that bring the process behavior closest to the desired [2] ~ N.L. Ricker, J.H. Lee, “Nonlinear model predicitive
behavior (see, for example [1, 2]). control of the Tennessee Eastman challenge process”, Com-

puters and Chemical Engineering 19(9):961-981, 1995.

The constrained optimization problem leads to the quadratic [3] C.V. Rao, S.J. Wright, and J.B. Rawlings, “Applica-
programming problem, which can be splitinto a steady state tion of interior-point methods to model predictive control”,
and a dynamic optimization. The MPC module solves a con- Journal of Optimization Theory and Applications 99:723—
strained optimization problem on-line and determines opti- 757, 1998.

mal control inputs over a fixed future time-horizon, based [4] R. de Keyser, “A gentle introduction to model based
on the predicted future behavior of the process using a time predictive control”, Plenary paper, EC-PADI2 Int. Confer-

variant Iinear_m_odel (a_ set of linear time invariant models ence on Control Engineering and Signal Processing, Peru,
over the prediction horizon). Although more than one con- 1998

trol move is generally calculated, only the first one is imple-
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Abstract Our goal is to reduce this gap in the knowledge base, and to

e incorporate requirements for static equilibria for pre-
stressed mechanical structures, both loaded and un-
loaded,

Tensegrity systems are composed of tensile members (ten-
dons) and compressive members (bars) [1]. These structures
have been studied for a long time, seq, [2], whose ter-
minology consisted of ties and struts instead of tendons and
bars. In a class 1 tensegrity structure, as considered here, the
bar endpoints, or nodal points, are only connected to ten-
dons, not to other bars. The @gfrity (stability) of a tenseg-

rity structure is due to pre-stress witknsle forces in the

tendons, hence the nartensegrity . To illustrate our approach we apply it on a tensegrity system
Because bars are connected by tendons, and not directly, the pyild up from several elementary stages and compare it to
stiffness of the structure may be diminished: tendons are an approach from literature.

elastic. Furthermore, pre-stress gives rise to heavier mem- The computations are done with a nonlinear programming
bers, to avoid yield or buckling when forces are increased approach and most design aspects (static equilibrium, yield
due to pre-stress. On the other hand, a proper choice of mate- 3nq puckling limits, force directionalityetc, both for the

rial for these systems is easier to achieve and stiffness can be ynjpoaded and loaded cases) can be, and are, incorporated.
improved by controlling the tendon or bar lengths. Changing By using an efficient and robust solver, by employing the
member lengths also enables shape control. The net result of gtrycture of the Jacobian of the nonlinear constraints, and/or
disadvantages and advantages may make tensegrity systems,y providing analytical expressions for the Jacobian, this ap-
the systems of choice for a reasonable wide class of appli- proach appears to be feasible.

cations. From this work it becomes clear that certain topologies are
We discuss how a balanced choice of topology and geome- clearly advantageous, especially the ones that are built up
try improves the stiffness and stiffness-to-mass properties of from a mix of class one (each nodal point is connected to

e show the influence of incorporating nonlinear failure
constraints,

e investigate the handling of requirements of installing
actuating devices to control the length of the tendons.

tensegrity systems. We also incorporate controllability re-
guirements, by constraining the tendon length, that should
exceed a certain minimum length, so there is room for the
joint structures and for installation of a mechanism used

to change the tendon length in the case closed loop tendon

length control is applied.

Optimization of topology and geometry of structures has
been studied for a long time. One of the results is the formu-
lation of Optimality Criteria [3]. Furthermore, several ap-
proaches for numerical optimization are known [4], while
recent approaches aeeg, free material modeling [5, 6], or
optimization of trusses starting from a fully populated grid
[7]. In practice we encounter problems that require to

e incorporate constraints (nonlinear) for failure of the
structure, like yield and buckling,

e tackle a wide class of geometries and boundary and
loading conditions, which excludes approaches using
linear models,

e stabilize the system by requiring pre-stress in the
structure.

Although there are approaches that address some of these

issues, none of these combines all of them.
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one bar only) and class two (where in a nodal point up to
two bars can connect) systems.
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A MILP approach to the optimization of emulsification

M. Stork

Mechanical Engineering Systems and Control Group

Delft University of Technology
Mekelweg 2
2628 CD Delft
m.stork@wbmt.tudelft.nl

1 Abstract

Emulsification is an essential manufacturing technology in
the food industry. Examples of emulsions are mayon-
naise and all kind of dressings. For profit maximization it
is desirable to decrease the production time of emulsions
while maintaining the product quality specifications. In this
project we focus on the model-based optimization of emulsi-
fication. The quality of emulsions is strongly influenced by
the drop size distribution (DSD). For the aim of this study
models that predict the course of the DSD in time are used.

This work addresses the model-based computation of stir-
rer profiles for reaching a certain predefined DSD in mini-
mal time. The model involved describes the evolution of the
DSD as a function of time in a vessel that is operated in a
fed-batch way. The model consists of compartment models
and for each compartment a population balance equation is
formulated to model the DSD. For simulation purposes the
model was discretized using the method of [1]. Each state
corresponds to the number of drops with a certain drop size
in a certain compartment.

The breakage phenomena (the breakage condition, the

R. L. Tousain
Philips CFT
Mechatronics Research
SAQ-2115
5600 MD Eindhoven
rob.tousain@philips.com

MILP is found, then this is also a good solution to the orig-
inal minimal time optimization problem. The method is de-
rived as follows. First, by model analysis it can be shown
that the strong nonlinearity is only in the dependence on the
stirrer speed. Further, in small intervals of the stirrer speed
the dynamics are approximately linear. These intervals form
themodesf the system. At any given time, the system finds
itself in exactly one mode; its mathematical behavior is then
described by a given set of evolution ODE equations. A
transition from one mode to another is triggered when the
stirrer speed passes a certain critical value. Hence, the stir-
rer speed determines completely in which mode the system
is and when the transitions occur. This suggests that the
model can be reformulated as a state-transition network [2]
where linear dynamics describe the behavior in a certain in-
terval of the stirrer speed and where transitions between dif-
ferent modes are modeled using integer decision variables.
The objective, being to reach a certain end point condition
in minimum time, can be enforced through the introduction
of another set of integer decision variables. This way, the
minimum time optimization problem can be reformulated as
a MILP , which can be solved using well-proven, standard
optimization codes. The feasibility of the approach is illus-
trated by means of an example, the computation of stirrer

breakage frequency, the number and the sizes of the formed profiles for reaching a certain predefined DSD in a minimal

drops) depend heavily on the stirrer speed and exhibit dis-
crete events. A very small increase of the stirrer speed may
already lead to the breakage of certain drop sizes that did
not break with the slightly lower stirrer speed. Comparable
behavior is observed for the formation of certain drop sizes;
until some stirrer speed they are not formed whereas they
are formed very rapidly at a stirrer speed that is only slightly
higher. A further increase of the stirrer speed may suddenly
lead to the non-formation or even breakage of these drop

amount of time.
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and in fact almost discontinuous. Gradient based optimiza-
tion techniques like SQP will fail because of this behavior.
Also non-gradient based methods like genetic algorithms do
not guarantee satisfactory behavior. It is unsure if the global
optimum will be reached and even if a feasible solution will
be found.

In this work we suggest an approach that approximates the
original non-linear optimization problem as a Mixed Integer
Linear Program (MILP). This method does enable to solve
the optimization problem and if the global optimum of the
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Abstract

In this paper we consider feedback Nash equilibria in a dis-
turbed differential game. Like ikl theory, we assume that
the uncertainty is modeled as an additive deterministic dis-
turbance term entering the system. That is, we consider the
system

X = AX + Bjug + Bouo + Ew, X(0) = Xg

wherew € Lg(o, o0) represents the unknown disturbance,
x denotes the state of the system ands the control of
playeri. We assume that the information structure of the
players is a feedback pattern and that the control functions
are of the formu; = Fix, where(F1, F») are such that they
stabilize the system.

We assume that the performance criterinthe individ-

ual players like to minimize is given by an indefinite linear
guadratic function, i.e.

J = /OO{XT O Qix(t) 4 uf Riui (1) — w' Viw)dt,
0

where Q; are only assumed to be symmetrig; and V
positive definiteV; expresses the risky attitude of player
Sufficient conditions for existence of feedback Nash equi-
libria for such a game are given. Furthermore, the one
player case is elaborated to show the consequences of the
stabilizing feedback assumption in this context.
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Introduction

Obijective functions in economic steady-state optimization
for chemical processes are often determined by linear terms,
for instance corresponding to maximization of feed- or prod-
uct flows. This leads to optimal steady-states close to the
constraints on process variables, controlled variables (c.v.’s)
and manipulated variables (m.v.’s). Due to process distur-
bances and plant-model mismatch, one is forced to keep
some distance to the constraints. This problem of selecting
a suitable back-off is a trade-off between avoiding frequent
constraint violation and concessions on the profit rate of the
process. The hard part in solving this problem consists of the
interaction between the tuning of the model predictive con-
trollers and the selection of the optimal steady-state. Bet-
ter tuning leads to profitable reduction of the back-off from
the constraints. In [5] this problem is addressed for a plant-
model mismatch case in which the back-off is selected for
randomly distributed model parameters, biases and worst-
case parameter variations. These results incorporate con-
trol in the back-off selection, but the operating condition is
optimized for a fixed controller and fixed back-off. Only
in [3, 2], the authors solve a nonlinear back-off problem in
which they iterate between computation of optimal operat-
ing conditions and controller parameters and worst-case dis-
turbances.

A new approach to the problem

In this work, we will formulate a different optimization
problem in which the optimal operating condition, the con-
troller parameters and the back-off are optimized simultane-
ously. The control configuration corresponding to our strat-
egy is depicted schematically in figure 1 and is discussed in
[1] for the LQG problem. The objective is to find an optimal
linear controller and an optimal steady-state operating con-
dition which maximize the profit rate of a chemical process
while guaranteeing a bound on the probability that the state
and/or input constraints are not violated. In [4] we show
that we can globally solve this problem using a two step ap-
proach in which we borrow techniques from multi-objective
control [6, 7]. Due to the computational burden of these
techniques, we also propose an suboptimal but fast iterative

C.W. Scherer
Mech. Eng. Syst.& Contr.
Delft Univ. of Tech.
Mekelweg 2, 2628 CD, Delft
The Netherlands
c.w.scherer@wbmt.tudel ft.nl

116

O.H. Bosgra
Mech. Eng. Syst.& Contr.
Ddft Univ. of Tech.
Mekelweg 2, 2628 CD, Delft
The Netherlands
o0.h.bosgra@wbmt.tudel ft.nl

procedure relying on the linearization of certain constraints.
The LTI-design is justified by viewing it as an important first
step for closed-loop MPC design.

w V4
—» —
| Plant

U Yy

Au Ay

+ Controller —
u” y"
Optimizer

Figure1: The control configuration
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Abstract

While linearmodelpredictive controlis popularsincethe70sof the pastcentury the90shave withesseda steadily
increasingattentionfrom controltheoretistaswell ascontrol practitionerdn the areaof nonlineamodelpredictive
control (NMPC). The practicalinterestis driven by the factthattoday’s processeseedto be operatedundertighter
performancespecificationsAt the sametime moreandmoreconstraintsstemmingfor examplefrom environmental
andsafetyconsiderationsieedto besatisfied.Oftenthesedemandsanonly bemetwhenprocessionlinearitiesand
constraintsaareexplicitly consideredn the controller Nonlinearpredictive control,the extensionof well established
linearpredictive controlto thenonlinearworld, appearso beawell suitedapproactior thiskind of problems.In this
notethe basicprinciple of NMPC is reviewed, the key adwantages/disadntagesof NMPC are outlinedand some
of the theoretical,computationalandimplementationahspectof NMPC are discussed Furthermore someof the
currentlyopenquestionsn theareaof NMPC areoutlined.

1 Principles, Mathematical Formulation and Propertiesof
Nonlinear Model Predictive Control

Model predictive control (MPC), alsoreferredto asmaoving horizoncontrol or recedinghorizoncontrol,hasbecome
an attractve feedbackstrateyy, especiallyfor linear processeslLinear MPC refersto a family of MPC schemesn
which linearmodelsareusedto predictthe systemdynamics eventhoughthe dynamicsof the closed-loopsystemis
nonlineardueto the presencef constraintsLinearMPC approachebave foundsuccessfuapplicationsespeciallyin
theprocessndustries. A goodoverview of industriallinearMPC techniquesanbefoundin [64,65], wheremorethan
2200applicationdn a very wide rangefrom chemicalgo aerospacendustriesaresummarizedBy now, linear MPC
theoryis quite mature. Importantissuessuchas online computation the interplay betweenmodeling/identification
andcontrolandsystentheoreticissuedik e stability arewell addresse{1,52,58].

Many systemsare,however, in generalinherentlynonlinear This, togethemwith higherproductquality specifications
andincreasingoroductiity demandstighter ervironmentalregulationsanddemandingeconomicakonsiderationn
the processndustryrequireto operatesystemscloserto the boundaryof the admissibleoperatingregion. In these
caseslinearmodelsareofteninadequateo describahe processlynamicsandnonlinearmodelshaveto beused.This
motivatesthe useof nonlineammodelpredictive control.

This paperfocusesntheapplicationof modelpredictive controltechniquedo nonlinearsystemslt providesareview
of the main principlesunderlyingNMPC and outlinesthe key adwvantages/disadntage®f NMPC andsomeof the
theoretical,computationalandimplementationahspectsNote, however, thatit is notintendedasa completereview
of existing NMPC techniquesinsteadwe referto thefollowing list for someexcellentreviews[4,16,22,52,58,68].
In Sectionl.1andSectionl.2thebasicunderlyingconcepiof NMPCis introduced.In Section2 someof the system
theoreticalaspectof NMPC are presented After an outline of NMPC schemeghat achieve stability one particular
NMPC formulation, namelyquasi-infinitehorizon NMPC (QIH-NMPC) is outlinedto exemplify the basicideasto
achievestability. Thisapproactallowsa(computationallykfficientformulationof NMPCwhile guaranteeingtability
andperformancef the closed-loop.

Besidesthe basicquestionof the stability of the closed-loop,questionssuchas robust formulationsof NMPC and
someremarkson the performancef the closed-looparegivenin Section2.3andSection2.2. Section2.4 givessome
remarkson the output-feedbaclroblemin connectionrwith NMPC. After a shortreview of existing approachesne
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specificschemeo achieve output-feedbackiMPC usinghigh-gainobsenersfor staterecoveryis outlined. Section3
containssomeremarksanddescriptionsoncerninghe numericalsolutionof the open-loopoptimal control problem.
Theapplicabilityof NMPC to real processess shovn in Section4 consideringhe controlof a high purity distillation
column. This shaws, thatusingwell suitedoptimizationstratgiestogethemwith the QIH-NMPC schemeallow real-
time applicationof NMPC even with todayscomputingpower. Final conclusionsand remarkson future research
directionsaregivenin Section5.

In the following, || - || denoteshe Euclideanvectornormin R" (wherethe dimensionn follows from context) or the
associatednducedmatrix norm. Vectorsaredenotedby boldfacesymbols. Whenerer a semicolon®;” occursin a
functionargument,the following symbolsshouldbe viewed asadditionalparametersi.e. f(x;y) meanghevalueof
thefunction f atx with the parametey.

1.1 The Principle of Nonlinear Model Predictive Control

In general the modelpredictive control problemis formulatedas solving on-line a finite horizonopen-loopoptimal
control problemsubjectto systemdynamicsand constraintdnvolving statesand controls. Figure 1 shows the basic
principle of model predictive control. Basedon measurementsbtainedat time t, the controller predictsthe future

past | future/prediction
set-point
predicted state X
closed-loop ' B
state X -~ open loop input U
closed-loop - -
input U . . .
T } |
t t+90 t+Te t+T,

I control horizon T, |

| prediction horizon T,

Figurel: Principleof modelpredictive control.

dynamicbehaior of thesystemoverapredictionhorizonT, anddeterminegoveracontrolhorizonT, < Tp) theinput

suchthata predeterminedpen-loopperformancebjective functionalis optimized.If therewereno disturbanceand
no model-plantmismatchandif theoptimizationproblemcouldbe solvedfor infinite horizons thenonecouldapply
theinputfunctionfoundattimet = 0 to the systentor all timest > 0. However, thisis notpossiblein general. Dueto

disturbancesndmodel-plantmismatchthetrue systembehaior is differentfrom the predictedbehaior. In orderto

incorporatesomefeedbackmechanismthe open-loopmanipulatednput function obtainedwill beimplementednly

until the next measuremertiecomesvailable. Thetime differencebetweertherecalculation/measuremerdanvary,

however oftenit is assumedo be fixed, i.e the measurementill take placeevery & samplingtime-units. Usingthe

new measuremerdttimet + 8, the whole procedure- predictionandoptimization— is repeatedo find a new input

functionwith the controlandpredictionhorizonsmoving forward.

Notice, thatin Figure 1 the input is depictedas arbitrary function of time. As shown in Section3, for numerical
solutionsof the open-loopoptimal control problemit is often necessaryo parameterizeéhe input in an appropriate
way. This is normally doneby usinga finite numberof basisfunctions, e.g. the input could be approximatedas
piecavise constanbver thesamplingtime d.

As will be shown, the calculationof the appliedinput basedon the predictedsystembehaior allows the inclusion
of constraintson statesand inputsaswell asthe optimizationof a given costfunction. However, sincein general
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the predictedsystembehaior will differ from the closed-loopone,precautiormustbe takento achieve closed-loop
stability.
1.2 Mathematical Formulation of NMPC

We considerthe stabilizationproblemfor a classof systemadescribedoy the following nonlinearsetof differential
equation$

x(t) = fx@®),ut), x(0)=xo €y
subjectto input andstateconstraintof theform:
uit) e a4, vt >0 x(t) e X, vt >0, 2

wherex(t) € X C R" andu(t) € U C R™ denoteshevectorof statesandinputs,respectiely. Thesetof feasibleinput
valuesis denotedby U andthe setof feasiblestateds denotedoy X. We assumehat 1/ and X satisfythe following
assumptions:

Assumption1 UCRP is compactX CR" is connectednd (0,0) € X x U.

In its simplestform, ¢ and X aregivenby box constraintof theform:

U:={ue ]Rm|umin < u < Umax}, (3a)
X = {X € Rn|Xmin S X S Xmax}. (3b)

Hereumin, Umax @ndXmin, Xmax &regivenconstanvectors.
With respecto the systemwe additionallyassumethat:

Assumption2 Thevectorfield f : R" x R™ — R" is continuousand satisfiesf(0,0) = 0. In addition, it is locally
Lipschitz continuousin Xx.

Assumption 3 Thesysten(1) hasanuniquecontinuoussolutionfor anyinitial conditionin theregion of interestand
anypiecavisecontinuousandright continuousnputfunctionu(-) : [0, Tp] = U.

In orderto distinguishclearly betweenthe real systemandthe systemmodelusedto predictthe future “within” the
controller we denotetheinternalvariablesin the controllerby a bar (for examplex, u).

Usually, the finite horizonopen-loopoptimal control problemdescribedabove is mathematicallyfformulatedasfol-
lows:

Problem 1 Find ng(ig]J(X(t), u(-); Te, Tp)
with _ o .« —
IX(),U(); Tp, Te) := i PF(x(1),u(T))dt (4)
subjectto:
(1) =f(x(1),u(r), X(t)=x(1) (5a)
u(t) ed, Vie[tt+T (5b)
u(t) =u(t+Te), Vie[t+Te,t+ Ty (5¢)
X(1) €X, Vie[t,t+Ty (5d)

wheee T, and T are the predictionandthe control horizonwith Te < T,,.

The bardenotesnternalcontrollervariablesandx(-) is the solutionof (5a) drivenby theinputu(-) : [t,t + Tp] = U
with initial conditionx(t). The distinctionbetweenthe real systemandthe variablesin the controlleris necessary
sincethepredictedvalues.evenin thenominalundisturbedtase neednot, andin generallywill not,bethesameasthe
actualclosed-loopvalues,sincethe optimalinputis recalculatedover a moving finite horizonT¢) at every sampling

Lin this paperonly the continuoustime formulation of NMPC is considered.However, notice that mostof the presentedopics have dual
counterpart$n thediscretetime setting.
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instance.
ThefunctionF, in thefollowing calledstagecost,specifiegshedesireccontrolperformancehatcanarise for example,
from economicabndecologicalconsiderationsThe standardjuadratidorm is the simplestandmostoftenusedone:

F(%,u) = (X —Xg) T Q(X — Xs) + (u—us) "R(u — us), (6)

wherexs andus denotegivensetpointsQ andR denotepositive definite,symmetricweightingmatrices.In orderfor
the desiredreference(xs, Us) to be a feasiblesolutionof Problem1, us shouldbe containedn theinterior of U. As
alreadystatedin Assumption2 we considey without loss of generalitythat (xs,us) = (0,0) is the steadystatethat
shouldbe stabilized.Note theinitial conditionin (5a): The systemmodelusedto predictthefuturein the controlleris
initialized by the actualsystemstate;thusthey areassumedo be measurear mustbeestimated Equation(5c) is not
aconstraintut impliesthatbeyondthe controlhorizonthe predictedcontroltakesa constantvalueequalto thatat the
laststepof the controlhorizon.

In thefollowing anoptimalsolutionto the optimizationproblem(existenceassumedjs denotedby u*(-; x(t), Tp, T¢) :
[t,t +Tp] = U. The open-loopoptimal control problemwill be solved repeatedlyat the samplinginstances =
jo, j =0,1,---, oncenew measurementareavailable. The closed-loopcontrolis definedby the optimal solutionof
Probleml atthe samplinginstants:

u*(t) ;== u*(T;x(t), Tp, Te) , T € [t, 9]. 7)

The optimal value of the NMPC open-loopoptimal control problemasa function of the statewill be denotedn the
following asvaluefunction: —

g V(% Tp, Te) = I06, T (5 X(1)): Ty To).- 8)

The value function playsanimportantrole in the proof of the stability of variousNMPC schemesasit senesasa
Lyapuna functioncandidate.

1.3 Properties,Advantages,and Disadvantagesof NMPC

In generalonewould like to usean infinite predictionandcontrol horizon,i.e. Ty and T in Probleml aresetto oo.
5case)o minimize the performancebjective determinedy the costHowever asmentioned the open-loopoptimal
control Probleml, thatmustbe solved on-line, is oftenformulatedin afinite horizonmannerandthe input function
is parameterizefinitely, in orderto allow a (real-time)numericalsolutionof the nonlinearopen-loopoptimal control
problem.lt is clear thatthe shorterthe horizon,thelesscostly the solutionof the on-line optimizationproblem.Thus
it is desirablefrom a computationapoint of view to implementMPC schemesisingshorthorizons.However, when
a finite predictionhorizonis used,the actualclosed-loopinput and statetrajectorieswill differ from the predicted
open-looptrajectoriesgvenif no modelplantmismatchandno disturbancesrepresen{4]. This factis depictedin
Figure2 wherethe systemcanonly moveinsidethe shadedireaasstateconstraintof theform x(1) € X areassumed.
This makesthe key differencebetweenstandardcontrol strateies, wherethe feedbackaw is obtaineda priori and

A
X;

N

X1

Figure2: Thedifferencebetweeropen-looppredictionandclosed-loopbehaior.

NMPC wherethe feedbaclaw is obtainedon-line and hastwo immediateconsequenced:irstly, the actualgoal to
computeafeedbacksuchthatthe performancebjective overtheinfinite horizonof theclosedoopis minimizedis not
achiesed. In generalit is by no meandrue thata repeatedninimizationover a finite horizonobjectivein areceding
horizonmannerdeadsto anoptimalsolutionfor theinfinite horizonproblem(with thesamestagecostF) [10]. In fact,
thetwo solutionsdiffer significantlyif ashorthorizonis chosen.Secondlyif the predictedandthe actualtrajectories
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differ, thereis no guaranteghat the closed-loopsystemwill be stable. It is indeedeasyto constructexamplesfor
which the closed-loopbecomesunstableif a (small) finite horizonis chosen.Hence,whenusingfinite horizonsin
standardNMPC, the stagecostcannotbe chosersimply basedon the desiredphysicalobjectves.
Theoverallbasicstructureof a NMPC controlloopis depictedn Figure3. As canbeseenijt is necessaryo estimate

NMPC controller
; u
dynamic ~  Plant LA
optimizer
/\ Y
cost function %
+ < system model state estimator
constraints

Figure3: BasicNMPC controlloop.

thesystemstatesrom the outputmeasurements.
Summarizinghe basicNMPC schemevorks asfollows:

1. obtainmeasurements/estimatefsthe stateof the system

2. computeanoptimalinput signalby minimizing a givencostfunction overacertainprediction horizon in the
futureusingamodel of the system

3. implement the first part of the optimal input signal until nev measurements/estimatefthe stateareavail-
able

4. continuewith 1.

Fromthe remarksgivenso far andfrom the basicNMPC setup,onecanextractthe following key characteristicef
NMPC:

¢ NMPC allowsthe useof anonlinearmodelfor prediction.
o NMPC allowstheexplicit consideratiorof stateandinput constraints.

In NMPC a specifiedperformanceriteriais minimizedon-line.

In NMPC the predictedbehaior is in generaldifferentfrom the closedloop behavior.

e Theon-linesolutionof anopen-loopoptimal control problemis necessaryor theapplicationof NMPC.
¢ To performthe predictionthe systemstatesnustbe measuredr estimated.

In the remainingsectionsvariousaspectof NMPC regardingthesepropertieswill be discussed.The next section
focuseson systentheoreticalaspectof NMPC. Especiallythe guestionn closed-loopstability, robustnesandthe
outputfeedbackoroblemareconsidered.

2 SystemTheoretical Aspectsof NMPC

In this sectiondifferentsystentheoreticalspect®f NMPC areconsideredBesideghe questionof nominalstability
of theclosed-loopwhich canbe consideredissomehav maturetoday remarkson robustNMPC stratgjiesaswell as
theoutput-feedbackroblemaregiven.
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2.1 Stability

One of the key questionsn NMPC is certainly whethera finite horizon NMPC stratgy doesleadto stability of
the closed-loop. As pointedout, the key problemwith a finite predictionand control horizon stemsfrom the fact
that the predictedopenandthe resultingclosed-loopbehaior is in generaldifferent. Ideally onewould seekfor a
NMPC strateyy thatachievesclosed-loopstability independentf thechoiceof theperformancgarameter thecost
functionaland,if possible approximateshe infinite horizonNMPC schemeasgoodaspossible.A NMPC stratagy
that achievesclosed-loopstability independenbf the choiceof the performanceparameterss usually referredto a
NMPC approachwith guaranteedstability. Differentpossibilitiesto achiese closed-loopstability for NMPC using
finite horizonlengthhave beenproposed.After giving a shortreview abouttheseapproachesve exemplarypresent
on specificapproachthat achievesguaranteedtabilit, the so called quasi-infinitehorizonapproachto NMPC (QIH-
NMPC). This approactachiezesguaranteedlosedioop stability while beingcomputationallyfeasible.

Hereonly thekey ideasarereviewedandno detailedproofsaregiven. Furthermorenotice,thatwe will not coverall
existing NMPC approachesnsteadwe referthereadetto the overview paperd4, 22,52].

For all thefollowing sectionst is assumedhatthe predictionhorizonis setequalto the controlhorizon,T, = Tc.

2.1.1 Infinite Horizon NMPC

Themostintuitive way to achieve stability is the useof aninfinite horizoncost[10,39,54], i.e. Ty in Probleml is setto
oo, In thenominalcasefeasibility at onesamplinginstancealsoimpliesfeasibility andoptimality at the next sampling
instance. This follows from Bellman‘sPrinciple of Optimality [7], i.e. the input and statetrajectoriescomputedas
the solutionof the NMPC optimizationProbleml at a specificinstancein time, arein factequalto the closed-loop
trajectoriesof the nonlinearsystem,i.e. the remainingpartsof the trajectoriesafter one samplinginstanceare the
optimalsolutionat the next samplinginstance.This factalsoimpliesclosed-loopstability.

Keyideasof the stability proof: Sincenearlyall stability proofsfor NMPC follow alongthe samebasicstepsasfor
theinfinite horizonproof, the key ideasare shortly outlined. In principle the proof is basedon the useof the value
functionasa Lyapunw function. Firstit is shovn, thatfeasibility at one samplinginstancedoesimply feasibility at
the next samplinginstancefor the nominalcase. In a secondstepit is establishedhatthe value functionis strictly
decreasin@ndby this the stateandinput corvergeto the origin. Utilizing the continuity of the valuefunctionat the
origin andthe monotonicityproperty asymptoticstability is establishedn the third step. As feasibility thusimplies
asymptoticstability, the setof all statesfor which the open-loopoptimal control problemhasa solutiondoesbelong
to theregion of attractionof the origin.

2.1.2 Finite Horizon NMPC Schemeswith Guaranteed Stability

Differentpossibilitiesto achiese closed-loopstability for NMPC usinga finite horizonlength have beenproposed,
seefor example[3,17,20,23,34,35,38,39,44,51,53,55,56,60,62,63,70]. Most of theseapproachesnodify the
NMPC setupsuchthat stability of the closed-loopcan be guaranteedndependentlyof the plant and performance
specifications.This is usually achiezed by addingsuitableequality or inequality constraintsand suitableadditional
penaltytermsto the costfunctional. Theseadditionalconstraintsareusuallynot motivatedby physicalrestrictionsor
desiredperformanceequirementdut have the sole purposeto enforcestability of the closed-loop.Therefore they
areusuallytermedstability constaints[49,50,52].

Thesimplestpossibilityto enforcestability with afinite predictionhorizonis to adda socalledzeio terminalequality
constaint atthe endof thepredictionhorizon[39,51,53], i.e. to addthe equalityconstraint

X(t+ To;x(t),t,0) = 0 9)

to Probleml. Thisleadsto stability of the closed-loopjf the optimal control problempossessea solutionatt = 0,
sincethe feasibility at onetime instancedoesalsoleadto feasibility at the following time instancesanda decrease
in thevaluefunction. Onedisadwantageof a zeroterminalconstraints thatthe systemmustbe broughtto the origin
in finite time. This leadsin generalto feasibility problemsfor shortprediction/controhorizonlengths,i.e. a small
region of attraction.Additionally, from a computationapoint of view, anexactsatisfactionof a zeroterminalequality
constraindoesrequireaninfinite numberof iterationsin thenonlineamprogrammingoroblem[17]. Ontheotherhand,
themainadvantagesarethe straightforward applicationandthe conceptuakimplicity.
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Many scheme$ave beenproposedi.e. [17,20,34,38,51,56,60,63]), thattry to overcometheuseof azeroterminal
constraintof theform (9). Most of themeitherusea socalledterminalregion constaint

Xt+Tp) eQC X (10)

and/oraterminal penaltytermE(X(t + Tp)) whichis addedo the costfunctional:

J(x(),u(-);Tp) = /ttJerF()?(T),LT(T))dT+E()?(t+Tp)). (11)

Note thatthe terminal penaltyterm is not a performancespecificationthat can be chosenfreely. RatherE andthe
terminalregion Q in (10) aredeterminedff-line suchthatstability is “enforced”. We do not review all thesemethods
here. Insteadwe exemplify the basicidea consideringone specificapproach the so called quasi-infinitehorizon
NMPC approacH17].

2.1.3 Quasi-Infinite Horizon NMPC

In the quasi-infinitehorizon NMPC method[15,17] a terminal region constraintof the form (10) and a terminal
penaltyterm E(x(t + Tp)) asin (11) areaddedto the standardsetup. As mentionedthe terminalpenaltytermis not
a performancespecificationthat can be chosenfreely. RatherE andthe terminalregion Q are determinedoff-line
suchthatthe costfunctionalwith terminalpenaltyterm (11) givesan upperapproximatiorof theinfinite horizoncost
functionalwith stagecostF. Thusclosed-loopperformanceover the infinite horizonis addressedFurthermoreas
is shawvn later, stability is achieved, while only an optimizationproblemover a finite horizon mustbe solved. The
resultingopen-loopoptimizationproblemis formulatedasfollows:

Problem 2 [Quasi-infinite Horizon NMPC:

Find
minJ(x(t), u(-): o) (12)

with:

_ t+Tp _
I(X(1),T(-); Tp) = /t F(X(1), 0(1)dT+ E(X(t + Tp)). (13)
subjectto:

X(1)=f (x(1),0(1)), X(t) =x(t) (14a)
u(t)ye U, Ytelt,t+Tpl (14b)
X(1) € X, VIet,t+Ty) (14c)
X(t+Tp) Q. (14d)

If the terminal penaltyterm E andthe terminal region Q are chosensuitably stability of the closed-loopcan be
guaranteedTo presenthe stability resultswe needthatthe following holdsfor the stagecost-function.

Assumption4 ThestagecostF:R"x U — R is continuousn all argumentsvith F(0,0) = 0andF (x,u) >0 V(x,u) €
R" x 1\{0,0}.

Giventhis assumptionthefollowing result,whichis a slight modificationof Theoremé.1in [14], canbe established:
Theorem1 Suppose
(a) that Assumptiond-4 are satisfied,

(b) E is C' with E(0,0) = 0, Q C X is closedand connectedvith the origin containedin Q and there existsa
continuoudocal control law k : R" — R™ with k(0) = 0, suc that:

2—5 f(x,k(X))+F(x,k(x)) <0, V¥xeQ (15)

withk(x) € Uvx e Q
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(c) theNMPC open-loopoptimalcontrol problemhasa feasiblesolutionfor t =0.

Thenfor any samplingtime 0 < & < T, the nominal closed-loopsystemis asymptoticallystablewith the region of
attraction R beingthe setof statesfor which the open-loopoptimal control problemhasa feasiblesolution.

A formal proof of Theoreml canbefoundin [14,16] andfor alinearlocal controllerasdescribecelow in [17].
Looselyspeakingkt is alocal Lyapuna function of the systemunderthe local controlk(x) in Q. As will be shown,
Equation(15) allows to upperboundthe optimal infinite horizon costinside Q by the costresultingfrom a local
feedbackk(x).

Notice,thattheresultin Theoreml is nonlocalin nature,i.e. their existsa region of attraction®_ of at leastthe size
of Q. Theregion of attractionis given by all statesfor which the open-loopoptimal control problemhasa feasible
solution.

Obtaininga terminal penaltyterm E anda terminalregion Q that satisfy the conditionsof Theoreml is not easy
If the linearizedsystemis stabilizableand the costfunction is quadraticwith weight matricesQ and R, a locally
linear feedbackaw u = Kx canbe usedandthe terminalpenaltyterm canbe approximatedsquadraticof the form
E(x) = x" Px. For this casea procedureo systematicallicomputethe terminalregion anda terminalpenaltymatrix
off-line is available[17]. Assumingthatthe Jacobiadinearization(A, B) of (1) is stabilizablewhereA := % (0,0) and

B:= %(0, 0), this procedurecanbe summarizedsfollows:

Stepl: Solvethelinearcontrol problembasedon the Jacobiarinearization(A, B) of (1) to obtainalocally stabi-
lizing linearstatefeedbacku = Kx.

Step2: Chooseaconstank € [0, ) satisfyingk < —Amax(Axk ) andsolve the Lyapunw equation
(Ac+k1)TP+P(Ac +kl)=— (Q+K'RK) (16)

to geta positive definiteandsymmetricP, whereAx := A+ BK.
Step3: Findthelargestpossiblea; definingaregion

Q= {xeR"|x"Px< a1} (17)

suchthatKx € U, forall x € Q; C X.
Step4: Findthelargestpossiblea € (0,01] specifyingaterminalregion

Q:={xeR"[x'Px<a} (18)
suchthatthe optimalvalueof thefollowing optimizationproblemis non-positie:
mxax{xT Pd(x)—Kk-x Px|x' Px < a} (19)
whered(x) := f(x, Kx) — AX.

This procedurallowsto calculateE andQ if thelinearizationof thesystemattheorigin is stabilizable If theterminal
penaltytermandtheterminalregion aredeterminedaccordingo Theoreml, the open-loopoptimaltrajectoriefound
ateachtime instantapproximatehe optimalsolutionfor theinfinite horizonproblem.

Thefollowing reasoningnalke this plausible:Consideraninfinite horizoncostfunctionaldefinedby

37 (X(0,00)) = [ F (R0, 0(0) i (20
with u(-) on[t, ). This costfunctionalcanbe split up into two parts
. - . t+Tp . o .
rl?(lgw (x(t),u(-)) = rl?(n)q (/t F (x(1),u(t))dt+ tﬁp(X(T)’u(T))dT) . (21)

Thegoalis to upperapproximate¢he secondermby aterminalpenaltytermE(x(t + Tp). Withoutfurtherrestrictions,
thisis notpossiblefor generahonlinearsystemsHowever, if we ensurehatthetrajectorieof theclosed-loopsystem
remainwithin someneighborhooaf theorigin (terminalregion) for thetime interval [t + Ty, «), thenanupperbound
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onthesecondermcanbefound. Onepossibilityis to determingheterminalregion Q suchthatalocal statefeedback
law u = k(x) asymptoticallystabilizesthe nonlinearsystemandrendersQ positively invariantfor the closed-loop If
anadditionalterminalinequality constraintx(t 4+ Tp) € Q (see(14d)) is addedto Problem1, thenthe secondterm of
equation(21) canbe upperboundedby the costresultingfrom the applicationof this local controlleru = k(x). Note
thatthe predictedstatewill notleave Q aftert + Ty, sinceu = k(x) rendersQ positively invariant. Furthermorethe
feasibility at the next samplinginstanceis guaranteedlismissingthe first partof u andreplacingit by the nominal
open-loopinput resultingfrom the local controller Requiringthat x(t + Tp) € Q and usingthe local controller for
T € [t + Tp, ) we obtain:

t+T, o

minJ*(x(t),u(-)) < min(/ F(X(1),u(t)) dt+/ F (Y(T),k(Y(T)))dT) : (22)
u(-) u() \Jt t+Tp

If, furthermore theterminalregion Q andtheterminalpenaltytermarechoseraccordingto conditionb) in Theorem

1 (asfor exampleachievedby the proceduragivenabove), integrating(15) leadsto

/ R,k (X)) dt < E (X(t+T)) . (23)
t+Tp

Substituting(23) into (22) we obtain

ming® (x(1),0()) < MnI(X(0), T0);t+Tp) (24)
u(- u(-

This implies that the optimal value of the finite horizon problemboundsthat of the correspondingnfinite horizon
problem. Thus,the predictionhorizoncanbe thoughtof asextendingquasito infinity which givesthis approachits
name.Equation(24) canbe exploitedto prove Theoreml.

Like in the dual-modeapproach56], the useof the terminal inequality constraintgives the quasi-infinitehorizon
nonlinearMPC schemecomputationakdvantages.Note also, that asfor dual-modeNMPC, it is not necessaryo
find optimal solutionsof Probleml in orderto guaranteestability. Feasibilityalsoimplies stability here[17,70]. In
differenceto the dual-modecontroller, however, the local control law u = k(x) is never applied. It is only usedto
computetheterminalpenaltytermE andtheterminalregion Q.

Many generalizationandexpansion®f QIH-NMPC exist. For examplediscreteiime variantscanbefoundin [21, 33].
If the nonlinearsystemis affine in u andfeedbacHinearizable thena terminalpenaltyterm canbe determinedsuch
that (23) is exactly satisfiedwith equality[14], i.e. the infinite horizonis recoveredexactly. In [18,19,44] robust
NMPC schemesisinga min-maxformulationare proposedwhile in [27] anextensionto index one DAE systemss
consideredA variationof QIH-NMPC for the controlof varying setpointss givenin [28, 30].

2.2 Performance of Finite Horizon NMPC Formulations

Ideally one would like to use an infinite horizon NMPC formulation, sincein the nominal case,the closed-loop
trajectoriedo coincidewith the open-looppredictedones(principle of optimality). The mainproblemis, thatinfinite
horizonschemeganoften not be appliedin practice,sincethe open-loopoptimal control problemcannotbe solved
sufficiently fast. Using finite horizons,however, it is by no meanstrue that a repeatedminimization over a finite
horizonobjectivein arecedinghorizonmannetdeadsto an optimal solutionfor theinfinite horizonproblem(with the
samestagecostF). In fact,thetwo solutionswill in generaldiffer significantlyif ashorthorizonis chosen.
Fromthis discussiorit is clearthatshorthorizonsaredesirabldrom a computationapoint of view, but long horizons
arerequiredfor closed-loopstability andin orderto achieve the desiredperformance.

The QIH-NMPC stratayy outlinedin the previoussectionallows in principleto recoverthe performancef theinfinite
horizonschemewithout jeopardizingthe closed-loopstability. The value function resultingfrom Problem2 canbe
seenasan upperboundof the infinite horizoncost. To be moreprecise,if the terminalpenaltyfunctionE is chosen
suchthata correspondindocal controllaw is a goodapproximationof the controlresultingfrom the infinite horizon
controllaw in aneighborhooaf theorigin, the performanceorrespondingo Problem2 canrecovertheperformance
of theinfinite horizoncostevenfor shorthorizons(assumingheterminalregion constraintcanbe satisfied).
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2.3 Robustness

Sofar only the nominal control problemwas considered.The NMPC schemesliscussedeforedo requirethat the
actualsystemis identicalto themodelusedfor prediction,i.e. thatno model/planimismatchor unknovn disturbances
arepresent.Clearly this is a very unrealisticassumptiorfor practicalapplicationsandthe developmentof a NMPC
framework to addressobustnesdssuesis of paramounimportance. In this notethe nonlinearuncertainsystemis
assumedo begivenby:

x(t) = f(x(t),u(t),d(t)) (25)

wherethe uncertaintyd(-) satisfiesd(t) € D(x,u) and D is assumedo be compact. Like in the nominal stability
andperformancecase the resultingdifferencebetweenthe predictedopen-loopand actualclosed-looptrajectoryis
themainobstacle As additionalproblemthe uncertaintyd hitting the systemnow leadsnot only to onesinglefuture
trajectoryin the prediction,insteadawholetreeof possiblesolutionsmustbe analyzed.

Eventhoughtheanalysisof robustnesgropertiesn nonlinearNMPC muststill beconsideregsanunsohedproblem
in general,somepreliminary resultsare available. In principle one must distinguishbetweentwo approacheso
considerthe robustnesgjuestion.Firstly onecanexaminethe robustnespropertiesof the NMPC schemeslesigned
for nominalstability andby this take the uncertainty/disturbancemly indirectly into accounf40,47]. Secondlyone
canconsiderto designNMPC schemeshatdirectly take into accounthe uncertainty/disturbances.

2.3.1 Inherent Robustnessof NMPC

As mentionedabove, inherentrobustnesscorrespondgo the fact, that nominal NMPC can copewith input model
uncertaintiesvithout takingthemdirectly into account.This fact stemsfrom the closerelationof NMPC to optimal
control. Assumingthatthe systemunderconsideratioris of thefollowing (input affine) form

xt) = f(x(t)+ax(®)u(t), x(0)=xo (26)

andthe costfunctiontakesthe form:
_ 4Tl 5 _
J(x(t),u(-); Tp) 2=/t Sl +a(x)dt+E(x(t +Tp)) (27)

whereq is positive definite,thatthereare no constrainton the stateandthe input andthe resultingcontrollaw and
the value function satisfiesfurther assumptiongu* being continuouslydifferentiableand the value function being
twice continuouslydifferentiable). Thenonecanshav [47] thatthe NMPC controllaw is inverseoptimal,i.e. it is
alsooptimalfor a modifiedoptimal control problemspanningover aninfinite horizon. Dueto this inverseoptimality,
the NMPC control law inheritsthe samerobustnesgropertiesasinfinite horizonoptimal control assuminghat the
samplingtime d goesto zero.In particular theclosed-loops robustwith respecto sectotboundednputuncertainties;
thenominalNMPC controlleralsostabilizessystemf theform:

Xt) = Fx(®)+a(x®)eu(t)), (28)

whereq(-) is anonlinearityin thesector(1/2, «).

2.3.2 Robust NMPC Schemes
At leastthreedifferentrobustNMPC formulationsexist:

e Robust NMPC solving an open-loopmin-max problem[18,45]:
In this formulationthe standardNMPC setupis kept, however now the costfunction optimizedis givenby the
worstcasedisturbancésequence’dccurring,i.e.

t+Tp _ _ _
IX(V),60);Tp) = max /t F(X(1), 0(7))dt + E(X(t + Tp)). (29)

subjectto

X(t) = f(X),u(t),dt)), Xt)=x(). (30)
128



21st Benelux Meeting on Systems and Control Book of Abstracts

Theresultingopen-loopoptimizationis amin-maxproblem.Thekey problemis, thataddingstability constraints
like in the nominalcase mightleadto the factthatno feasiblesolutioncanbefoundatall. This mainly stems
from thefact,thatoneinput signalmust“reject” all possibledisturbancesndguarante¢he satishictionof the

stability constraints.

¢ Ho-NMPC [11,18,45,46]: Anotherpossibilityis to considerthe standardH. problemin arecedinghorizon
framavork. The key obstacleis, that an infinite horizon min-max problemmust be solved (solution of the
nonlinearHamilton-Jacobi-Isaacsquation). Modifying the NMPC costfunctionssimilar to the H., problem
andoptimizingover a sequencef controllaws robustly stabilizingfinite horizonH.—NMPC formulationscan
be achiezed. The main obstacleis the prohibitive computationaltime necessary This approachis in close
connectiorto thefirst approach.

e Robust NMPC optimizing a feedbackcontroller usedduring the sampling times[45]:
The open-loopformulation of the robust stabilizationproblem can be seenas very conserative, sinceonly
open-loopcontrolis usedduringthesamplingtimes,i.e. thedisturbancearenotdirectly rejectedn betweerthe
samplingnstancesTo overcomehis problemit hasbeenproposedotto optimizeovertheinputsignal.Instead
of optimizing the open-loopinput signaldirectly, a feedbackcontrolleris optimized,i.e. the decisionvariable
u is not consideredasoptimizationvariableinsteada “sequence’df controllaws u; = kj(x) appliedduringthe
samplingtimesis optimized.Now the optimizationproblemhasasoptimizationvariableghe parameterizations
of the feedbackcontrollers{ki,...,kn}. While this formulationis very attractve sincethe conseratismis
reducedthesolutionis oftenprohibitively complex.

2.4 Output FeedbackNMPC

Sofarit wasassumedthatthesystenstatenecessarjor predictionis (perfectly)accessibl¢hroughmeasurementsn
generathisis notthecaseandastateobsener, asalreadyshowvn in Figure3 mustbeimplicitly or explicitly includedin
the controlloop. Two mainquestionsarisefrom the useof a stateobsener. Firstly the questionoccurs,if the closed-
loop including the stateobsener possessethe samestability propertiesas the statefeedbackcontribution alone.
Secondlythe questionarises,whatkind of obsener shouldbe usedto obtaina goodstateestimateandgoodclosed
loop performanceThesecondointis notconsideredn detailhere.lt is only noted thatadualof theNMPC approach
for control doesexist for the stateestimationproblem. It is formulatedasan on-line optimizationsimilar to NMPC
andis namedmoving horizonestimation(MHE). It is dualin the sensethata moving window of old measurement
datais usedto obtainanoptimizationbasedestimateof the systemstate seefor example[1,57,66,67,69,75].

2.4.1 PossibleSolutionsto the Output FeedbackNMPC Problem

The mostoften usedapproachfor output-feedbactNMPC is basedon the “certainty equivalenceprinciple”. The
estimatestateX is measuredria a stateobsener and usedin the model predictive controller Even assumingthat
the obsener erroris exponentiallystable,often only local stability of the closed-loopis achieved [42,43,71], i.e.
the obsenererrormustbe smallto guaranteestability of the closed-loopandin generahothingcanbe saidaboutthe
necessargegreeof smallnessThisis aconsequencef thefactthatnogeneralalid separatiomprinciplefor nonlinear
systemsexists. Neverthelesshis approachs appliedsuccessfullyn mary applications.

To achieve non-localstability resultsof the obsener basedoutput-feedbaclNMPC controller, differentpossibilities
to attackthe problemexist:

¢ Direct consideration of the obsewer error in the NMPC controller: Onecouldin principle considerthe
obsenrer error asdisturbancen the controllerand designa NMPC controllerthat canrejectthis disturbance.
Thehurdleof this approachs thefact,thatsofaranapplicablerobustNMPC schemeés not available.

e Separationof obsewer error from the controller [31,37,57]: In this approachtthe obsenrererroris “decou-
pled”/separatefrom the controllerby eitheratime scaleseparationi.e. makingthe obsener muchfasterthan
the othersystempartsor by projectionof the obsenrer error. For exampleusing specialseparatiomrinciples
basedon high-gainobseners, semi-ragional stability resultsfor the closed-loopcanbe established.The key
components, thatthe speedf the obsener canbe madeasfastasnecessary

e Usageof I/O models[65]: Onecouldusesuitedl/O modelsthathave nointernalstatesor prediction.
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In thefollowing we shortlyreview onepossibleapproacHor output-feedbachiMPC usinga time-scaleseparatiorof
theobsenerandcontrollet

2.4.2 Output FeedbackNMPC using High-Gain Observers

We proposeto combinehigh-gainobsenerswith NMPC to achiere semi-r@yionalstability. I.e. if the obsenergainis
increasedsufficiently, the stability region andperformancef the statefeedbacks recovered.The closedloop system
is semi-rgionally stablein thesensethatfor any subsets of theregion of attraction® of thestate-feedbac&ontroller
(compareTheoreml, Section2.1.3)thereexists an obsener parametefgain), suchthat § is containedn theregion
of attractionof the output-feedbackontrollet

The resultsare basedon “nonlinear separationprinciples[6, 72]” andit is assumedthat the NMPC feedbackis
instantaneougseebeloav). We will limit the presentatiorio a specialSISO systemsclassand only give the main
result. The moregeneralMIMO caseconsideringhe NMPC inherentopenloop control parts(i.e. no instantaneous
feedbackanbefound[31,37].

In thefollowing we considetthe stabilizationof SISOsystemof the following form:

X =AX+b@(x, u) (31a)
Y =X1. (31b)

with u(t) € ¥ C R andy(t) € R. Theoutputy is givenby thefirst statex;. Then x n matrix A andthen x 1 vectorb
have thefollowing form:

01 0 - 0
00 1 -0

A=|: , b=[0 o 1] ., (32a)
0 0 1
0 0

Additional to the Assumptionsl-4 we assumethat:

Assumption5 Thefunction@: R" x ¢ — R is locally Lipsditz in its argumentsover the domainof interest. Fur-
thermoe @(0,0) = 0 and@is boundedn x everywhee.

Notethatglobalboundednessanin mostcase$eachievedby saturatingp outsideacompactegionof R" of interest.
The proposedutputfeedbackcontrollerconsistsof a high-gainobsener to estimatethe statesandan instantaneous
variantof the full statefeedbackQIH-NMPC controllerasoutlinedin Sect.2.1.3. By instantaneousve meanthat
the systeminput at all times(i.e. not only at the samplinginstances)s given by the instantaneousolution of the
open-loopoptimal controlproblem:

u(x(t)) ;== u*(t=0;x(t), Tp). (33)

This feedbacKaw differsfrom the standardNMPC formulationin the sensehatno open-loopinputis implemented
overasamplingtime 8. Insteadu(t) is consideredisa “function” of x(t).

To allow the subsequentesultto hold, we have to requirethatthe feedbackresultingfrom the QIH-NMPC is locally
Lipschitz.

Assumption6 Theinstantaneoustatefeedbak (33)is locally Lipsditz.

Theobsenerusedfor staterecoveryis a high-gainobsener[6, 72,73] of thefollowing form:
% = A+ b@(%, u) + H (X1 — %1) (34)
whereHT =[a1/g, a2/€?,...,a,/€"]. Thea;’s arechosersuchthatthe polynomial
40y "4 4ap_1s+an=0,
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is Hurwitz. Here% is the high-gainparameteandcanbe seenasatime scalingfor the obsererdynamics(34). A, b
andg arethesameasin (31).

Noticethattheuseof anobsenermakesit necessarthattheinputalsobedefined(andboundedfor (estimatedystates
thatareoutsidethefeasibleregion of the statefeedbackcontroller We simply definethe open-loopinputfor x ¢ R as
fixedto anarbitraryvalueus € U:

u(x) =us, VXEZR. (35)

Thistogethemith theassumptionthat 7/ is boundedseparatethepeakingof theobsenerfrom thecontroller/systenf26].
Usingthe high-gainobsener for staterecovery, the following result,which establishesemi-rgjional stability of the
closed-loopcanbeobtained 36, 37]:

Theorem2 Assumethat the conditionsa)-c) of Theoem 1 and Assumptiorb-6 hold. Let S be any compactset
containedin theinterior of R (region of attraction of the statefeedbak). Thenthere existsa (smallenough)* > 0
sud that for all 0 < € < €*, the closed-loopsysteris asymptoticallystablewith a region of attraction of at least.s.
Further, the performanceof the statefeedba& NMPC controller is recoreredase decieases.

By performanceecovery it is meantthatthe differencebetweenthe trajectoriesof the statefeedbackandthe output
feedbackcanbe madearbitrarily small by decreasing. Theresultsshav thatthe performanceof the statefeedback
schemecanbe recoveredin the outputfeedbackcase,if a stateobsener with a suitablestructureanda fastenough
dynamicsis used.

Figure5 shows the simulationresultfor anillustrative applicationof the proposedutputfeedbackschemeo a two
dimensionalpendulumcar systemas depictedin Figure 4 andpresentedn [36]. The anglebetweenthe pendulum

()|

Figure4: Sketchof theinvertedpendulum/casystem

andtheverticalis denotedby z;, while the angularvelocity of the pendulumis givenby z,. Theinputu is the force
appliedto thecar. Thecontrolobjectiveis to stabilizethe uprightpositionof the pendulum.To achieve this objectve,
a QIH-NMPC schemewith andwithout (state-feedbackase)a high-gainobsenrer is used. For theresultsshovn in
Figure5 the pendulumis initialized with an offsetfrom the upright position, while the high-gainobsener is started
with zeroinitial conditions.Thefigureshavstheclosedooptrajectoriedor statefeedbackQIH-NMPC controllerand
the output-feedbackontrollerwith differentobsener gains. The gray ellipsoid aroundthe origin is the terminalre-
gionof theQIH-NMPC controller The outer“ellipsoid” is anestimateof theregion of attractionof the state-feedback
controller As canbe seenfor smallenoughvaluesof the obsenrer parametet the closedloop is stable.Furthermore
the performancef the statefeedbacks recoseredase tendsto zero.More detailscanbefoundin [36].
Furthermorehe recovery of theregion of attractionandthe performanceof the state-feedbacls possibleup to ary
degreeof exactnessln comparisorto otherexisting output-feedbaclNMPC scheme$42,71] the proposedscheme
is thus of non-localnature. However, the resultsare basedon the assumptiorthat the NMPC controller is time
continuous/instantaneous. practiceit is of coursenot possibleto solve the nonlinearoptimizationprobleminstanta-
neously Insteadjt will be solvedonly atsomesamplinginstants A sampledversionof thegivenresult,in agreement
with the“usual” sampledNMPC setupcanbefoundin [31]. Noticealso,thatthe useof ahighgainobseneris critical,
if the outputmeasuremen@revery noise,sincethenoisewill beamplifieddueto the high gainnatureof theobsener.

3 Computational Aspectsof NMPC

NMPC requiresthe repeatedn-line solutionof a nonlinearoptimal control problem. In the caseof linear MPC the
solutionof the optimal controlproblemcanbe castasthe solutionof a (convex) quadratiqorogramandcanbe solved
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Figure5: Phaseplot of the pendulumangle(z;) andtheangularvelocity (z)

efficiently evenon-line. This canbe seenasone of the reasonavhy linear MPC is widely usedin industry For the
NMPC problemthe solutioninvolvesthe solutionof a nonlinearprogram,asis shown in the precedingsections.In
generalthe solutionof a nonlinear(non-corvex) optimizationproblemcanbe computationakxpensive. Howeverin
the caseof NMPC the nonlinearprogramshows specialstructurethat can be exploited to still achieve a real-time
feasiblesolutionto the NMPC optimizationproblem.

For the purposeof this Sectionthe open-loopoptimal control Problem?2 of Section2.1.2will beconsideredn amore
optimizationfocusedsetting. Especiallyit is consideredthat the stateandinput constraintsx € X, u € U canbe
recastedasa nonlinearinequality constraintof the form I(x,u) < 0. Furthermorefor simplicity of expositionit is
assumedhatthe controlandpredictionhorizoncoincideandthatnofinal region constrainis presentj.e. we consider
thefollowing deterministicoptimal controlproblemin Bolzaform thatmustbe solvedat every samplinginstance:
Problem 3: Find

ming(y J(x(t), u(-); Tp) (36)

with  J(x(t),0(-); Tp) == TP F(X(1), (1)) dT + E(X(t + Ty)) (37)
subjectto: X(1) =f(x(1),0(1)), X{t) =x(t) (38a)
(G(T),X(1)) < 0, VTE[t,t+Ty). (38b)

3.1 Solution Methods for the Open-Loop Optimal Control Problem
In principlethreedifferentapproache solve the optimalcontrol Problem3 exist (seefor example[9, 48]):

¢ Hamilton-Jacobi-Bellmannpartial differ ential equations/dynamicprogramming: This approachs based
onthedirectsolutionof the so calledHamilton-Jacobi-Bellmanpartial differentialequations Ratherthanjust
seekingfor the optimalu(t) trajectorythe problemis approachasfinding a solutionfor all x(t). The solution
derivedis a statefeedbacKaw of the form u* = k(x) andis valid for everyinitial condition. Thekey obstacle
of this approachs, that sincethe “complete” solutionis considerecht once, it is in generalcomputationally

132



21st Benelux Meeting on Systems and Control Book of Abstracts

intractableand suffers from the so called curseof dimensionalityi.e. canbe only solved for small systems.
Ideally onewould like to obtain sucha closedloop statefeedbackiaw. In principle the intractability of the
solutioncanbe seerasthe key motivationof recedinghorizoncontrol.

e Euler-Lagrange differ ential equations/calculusof variations/maximum principle: This methodemploys
classicalcalculusof variationsto obtainan explicit solutionof the input asa function of time u(t) andnot as
feedbacklaw. Thusit is only valid for the specifiedinitial conditionx(t). The approachcan be thoughtof
asthe applicationof the necessargonditionsfor constrainedptimizationwith the twist, that the optimiza-
tion is infinite dimensional.The solutionof the optimal control problemis castasa boundaryvalue problem.
Sincean infinite dimensionalproblemmustbe solved, this approachcan normally not be appliedfor on-line
implementation.

¢ Directsolution usingafinite parameterization of the controlsand/or constraints: In this approactiheinput
and/orthe constraintareparametrizedinitely, thusanapproximatiorof the original open-loopoptimalcontrol
problemis seeled. The resultingfinite dimensionaldynamicoptimizationproblemis solved with “standard”
staticoptimizationtechniques.

For anon-linesolutionof the NMPC problemonly thelastapproachs normally used.Sinceno feedbacks obtained,
the optimizationproblemmustbe solved at every samplinginstancewith the new stateinformation. In the following
only thelastsolutionmethodis consideredn detail.

3.2 Solution of the NMPC Problem Using a Finite Parameterization of the Controls

As mentionedthe basicideabehindthe direct solutionusinga finite parameterizatiof the controlsis to approxi-
mate/transcribéhe original infinite dimensionalprobleminto a finite dimensionahonlinearprogrammingproblem.
In this notethe presentatiotis limited to a parameterizationf theinput signalaspiecaviseconstanbverthe sampling
times. The controlsare piecavise constanton eachof the N = % predictedsamplingintervals: u(t) = u; fort €
[Ti,Ti+1), Ti =t 419, comparealsoFigure6. Thusin the optimal control problemthe “input vector” {us,...un} is

past | future/prediction
set-point
predicted state X
closed-loop ) _
state X - 1 open loop input sequence {Uy}
- g . JN
e i uo
closed-loop | U
””” input U , ,
t t+0 t4+T,
—t+N&

| control/prediction horizon T,
I

I
Figure6: Piecavise constaninputsignalfor the directsolutionof the optimal controlproblem.
optimized,i.e. the optimizationproblemtakesthe form

min{meﬁN}\J(X(t),{LT]_,...JN};Tp) (39)

subjectto the stateandinput constraintsandthe systemdynamics.Basicallytwo differentsolutionstratejiesto this
optimizationproblemexist [8,9,13,48,74]:
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e Sequentialapproach: In this methodin every iterationstepof the optimizationstrateyy the differentialequa-
tions(or in thediscretetime casethe differenceequation)aresolved exactly by a numericalintegration,i.e. the
solutionof the systemdynamicsis implicitly doneduringtheintegrationof the costfunctionandonly theinput
vector{uy,...un} appearglirectly in the optimizationproblem.

¢ Simultaneousapproach: In this approactthe systemdynamics38a)at the samplingpointsenterasnonlinear
constraintgo the optimizationproblems,.e. at every samplingpoint thefollowing equalityconstraintmustbe
satisfied:

S+1 = X(ti+1; S, Uj). (40)

Heres is introducedasadditionaldegreein the optimizationproblemanddescribeghe “initial” conditionfor
the samplinginterval i, comparealsoFigure 7. This constraintrequires,oncethe optimizationhascorverged,

X(t 4+ NJ; Sn—-1,Un-1)
K(t+55|0) / /

= S

X(1)

| | | | | | |
I
t t+d t+Tp time

Figure7: Simultaneouspproach.

thatthe statetrajectorypiecesfit together Thusadditionallyto the input vector{us,...un} alsothe vectorof
thes appearssoptimizationvariables.

For bothapproachetheresultingoptimizationproblemis oftensolved usingsequentiajuadratiqgprogrammingech-
niques(SQP).Both approachebave differentadvantagesnddisadwantageskFor exampletheintroductionof the“ini-
tial” statess asoptimizationvariablesdoesleadto a specialbanded-sparsstructureof the underlyingQP-problem.
This structurecanbe takeninto accountto leadto a fastsolutionstrateyy [8, 24,74]. In comparisorthe matricesfor
the sequentiabpproachare often denseandthusthe solutionis expensve to obtain. A drawbackof the simultane-
ousapproachs, that only at the end of the iterationa valid statetrajectoryfor the systemis available. Thusif the
optimizationcannotbefinishedin time, nothingcanbe saidaboutthefeasibility of thetrajectoryat all.

3.2.1 Remarkson Stateand Input Equality Constraints

In the descriptiongiven above, the stateandinput constraintsvere not takeninto account. The key problemis, that
they shouldbe satisfiedfor the whole stateand input vector While for a suitableparametrizednput signal (e.g.
parametrize@s pieceavise constantjt is not a problemto satisfythe constraintssinceonly afinite numberof points
mustbe checled, the satisfctionof the stateconstraintanustin generalbe enforcedover the whole statetrajectory
Differentpossibilitiesexist to considerthemduringthe optimization:

¢ Satisfactionof the constraints at the sampling instances:An approximatedatisfictionof theconstraintan
beachievedby requiring,thatthey areatleastsatisfiedat the samplinginstancesi.e. atthe samplingtimesit is
required:

I(ut), x(t)) <0. (41)
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Notice,thatthis doesnot guarante¢hatthe constraintsaresatisfiedfor the predictedrajectoriesn betweerthe
samplinginstancesHowever, sincethis approachs easyto implementit is oftenusedin practice.

¢ Adding a penalty in the costfunction: An approacho enforcethe constrainsatishctionexactly for thewhole
input/statetrajectoryis to addan additionalpenaltytermto the costfunction. Thistermis zeroaslong asthe
constraintsaaresatisfied.Oncethe constraintsarenot satisfiedhe valueof this termincreasesignificantly thus
enforcingthe satishctionof the constraintsTheresultingcostfunctionmaylook asfollowing:

B t+Tp B _ _
J(x(),u(-); Tp) ::/t (F(X(1),u(1)) + p(I(X(1)), u(1))) dT + E(X(t + Tp)) (42)
wherep in the casethatonly onenonlinearconstrainis presenmightlook like shovn in Figure8. A dravback
p(l(x,u)
0 I(x,u)

Figure8: Constrainipenaltyfunctionfor onenonlinearconstraint.

of this formulationis, thattheresultingoptimizationproblemis in generaldifficult to solve for exampledueto
theresultingnon-differentiability of the costfunctionoutsidethe feasibleregion of attraction.

3.2.2 Efficient NMPC Formulations

Oneshouldnotice,thatbesidesan efficient solutionstrateyy of the occurringopen-loopoptimal control problemthe
NMPC problemshouldbe alsoformulatedefficiently. Differentpossibilitiesfor anefficient NMPC formulationexist:

e Use of short horizon length without loss of performance and stability [17,34,63]: As was outlinedin
Section2 shorthorizonsare desirablefrom a computationapoint of view, but long horizonsarerequiredfor
closed-loopstability andin orderto achievzethedesiredoerformancen closed-loopThegeneraNMPC scheme
outlinedin Section2.1.2offersa way out of this dilemma. It usesaterminalregion constraintin combination
with a terminal penaltyterm. The terminal penaltyterm can be usedto given a good approximationof the
infinite horizoncostutilizing a local controllaw. Additionally the terminalregion constraintis in generalnot
very restrictive, i.e. doesnot complicatethe dynamicoptimizationproblemin an unnecessarypnanney asfor
examplein the zeroterminal constraintapproach.In somecasesg.g. stablesystemsfeedbackinearizable
systemsor systemsfor which a globally valid control Lyapuna function is known it caneven be removed.
Thus suchan approachoffers the possibility to formulatea computationallyefficient NMPC schemewith a
shorthorizonwhile not sacrificingstability andperformance.

e Useof suboptimal NMPC strategies feasibility implies stability [17,34,56,70]: In generahoglobalminima
of the open-loopoptimizationmustbe found. It is suficient to achiere a decreasén the value function at
every time to guaranteestability. Thus stability canbe seenas beingimplied by feasibility. If oneusesan
optimizationstratey thatdeliversfeasiblesolutionsat every sub-iteratioranda decreasén the costfunction,
the optimizationcan be stoppedif no moretime is available and still stability can be guaranteed.The key
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obstacleis that optimizationstratgjiesthat guarantee feasibleand decreasingolution at every iterationare
normally computationallyexpensve.

e Taking the systemstructur einto account[2,60,61]: It is alsonoticeablethatthe systemstructureshouldbe
takeninto account.For examplefor systemdor which aflat outputis known the dynamicoptimizationproblem
canbe directly reducedto a static optimizationproblem. This resultsfrom the fact that for flat systemsthe
input andthe systemstatecanbe givenin termsof the outputandits derivativesaswell asthe systeminitial
conditions. The drawvbackhowever is, that the algebraicrelationbetweerthe outputandthe derivativesto the
statesandinputsmustbe known, which is not alwayspossible.

Combiningthe presentedapproachegor an efficient formulation of the NMPC problemand the efficient solution
stratgyiesof the optimal control problem,the applicationof NMPC to realisticallysizedapplicationds possibleeven
with nowadayscomputationabower. Besidesthe problemof stability of the closed-loopand the output-feedback
problem,the efficient solutionof the resultingopen-loopoptimal control problemis importantfor arny applicationof
NMPC to realprocessesSummarizingareal-timeapplicationof NMPC is possiblg[8,29,59] if: a) NMPC schemes
that do not requirea high computationaload and do not sacrificestability and performancelike QIH-NMPC, are
usedandb) theresultingstructureof the open-loopoptimizationproblemis takeninto accountduringthe numerical
solution.

4 Application Example—Real-Time Feasibility of NMPC

To show thatnonlinearpredictive controlcanbe appliedto evenratherlarge systemdf efficient NMPC schemesnd
specialttailorednumericalsolutionmethodsareused we give someresultsfrom areal-timefeasibility studyof NMPC
for a high-purity distillation columnas presentedn [5, 24,25,59]. Figure9 shaws thein this study considered40
tray high-purity distillation columnfor the separatiorof Methanolandn-Propanol.The binary mixtureis fed in the

L XD
M A0 DD
\28
F, X
—_— M\ 2]
N\ 14
\Y
/1

XB

Figure9: Schemeof thedistillation column

columnwith flow rateF andmolarfeedcompositionxs. Productsareremovedat the top andbottomof the column
with concentrationsg andxp respectiely. The columnis consideredn L/V configurationj.e. theliquid flow rateL

andthevaporflow rateV arethe controlinputs. The control problemis to maintainthe specificationsn the product
concentrationgg andxp. For control purposesmodelsof the systemof differentcomplexity areavailable. As usual
in distillation control, xg andxp arenot controlleddirectly. Insteadaninferentialcontrol schemewhich controlsthe
deviation of theconcentrationsntray 14 and28 from the setpointds used,.e. only theconcentratiomeviationsfrom

the setpointon trays14 and 28 plusthe inputsare penalizedn the cost-function.The QIH-NMPC control schemés
usedfor control. Theterminalregion andterminalpenaltytermhave beencalculatedassuggesteéh Sect.2.1.3.

In Tablel the maximumandaverageCPUtimesnecessaryo solve oneopen-loopoptimizationproblemfor the QIH-

NMPC schemein caseof a disturbancen xg with respecto differentmodelsizesare shovn. Consideringthat the
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Table1: Comparisorof the averageandmaximumCPUtime in secondsiecessaryor the solutionof oneopen-loop

optimal control problem. The resultsare obtainedusingMUSCOD-II [12] and QIH-NMPC for modelsof different
size. Thepredictionhorizonof is 10 minutesanda controllersamplingtime d = 30seds used

modelsize max avrg

42 1.86s 0.89s

164 6.21s 2.48s

samplingtime of the processontrol systemconnectedo the distillation columnis 30secthe QIH-NMPC usingthe
appropriatetool for optimizationis evenreal-timefeasiblefor the 164" ordermodel. Notice, thata straightforvard
solution of the optimal control problemfor the 42" ordermodelusingthe optimization-toolboxn Matlab needsin
average620sedo find the solutionandis hencenot real-timeimplementable Also a numericalapproximatiorof the
infinite horizon problemby increasingthe predictionhorizon sufficiently enoughis not real-timefeasibleas shavn
in [32]. More detailsand simulationresultsfor the distillation column examplecanbe foundin [5,24,59]. First
experimentakesultson a pilot scaledistillation columnaregivenin [25].

ThepresentedasestudyunderpinsthatNMPC canbeappliedin practicealreadynowadaysijf efficientnumerical
solutionmethodsandefficient NMPC formulations(like QIH-NMPC) areused.

5 Conclusions

Model predictive controlfor linearconstrainedgystemshasbeenshawn to provide anexcellentcontrol solutionboth
theoreticallyandpractically Theincorporationof nonlinearmodelsposesa muchmorechallengingproblemmainly
becausef computationahndcontroltheoreticaldifficulties, but alsoholdsmuchpromisefor practicalapplications.

In this notean overview over the theoreticaland computationabspectof NMPC is given. As outlinedsomeof the
challengeoccurringin NMPC arealreadysolvable. Neverthelessnary unsohedquestiongemain.Hereonly a few
arenoticedasa guidefor futureresearch:

¢ Output feedbackNMPC: While somefirst resultsin the areaof outputfeedbackNMPC exist, noneof them
seento beapplicableto realprocessesEspeciallytheincorporationof suitablestateestimationstrategjiesin the
NMPC formulationmustbefurtherconsidered.

¢ Robust NMPC Formulations: By now afew robustNMPC formulationsexist. While the existing schemeén-
creasdghegeneralunderstandinghey arecomputationallyintractableto be appliedin practice.Furtherresearch
is requiredto developimplementablegobustNMPC strategies.

¢ Industrial Applications of NMPC: The stateof industrialapplicationof NMPC is growing rapidly andseems
to follow academicallyavailableresultsmorecloselythanlinearMPC. However, noneof the NMPC algorithms
providedby vendorancludestability constraint@srequiredby controltheoryfor nominalstability; insteadhey
rely implicitly uponsettingthe predictionhorizonlong enoughto effectively approximateaninfinite horizon.
Futuredevelopmentsn NMPC controltheorywill hopefully contribute to makingthe gap betweenacademic
andindustrialdevelopmentsvensmaller
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Abstract

This paperproposesa relatively simpleadaptve controllerfor systemswith higherrelative degree. Only little
informationonthesystems neededonly therelative degreeandalowerboundonthepositive high-frequeng gain.
The zero-dynamicgloesnot needto be asymptoticallystable,boundedness sufiicient. The controllerachieves
A-trackingfor a large classof nonlinearsystemsand consistsof a high-gainobserer, a high-gainobsenrer-state
feedbaclkanda commonadaptatiorof bothhigh-gainparametersTheadaptationincreaseshegainsof theobserer
andthestate-feedbacwheneerthe controlobjective, namelythatthetrackingerroris of magnitudenotlargerthan
A, is notattained.Thecontrollers adaptatiorconvergesandthecontrolobjective is achieved atleastasymptotically

1 Motivation

For mary control applicationsgood modelsarenot availableor their parametersrenot preciselyknown. A pos
sibility to control thesesystemsds to usean adaptve A-trackingcontroller For designingthis controller, only the
knowledgeof the modelstructure not of preciseparameteraluesis needed.Therefore the controlleris robustfor
a large classof uncertainties.In particular the relative degreeof the systemis neededand hasto be strong. The
controllerorderis equalto the relative degree,independentlyof the systemdimension. The zero-dynamicf the
systemcanbelocally unstableasymptoticstability is only requiredn thelarge. Thelastpieceof informationneede
is a lower boundof the high-frequeng gain. Togethey this enableghe stabilizationof a relatively large classof
systems.

Exacttrackingis notrequiredfor mary applicationsBasednthenecessarperformanceandonthemeasureme
quality, theusercanspecifyatolerancefor thetrackingerrorwhich shouldbe achieved. The objective of A-tracking
is thatthe trackingerrorasymptoticallytendsto [—A,A] whereA is atolerancespecifiedby theuser

Most controllersachieving A-trackingcanonly be usedfor systemdaving a relative degreeof one. The adaptve
A-trackingcontrollerproposedn this thesisextendsthe systenclassto systemswith higherrelative degree. Thisis
achievedby having in thecontrolleranobsenrerwhich estimatesheoutputof thesystemandits firstr — 1 derivatives
Anothercomponenbf the controlleris an obsener-basedstate-feedbaclkBoth the controllerandthe state-feedbac
includea high-gainparameterthe controllergaink. For a sufficiently large valueof this parameterthe controlleris
guaranteedo achiere A-tracking. Insteadof fixing this parametear priori, the following adaptatiorschemas used
Theparametek is increasedf the outputis outsideof the A-strip andkeptconstanwithin. This allows to startwith
arelatively smallvaluefor k and,neverthelessheingrobustfor alarge classof uncertainties.

A furtheradvantageof theproposeddaptve A-trackingcontrolleris its relatively simplestructurevhichis helpful
for implementingt andfor understandingnow the controllerworks. The maindravbacksof the adaptve A-trackinc
controllerarethatthe performances not directly addresse@ndthat the parametek might becomelarge. On the
onehand,thisincreaseshe sensitvity to measurememoise.Also peakingis thenmorelikely. Ontheotherhand,a
smallk usuallymeanghatthetrackingerroris for quitealongtime relatively large.

1.1 A-tracking

A classicalcontrol objective is to asymptoticallyregulatethe outputy of a systemto a constanteferenceyes, i.e.
fory(t) e R

Y(t) — Yrer fOrt — oo,
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In mary practicalapplicationssuchanobjective is eithernot achievableor too restrictive. Instead a certainoutput
error is often a betterchoice. For example,if an upperandlower boundfor a temperatureduring normalopera-
tion is specified,why shouldthe controllerkeepthe temperatureeonstantup to the precisionof the thermometer?
Asymptotic A-stabilization,usuallyjust called A-stabilization,is a suitablecontrol objective for suchapplications.
Theoutputis notrequiredto corvergeexactly to the steady-statgref, but to a ball of radiusA > 0 aroundit, i.e. for
y(t) €R,

Y(t) — Vret = [—A,+A] fort — oo,

seealsoFigurel.

Figurel: Sketchof A-stabilization.Outputy in solid, referenceyes in dashedA-strip asdottedlines.

The conceptof approximatetracking was introducedin the field of adaptve controllersin [17]. The term A-
trackingwascoinedin [13], (seealso[12, 20Q)). If thereferencds a steady-stateahenthis controlobjectieis called
A-stabilization[20].

A classicalexampleof approximatdrackingis relay controllersthatstabilizea systemup to alimit cycle (seefor
example[11, 9]). If thelimit cycle lies insidethe A-strip, this is a sort of A-stabilization. Anotherwell established
resultis the steady-stateffset: Linearsystemsvithoutanopen-looppoleatthe origin do notcornvergeto a constant,
non-zeroreferencaunderproportionalcontrol (seefor example[24]). Closelyrelatedis alsothe conceptof strong
practicalstability [16]. In contraryto A-tracking,wherethe A-strip is only attractve, strongpracticalstability also
requiresthe A-strip to beinvariant,i.e. thatthe outputdoesnot leave the A-strip andthatthe outputerror during the
transientcanbe madearbitrarily small. Thus,it guaranteethatthereis no peaking(see[22])

Anothermethodachiezing asymptoticoutputtrackingis to includeamodelof thereferencesignalin thecontroller
(internalmodelprinciple,see[10]). For minimum phaserelative degreeonesystemsasymptotictrackingcanalso
beachievedwithout aninternalmodelby usinga discontinuousontrollerof the following form [19]

u= —Kk((y— Yref) + Sign(y — Yrer))

for asufficiently large k. This controlleris similar to sliding modecontrollers(seefor example[15]), wherey — yyet
is equivalentto the heightabove the sliding surface {x|y(x) — yret = 0}. Sucha controllerrequiresarbitrary fast
switchingandwill usuallyleadto chattering.Thereforefor mary applicationsa continuouscontrolleris preferable.
Suchacontrolleris proposedn thefollowing.

1.2 High-gain

The proposedcontrollerachievesA-trackingby increasinga gainasmuchasnecessaryThis gainincreasdeadsto
robustnessagainstmodeluncertainties An importantconditionin this context is high-gainstabilizability which is
definedin Definition 1 below andillustratedby the following example.

A very simplefeedbacks thefollowing proportionaloutputfeedback:

u=—ky. 1)

This controllerhasonly oneparametemamelyk. It canfor examplebeusedto stabilizelinearsystemsf dimension
one,i.e.

y=oay+pu ®)
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with positive high-frequeng gainp. It is easyto seethatif aspecificsystem(2) canbestabilizedby thecontroller(1)
with k = k*, thenalsoary largerk stabilizes(2). A controllerwith this propertyis called high-gaincontroller, see
Definition 1 below.

Definition 1 (High-gain controller, parameter, stabilization) A controller parameterizedy a single parameter
k stabilizinga givensystenfor any k > k* is called high-gain controller, its parameterk high-gainparameter A
systenstabilizableby a high-gaincontmwller is called high-gainstabilizable

Definition 1 is ageneralizatiorof the definitionin [8, 12] wherethe controlleris a staticoutputfeedback.
The mainrestrictionof the controller(1) is thatthis high-gaincontrollercanonly be usedfor systemsof relative
degreeoneandsomeof relative degreetwo (seee.q.[8, 3]).

2 Setup

This sectionfirst presentghe systemclassthe proposedadaptve obsener-basedstate-feedbackontroller canbe
appliedto. Thenthe controllercomponentsthe obsener, the state-feedbackndthe adaptatiorare presentedepa-
rately.

2.1 Systemclass

Theproposedontrolleris applicableto single-inputsingle-outpusystemshatareaffine in theinput:

x=f(xX)+9g(x)-u, xeR", (3a)
y =h(x). (3b)

For theresultsto hold, the following assumptionsn the systemmustbe satisfied.
Assumption 1 (Known relative degree)Therelativedegreer is knownandstrong, i.e. for all x € R"
LgLih(x) =0,i=0,...,r =2,
9(x) = LgLy™ () # 0. )

Assumption 2 (Positive high-fr equency gain)The high-frequencygain g(x) is strictly positive and globally
boundedawayfromzeio by someknownconstanig > O,

g(x)>g forallxeR".

Thefollowing definitionis neededor describingthe systenclass.

Definition 2 (Affine sectorbound)A functionf : R" — R" is in theset 4 if for somem > 0 it canbedecomposed
as

f(x) = fo(X) + F(X)X, fo() :R" = R", F(-) : R" — R™",
wheeefor all x e R"
oAl <m, [[FOYIl < m.
Remark 1 Specialcasesof functionsf (.) € 4 are functionssatisfyingfor someconstantsm, np
1T < M+ mgl|x]],

or

Gl _

- IXI|

Theefore, the class 4 is a generlization of sectorboundednonlinearities. Figure 2 showsa sketc of a possible
one-dimensiondunction. &
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Figure2: Exampleof aone-dimensionaunction f € 4.

This enablego statethe mainassumptioron the systenclass.

Assumption 3 (Bounded nonlinearities) Thele existsa coordinatetransformation[ET,r]T

ing (3) into input-normalizedByrnes-Isidorinormalform (5) (see[6, 7, 14])
y=2&
& =& fori=1,...,r—1
& =a(&n)+9(En)u
n =8(&n)
with
&) = (&), & ()] € R
n(t) e R™,
whele thefollowing conditionshold:
1. a(-) € 4,
2. g(+) is bounded,
3. 8(-,&2,...,&,n) € A forall (§2,...,&,n) € R*-1,
4. 8(%1,-,...,-) isboundedor all £; € R.
Assumption 4 (Zero dynamics) Theze-dynamicof (5) canbedecomposeds
n = 8(0,n) = 8(n) +w(n)
whele W(-) is boundedandthedynamica) = 8(n) are globally exponentiallystable

UnderAssumption3 and4, (5) canberewritten as

& =JE+b(W(&,ME+ 0 (E,nn+9E n)u+vE,n)))
n=x(&n)y+6(n)+w(,n)
y=c'g,

with §(t) e R, n(t) e R"" and

01 0 0

J= b=,
1 0
0 1

c'=[10 0]

All functionsarebounded:

g(&,n) > g, v,6,w,X, ¢ P € Lo(R").
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Remark 2 In [21] it is shownthat anylinear systenwith relativedegreer is transformablénto

E=JE+DbY E+ ¢ n+gu)

n=Xxy+Hn
y=c'&.
Thesysten(6) canbe seemasa nonlineargenelization of this. &

2.2 Objective

The control objective is to asymptoticallytrack a referencesignal yret () while toleratinga tracking error smaller
thanauserdefinedA (A-tracking):

[y — Yref| = [O,A].

All statesshouldremainboundedj.e. x € £ ([0,»)). Thereferencesignalyyes (-) is consideredo bein W"®, the
setof all boundedunctionsthatareabsolutelycontinuouson compactsubintenalsandwhosefirst r derivativesare
essentiallypbounded.

For the given systemandobjective, an adaptve output-feedbacKstate-spacetontrolleris designed.lt consists
of anadaptve high-gainobsenerandanadaptie high-gainstate-feedbackontroller, describedn thefollowing.

3 Controller structure

Theadaptve A-trackingcontrollercanbe decomposethto a high-gainobsener (Section3.1) anda high-gainstate-
feedbacl{Section3.2). The adaptatiorof thegainsis describedn Section3.3.
3.1 Full-order obsewer

Theobseneris anadaptve versionof the high-gainobsener introducedby [18] (seealso[23]) asproposedn [5].
Theobsenreris presentedn obsenability normalform [26] andgivenby

X = AKX+ pre (7a)
€ =Y — Yref (7b)
with X(t) € R" and
Ae=J3—pc’, pr=[pr-1-R pr—2-R® ... pp-R1 po-Rr]T-

Theparameterg; arechosersuchthatp(s) = s" + z{;& pis is Hurwitz. For ary positive valueof the obsener gain
R, the spectrunof A; lies in the openleft half planeandthe obsener dynamicsarestable.No further knowledgeof
the systermbesideghatof therelative degreeis neededor thedesignof thisobsenrer. Theobsenergaink is adapted
accordingto the adaptatioraw describedelow.

3.2 Observer-statefeedbackcontroller

Thecontrolleris anobsener-statefeedback

U= —gX, (8)
where
r T
qKZ[qO'Ka Tty ql’—l'K] .
Theparameters} arechosersuchthat
r—1 .
dg(s) =s +9 ) as €©)
; 2

is Hurwitz for all g > g whereg is alower boundof the high-frequenyg gain of the system.A root-locusargument

in g shavsthatqg(s) is Hurwitz for all g > g if andonly if z{;& gis is Hurwitz andthe g; aresuficiently small.
Theadaptationaw for the controllergaink is describedelow.
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3.3 Gain adaptation

Theadaptatiorfor theobsenergaink andthecontrollergaink is chosersuchthatthegainsareincreasedislong as
theamplitudeof thetrackingerrore is largerthanthe userdefinedboundA (the controlobjective).
Theobsenrerandcontrollergainsaregivenby

R =k* (10a)
K = kP (10b)

wherethe parameterst andf3 have to satisfy
a>p>0. (11)

For givenpolynomialsp(-) andqg(-), thereexist positive constantg andp suchthatfor all § > g, p(-) andqg(-)
arein H(g, 1), seeAppendixC. Theparameters andu canbeinterpretedasa measuref robustnessvith respecto
time scalingfor € andthe decayrateof the differentialequationcorrespondingo the polynomialfor .

With someA > 0,y > 0 andk(0) = kg > 0, theadaptatiorparametek satisfieghedifferentialequation:

k= d2(e k), (12a)
di(e k) = %, {Lel - :8: :Z: Z ; (12b)
wherey hasto satisfy
y> 20(s+(0(—[3)(2r—3)—% forr > 1, (12¢)
y>2Be— % forr =1. (12d)

Remark 3 Theparametes a and 3 canbeusedto tuneindividually the“gains” of the observerandthe contmwller,
respectively The adaptationlaw ensues a monotonicincreaseof the observerand controller gains. Also the
observemain k growsfasterthanthecontmoller gaink for k > 1.

Theparametery slowsdownthe adaptation particularly whenk is large. Its lower bounddepend®n therelative
dagree the choiceof the exponentsa and 3 and on the polynomialsp(-) andq(-). For systemsvith relativedegree
one € canbechoseno bezewo, andy = 0is a valid choicefor therelativedegreeonecase &

4 Resulton A-tracking and corvergenceof the adaptation

Themainresultis Theoreml statingthatthecombinatiorof theadaptie obsener (7) with theadaptive controller(8)
andusingtheadaptatiorlaw (12) with (10)and(11)to closetheloopfor anarbitrarysystemsatisfyingAssumptions
to 4 yields asymptoticconvergenceof the trackingerror to the A-strip. Furthermorethe adaptatiorcorverges,no
finite escapdime canoccurandall statesemainbounded.

Theorem 1 (Full-order adaptive A-tracking controller)

Definethe constants > 0 and u > 0 sothat the polynomialsp(-) and qg(-) arein H(g, ) for all § > g. Thenthe
application of the A-tracking contoller (7), (8), (12) with k = k%, k = kP anda > B > 0 to any systensatisfying
Assumptiond to 4 with any refelencesignalyyes (-) € W™ resultsin a closed-loopsystemwhich, independentlyf
theinitial valuesx(0) € R", x(0) € R" andk(0) > 0 hasa uniquesolutionexisting on thewholehalf axist € [0, )
and, moreover,

a) (X()7)A(()’k()) € LOO([O’(*)))y
b) liMte [Y(t) — Yref ()| < A.

The proof of Theoreml consistsof five steps. The first part shows thatk cannotgo to infinity on the maximal
domainof existence.Then,boundednessf the obsener statesk andthusof the plantinput u is proven. Partthree
shavs boundednessf the plantstatesx. Stepfour yieldsthatthe solutionof the differentialequationsexistsfor all
times. A consequencef thefirst andfourth stepis the corvergenceof the adaptatiorparametek andby that of k
andk. The proof concludesy shaving thatthetrackingerror corvergesto the A-strip.
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Proof (of Theorem 1)

1.a) Boundednessof the adaption parameters. Sincethis partof the proofis rathertedious,a shortsketchof the
proof is given. First, the closedloop is transformednto a coordinatesystemwith statesfor the trackingandthe
obsenrererrorandtheirtime-dervatives(x-coordinates) Thena k-dependentime scalingis applied(x-coordinates).
In the resultingcoordinatest is possibleto definea Lyapuna-like functionV suchthatit canbe usedto boundk:
k < MV (x,k) for someM > 0. The boundednessf k is concludedby contradiction:It is assumedhatk grows to
infinity. Upperboundingthe derivative of V alongclosed- IoourajectorlewleldsthatV < —2fV = Vinax for some
ft > 0. An upperboundfor V canbe derived by the integration of Vmax. This boundis then usedtogetherwith
k< MV (>7, k) to shav thatk cannotgrow to infinity. Thereforetheadaptatiorparametek hasto remainbounded.
Thenonlinearclosed-loopsystemis givenby (6), (7),(8), (12), andtakestheform

£=(3+byT(€,n)) &+b(¢" (&,n)n +9(E,n)(—ar %) + V(E,N)) (13a)
n = x(&n)y+6(n)+wg,n), (13b)
X = AgX+ pr& (13c)
k= d2(e k), (13d)
e=C'&— Yer (13e)
with
§(0) =& €R ,n(0) =noeR""

(
%(0) = %o € R", K(0) = ko > O.

In thefollowing, theargumentf g(-), ¢(-), X(-), 8(:), v(-) andw(-) aredroppedto increaseeadability
For thereferencesignalandits derivatives,the following notationis used:

Yret = [Yrefa Vrefs .-, ys;f l)] ER,
Yref = [Yref, Yrefy --e) yEe)f} e R*1L.

It clearlyholdsthat

9ref = ‘]yref + byggf

)?1 2 E - yref
X=|X| = n| = n )
)?3 e 9ref -X

Whereé = [e e ... e(f—l)]T denoteghetrackingerrorandits derivatives,andéis theobsenererror, theclosed-
loop systemis givenby

Introducethe coordinates

[ (3+bPT(-)) (X2 + Srer) +b" (-)%2 — b(-) Gt (X1 — Xa) + BU(-) — Iyer — byey ]
o X(-) (€T X1+ Yrer) + 8(%2) +W(-)
(3+bPT () (K1 + Srer) + b@' (- )% — by )ar (51— X3) + V() — et — by! o)
! —(3— ") (a — %) — prCT X |
[ (3+b(P7() —G()al)) X1 + be' X2+ b3()af Xz + bV() + Byrer |
= X(-)CT X1 + 6(-) +W(-) + X(-)Yret (14a)
b(P7(-) — G()ak) X1+ b’ (V%2 + (b()aE + Ag) Xa + bV(-) + Byrer |
e=c'xq (14b)
with
B=b[y'(-)|-1]

\T(X]_,Xz,yref) - V(E n)
similarly for w(-),X(-),8(-), ®(-), B(-) andg(-).
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Usingthatk = k% andk = kB, thematrices] — g(-)bql andA; = J— pic’ canbothbefactoredwith the help of
the matrix

K, = diag{1,k,...,k1}
as
J— §()bal = KPKPALK P
Az =3 — pec’ = KIKY AgaK @ (15)
with

A11(G()) = I — G(-)bg" with = Gle1,

Ags=J— pc’ with p= by, ;.

By assumptionthe polynomialsp(-) andgg(-) arein H(g, ) for all § > g. Thereforethe matricesKn(g_(-)) and

A11(g(-)) arein thesetH (g, ) for all g > g, seeDefinition 4. _
A k-dependentime-scalingis now appliedto (14) by definingnew coordinates via a gain-dependernttansfor
mation:

X=CK X (16)
where

= diag{cilr,c2lm,Calr }
ci(k)=ki, & eR, i=1,23,
K = diag{KP?, Im,K&}.

Thematrix K- canbeseemasa k-dependentime scalingof (14).
Thecoeficients€;, €, andCz have to satisfythefollowing inequalities:

—(r—%)B<62—61<%B, (17a)

(= 3@~ B) <G -G < ~(r— )~ B), (17b)
—(r— %)0( <& -G, (17c)

€2 < €y, (17d)

&—(r—1a <c“:1+%a, (17e)

0> max{Be+ €1,0e+ &3} — %(“:1, 17%)
y+¢€ > —%. (179)

Remark 4 Theinequalities(17a)to (17f) are neededo boundV. More preciselytheinequalities(17a) (17b)and
(17c)are necessaryor the compensatioty quadratic expansionof the crossterms||x;||[|Xj|| withi # j in (36). The
inequalities(17d)and (17e)are comingfromthelinear termsin ||;|| in (36). Inequality(17f) ensuesthatthefactor

of K in $V is non-positivesee(32). Finally, inequality(17g) malesit possibleto bound§ byV, see(28). o

Lemmal, pagel5 shows thattheinequalities(17) aresolvablefor €1, €; and&s.
Thetime derivative of the coordinateransformatiommatricesC andK 1 is

d= . _d d d d Jk
aC_ dlaq{acllr,aczlm,acfsl-r}, —tc. = CEC"
d _o k. _q d B _ k -8
G K= 0 AR, L KP = B AK
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with
A =diag{0,1,...,r —1}.

In thex-coordinatesthe closed-loopdifferentialequationsare

K ® (A1 +b37 () KER + 2K PooT % + 2K Phgl(-)af KEX + K Peibi)
d = = = = = =
X 2X(-)c" X1 + €26(c; '%2) + CoW()
2K b (BT () — () ak) KF%a + 2K 9bg" % + K9 (b3(-)af +Ass) KSs + caK ObT-)
[kPB] i [=etpa
+C | X()€ | Yret — % —& X
| K7 9B | | —C3+0A |
S—— —_—
=:§ =y
KAa|  [En Er Es| [Q] [akPor)] —— i _
= 9(2)72)_ +|Ea1 Ex2 Ez3f | X CoW(-) +CByref—El'PX (18a)
K*Azax3 Es1 Es2 Eass| [X3] LcsKi%bv())
e=c;lc'x (18b)
with
= — K—BpaT (. \KB = — Lk —BpgT = — Lk —PBpal )T KO
Ell—Kr blIJ ()Kra Eip = Co r b(P ) ElS— C3Kr bg( )qK Kr )
=  C= - =
Eo1= C—iX(')CT, Exo=Ex3=0,
=  C3_gqL,= - =  c3,_ = e =
Eau= Kb (0T () — g()ax) KP, Eso= Kb, Eas = K “bg(-)c K.

To shortenthe notation,the highestexponentof k in any matrix elementwill be denotedby ordk(-) (seeDefini-
tion 5, pagel8). Straightforwardcalculationgyive the following bounds:

ord<E:11: 0, ordkEzlzz (?) —(r=1p< E
C2 2
ord Fya = (é) +r-D@-p+p< FP
ord Ezy = (Z—i) < g ordk Ez = ordcEpz = 0
orckEa; = (g—i) —(r=1)(a—-B)+B< O(Tw
ord<E=32= (%) —(r—1la< E, ordkE=33= B.
C2 2
where
By =K PB ordBy = —(r — 1)B
B2 = X(-)€ ordcB, =0
B=3:K,_°‘I§ ord<§3:—(r—1)a
B(X k) = c26(c; '%2)

<l

(%K) = g(%, %X, Jrer ), ibid. for v, w, X, @,
P

Asthe matriceséqu(g(-)) andA:\gg arein thesetH (g, 1) for all g > g, thereexist symmetric positive definitesolutions
P1 andP3 suchthatfor ary g(-) > g thefollowing Lyapuna equationshold:

E_\;Ii—H + I:’vA:\ii < —HR, i=1,2,3, (192)
P(A+el)+(A+el)R,>0 i=1,3. (19Db)
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Thefu nctlonsxl — V1(x1) = x1 Pix andXz — V3(X3) = x3 PsX3 areusedasasortof Lyapuna functioncandidate$or
X1 andxa, respectiely. By Assumptiord, thereexist positive constantsn, n, mg andmy andafunctionn — Vz(n)
suchthat

mu|n||? < Va(n) < me|n|l?, (20a)
0 ~
gy V2(mHz(n) < —mg|In|?, (20b)
0 ~
IIEVz(ﬂ)II < my|n]l. (20c)

Thisresultcanfor examplebefoundin [25]. In the x»-coordinates,
Vo (%) = G5V (c; 'xe)

canbechosemasalLyapuna functioncandidatelt thenfollows from (20) that

my|%2|1? < Va(X2) < mp|[xz||? (21a)
(o] =.= = =
EY—ZVZ(XZ)GZ(XZ) < —mg||%2|? (21b)
a = =
ll 555 V20)ll < mallxe|l- (21c)
2

Now, the Lyapuna functioncandidate®/(-) arecombinedto a singlefunction

V(EK) = ZD°(%K) (222)
with
o - 1000 1200
Thisis asortof Lyapunw functioncandidatdor (18a)where
V(X) = v/ Vi(xa) + Va(X2) + Va(x3), (22c)
pliy = 5l (224)
1P|

Thek-dependenparametep hasbeenchosenn suchaway that
v(X) < 2p(k) = |e| <A = k=0. (23)

To seethis, combine(16), (18b)and(22) to

= —1 _1
ol < Pall _ y/IPL IIV( \/II N ICT) +_. (24)
C1 c1(K) 2

Since

V(@ < 2p(K) & V(EK) < 20°(K), (25)
(22d)and(24)yield

v(x) < 2p(k) = e <A,
whichis in thedead-zonef the gainadaptationimplying that

v(X) < 2p(k) = k=0.
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ThefunctionV (x, k) will beusedto upperboundk. From(12), thedefinition of theadaptationit holdsthat

< (el N7 (26)
From (24) follows that
[Pl
A < —=—2V(Xk 27
(1o =07 < g VKK 27
Combining(26) and(27) yields
v2 Py, =
— 2V (X, k). 28
el (28)
Using(17g), it holdsfor someM > 0 that
kK — -
K SMV(XK). (29)

(29)is thefirst key inequalityof Stepl of the Proof.
Fromnow onthek-dependengofV (-), D(:) andp(-) will bedroppedto increasehereadability
Fromthetheoryof ordinarydifferentialequationst follows thattheinitial valueproblem(13) possesseanabso-
lutely continuoussolution(X(-),k(+)): [0,w) — R™1, maximally extendedover [0, w) for somew € (0, ).
Thederivative of V alongthetrajectoryof thesystem(13) (denotedor easeof expositionby dt) isforallt € [0,w)
andfor all valuesof x

V@ =p@ 5@ = D(i)( V&) —

G =
do )) b (dt (Va() +2\Cz((x_x)z) +Vs(%)) ch)j(tk)>

; D((i(_)) (kB 2P1A11X1+ 2 2( ) H (X )+ ka;:l;,—ZPSA’B3X3+2 Z X1 PlElJXJ
6V oV
+2 62( )E X +2 z )Q; P3E3JXJ + 2X1 PiciKy™ BbV( )42 2(X2) cow(-)
X2 (30)
+ 2%3" PacaK;%bv(-) + (2;1TP101K_BB_+2 2( 2)C oX(-)€ +2>73TP303Kr_°‘§)yref
k kaVZ(Xz) k —
R 2P Wi _Zk % Wox; R T2PsWaks | — Rorck(p)p(k)D(@.
Thelastfour termsin (30) areanalyzedirst:
= . D) ( k=t k OVa(X2) k= Kk
N() =~ & ( X1 2P1A1Xy 1+ 25— Doxo + 8 T2PsAgxs + - ord<(p)p(k)2v(>_<)
D(X) k = = = = = = =
L) (( Be — E1)X] Pixg — Eoxg PoXo + (—ag — E3) x4 Paxa + c":lp(k)v()?)), (31)
(X k
where(19b) hasbeenused.For ||X]| > 2p, (31) simplifiesto
NG < D(%E(max{swcl,awcs} _ —) V& (32)
andusing(17f) to
N(X) < 0. (33)
In thecaseof ||X]| < 2p, (23)yields
N(x) = 0. (34)
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Combining(33) and(34), it holdsfor all X that
N(x) <O. (35)
Using (35), (30) simplifiesto

d _
dv@<- DQ(kBV(xm 6\, (5%2) + KV () + gajzlnpnnaj||||m||||xj||

0Va(X2)

! aVz(Xz)
0Xo

IHE2alll1%al + Z i IR 111K 21361 1v(-) | + c2 | [HIw(-) I
i=1,3

1g| (Xz)
+ (ig,gcl ||P||||K B||||X|||+Czll (- )||||C||>||yref||)

Now assumehatk tendsto infinity ast — w. This will leadto a contradiction. The assumptiorthat y;e; € WH®
impliesthaty,¢s is boundedalmosteverywhere Also almosteverywhereboundedarev(-), w(-) andx(-). Therefore,
thereexistsa constantVl > 0 suchthatfor almostall t € [0, w)

B 3 3 _
SV < - rj((g(“kﬁv<x1)+—vz<xa+ EVaE) ~M 3 5 I8 IR

— M (eak OB+ clfel]+ cak M) ).

(36)

US|ngquadratloexpansmntheboundsnn||E.,|| inequalitieg17) andmonotonicityof k, thereexist positive constants
fi, M; andM andatimet; € [0, ) suchthatthegaink(t) is sufiiciently largefor almostall t € [t;,w) to ensure

d = D(X) = = = % 21 —M 2D (v J—M1g, _CL
. < — — 1 _ _ 1 —— ).
PO < o (@) + Vel + Ve — Nicik DR (VR — ik L
By (22d)andmonotonicityof k, thereexistst; € [t1, %) suchthatfor almostall t € [to, w)
VO < -ip® (v - pyfs ). @7)
For v(X) > p, thisreduceso
d -— -
ZVO < —IDR) (v —p).- (38)
In the caseof v(@ <p, (37)is simplifiedto
d -— —
gV () <0asD(x) =o0. (39)
Thus,by combining(38) and(39) it holdsfor all x andfor almostall t € [t2, w) that
NP . Yeva 20
ZVO) < —D*(R) = —2v*(X).
Thereforefor all t € [tz, w),
V(X(t), k(1)) < e RV (X(t2), k(ta)). (40)

Inequality (40) is the seconckey inequality of this partof the Proof. If w < o, then(29) and(40) yield thatk(-) €
L, ([0,w)). If w= o, thenby (40), V entersin finite time the interval [0, p?/2] which by (23) and (25) implies
that|e| <A. Whence the dead-zonén the gain adaptation(12) yields thatk(-) € £, ([0,w)). In both casesthis
contradictghe assumptioron unboundednessf k(-), thusproving boundednessf k(-).

153



Book of Abstracts 21st Benelux Meeting on Systems and Control

1.b) Boundednesof the obsewer states. As k(-) is boundedd, (-) € £,([0,w)). Fromthis, (12) andthe Holder
inequality it follows that

YK () () € Lo([0,w)). (41)
Using (12) againyields
e = {F N o2
Therefore,
()] =y KV (-)dh (e(-), K()) € Lo ([0,00)). (42)
Combining(41) and(42) yields
€01 = [0 =YV RO ) +y K (e () € Lo ([0,0). (43)
€ Lo (10,0) e£,([0w)

Boundednessf k(-) ensureshe existenceof ak,, suchthat

ke = lim supk(t).

te[0,w)
DefiningA = Az s, A = A; — A, (13c)is equivalentto
% = A+ AiX + be, (44)

whereA is Hurwitz, ||A;|| decreasemonotonicallyto zeroand||b|| is bounded Thereforejt follows from Variation
of Constant is boundedj.e.

X(+) € £5([0,w)). (45)
As u= —qX, thisdirectly ensureghat
u(-) € L ([0, w)). (46)

1.c) Boundednesof the systemstates. The previousparthasshovn thate andy areboundedalmosteverywhere.
Theinternaldynamicsof (6) are

n=HM)+XEn)y+wE,n).
By Variationof Constantsit follows that
ni)e Ly’ ([O, oo)). 47)
Theremainingstates, i.e. &, satisfy

£=JE+b(W )&+ (N +g(u() +v())
= (I+byT () E+bv, (48)

wherevV € L, ([0, (o)) . It is trivial to seethatthe system(48)is obsenablefrom &,. Thereforethereexistsal € R*'
s.t.

{=(3+byT () 2+ (y—lc)
= (I—lc+by" (1)) T+ly

*This partof the proofis dueto G. Weiss,Imperial College, London.
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is anobsenerfor (48) in thecaseof V= 0, if J— |cis Hurwitz andsuficiently robustto copewith the perturbation
by (-) (seee.g.Theoren2 in [2]). Boundednessf y ensuresoundednessf {. Theobsenererror, § — { satisfies

S (€-0) = -l byT()(E -0+ bV
Thereforejt is boundedand
&(-) € L,([0,w)). (49)

1.d) Global existenceof a unique solution. Ask, x andX areboundedn [0, w), it follows by maximality of w that
W = oo,

1.e)Convergenceof the tracking error. It remainsto showv thattheA-strip is attractve. This is achiezedby shaw-
ing thatlim;_,., dy (e(t), k(t)) = 0. Sincee(-) andk(-) areboundedijt follows thatk(-) = d2(-) € £, ([0,w)). Using
&= c[Ax— bq,X] — Vref andtheboundednessf x(-) and%(-), it canbeconcludedhaté(-) € L, ([0,)). As

d
dt

y eé

_k
el _VRd)‘) € L, ([0,)),

dA2=2d;\(

d2(-) is uniformly continuous. This, togetherwith d2(-) € £,([0,)) yields, by Barbalat's Lemmal[l] that
limi—e d2(t) = 0.

This completeghe proofof Theoreml. m

5 Extensions

Theoreml requiresthata > 3. Thelimiting casea = 3 canalsobe handledif the following extra conditionsare
satisfied

1. Thematrix A= J— pc’ —ghq" is Hurwitz for all possibleg.

.
A bg ] is Hurwitz for all possibleg.

2. Thematrix [qu i

Theseconditionsare necessarysthe state-feedbacknd the obsener are adaptedat the samespeed. Thus, it is
necessaryhat the obsener is stableunderthe “perturbation” by the state-feedbackfirst condition) and that the
cross-couplindetweertrackingandobsenationerroris nottoo large (secondcondition).

Anotherpossibleextensionis to allow time-variationof the system.As long asthevariationsareslow enoughthe
controlobjectiveis attainedby the samecontrollet

6 Conclusions

This paperproposesanadaptie A-trackingcontrollerwith full-order obsenerthatguaranteeso achieve A-tracking
for alarge classof nonlinearsystemsandreferencesignal. If the systemcanbetransformedyrnes-Isidorinormal
form asin Assumption3 andtherelative degreeanda lower boundof the high-frequeng gaing areknown, thenthe
adaptve A-trackingcontrollerproposedereis well suitedfor achieving thatthetrackingerrory — yyet asymptotically
corvergesto the A-strip. Thewidth of this strip, A, is a parametewhich canbe choserby the useranddoesusually
dependon the specificationspn modeluncertaintiesand on the quality of the measurementln comparisorwith
otherapproacheghe controllerproposedchereusesa full-order high-gainobsener. This hasthe advantagethatthe
outputy doesnot enterthe feedbackpart of the controllerdirectly. As this obsener estimatediltered derivatives
of the outputy andthefeedbackpartis alinearcombinationof the obsener statesthe controllerhasa very simple
structure.This makesit mucheasierto tunethe parametersf the controllersasthey have a clearmeaning.

The practicalapplicabilityandperformanceof the proposedcontrollerhasbeenshovn whenappliedto a control
problemin anesthesif].
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A Scalingcoefficients

Lemma 1 (Scalingfunctions in the Proof of Theorem 1) For any¥ satisfying(12c), (12d)there exist k-dependent
functionscy, ¢, andcs satisfyingtheinequalities(17).

Proof (of 1)
2.a) Solvability for €;. Combining(17a)and(17d)yieldstheinequality

—(r—%)[3<62—61<0,
or, equivalently
& — ¢ =79, 66I5:(—(r—%)[3,0). (50)
Inequality(17b) canbewritten in the following way:
Gi-C=—(r—3)@=B)+y, vely=(0a—p) (51)

Adding (50) and(51) resultsin
&G = —(r—3)(@—PB)+5+y
> (1= 3)(a—B) ~ (r— 3)B.

Thus,

~ 1
E—8>—(r— E)cx,

whichisthesameas(17c) As |5 is nonemptyfor positive B, theinequalities(17) aresolvablefor ¢, for any givenc;
andca.

2.b) Solvability for & and €s.
Case:€1+ Be > &+ ae:
As a > 3, it follows from (17b)that
X 3
0<&-G&<—(r—3)(a—p).

Thisinequalityis solvableonly if r = 1. Therefore £1 + Be > €3+ ae impliesthatr = 1.
Using€; + Be > €3 + ag, (17f) is simplifiedto

0> BS-F%C]_

whichis equivalentto
€ < —2Be. (52)
Case:€1+Be < &3+ aE:
L1
0>ae+C3— ECl.
Using (51) this inequalitycanbe solvedfor c;:

1 1
0>ae+¢& +(r— E)(G—B)—y— 561,
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or, equivalentlyto

G < —2as—2(r—%)(a—[3). (53)

Case:arbitrary €s:
Combining(52) and(53), thefollowing inequalityhasto be satisfiedby ¢, independentlyf cs:

€1 < —-2Be forr=1,

54
i< —-20e—(a—-PB)(2r—1) forr>1. (54)
By (179)
~ ~ 1
G=-y-3- (55)
Combining(54) with (55) yields
V<& <—-20e—2(a—B)(r— %) forr > 1, (56a)
—y< & < —2age forr = 1. (56b)

By (12c) (12d) theseinequalitiesaresolvablefor €;.

Rewriting inequality(17b)as

2 2
>0

G—t<(r=3)@=B)=(—F)a—(r-3)B
———

revealsthat(17e)is containedn (17b). Thus,givena €; satisfying(56), ary €z satisfying(17b)andary &, satisfy-
ing (17a)is a solutionof the systemof inequalities(17). ™

B Polynomialsin H(e,p)

Thecontrollerdescribedn Sectiond performsasortof adaptvetime scaling.A Lyapuna functionfor suchasystem
canbefoundif the systemis stableandthe adaptatioris nottoo fast,seeRemark7 in AppendixC. To characterize
the possibleadaptatiorspeed,it is necessaryo introducemeasuredgor the decayrate i, andthe robustnesswith
respecto time-scalinge, of a Hurwitz polynomialor matrix.

Definition 3 (Polynomial in H(g,)) A polynomialp(-) =< + z{;ol pis belongsto theclassH (g, ) if there exists
a symmetricpositivedefinitematrix P sud thatthe companiormatrix

0 1
Ac=|
0 1
—Po -.-... —Pr—1

satisfiefor W, = diag{0, 1, ..., r — 1} theinequalities

Al P+P-A. < —2uR (57a)

Remark 5By (57a) H (g, ) is a subsebf the Hurwitz polynomials.lt is shownin [3] thatfor anypolynomialp(-)
there exist scalais € and p suc that

p(-) € H(g,p) for all € > g andforall p< O
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C Matricesin H(g, W)

Definition 4 (Matrix in H(g, 1)) Amatrix Ac belonggo theclassH (g, 1) if there existsa symmetricpositivedefinite
matrix P sudh thatfor W, = diag{0, 1, ..., r — 1} theinequalities(57a)and (57b) are satisfied.

Remark 6 If Ac € H(g, ) thenanymatrix Ac — m¥; is Hurwitz for m < £. &
Remark 7 Definethesystem

% = KKAK~1x
with A € R a Hurwitz matrix and
K = diag{1,k, ...,k 1}

whele k is a positivefunctionincreasingmonotonicallyover time Definethe coordinates

Then

z=kAz— '—Wrz (58)
with

W, =diag{0,1,...,r—1}.

In thez-coodinates,a Lyapunw-functionV caneasilybedefined:

V =k Yz Pz (59)
for somey and any positivedefinitematrix P satisfying

0>ATP+PA. (60)

Then,alonganytrajectoryof (58), thetimederivativeof (59)is
V =k %7 (PA+ ATP— E(Pwr + WP+ 2yP)) z (61)

Ask>0andk>0,V in (61) is negativedefinitefor anyk, konly if
0> PW, +W,P+2yP. (62)
If A€ H(g, W), thenthere existsa positivedefinitematrix P_satisfying(60) sud that
—2yP > PW, + WP > —2¢P.
for anyy > y. Thus,for anyy< g, V = k-%Zz" Pzis a Lyapuna function. &
Remark 8 Analyzing(62) revealsthat ¥, = W, + yl satisfies
0> PY, + P

Thematrix ¥, correspondso thetime-scalingmatrix K = k=YK. &
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D Order of a matrix

Thefollowing definitionhelpswriting the boundson the matricesn a morecompactway.

Definition 5 (Order of a polynomial) Thehighestexponentof k in anyelemenbf a matrix M is denotedordi (M),
i.e. for thematrix M definedby

15k . .
Mij= 3 K ml("‘), ordk(M) = rr??x{lr(r'{a{; .
1T ’

min

For example,ordg(ak? + B+ yk—1) = 2.
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Structure of talks e
22 & M
e

o

GsIC
USING MODEL-BASED OPTIMIZATION
TO IMPROVE
BIOTECHNOLOGICAL PROCESSES
>WEDNESDAY, MARCH 20, 8:30-9:30:
>PART (i): LOCAL OPTIMIZATION METHODS
>THURSDAY, MARCH 21, 10:00 - 11:00:
>PART (ii): GLOBAL OPTIMIZATION METHODS
PART (i): Summary e
W() ?'@"
CSIC

PART (i): LOCAL OPTIMIZATION METHODS

> [ntroduction

> Mathematical Models of Bio-Processes

> Optimization of Dynamic Models

> Dynamic Optimization: statement and solution methods
> Sensitivity Analysis: first and second order

> TNHp: a new second order code

> Case Studies (bioreactors)

> Extension to distributed systems

> Conclusions and Future Work
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Book of Abstracts

Introduction

Bio-process

Model Using models to
1 improve

Mathematical
Optimization

bioprocesses...

E A% Design
DSS
Decision 4P | |Operation
Support Systems
Control

Mathematical Models of Bio-Processes

Main characteristics:

> Non-linear, dynamic models (i.e. batch or semi-batch

processes)

> Nonlinear constraints coming from safety and/or quality

demands

> Distributed systems (temperature, concentration, etc.),

usually with coupled transport phenomena

>Thus, mathematical models consist of sets of DAEs, PDAES, or
even IPDAES, with possible logic conditions (transitions, I.e. hybrid

systems)

> PDAEs models are usually transformed into DAES (l.e. discretization

methods)
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Optimization of Dynamic Models: Some Problem Types %
2

e

CsIC

>Dynamic optimization (open loop optimal control)

To find the optimal operating policies (controls) of a nonlinear
dynamic system in order to optimize a performance index
(functional)

>|ntegrated process design and control optimization

Find simultaneously the static design variables, the operating
conditions and the controllers which minimize capital and
operation costs while maximizing controllability

> Parameter estimation (inverse problem, model calibration)

Find the parameters of a nonlinear dynamic model which give the
best fit to a set of experimental data

Statement of (dynamic) optimization problems %

]

CsIC

Find u(t), v and t; to minimize:

L
Jz,u) =y (z(ts ) + ¢ (z(1),u(t),t)at
S.t. to
System dynamics (DAES): —
f(z,z,u,v) =0 Z [ AA\” . state variables
ul AS: control variables
Path constraints: v1 AM:timeinvariant parameters

h(z(t),u(t),v,t) =0

g(z(t),u(t),v,.) £0
This problem is usually
Bounds: converted to an NLP-DAES
L U
u (t) £u (t) £u (t) (e.g. via CVP in the case of DO)
L U
v EVvEv
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Dynamic optimization: solution methods

O Indirect methods: numerical solution of the necessary conditions for
optimality (MPP) =» two or multipoint BVP, difficult to solve

® Dynamic programming techniques (e. g. IDP) = very costly, hard to tune

= ® Direct methods transform the original problem into a nonlinear
programming (NLP) problem. Two strategies:

> Simultaneous, or complete parameterization (collocation)

m > Sequential, or control vector parameterization (CVP)

Control Vector Parameterization (CVP)

e Time horizon is divided into I elements
* Controls are approximated using some basis functions
(e.g. piecewise-constant or linear)

=»Outer NLP which requires the solution of an inner IVP for each function
evaluation, with gradients computed through first order sensitivities
(solution of extended IVP)

problem

A
cvp /_\

S~ u

( NONLINEAR ) \///

[ Nonlinear dynamic optimization ]

PROGRAMMING PROBLEM
(NLP)

Find the parameters v to >
minimize the objective J
\ : y, t
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Resulting NLP-DAEs problem %
é e

e
CSIC
> Find v to minimize:
C=c(v,z,p)
> subject to constraints
> System dynamics (DAES):
f (Z, Z,V, p) =0 V . decision variables
_ Z  dlatevariables
Z(to) =% P : parameters
> Path constraints:
h(z, p,v) =0
9(z, p,v)£0
> Upper & lower bounds:
vEEVEV
Solving the NLP-DAEs problem %
@f’;@
CSIC

= Direct methods transform the original problem into a
constrained NLP

<> If this NLP is convex, it can be solved efficiently by local
(gradient-based methods)

=New second order local method (with V. S. Vassiliadis)

B UNIVERSITY OF
¥ CAMBRIDGE

<> If the NLP is non-convex, global optimization (GO)
techniques must be used

= Stochastic & deterministic GO methods (part II)
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Sensitivity analysis: first order

Sensitivity analysis within CVP methods allows the calculation CsIC
of the gradient of the objective w.r.t. v using first order sensitivities:

T Nz, Mz, 9 Tu, Tf

B L L

z0v Tz Tulv v

On’ r

eff 9f u

* Original DAEs and first order sensitivities share the same Jacobian: sz—

&1z’ 1z8

=>Direct decoupled integration schemes are possible

@ Could we use second order sensitivities to compute exact Hessian?

Sensitivity analysis: second order

1eﬂf ul’z et 5 oTzf g a0 (£ L,eﬂzfﬂz 1 Tz, T Tu, 'nzfu

~ Al ~ Al
181z rH«nVZ 81z rHﬂvb &V H@ﬂZZ v Az fulz v ﬂV‘ITZg

é Le u é
8. A aéIZo e9%F 1z ‘ﬂzgﬂz T fu, 17U et Iru'nu 4 AgeL
g &V o Elzlz v 2 v Tufiz v Mzg 811u Hv? g éve g

eﬂzf z, B Tz, G u, % U U eﬂzf z, B z, 1% U '|]sz

0
SN A g2 Mug gV AV U 2g
2 r=sr+h

T2 11=T20 )
™ v

5 Size of full extended IVP
- 2 1) REESED DR AT

v 1

* Original DAEs, first and second order sensitivities still share the same Jacobian!
= Direct decoupled integration scheme possible for gradient & Hessian
=2>BUT, full evaluation of state variables Hessian very costly!
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Full augmented system

@ Original system (DAES)
f(Z,z,u,v)=0, Z(t5)=2,(V)
@ First order sensitivities

111, 190, fz
S - 7_0 _ 4(1
2 v @ Tufv v ™ (tO) i

@ Second order sensitivities
1 APTLCINE LN i -4
;ﬁi |'H'||v2 T +g" &v zgéﬂzz'llv T129z7v '|lu1lz v TIV'"ZQ

& AP T2 PNz, Bl Y 41, 0t Aug
g"ASﬂBHﬁEﬂzw T2 fulzlv Tvizg fu Al e g“Aﬁmu

i Tz, T Tz % Tu 112f u é112f Tz, W Tz, Pf Tu, 1]21") .
SZTIU v 1Iz‘|lv1lv 1Iu2 v Mva SZW v 'Ilz1lv v ‘Ilu‘llv 'Ilv 1Iv2g *

1lz

é &zguqu 1Iz TP 1z 112f fu, i U+

; (="' )

Restricted second order informatlon

Use product form of Hessian times a search direction, H.p, as used in Truncated
Newton (TN) algorithms (e.g. Nash, 1984) :

Post-multiplying by a vector pe R’

ﬂ—f ﬂfST+A(zzuv) O 1
‘Hz z
Size of extended IVP using H.p
_Tz _Tz - —
e P STqeP TR n+2’ (0" 7)

*The original TN code of Nash uses finite differences to generate H.p, which is
then used for the iterative solution of Newton equations

®» TNHp code: the exact H.p is used by a modified TN code, resulting in
enhanced and fast convergence, even for large-scale problems

®»The computational cost of exact H.p is roughly twice that of a first order
sensitivity evaluation, and can be done efficiently

®»To achieve high discretization levels (r) with moderate computation times:
mesh refining approach (successive re-optimizations of increasing r values)
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Mesh refining approach Sl
’3@:) _j[?‘
csic

Initialization: uo, Compute NRO and d,,
e int_to'i and r r*f = rr(NRO_l) g :%)(int_toli - int_tol;)

\> Refining loop 4/
=m ves
Ny

M=
A opt_tol, =int_tol, tol_ratio
y Ucq

Optimization with TNHp ]

Uy

A
Solution forr )\ _
END )

Basic scheme of CVP approach used in TNHp

Original DAE System

Symbolic

Manipulation

DAEs+ 1st + 2nd
order sensitivities
solved by VP code

v

2nd ord. sens.
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TNHp: optimization of fed-batch bioreactors

Case I: Park-Ramirez (PR) fed-batch bioreactor:

=The objective is to maximize the secreted heterologous protein by a yeast
strain in a fed-batch culture.

=*The dynamic model accounts for host-cell growth, gene expression, and the
secretion of expressed polypeptides.

= One control variable (glucose input feedrate) and five state variables.

TNHp: optimization of fed-batch bioreactors

Case I: Park-Ramirez (PR) fed-batch bioreactor:

Maximize: J=z,(t;)z5(t;)

Glucose (z
( 4) S t.: Z = 91(22 - Z]_) - (UIZS)Zl

Z; =09223- (Ulz5)z,
Z3=03Z3- (U/Z5)zZ3
Zy=- 139573 +(U/Z5)(20- Z,)
Zs=u

Protein () z0)=fo 0 1 5 1

%/ with:
_ 475, z

= = "4 _exp(-5.0z,)
"Zo012+g, ‘

0.1+z,

_ 21.872,
(z4 +0.4)(z, +62.5)

O3
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TNHp: optimization of fed-batch bioreactors

Example of results: optimal control profile for PR

2.5

2.0 A

1.5 -

1.0

Nutrient feedrate, L/h

0.5 -

0.0 ‘ ‘
0.0 5.0 10.0 15.0
Time, h

» TNHp computed better performance indexes than those previously reported
»Very modest CPU times (9 - 300 s of PC/Pentium Ill), i.e. from 20 up to 400

times faster than previous results, even for very refined profiles (300 s for the case of
320 time elements).

TNHp: optimization of fed-batch bioreactors

Case II: Lee-Ramirez (LR) fed-batch bioreactor:

=The objective is to maximize the profitability of a process of induced foreign
protein production by recombinant bacteria in a fed-batch bioreactor, using
the nutrient and the inducer feeding rates as the control variables.

=Different values (Q) for the ratio of the cost of inducer to the value of the
protein production were considered.

=Two control variables and seven state variables.
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TNHp: optimization of fed-batch bioreactors

Case Il: Lee-Ramirez (LR) fed-batch bioreactor:

Maximize: 3=z, (t;)z,(t;) - QQt; u, (t)dt

Glucose !nducer S t.

Z; =Up T Uy
Zy=NnZy- (U +Up)zo/zg
23:U1C];]/21- (up +up)zz/zq - Y'lnzz
2y =Rpzy - (Up+U3)z4/24
25 =U,Cl /7 - (Uu,)zs/ 7,
Zg =- Kqzg
z7 =ko(1- z7)

z(0)=[1 01 40 0 0 1 0]

n=n(z3,zs5,2¢,27)

Protein

Bounds:
Ofu, £1 Ofu,£1

TNHp: optimization of fed-batch bioreactors

Example of results for LR bioreactor: optimal controls for Q =0 CSIC
u2

1.0 -

% —L._-—'-"—‘—

> ul

£ 0.8 -

8

8 0.6 -

E

0.4 -

@©

?

§ 0.2

o //_,r'j
OO 1 T T T T

0.0 2.0 4.0 6.0 8.0 10.0

Time, h

*TNHp computed similar performance indexes to those previously reported
*Very fast: 3-5 s of CPU time (PC/Pentium I1)
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TNHp: additional advantages %
2

Very good convergence, low noise, GSIC
even for singular arcs

1 r=100
0.8/ — TNHp — TNfd
0.6-
0.4-
; SQP
0.2-
, 101 r=100
0702 04 06 08 1 0.8
Time 0.6 -
0.4
0.2
0 i
0 20 40 60 80 100
Time
TNHp: additional advantages
e
3
Faster and with better convergence CSIC

properties than latest dynamic
programming methods (e.g. IDP)
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Conclusions

The use of exact first and second order information, implemented in
TNHp, resulted in two major advantages:
O a significant reduction in function and gradient evaluations was
observed due to the use of second order information, which although

requires the more expensive second order information evaluation, results
in overall computational savings

 the ability to consider very fine discretization levels for the underlying
controls has been enhanced both by the high precision and speed of
convergence but also by the use of the mesh-refining technique

In terms of performance and quality of solutions for many case studies, results
achieved are comparable or better than the ones found in literature,with much
reduced computation times

m= On-going work:

O A version for dynamic optimization of distributed process systems using sparse
IVP solvers is already operative, and cases of up to 5000 states have been solved.

M A closed-loop (receeding horizon dynamic optimization) version in the near future.
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Structure of talks %
é »a
’:_g

s §

CsIC

USING MODEL-BASED OPTIMIZATION
TO IMPROVE

BIOTECHNOLOGICAL PROCESSES

>WEDNESDAY, MARCH 20, 8:30-9:30:
>PART (i): LOCAL OPTIMIZATION METHODS
>THURSDAY, MARCH 21, 10:00 - 11:00:

>PART (ii): GLOBAL OPTIMIZATION METHODS

PART (ii): Summary %
’7@) E_‘-'

(Ltgk )C‘TE

CsIC

PART (ii): GLOBAL OPTIMIZATION METHODS

> [ntroduction

> Optimization of Dynamic Models

> Multimodality: Need of Global Optimization (GO)
> How to Solve It? Global Optimization Methods
> Complexity Issues

> Stochastic methods of GO

> Case Studies

> Scaling up: Cluster Computing

> Conclusions and Future Work
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Optimization of Dynamic Models: Some Problem Types %
e
?f;w =)
GSIC
>Dynamic optimization (open loop optimal control)
To find the optimal operating policies (controls) of a nonlinear
dynamic system in order to optimize a performance index
(functional)
>|ntegrated process design and control optimization
Find simultaneously the static design variables, the operating
conditions and the controllers which minimize capital and
operation costs while maximizing controllability
> Parameter estimation (inverse problem, model calibration)
Find the parameters of a nonlinear dynamic model which give the
best fit to a set of experimental data
Resulting NLP-DAEs problem 4
() »
258§
CSIC

> Find v to minimize;

C=c(v,z,p)

> subject to constraints

- System dynamics (DAES):

f(Z,zv,p) =0 V : decision variables
_ Z . statevariables
Z(to) =X p : parameters
> Path constraints:
h(z, p,v) =0
9(z,p,v)£0

> Upper & lower bounds:

vi £EVE WV
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Solving the NLP-DAEs problem %
=S

CSIC

= Direct methods transform the original problem into a
constrained NLP

<> If this NLP is convex, it can be solved efficiently by local
(gradient-based methods)

<> If the NLP is non-convex, global optimization (GO)
techniques must be used

= Stochastic & deterministic GO methods

Multimodal (non-convex) optimization problems %

il
CSIC

Unconstrained, 2D simple visual example:

Unimodal

Multimodal (non-convex)

>Standard methods (e.g. SQP, or even ms-SQP) fail !
> Need of Global Optimization (GO) methods
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Global Optimization of Nonlinear Dynamic Systems %
?fswe‘s“-‘
o _ CSIC
Main difficulties:
* The objective function and constraints are usually not smooth
» Each simulation is expensive (large CPU time)
» Gradients must be computed numerically
Increased number of simulations needed
Tolerances cause more non-smoothness
< There is a need for gradient-free, robust and efficient
methods capable of working with black-box models
Global Optimization Methods %
?f;.%‘s“-‘
CSIC

Global Optimization Methods

Deterministic

Homotopy

l

Adaptive
Stochastic
Methods

Evolutionary
computation

Simulated
Annealing

GAs, ES, EP, etc.
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Global Optimization of Nonlinear Dynamic Systems e
g e

S L5

> Deterministic methods: recent work of the group of Floudas, based on B&B. ‘C’éi%

> Elegant approach, solving to global optimality

> Drawbacks:
esignificant computational effort even for small problems
eseveral differentiability conditions

> Stochastic methods: several approaches (Luus et al, Banga et al, etc. 1990-2001)
~ Approximate solutions found in reasonable CPU times
> Arbitrary black-box DAEs can be considered (incl. discontinuities etc.)
> Main drawback:
*Global optimality can not be guaranteed

v Our objectives:

> Methods:
=>To select the best stochastic methods (efficient, robust // constraints)
=>To design hybrid methods

> Problems:
=>To solve NLP-DAEs with IVP of “black-box” type
= To solve large-scale NLP-DAEs (> 100 decision vars, > 10000 states)

"I would rather be certain of a good result than hopeful of a great one..."
(Warren Buffett)

Stochastic Methods: a critical review of promising methods %

Simulated Genetic Adaptive Evolution

Annealing Algorithms Stochastic Strategies

(Kirkpatrick et (Holland, '70s) Methods (ES)
al, '80s) (Rastrigin,’50s) g?ciwsfré ?eégs%

> GA, SA and other metaheuristics (TS, ACO, etc.): very popular but ...

>ES and several adaptive stochastic methods have nice properties:
*» pretty good efficiency and robustness
+* good scaling properties (almost linear...)

+ inherent parallel nature
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Complexity Issues
X e
@

=3
L5 §

CsIC

= NFL theorem (wolpert and McReady, 1997)

=Basics: impossibility theorem?

“Without any structural assumptions on an optimization problem, no
algorithm can perform better on average than blind search”

(“needle in a haystack”)

=Real implications (ANFL theorem)

= Convergent approaches

=Ordinal optimization (Y. C. Ho)
sSoft computing
=Evolutionary methods

sAdaptive stochastic methods

Examples of Applications of GO in Bioprocess Engineering %

Lty g

CSIC

= Inteqrated process design:

sAseptic processing

=\Wastewater treatment plants

= Parameter estimation:

=Distributed diffusion-reaction systems
=*Nonlinear biochemical pathways

=Optimal experimental design (dynamic exp.)

= Dynamic optimization:

*Batch and semi-batch liquid fermentation
=Distributed diffusion-reaction systems

sThermal processing (sterilization, pasteurization)
=Air drying

sSolid-state fermentation
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Integrated process design

Optimal steady state
W.r.t.

= Step 1 :
| — economic measure
- Traditional approach ﬁ

Sequential design

(ignores the interaction
of design and control)

St;pz\ Process control

issues

It considers operability

Simultaneous approach J — octherwith
economic issues

(challenging problems)

Integrated process design: statement

> Find v to minimize;

C=fi1+f2+f3

_ ) 1 - capital cost
> subject to constraints ,
- . Operation cost

f
_ f
> System dynamics (DAEs): f 5 1 controllability cost
f (X, X,V, p) =0 V : decision variables
— X . statevariables
X(6) =% :
> Path constraints:

h(x, p,v) =0
g(x, p,v) £EO0

. parameters

> Upper & lower bounds:

vi £EVE WV

181



Book of Abstracts 21st Benelux Meeting on Systems and Control

Integrated process design: waste-water plant example %
e
?—_g?r%:@
Perturbations CsIc
- q, O S Osa
X c —a _— xd —_—
xb, St X3 G Xb, )
Xry
\/
q . .
J 2 qr, Sir, Xir,
: 44 states, 8 design variables
Manipulated > g Cont_rolled
e > 33 DAEs variable
> 32 path constraints
> 120 bounds on states
&~ Objetive: to find the design of the units, the operating conditions and the
parameters of the controller which minimize a weighted sum (C) of economic
terms (f ..,,) and a controllability measure (ISE)
Integrated process design: selected results %
m
3_;-{*:‘?
CSIC
16 Convergence curves
2
ICRS
— DE
§15 — Ses GLOBAL ICRS DE  SQP
§ C 1544.54 1551.02 1545.47 3495.7
=1 fecon 114587 1165.14 1138.16 3002.94
2 ISE  0.3986 0.3858 0.4073 0.4927
05 CPU,s 251.84 91635 98389  35.18
' Neval 8307 19229 10530 330
O 0 ‘ 1 ‘ 2 8 4
10 10 10 10 10
CPU time, s

¥~ Csendes’ GLOBAL clustering method, simple adaptive stochastic methods

(e.g. ICRS) and DE presented the best convergence rates, with reasonable
CPU times (minutes in a PC-PIII)

¥~ ES methods: similar performance but with longer CPU times

¥~ SQP local method failed (as expected)
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Integrated process design: failure of multi-start

Histogram for ms-SQP

frequency

1500

2500 3000 4000
Objective function

5000

Large number of local

solutions.The best ms-SQP
result (after 500 runs) was:

C=1644.65

&~ SQP always converged to local solutions (even with multi-start N=500)

Traditional vs. integrated process design

Manipulated variable

700

600

qrl

400

500 b/ﬁ\v/‘~

700

600

500

400

40 60 80 100

Sequential design
Simultaneous design

200 400 600 800
time,h

s2

Controlled variable

20.9

20.6/

20.4

20.2¢

20

Sequential design
Simultaneous design

200 00

. 4
time,h

600

&~ Sequential design method (traditional two-steps): plant design cheaper

than the one found by the simultaneous approach, but its controllability is

very poor (very large ISE value, 25 times larger)

Moles, C.G., G. Gutierrez, A.A. Alonso and J.R. Banga (2001) Integrated Process Design and Control via
Global Optimization: a Wastewater Treatment Plant Case Study. European Control Conference (ECC) 2001,

4-7 September, 2001, Porto (Portugal).

183




Book of Abstracts 21st Benelux Meeting on Systems and Control

Parameter estimation for DAEs models %
?—i %‘E-‘
CsIC
> Highly non-linear, large dynamic models
> Usually > 20 DAEs
> Usually > 50 decision variables (parameters to estimate)
¥~ Objetive: minimize time-weighted sum
. ;
F=a a Wil(Yieo (1)~ Yop(i));)
i=1 j=1
> subject to DAEs constraints
Yexp : EXpErimental data
Yieor - Predicted values
Parameter estimation for nonlinear biochemical pathways %
ol @..
% CsIC

VB

> Collaboration with P. Mendes (Virginia Bioinformatics Institute)

> Small metabolic pathway (3-step, 36 parameters) seems tractable
(several hours of PlIl using UES, with record results)

> Cases with 100 parameters still not solved succesfully...

“¥“0On-going work.....
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Optimal Experimental Design (OED) %
2

< Performing experiments to obtain a rich enough set of y_(t) is a costly
and time-consuming activity

» The purpose of optimal experimental design (OED) is to devise the
necessary dynamic experiments in such a way that the parameters are
estimated from the resulting experimental data with the best possible
statistical quality

<> Statistical quality: usually a measure of the accuracy and/or
decorrelation of the estimated parameters

<- OED applied to linear steady state models is a well known subject

WwOED of non-linear dynamic models (DAEs): more challenging

Collaboration with Jan Van Impe & K. Versyck (K. U. Leuven) Eﬁﬁvwﬁﬁ

Statement of OED problem (dynamic systems) %
2

<> The OED problem can be formulated as a dynamic optimization (optimal control) CSIC
problem:

I=¥" 7o find a set of time-varying input variables (controls) for the dynamic
experiments optimizing the guality of the estimated parameters in some
statistical sense.

<> Criteria based on the Fisher information matrix:

(‘);ﬂy (t) Q(t)g y(t)«ﬂt

where Q is inverse of the measurement error covariance matrix.

>Scalar functions f of F evaluated in p, are used as OED criteria for
increasing the practical identifiability of the model parameters from
experimental data.

<- Remark: for linear systems, F-1 evaluated in p* is the error covariance matrix of the BLUE. For
non-linear models, we assume the output can be approximated as a 15t order Taylor series

expansion in the vicinity of p*. During experimental design for parameter estimation a so-called
nominal parameter set p, is to be used instead of the unknown true process parameters p*
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Statement of OED as a Dynamic Optimization Problem s
?i%@
_ L GSIC
Find u(t) and t; to minimize:
t
I=f(F),with F =&Y (t) Q(t)g y(t)—dt @ p=p,
ellp ellp
St. 0
System dynamics (DAESs) and algebraic constraints:
f[x,x, p,u,t]=0
h[x, Y, P, u,t: =0
g[x, Y, P, u,t: £0
Bounds for the controls:
x1 R": satevariables
UL (t) £u (t) EUU (t) y IA R" : output varigbles
ul RS : control variables
Scalar functions of F as OED criteria %
25§
CSIC

<> Examples of common scalar functions of F (to min.) are:

m= <>-D-criterion (determinant of F), which measures the global accuracy of
the estimated parameters F\

= <-Modified E-criterion (condition number of F), which measures the
parameter decorrelation
J=L(F)=1 u(F)/1 in(F)

<-A-criterion (trace of inverse of F), which measures the arithmetic mean
of estimation error

J =trace(F )

<-Which one? It depends on the requirements of the application

<- Remark: the minimum of the modified E-cost is known exactly (1.0)
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OED: case study %
B

=

= Estimation of kinetic parameters of unstructured microbial growth models CSIC

Model: dynamics of a fed-batch bioreactor where one biomass is growing on one
limiting substrate, assuming non-monotonic Haldane growth kinetics.

Objective: to estimate the Haldane parameters K, and K;based on measurements
of two model outputs, i.e. the substrate concentration Cg and the biomass
concentration Cy. The volumetric feed rate u(t) into the fed-batch bioreactor is
considered as the control input for the dynamic experiments.

WOED (DO) problem: to find u(t) so as maximum global accuracy and/or
decorrelation of the estimates for Kp and Ki is obtained, s.t.:
» the differential equality constraints (model dynamics),
» bounds for the control and the states,
» path inequality constraints on Cqto guarantee model validity (balanced growth).

Remarks: information matrix F computed from the sensitivities obtained by solving an extended IVP.
For Q: additive, uncorrelated, zero-mean white Gaussian noise is assumed on the measurements
of the substrate concentration Cqand the biomass concentration C,

OED case study: dynamic model %
m
SN
dCS - _ + i . Cs[o/L] (volumetric) concentration of limiting substrate CSIC
C.)C C C
S ( S) X S S i i
dt in Cx [g DWI/L] biomass concentration
VL] volume of the liquid phase
dCX _ Fin Csin[g/L] substrate concentration in the influent
dt - r‘r(CS)CX - V CX Fin [L/0] flow rate of influent
s [g/g DW h] specific substrate consumption rate
av _ m{Lh] specific growth rate
. — Fin Yxis [g DW/g] biomass on substrate yield coefficient
dt m[g/g DW h] (overall) specific maintenance demand
1
s(Cg) = mCg)+m
Y
XIS (VA
C 0.1+
mCs) = m, s
2
K, +Cs +C2/K,

0.07
0.06[-

0.05-

K, [9/L] indicates how fast the optimum for i is reached
Ki [g/L] istheinhibition parameter

0.04

0.03r

0.02

0.01}
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OED subproblems %
?i&:@-‘

The following two sub-problems were considered: CSIC

@ Optimal control for parameter decorrelation: the cost
function is the modified E-cost (ratio of the maximum and
minimum eigenvalues of matrix F).

Min. J=L(F)=1_(F)/l .. (F)

@ Optimal control for parameter accuracy: the cost function is
the D-cost (determinant of matrix F).

Min. J=-F|

For these problems, Versyck et al (1997) followed an ad hoc heuristic
procedure, based on theoretical analysis of the optimal process performance
feed rate profile, to design optimal control inputs. Their results are used for

comparison.
OED: numerical solutions using CVP methods %
@;@'
CsIC

®» Control parameterizations based on piecewise constant and
piecewise linear polynomials were tested, taking 10-20 time
elements (fixed & varying length)

Solution of the main NLP:

% Several deterministic (SQP-based) local solvers were tested, but
many difficulties were encountered: convergence failures, or
convergence to local solutions after excessive computation times
were found (alternative reformulation?)

% In contrast, the stochastic ICRS and DE solvers arrived to very
good solutions in very reasonable computation times
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® The stochastic solvers arrived to cost functions very close to 1.0 (within a csIC
tolerance of 10-°) in very modest computation times (order of minutes in a PC
Pentium-Il). In this case, we know these solutions are globally optimal.

1.0E+08

|

|

|
O
m

1.0E+07

1.0E+06

—_——

Performance index, J

P |
— — —

1.0E+01

1.0E+00 H\“ -

10E'01 ! T T T
0.01 o. 1 10 100 1000
CPU time (s)

OED: comparison of results (modified E-cost)

_r

Fin (L/D) ‘ ‘ ‘ ‘ Fin (L/h)O'l
0.09}
0.25¢ 0.08} DE
0.2} 1 0.07y
0.06}
0.15} 0.05}
0.04}
011 0.03} ICRS
0.05} 1 0.02y
0.01}
0 : : : : 0 : :
0 20 40 60 80 100 0 20 40 60 80 100
Time (h) Time (h)
Optimal feed rate by Versyck et Optimal feed rates obtained with
al (1997),J=1.0 ICRS and DE,J=1.0

Banga, J. R., K. J. Versyck and J. F. Van impe (2000) Numerical strategies for optimal
experimental design for parameter identification of non-linear dynamic (bio-)chemical
processes. Presented at ESCAPE-10, May 7-10, Firenze, Italy.
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Other examples

<-Several challenging problems have been solved in other
collaborations kept with:

<-Optimization of hybrid dynamic systems (Prof. P. Barton) MlT

<-Non-linear model predictive control (Prof. W. D. Seider) PE N N

<-Dynamic optimization of thermal processing (Prof. Paul Singh) UC“A!I;I

<-Dynamic optimization of microwave processing (EU project coordinated by ¥ ETEINZERE
Prof. B. Nicolar) quv N

<Dynamic optimization of large dynamic systems (Prof. Y. Kevrekidis)  Princeton University

Check papers at

http://www.iim.csic.es/~julio/

Scaling-up: parallelization & cluster computing ﬁi
oA
R i
Stochastic methods are easy to parallelize 7 CSIC
(e.g. “islands approach”)
>scheme “master-worker”, using PARALIZE 6
>able to run on heterogeneous networks
>easy to implement (no need of PVM or MPI) by S
means of:
S 4
Chalmers 2
PARALIZE 8_
»n 3
2 _
. Matlab
. 1-
Virtual
Network 0
Computing
= 0 1 2 3 4 S 6 7
] g
ATeT Number of processors

Speedup for ICRS ina LAN of NT PCs
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Conclusions dj
2 ol
=S
GSIC
> Global optimization of dynamic models: a means of ensuring optimality in
decision support tools for:
>Process design
>Qperating procedures synthesis
>Model calibration
> For many bioprocesses, optimal operating procedures provide significant
improvements over nominal processes
> Local strategies (e.g. SQP), even with multi-start, are of little help
> GO methods: simple adaptive stochastic methods, clustering methods and
Evolution Strategies (ES) presented the best performance
> Parallel versions of these methods can be created very easily using
standard environments
> Be careful with over-hyped “popular” techniques!
> On-going work on deterministic and hybrid GO methods...
Current and future work ﬁ
22 e
R i
CSIC

¥~ On-going work:

< Scaling up to larger and more complex problems

- Integrated design and control of large plants and distributed
systems with > 104 states using the parallel solvers

- Extension to process and control superstructures (different design
alternatives) problems (MIOCPSs)

->Parameter estimation problems with >100 parameters

->Optimal control of large (e.g. distributed) systems with > 104 states
(ROM via POD)
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Minicourse

Benelux Meeting on Systems and Control 2002

Financial Engineering

and Control

Hans Schumacher

Department of
Econometrics and Operations Research

Tilburg University

Main concern: risk management

Some truisms about risk:

e risk cannot be avoided
e risk can be diminished

e reduction of risk comes at a price.

Also: there is economic value in reducing risk.

The minicourse will concentrate on financial
risk and the use of financial instruments.

Financial risk arises due to fluctuations in
markets (exchange rates, interest rates, energy
prices, stock prices, . ..) as well as from
general economic factors such as inflation, and
from other sources.

Purpose of the minicourse

Topics to be treated:

e how to model financial markets

e how to construct protection against
unpredictable changes

e applications including: pension funds,
energy markets

Topic not to be treated:

e how to make a million dollars by trading

in the stock market.

Two main methods of reducing risk

General ways of reducing risk:

e diversification

Markowitz, Sharpe, ...

e hedging
Black, Scholes, Merton, ...

Diversification concentrates on the joint

characteristics of assets; hedging concentrates

on the risk factors behind asset prices. (No
sharp distinction.)

Both methods may be developed in a static as

well as in a dynamic setting.

Examples . ..
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A simple example of diversification

How to divide investment between two assets
such that total risk is minimized?

Assume:

the values of the two assets (say, X and X5)
are jointly normally distributed, with
expectations 141 and 9, variances 0'% and O’%,
and correlation coefficient p.

Problem:

find a1 and a9, with a1 > 0, ag > 0,
a1 + a9 = 1, such that the variance of
a1 X1 + ap X9 is minimized.

Is the best policy to invest everything in the
asset that has the lowest variance?

Variants

The story becomes different when

e not only variance, but also expected value
is taken into account
(mean-variance optimization)

e negative (“short”) positions are allowed.

Further extensions:

e multiple periods, or continuous time
(leading to stochastic optimal control)

e non-normal distributions
(various risk measures)

e include liabilities

e robustness.

193

Solution

Solve a quadratic optimization problem.

Invest everything in the safest asset if

p > o1/o2
(assuming X is the safest asset). If the
above inequality is not satisfied, then the
minimum is reached for a nontrivial
combination of the two assets.

Numerical example: assume o1 =1, 09 = 2,
and p = 0. Then the optimal solution is to
invest 80% in the safe asset and 20% in the
risky asset. Variance obtained with this
allocation:

0.82%14+02%2%4=0.64+0.16 =0.8.

If everything would have been invested in the
safest asset, the variance would have been 1.

A simple example of hedging

Consider a pension fund that holds a bond
portfolio to cover its future liabilities.

Let 7 be the annual interest rate (assumed to
be the same for all maturities.)

Current value of expected payments to be

made:
K

P=> (1+nr7"p,
k=

—_

Current value of bond portfolio:
K
B=Y (1+r)7*B,.
=

—_

We would like to have at least B = P. But
there is more.
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Duration matching

Both current values are sensitive to changes in
the interest rate. Define the duration of a
series of cash flows C', ..., C}. by:

K —k
k(L +7)7C
D(Cl,...,Ck) = Zk;(l ( )—k k.
> k=1 (L +7)7FC,
The relative change of the current values of

the cash flows ('}, due to a change Ar in the
interest rate r is approximately equal to

Ar
1+7r

D(CY,...,Ch).

Consequently, the position of the pension fund
is made insensitive to interest rate changes, at
least to first order, if the payments
(Pi,...,P) and the bonds (By, ..., By,) are
duration matched, that is,

D(By,...,By) =D(P,,...,P).

General picture

dynamical
system

—

observa-
tions

l | \

inputs —— portfolio————+ -——

\

assets liabilities

controlled
outputs

Observations typically include current asset
prices.

Inputs usually are portfolio weights. The
controlled output is often a net value.
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Extensions

Hedging aims at obtaining insensitivity to
certain risk factors by finding suitable
combinations of assets that are all influenced
by the same risk factors.

This is a model-based activity because the
dependence of asset values on risk factors
needs to be modeled.

For instance, it was assumed above that the
interest rate is the same for all maturities.
This is a model assumption. Like all model
assumptions, it is not entirely true. More
advanced hedging schemes use models for the
entire term structure of interest rates.

The Black-Scholes revolution in finance is
based on the introduction of dynamic hedging
strategies.

10

Peculiarities of financial models

Financial models have a number of peculiar
properties, which distinguish them from
general dynamical models.

e The value of the sum of two portfolios is
the sum of their values.

This is a linearity property which relates to
the effects of inputs (portfolio weights) on
controlled outputs.

e No control strategy can produce a
noise-free positive net value from a zero
initial investment.

This is an economic principle known as
absence of arbitrage. It leads to a constraint
on the way that asset prices depend on state
variables; this will be discussed in more detail
below.

12
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Another peculiarity

There is also a certain constraint on input
functions that needs to be imposed.

This is most easily explained in discrete time.
Let Sy denote a vector of asset prices and let
ut denote a vector of corresponding portfolio
weights. The control {u;} is said to be
self-financing if for all ¢:

Ut - Sl = Ut - St41
This entails a single linear constraint on the
vector of control inputs at each time t.

Rewrite the above using the forward difference
operator:

Alug - St) = ug - (AS}).
This suggests the continuous-time version
d(ug - St) = ug - dSy

where d is an "infinitesimal forward
difference.”

The chain rule

We think of the vector of asset prices St as
dependent upon state variables and time, say
Sy = 7(t, X¢); moreover, a differential
equation for X; would be given. To write
controlled output V; = fot ur - dSr as a
function of inputs and states, it would then be
natural to use the chain rule

or o

as, = Zar + Tax,.
t= gt T gt

Consider in general the relation

y(t) = p(x(t)).
According to the usual chain rule, we can
compute y(t) approximately by

y(t) = y(0) + Y & ((t)(@(tin1) — 2(t:)
but it turns out that this may not be a good
approximation if z(+) is a highly irregular
function of time.

Result of a portfolio strategy

Let St denote a vector of asset prices, and let
u¢ be a vector of corresponding portfolio
weights. The portfolio value is given by

Vi =g - St.

In discrete time, the change in portfolio value
between time t and time ¢ + 1 is given by

Vier = Vi =g (Si41— Sp)
or in /A notation
AV = up - ASy

So portfolio value at time 7" is given by
T-1

Vp=Vo+ Y - AS;
t=0

The analogous formula in continuous time is

T
VT=‘/0+/ ut - dSt
0

14

The need for a second-order term

Original function
T T T

I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Square
T

. . . . . . . . .
0 10 20 30 40 50 60 70 80 90 100

Approximation by cumulative sum w.r.t. first order forward differences
T T T T T T T T T
0 M
. . . . . . . . .

0 10 20 30 40 50 60 70 80 90 100

Approximation error
T T T T T T T T T
. .

I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

N P o R
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A modified chain rule (Itd)

A better approximation is obtained if we also
include the second-order term. So our new
chain rule becomes: if y(t) = ¢(x(t)), then

dy = ¢/(v)dx + 5 ¢ (z) d[z, 7]

where the term "d[x, x]" is the infinitesimal
version of

Az, z)(t) = (2(t + At) — z(t))%

We will also need a vector version:
d agzﬁ( Vdr + 5 t 2¢( )d|x, x]
Y= 50 912

where now d[x, x] is a matrix with entries of
the form d[x;, ], and tr denotes "trace”.

Example 1: Black-Scholes (Samuelson)

State equation:
dXy = pXp dXy + o X¢ dWy

where 1 and o are constants and Wy is
Brownian motion.

Assets:
St = X4
Bt — 6T’t

where 7 is a constant.

This is a model for a stock price (S¢) and a
fixed-interest account (By).

An alternative formulation of the same model:

dZy = (pu— %0‘2)6# + odWy
St = exp(Zy)
By = ert

This is obtained from the transformation

Zt = 10g Xt.
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A general financial model

A state-space model:
dXt = ,UX(ta Xt>dt + UX(ta Xt)th
Sy = 7T5(t, Xt)

dVy = wug-dS;

where

e we follow (largely) the convention of
denoting stochastic variables by capital
letters

e we also follow the convention of using
for "drift” and o for "volatility”

e W} denotes Brownian motion, so dW;/dt
is " white noise”

e 7 is a mnemonic for " price”.

18

Example 2: Vasicek

State equations: (drop subscript ?)
dX1 = a(b— Xq)dt + cdW
dXo = X1 Xodt

where a and b are constants.

Assets:

M = X,
Br = mp(X7)

This is a simple model for bond prices. The
asset M denotes a "money market account”
(a checking account that brings a variable
interest rate X). The asset By is a bond
that pays one euro at time 7.

The pricing function 7 is not specified in the
model above, but it has to satisfy certain
constraints. . .

20
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Absence-of-arbitrage requirement

Consider again the state-space model

dXt = IL[/X(t7 Xt)dt + UX(ta Xt)th
St = ﬂ—S(taXt)'

By making use of the chain rule we can write
dSt = ps(t, Xp)dt + og(t, X¢)dWy

for certain functions g = pg(t, ) and

og =og(t, x).

Recall: "arbitrage” means that a riskless profit
can be made from a zero investment.

Thm. The above model allows no arbitrage if
and only if there exist functions p(t, z) and
A(t, ) such that

ps — prg = OgA.

Market completeness

The Black-Scholes equation may be written in
the form

ps = [ms o] K}
Note: all variables are functions of ¢ and z.
Sizes:

pg, Tg: m-vectors (m = number of assets)

og: m x k matrix (k = number of noise
inputs)

p: scalar (short-term interest rate)
A: k-vector (risk premia).
When the matrix [7g(t,z) og(t,x)] of size

m x (k + 1) has full column rank for all (¢, z),
our model is said to be a complete market.

Obviously this requires m > k + 1.
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The Black-Scholes equation

Condition for absence of arbitrage:

s — prs = OSA.
Interpretation of the left hand side: net return
(p is the short-term interest rate).
Interpretation of the right hand side:
sensitivity coefficients times risk premia.

By expanding the functions ;g and og using
the chain rule, we obtain the following more
explicit form:

org | Omg | Prs
— +t——ux tstr—=oxoy — pmw
ot | oz X T2V g2 TXIX T TS

This is the Black-Scholes equation. It is a
linear partial differential equation that specifies
a relation between the state space parameters
px and ox and the pricing function 7g.

22

Finding the risk premia

In a complete market, the functions p and A
may be inferred from the model data.

Example: the standard Black-Scholes model.

U x ox
ns = ret y TS = ert y 0§ = 0

It follows that

p="r

Pricing functions for other assets that depend
on the state variables of the model can now be
determined from the BS equation. Moreover,
a hedging strategy can be developed. ..
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Noise cancellation (a.k.a. replication)

Let a state space model be given, and assume
it is a complete market. Introduce a liability L
(say a contract to pay at a given time T" an
amount v(X7)) and let 7 (¢, x) be its price
function, which must satisfy the BS equation.

We want to find a replication strategy:
ut = @(t, Xy) such that Vi = v(X7).

Determine ¢ = ¢(t, x) such that
T
(7 op]l=9¢"[rs og]
e 7, = ¢T7TS and oy, = ngUS. Because
pr, — prr, = oA (BS eqgn.) it follows that
also iy, = ¢ pig.
From ¢T7TS = 7y, it follows that ¢ is

replicating. To show that ¢ is self-financing,
note:

dV = dL = pydt + opdW
— ¢ (ugdt + ogdW) = ¢TdS.

Effect of rebalancing frequency

Monthly rebalancings (left bars) vs. daily
rebalancings (right bars).

x10° Monte Carlo simulation, 100,000 trials
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N
T

Py
o
T

number of occurrences

0 1 2 3 4 5 6 7 8 9 10
total cost to issuer, step size = 2000 euro

It is still assumed in this simulation that
volatility is constant.

Remarks on replication

It has been shown that, in a complete market,
every liability can be hedged in such a way
that no risk remains — i.e. total noise
cancellation. This seems to good to be true.

e |t has been assumed that trading can
take place continuously, without
transactions costs

e The model may neglect a number of risk
factors, so that the market is not really
complete

e The hedge will not be fully effective if the
true dynamics is not as supposed in the
model

The standard BS model supposes that the
parameter o ("volatility”) is constant. This is
often seen as the main source of error in
hedging. A typical remedy is to "re-calibrate”
the model frequently (i.e. choose new
volatility on the basis of observed prices).

26

Hedging against inflation

A model for bond prices that also takes
inflation into account:

dX1 = Xodt
dXo = a(XQ — Xo)dt + oodW
dXs = ﬂ(Xg — X3)dt + o3dW

where the noise input W has dimension 2.
Bond prices are fixed by assuming
specifications for the short-term interest rate p
and the risk premium A:

p(t,x) =x9+x3, A({t,z) =X (constant).

The interpretation is as follows: X is
log-inflation; X5 is the rate of inflation; X3 is
the short-term interest rate after correction for
inflation.

One may now ask for instance whether it is
possible to construct a strategy based on
(nominal) bonds that will produce an indexed
bond (payment of exp((X1)r) at time 7).
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A general Gaussian bond market

More generally than above:
dX = (FX + f)dt + GdW

(F, G constant matrices, f a constant
vector), and

p(t,x) =h'z, At ,z)=A\
(h and A constant vectors).

Bond prices can be determined from the BS
equation. After some computation:

mp(t,z) = exp(a(T —t) +b(T — t)x)

where the scalar function a(t) and the vector
function b(t) can be determined explicitly; in
particular

t
b(t) = —h' / el 3 ds.

0

Completeness in the inflation model

Alternative formulation of sufficient condition
for completeness:

for all k-tuples of unequal times 1, ..., ;,
the k£ X k matrix
hleFtl
M(ty, ... tp) = i G
h/eFtk
is invertible.

In our original inflation model, this comes
down to checking invertibility of

et e—ﬁtl o9
- [23] 2]

We find that, assuming the row vectors o9 and

o3 are independent, the model is complete
with three bonds if a # 3. And so the indexed
bond can be formed (in the model...).
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Checking for completeness

The indexed bond can be manufactured from
nominal bonds if the model defines a complete
market, where assets are bonds of various
maturities.

From the pricing function 77, the volatility
o7 can be determined via the chain rule:

T—t
op(t,x) = —np(t,z) h (/ el ds) G.
0

Sufficient condition for market completeness:
the matrix

1 —h’< OTl_t el’s ds) G

1 —n <f0Tk+1_t oF's d8> G
is invertible for each ¢ € [0, 7.
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Equivalent martingale measures

We have used the Black-Scholes equation to
describe absence of arbitrage. There is an
alternative (stochastic) formulation:

"Main theorem of mathematical finance”

Arbitrage is excluded if and only if there exists
a probability distribution on the set of paths in
the model such that the relative price of any
asset at a given time ¢ is equal to the
expected relative price of the asset at any
given later time, the expectation being taken
based on the information available at time ¢.

“Relative price”: price with respect to a fixed
asset (" numéraire”).

A probability distribution as above is called a
" martingale measure.”
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Intuition behind the theorem

Existence of an arbitrage opportunity means
that there is some strategy that produces a
positive result along all trajectories.

Existence of a martingale measure implies
that, for any strategy, the average result over
all trajectories (w.r.t. that measure) is zero.

Therefore the existence of a martingale
measure implies that there can be no arbitrage
opportunity.

The main theorem of mathematical finance
states that the reverse conclusion is true as
well.

Optimization in a complete market

Consider a problem of the form
maximize E[U(Vp)]

subject to  dV; = wdSy, V=g

where S; may be given as an output of a state
space model driven by one or more Brownian
motions, and U(-) denotes a utility function.

Standard approach: apply method of dynamic
programming. This leads to a nonlinear partial
differential equation.

Assume now that we have a complete market
and that our variables are already taken with
respect to a numéraire. Then there is a unique
equivalent martingale measure that makes
{St¢} a martingale, and we have the
replication theorem. Note: {V};} becomes a
martingale too.

200

An alternative pricing formula

Prices can be computed on the basis of the
Black-Scholes equation. An alternative
formula can be given on the basis of
equivalent martingale measures:

S, S

2 _ Eq 2T
Ny Np
where Q denotes the martingale measure, and
N is a chosen numéraire.

d

In continuous-time models, change of measure
comes down to change of drift (Girsanov's
theorem). Therefore the above formula is
often convenient.

Thm.: An arbitrage-free market is complete if
and only if there is exactly one equivalent
measure (for a given numéraire) such that all
relative price processes are martingales.
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The martingale method

Break up the optimization problem in two
steps:

1. maximize E[V] subject to the single
constraint Eg[V] < vy (Q denotes the
equivalent martingale measure)

2. use the replication theorem to determine
the strategy that will produce V.

Note: first step is a static optimization
problem with a single side constraint. Second
step requires the solution of a linear partial
differential requation. (In some applications,
the second step need not be carried out.)

This is the "martingale method.” It may be
generalized to the case of incomplete markets,
but the application is more complicated
(requires minimization over the set of all
equivalent martingale measures).
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The story of Metallgesellschaft

Metallgesellschaft AG (Frankfurt) is a large
corporation doing business in metal, mining,
and engineering. It owned a US-based oil
business MGRM (MG Refining and
Marketing). In 1992, MGRM set up a scheme
in which it granted long-term contracts for
delivery of oil to customers for a fixed price,
covering periods up to ten years. The
exposure to oil price risk was hedged by the
purchase of short-term contracts (" futures”)
for which a liquid market exists.

Under market conditions of 1993, the strategy
required an enormous amount of cash input
with no substantial income yet from oil
deliveries. MG decided to stop the hedging
scheme and wrote off about $ 1.5 billion.

A case of financial engineering failure?

The price of a futures contract

A futures contract with maturity 7" is a
contract to deliver a given commodity, say one
barrel of oil, at time 7" for a price F7p to be
paid when delivery is made. So the market
value at time ¢ of a contract to deliver a barrel
of oil at time T is e "(T=t) /.. This value
should satisfy the BS equation. The BS
equation for the T-futures price mp(z)
becomes:

/1'T<t= CL‘) = UT(t7 I))‘(‘T)

where
orp  Onp 1Pmp o
=+ ——lx t =
HT = "5 T g MX T2 OX
aﬂ'T
O'T = WJ

with the final condition mp(T, x) = .

This may be solved numerically.

39
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A model for the oil price

Assume a model with one state and one noise
input; take the oil price X; as state variable.

dXt = px(Xy) dt + ox(Xy) dWy
Let ux(x) be positive when z is low, and
negative when x is high.

Oil may be used for consumption as well as for
investment. The BS equation is therefore
written as follows (7 is interest rate, K is
storage cost):

px(z) —rrx(z) — K < ox(x)A(z)
AMz) >0

where for each x at least one of the
inequalities is satisfied with equality. Solve to
find the market price of oil price risk:

Az) = max (ux(:v) —U Z;()(ﬂ?) - K o)
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Special cases

Case 1: oil price high — oil is consumption
good.

In this case the price of oil risk is zero. The
futures price is then the expected price of a
barrel of oil at time T" according to the given
model. ("Expectation-based” pricing.)

Case 2: oil price low — oil is investment good.

In this case the futures price is equal to the
cost of buying a barrel of oil now and storing
it until maturity. (" Arbitrage-based” pricing.)

The formula of the previous transparency
interpolates between the two (" two-regime
pricing”, Biihler et al., 2001).

Some concrete results: see Fig. 1.
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Different models: different feedback
rules

|dea of hedging: since both (say) the 6-month
futures contract and the contract for delivery
in 10 years are sensitive to the current oil price
in a well-defined way (given a model), take a
position in 6-month futures so that the loss or
gain in value of this position due to oil price
change will offset the corresponding loss or
gain in the 10-year contract.

However, different models lead to rather
different policies (see Fig.2).

MGRM used the arbitrage-based rule.

Note: a mis-hedge does not necessarily lead to
a loss; it may actually produce a gain. Risk
reduction is not achieved, however.
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Conclusions (1)

e A new branch of engineering is emerging:
financial engineering

e Model-based thinking has gained
acceptance in the finance industry during
80s and 90s — process still continuing;
keyword: liquidity

e Main focus not so much stock markets,
but rather loans (fixed/floating swaps,
credit ratings,. .. ), and commodities incl.
energy

e Dynamic hedging: taking decisions on the
basis of incoming observations — familar
to control theory

e Peculiarities of financial markets: absence
of arbitrage, martingale measures

43

Stability?

It is a common assumption in financial
modeling that individual traders cannot
influence market dynamics.

However, the joint behavior of all traders does
affect market dynamics.

Fig. 3 shows electricity prices at the
Amsterdam Power Exchange (APX) during
2001. Electricity has been traded at APX
since 1999. The exchange now covers about
10% of the Dutch electricity market.

Investigations are being carried out concerning
the cause of the peaks in June and December
2001. Similar price peaks caused interruptions
of power delivery to Californian homes in the
winter of 2000/2001.
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Conclusions (2)

e Basic point of view: model asset prices as
dependent on basic risk factors

e Strong laws as a result of absence of
arbitrage (especially in continuous time)

e Models focused on particular markets; no
attempt to model "the economy”

e Martingale method: new optimization
technique

e Developments just beginning: robustness,
noisy observations,. . .
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Figure 2: Adapted from Biihler et al., 2001.

Figure 1: Adapted from: W. Buhler, O. Korn, R. Schdbel, Pricing and Hedging of Oil Futures. A Unifying

Approach, working paper, 2001.
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