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1 Abstract

This paper is part of the wide-spread effort to connect time-
domain prediction error (PE) identification and robustness
theory. In the present paper, we propose a new and uniform
robust control design procedure which is based on the model
Gmod and the parametric uncertainty regionD delivered by
PE identification and whose key step is a quality assessment
procedure of the identified pair{Gmod D}.

The new robust control design procedure.As just stated,
the key step of our new robust control design procedure is
a method to check whether the identified pair{Gmod D} is
tuned for robust control design. This verification is based
on the analysis of the behaviour of a set of controllers
C(Gmod) over all systems in the uncertainty regionD .
This setC(Gmod) is defined as the set of all controllers
achieving a performance level3mod with the identified
model Gmod. This performance level3mod (used for
control design with the nominal modelGmod) is, as usually
done in model-based control, chosen slightly better than
the prescribed performance level30. By definition, the
controllers inC(Gmod) are therefore those that can result
from a controller design step based on the modelGmod;
they are thus the only ones that are relevant in order to
establish the quality of the pair{Gmod D}. We then state
that an identified pair{Gmod D} is tuned for “robust
control design” if all controllers in the setC(Gmod) which
achieve the performance level3mod with Gmod, achieve the
prescribed performance30 with all systems inD .

Determination of the robust controller C. In the case
where the identified pair has been termed tuned for robust
control design, all controllers inC(Gmod) are appropriate
robust controllers for the true systemG0 since they are
guaranteed to achieve the prescribed performance level (i.e.

30) with all systems inD , and thus in particular withG0.
The choice of a particular controller within that class can
then be made on the basis of additional considerations such
as lowest complexity.

New experiment design. Conversely, in the case where
the quality of{Gmod D} is not judged satisfactory (the ro-
bustness test fails), we propose some guidelines (based on
the results of the robustness test) in order to perform a new
PE identification experiment providing a new pair “model-
uncertainty region” that is likely to be better tuned for robust
control design.
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Abstract

The linear stochastic identification problem is concerned
with systems and models of the form

xk+1 = Axk + wk
yk = Cxk + vk

(1)

with

E

([
wp
vp

] [
wt

q vt
q

])
=

[
Q S
St R

]
δpq ≥ 0 (2)

where yk ∈ R symbolizes the output,xk ∈ Rn the state,
and wk ∈ Rn and vk ∈ Rl the state and output noise of
the system at time stepk. In the last decade, so-called sub-
space identification methods have been developed [1]. Typi-
cally in a first step, Kalman filter state sequencesX̂i ∈ <

n× j

and X̂i +1 ∈ <
n× j of the system are estimated directly from

input-output data using geometric operations. After the es-
timation of the state sequences the ‘deterministic’ model is
easily obtained. For instance, matricesA andC can be cal-
culated using simple least squares. Also available from the
measurements and the Kalman states is the covariance se-
quence

{30, 31, 32, . . . , 3i } (3)

with for everyi
3i = E

[
ykyt

k−i

]
. (4)

From this covariance sequence, the noise covariance matri-
cesQ, R andS are then calculated by writing the model in
a so-called innovations form given as.

xk+1 = Axk + Kek
yk = Cxk + ek.

(5)

This step, however, is only possible if the infinite sequence
3i = E

[
ykyt

k−i

]
is a valid covariance sequence, with pos-

itive definite Toeplitz matrix. This is equivalent with the
identified model being positive real.

Positive realness is an often overlooked but important prop-
erty of the identified ‘deterministic’ system. It is a necessary
condition to obtain the corresponding stochastic system. For
instance, for a SISO system the spectral density will not be
positive real for some points on the unit circle if the positive

realness property is not satisfied. Furthermore, the problem
of positive realness arises in many cases, especially when
the ‘true’ stochastic system has zeros or poles near the unit
circle [2]. In such cases, stochastic subspace identification
methods will fail to calculate correct error covariance matri-
ces for state and output noise. The obtained model will also
have no physical relevance and is therefore of limited use in
practical applications.

In order to deal with the problem, we propose a regular-
ization approach to impose positive realness on a formerly
identified deterministic subspace model that is conceptually
quite similar to the approach used in [3] to impose stability
on subspace models. A numerically fast and reliable method
is conceived using this approach. The performance is in gen-
eral better or equal to that of already existing techniques.
Furthermore the approach is found to be more reliable and
robust.
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1 Background and problem formulation

The necessity of providing control-relevant models has be-
come well established in the field of system identification.
Acknowledging the approximate nature of any model, re-
search focussed on the tuning of the undermodelling error
towards improved nominal control design. The develop-
ments in robust control then urged the employment of un-
certainty bounds either for a robustness analysis of a nomi-
nal controller design or even directly for a robust controller
design [1, 2]. This trend is resulting in the perception that
system identification explicitly has to provide sets of mod-
els. The freedom in a system identification setup as exper-
imental conditions, the objects to be identified (e.g. plant
or Youla parameter) and the type of uncertainty structures
should be exploited to provide model sets most suited for
high performance controller design. A clear understanding
of the interaction between an uncertainty set and associated
achievable performance becomes most important.
Various uncertainty structures can be employed in describ-
ing a model set. Robust control provides robust stability
and performance results for linear fractional transformation
based structures as additive, (inverse) multiplicative and co-
prime uncertainty. The latter allows for more explicit results
in terms of a Youla parameter uncertainty, the gap metric and
theν-gap metric [6]. From an identification point of view a
parameter uncertainty structure follows naturally [1]. On the
other hand, dealing with undermodelling effects leads to ad-
ditive nonparametric bounds in the frequency domain [3, 4].
Here again the object to be identified (e.g. the plant directly,
its coprime factors or a closed-loop transfer function) further
determines the properties of the resulting model set. The
problem addressed here is what arguments can be formu-
lated justifying a particular choice of uncertainty structure
when identifying for robust control.

2 Observations

Consider linear time-invariant single-input-single-output
systems. A circular uncertainty region over a frequency grid
can exactly and explicitly be described in all of the afore-
mentioned uncertainty structures. All linear fractional trans-
formations of the uncertainty1

(
ω j

)
with

∣∣1(ω j )
∣∣ ≤ γ j can

be transformed into one another unconservatively. Clearly,
the nominal model and the uncertainty weighting function
will change and might require a more complex description.

Ellipses or boxes do not retain their shape under these trans-
formations. Moreover, probability density functions change
under transformation [5].
Each uncertainty structure comes with a robust stability con-
dition formulated in terms of a nominal stability, a frequency
domain condition and a winding number condition (number
of unstable poles and zeros) on the plants in the uncertainy
set. When considering systems underlying the frequency do-
main uncertainty regions it is the last condition which poses
the differentiation amongst uncertainty structures. In fact,
during system identification an assumption on the stability
of the identified object or an assumption of a continuous pa-
rameter perturbation is required in order to form the system
sets.
While (worst-case) robust performance can be calculated,
more explicit relationships between an uncertainty and the
associated performance is required when tuning a system
identification experiment. Results based on the Youla pa-
rameter uncertainty and theν-gap in combination with a
loop-shaping procedure prove useful in this context [2, 6].
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1 Introduction

Combined Autoregressive Moving Average (ARMA) mod-
els can be used to characterize the statistical properties of
signals. Examples of applications are radar target detection,
speech coding and spectral analysis of climatologic data. In
most theoretical results on ARMA parameter estimation it
is assumed that the correct model order is know. In this
paper we examine what happens if this assumption is re-
jected. Then, the model structure has to be determined from
the data. This is typical for many practical situations, where
accurate knowledge about the model order is lacking.

2 Error measure

An error measure is used to establish the quality of an es-
timated model. It compares the estimated signal properties
(the pdf f̂ ) to the true signal properties (pdff ). It cannot
be calculated in practice because then only the realisation
x =

(
x1 x2 ... xN

)
of the stochastic signal is given,

instead of the pdff . The error of the model pdf with respect
to the true pdf will be expressed using the Kullback-Leibler
discrepancy KLDI . The Kullback-Leibler Index (KLI) is
given by

i
(

f̂ , f
)

= E f

{
−2 ln f̂ (X)

}
(1)

whereE f {·} indicates the expectation over the probability
function f . The KLI is minimal for the true distribution.
The KLD is given by

I
(

f̂ , f
)

= i
(

f̂ , f
)

− i ( f, f ) . (2)

The KLD is zero for the true pdf. An accurate approxima-
tion in the frequency domain is the spectral distortionSD
of the estimated power spectrum̂h with respect to the true
power spectrumh:

1
(

f̂ , f
)

≈ SD
(
ĥ, h

)
=

N

2π

∫
+π

−π

(
ln ĥ (ω) − ln h (ω)

)2
dω.

(3)

3 The Likelihood

The likelihoodL is defined as the probability density func-
tion of an estimated ARMA(p′,q′) model f̂ for the realisa-
tion x from which the model has been estimated:

L
(

x; θ̂
)

= ln f̂ (x) = ln f
(

x; θ̂
)

. (4)

An accurate approximation in the frequency domain is the
spectral distortion of the model spectrum̂h with respect to
the raw periodogramhP E R.

L
(

x; θ̂
)

≈ SD
(
ĥ, hP E R

)
. (5)

The frequency domain approximations for the KLD (3) and
the likelihood (5) provide an illustration of the difference
between the error measure and the fit criterion.

The likelihood is used as a criterion to fit an ARMA model
to data in parameter estimation. The maximum likelihood is
denoteLmax.

The likelihood is also used in statistical order selection.
With order selection, a model order is selected from the data
as the model order where an order selection criterion is min-
imal. A well-known order selection criterion is the Akaike
Information Criterion AIC:

AIC = −2Lmax + 2(p′ + q′) (6)

whereLmax is the maximum likelihood.

4 Results

Simulation experiments show that the actual behavior of the
likelihood and the KLD for model orders greater than the
true model order deviates considerably from the asymptotic
predictions. Given this result we can revert to the original
question: Can data determine the best ARMA-model using
the likelihood?

Order selection is a critical factor in answering this ques-
tion. In the practical case where the optimal model order
is not known exactly, overcomplete models are also consid-
ered for selection. For these models the likelihood tends
to indicate that the model fits very well to the data. As a
result these models are often selected with order selection.
Unfortunately, the quality of overcomplete models is very
poor. Therefore, the resulting model is less accurate than
predicted by asymptotic theory. These result shows that the
behavior of ARMA estimators changes considerably if the
true model order is not known.
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Perspective observations arise naturally in the study of 

machine vision [1]. The observation via one or two 

cameras consists of the perspective projection of points 

in the 3-D scene onto the image plane. Thus, points in 

3-D space are observed up to a homogeneous line. In 

the study of machine vision, observing the position of a 

moving object in the space by the image data with the 

aid of a CCD camera has been studied in the past years. 

A very typical method is the application of the extended 

Kalman filter (EKF) [2]. It is well known that the EKF 

may fail in some real applications, and the algorithm is 

very complicated. To overcome these difficulties, a 

very simple method is proposed by the authors in [4] 

recently.  

 

Another important topic in the study of machine vision 

is the identification of the motion parameters by using 

the observed image data. This problem has received 

minor attention except the results in [3], where the EKF 

is applied to the identification problems for the time 

invariant motion parameters.   

 

In this paper, we consider the position and the 

parameter estimation problem for a class of movements 

by using the perspective observation, where the 

parameters are all time-varying. The formulated 

problem can be converted into the observation of a 

dynamical system with nonlinearities. The algorithm 

proposed by the authors in [4] is extended to identify 

this class of nonlinear system. First, the parameters 

relating to the rotation of the motion are identified, 

where the perspective observation obtained by only one 

camera is needed. Then the position of the moving 

object is identified, where the stereo vision is necessary. 

In the third step, the parameters relating to the straight 

movement are identified. The estimation errors of the 

position and the motion parameters are guaranteed to 

decrease exponentially until they become very small. 

Further, the ultimate estimation errors are controlled by 

the design parameters. The proposed algorithm is very 

simple and easy to be implemented. It is considered that 

the new observer can cope with a large class of 

practical perspective systems. Simulation results show 

that the new method is very effective.  
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1 Introduction

Many robot applications demand a robot to interact with an
environment that is not exactly known beforehand. In these
situations, the controller should be careful not to make the
robot unstable, i.e. keep its kinetic energy bounded.

One way to accomplish this is to use a form of impedance
control (introduced by Hogan [1]): the control torques are
taken equal to the gradient of an (artificial) potential field
with the minimum at the desired position. Thus, the con-
troller mimics a spring connected between the robot and the
desired position. The kinetic energy of the robot is deter-
mined by the potential field, and if this field has a global
minimum, the kinetic energy is bounded.

However, if we ‘release’ the robot in the potential field, cori-
olis and centrifugal forces cause it to oscillate around the
minimum in a seemingly chaotic way. We want to improve
this behavior, such that the robot oscillates along a prede-
fined curve instead of on the whole potential field. Wedo
want to keep the nice passivity properties of the impedance
controller, though, so we look for power-continuous (i.e.
energy-conserving) extensions of the potential field.

2 Mathematical Framework

In order to have all results be coordinate-independent (and,
as a pleasant side-effect, keep the equations short and read-
able), we use the mathematical framework of differential ge-
ometry [2] to describe the dynamics of the robot as well as
the controller.

We use coordinatesq and velocitieṡq to describe the current
state (configuration and velocity) of the robot. We can then
describe the dynamics of a robot as

∇q̇q̇ = g−1τ (1)

where∇q̇q̇ is the covariant directional derivative that de-
scribes the ‘acceleration’,g is the metric (inertia tensor), and
τ are the control torques (one motor per joint). In this way,
we can relate the necessary control torques in a one-to-one
way to the desired accelerations.

We describe the desired curves using a vector fieldw in joint

space. The vectorw(q) describes the direction of the desired
curve at pointq.

3 Control Law

We want to obtain a controller that makes the robot move
along the curves defined byw (first constraint), while the
change in kinetic energy is determined by the potential field
(second constraint).

The first constraint results in a desired acceleration (A) in a
direction perpendicular to the current velocity, i.e.〈(

∇q̇q̇
)

A, q̇
〉
g = 0 (2)

with the inner product
〈
·, ·

〉
g defined by the metric. The sec-

ond constraint results in a desired acceleration (B) in the
same direction as the current velocity, i.e.(

∇q̇q̇
)

B = αq̇ (3)

with α a real number depending on the current state. The
total controller is just the sum of these two parts. Additional
terms can be added to be able to recover from disturbances
or to add collinear damping.

The resulting controller can be easily explained by the con-
trol of a simple system like a point mass moving in the plane:
we can change its direction by applying a force perpendic-
ular to the current velocity (similar to Equation 2), and we
can independently change its speed by applying a force in
the same direction as the current velocity (similar to Equa-
tion 3).

In the presentation, we derive the actual control law and
show some simulation results.
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Abstract

Flexible effects in robotic systems are under permanent
study for the last two decades [1]-[5]. They became espe-
cially important after recognizing that the use of lightweight
materials for robot construction may enable faster robot mo-
tions with the same actuators applied. Lightweight materi-
als are used to improve efficiency in task execution and re-
duce power consumption. However, commonly these mate-
rials have low rigidity, that is, they bend during faster move-
ments. The bending leads to vibrations at the robot tip that
reduce the accuracy of trajectory tracking.

We propose a control concept that compensates for vibra-
tions at the robot tip caused by structural flexibility. It is ap-
plicable to general spatial robot configurations. The number
of translational and rotational directions along which reduc-
tion of vibrations is possible equals the number of degrees-
of-freedom. This method requires knowledge of the robot
dynamics including flexibilities [5], and the use of additional
sensors for detecting vibrations. We explain how to extract
vibration information from sensor outputs. This informa-
tion is used for identification of elastodynamics and for ro-
bust compensation of tip vibrations using feedback control.
Elastodynamics enters the rigid-body dynamic model as a
description of dynamic interaction between the end-effector
and environment [5]. The combined model enables regula-
tion of tip vibrations directly in the coordinate frame where
the vibrations are measured. Accelerometers attached at the
tip of the robot are used as vibration sensors.

This control concept is experimentally verified on a spatial
RRR type of robot system [6]. The last link of the consid-
ered RRR robot is a slender beam. It is a dominant source
of flexibility. Its elasticity causes profound vibrations at the
tip. Angular oscillations do not arise. The rigid-body dy-
namics [7] of the RRR robot is derived in closed-form and
identified with sufficient accuracy [8]. Elastodynamics is
identified along each direction of tip movements using white
noise excitations. To achieve attenuation of tip vibrations
during commanded tip motions, we propose a robot control
system having two complementary sub-systems: a nominal
motion controller and a vibration compensator. The former
one realizes joint motions in accordance with a prescribed
tip trajectory. The latter one reduces oscillations at the tip.
In our experiments we utilize a proportional-derivative feed-

back motion controller in addition to the feedforward com-
ponent realized using the rigid-body dynamic model. For
vibration compensation, an H∞ regulator [9] was used. Its
practical usability and robust performance are experimen-
tally verified.

The key contributions of the suggested control method are:
(i) time-efficient identification of elastic effects that are ap-
pended to the model of rigid-body dynamics, (ii) use of the
resulting non-linear dynamic model to simplify the problem
of vibration compensation to an ordinary regulation prob-
lem, solvable using a well-developed linear theory, and (iii)
robust compensation of tip vibrations.
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 Abstract 
 
Several authors proved that PD controlled positioning 
systems with single rigid joint and Coulomb friction 
cannot exhibit limit cycling [1].   This paper shows that if 
we take the joint flexibility into account the PD controlled 
positioning system can exhibit both stick-slip limit cycles 
and non-stick-slip limit cycles even though the PD 
controller parameters are tuned to locally stabilize the set 
point.  The occurrence of limit cycles is caused by the 
interaction between Coulomb friction and flexibility in the 
closed loop system.   
 
The shooting method and describing function method 
allow us to predict coexistence of a stable and an unstable 
limit cycles of the controlled system.  The shooting 
method finds a limit cycle by solving a two-point 
boundary value problem iteratively.  The stability analysis 
of limit cycles is done via fundamental solution matrix, 
which is obtained from a sensitivity analysis that is 
incorporated in the shooting method such that the stability 
of the computed limit cycle can be determined directly.   
 
We combine the shooting method with a path following 
technique to trace branches of stable limit cycles and 
unstable limit cycles in order to get a bifurcation diagram 
of those limit cycles.   The computed bifurcation diagram 
shows that the branch of stable limit cycles and the branch 
of unstable limit cycles collide and disappear at a certain 
gain value of the PD controller. This type of bifurcation of 
limit cycles is called fold bifurcation.  The location of the 
fold bifurcation gives a guideline to tune the controller 
gain such that the controlled system does not exhibit limit 
cycling.   
 
The flexible joint, which is depicted in Figure 1, is 
modeled by a spring with the stiffness K and a damper 
with the damping factor D  that connect the link with the 
inertia lJ  to the driving motor with the inertia mJ  [2].   

The frictional torque fmτ , which consists of viscous and 

Coulomb frictions, counteracts the applied torque mτ , 
which is produced by the PD controller. 

 
Figure 1 A model of flexible joints 

 
Feedback signals to the PD controller are position and 
velocity of the link. We choose this controlled 
configuration because the objective is to control the 
position of the link without a necessity of an observer and 
to focus on the effect of interaction between friction and 
flexibility in the closed loop system.  Moreover, 
Bonsignore et. al. [2] showed that output feedback 
controlled of such positioning systems exhibit limit 
cycling for some sets of pole placement.  The Coulomb 
friction is given by 
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where  cF  is the Coulomb friction level, mx  is the motor 

velocity, and eτ  is the sum of the controller and potential 
spring torques, which are acting on the motor. 
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Introduction

The objective of this work is the design of a feedback con-
trol system for the laser welding process, which is able to
control the penetration depth of the weld. Firstly the pos-
sibilities to control the penetration depth of a weld when
only partial penetration is demanded, for instance in the case
of overlap configurations, will be discussed. Furthermore a
controller which is able to guarantee full penetration will be
introduced. Full penetration is an important quality in the
production of Tailor Welded Blanks.

Experimental set-up

Optical signals emitted from the weld pool area are used
as an indication of the status of the welding process, see
figure 1. With four, co-axially placed, sensors it is possible
to detect the transition from a fully to a partially penetrated
weld in the thin mild steel sheets used. Also during partial
penetration welding it is possible to relate the sensor signal
strength with the penetration depth of the weld, see figure 2.

Figure 1: The experimental set-up.

System Identification

Detailed knowledge of the dynamic behaviour of the sys-
tem is essential when designing a feedback control system.
With the use of system identification dynamical models of
the laser and the welding process (including sensor dynam-
ics) have been obtained, in both a fully as well as in a par-
tially penetrating parameter region.

Feedback control

Two feedback systems will be discussed. The first controller
has been designed based on the identified dynamic model

Figure 2: Weldwatcher sensor signal versus laser power at a speed
of 100 mm/s. Typical weld cross-sections are included.

of the process. With this system the penetration depth in
an overlap weld is controlled [1]. The objective here was
to make a weld without penetrating the bottom plate. The
system has been tested by varying the welding speed. In
figure 3 an example of an experiment using this feedback is
shown.
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Figure 3: Longitudinal section of a controlled overlap welding
experiment and the corresponding laser power.

A second kind of feedback was developed to maintain full
penetration, based on a threshold condition indicating the
difference between partial and full penetration. This con-
troller is able to maintain full penetration near the edge be-
tween partial penetration, using the minimum laser power
required for full penetration at a certain welding speed.
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Abstract

This paper concerns the design of an active control system
for a hot-dip galvanizing line. The control system aims at
reducing the vibrations of the steel strip in order to improve
the quality of the product.

The mechanical structure is quite flexible and many vibra-
tion modes need to be controlled. The actuators and the sen-
sors are collocated and the control law is a direct velocity
feedback [1], which doesn’t require any model of the plant.
This control law adds damping on all the vibration modes
and it guarantees the stability of the system.

The position of the actuators is chosen to maximize the con-
trollability and the observability [2]. The relevance of this
strategy is discussed.

The natural frequencies of the mechanical system are eval-
uated using the Finite Element Method. In this particular
example, it was found that the frequencies of the flexion vi-
bration modes almost match the frequencies of the torsion
modes. The corresponding pole/zero pattern leads to very
small root loci where the damping increment is strongly lim-
ited.

A simulation of the closed loop system is required to evalu-
ate the performance of the active control and to choose the
feedback gain. The time-domain evolution of the mechani-
cal structure is computed using the Finite Element Method
and an implicit integration scheme, as described in [3]. As-
suming that the control system is digital and neglecting the
dynamics of the actuators, the control system is introduced
into the mechanical simulation as a users’ routine called
at each sampling time of the digital controller. This quite
general approach allows to deal with nonlinear effects ei-
ther in the mechanical structure or in the control system,
what opens new perspectives in integrated simulation of
controlled flexible mechanisms.

The simulation shows that a single actuator is not able to
control the whole steel strip. Even if the gain increases,
the controlled point becomes quickly a fixed point, and the

vibration of the rest of the structure is not significantly at-
tenuated. At least three actuators are necessary to get the
expected performance.
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1 Abstract

The aim of this study is to optimize the production of an
allergen (pro-Derp1) produced from CHO-K1 cell cultures.
In order to achieve this optimization, a model of batch cell
cultures in a two liter tank reactor is identified in a three
step procedure. In a first step, all the identifiable reaction
schemes are generated [1]. In the next step, the pseudo-
stœchiometric coefficients of each scheme are identified. Fi-
nally, the kinetic coefficients are identified from the best re-
action scheme [2]. The identification procedure is made on
the basis of a set of three experiments that can be distin-
guished according to their initial concentration in glucose,
the dissolved oxygen setpoint and the stirrer speed setpoints.
A fourth experiment is used in order to submit the model to
a cross validation test. Since the validations tests lead to
very satisfactory results, the model is used to determine the
optimal experimental condition. In this algorithm, the op-
timization criterion is the final concentration in pro-Derp1
and the optimization variables are the initial concentration in
glucose and glutamate and the dissolved oxygen and stirrer
speed setpoint. In order to remain within a realistic domain
of experimental conditions, the cost function minimization
is submitted to constraints on each optimization variable.
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1 Abstract

One-dimensional models for describing the secondary
settler in activated sludge wastewater treatment are im-
portant with respect to process control and optimization.
The usual starting point for one-dimensional modelling of
the dynamics of settlers is the solids flux theory of Kynch
(1952) [3], which assumes that the settling process can be
determined entirely by a continuity equation. The theory
can be made operational in computer programs by splitting
up the secondary settler inton horizontal layers of equal
height, and by discretizing the continuity equation on these
layers. A major problem of the flux theory is the fact that
the continuity equation predicts a constant concentration
profile to occur in the settler at steady state, which is in
contradiction with experimental observations. Several
models have been proposed that overcome this difficulty.
Today, the model published by Takácset al. (1991) [5] is
widely used [1, 4].

In this contribution, the model of Takácset al. is thoroughly
studied at the simulation level. Simulations have been
performed to analyze the dynamic behavior of the concen-
tration profile and to examine the influence on the steady
state concentration profile of (i) the loading characteristics
(influent concentration and flow rate), and (ii ) the number
of layers considered in the settler.
Simulating the model of Taḱacset al. (1991) with different
values of the feed concentration and the influent flow rate
shows that at a low influent flux, the amount of solids trans-
ported to the effluent is negligible. Amoderateincrease of
the influent solids flux induces a higher steady state con-
centration in the underflow, while the effluent concentration
remains unaffected. However, a large influent flux increase
overloads the settler, resulting in an non-negligible steady
state effluent concentration (after breakthrough of the inlet
layer).
Simulations for different values ofn reveals a major
shortcoming of this model, namely, the inconsistency of
the predictions with respect to the number of layers. This
results in an identification problem: the parameter values
need adjustment each time the resolution of the model is
changed. The model of Hamiltonet al. (1992) [2] is put

forward as an alternative, because of its ability to describe a
non-constant concentration profile on which the number of
layers only has a resolution effect.
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1 Introduction 

 
The purpose of metabolic modeling is, in the first place, to 
understand the in vivo kinetics of the metabolism of a 
(micro) organism, and in the second place, to possibly 
reprogram this metabolism. The models often describe the 
metabolism under the assumption that the amount of 
enzymes remains constant, e.g. [1]. Both to reveal the 
metabolism and to verify the metabolic models, pulse 
experiments are conducted to a steady state culture of the 
particular organism. In order to be able to neglect the 
biosynthesis of new enzymes, the data should be collected 
within a time window of a few minutes after the pulse. 
This motivates the development of rapid sampling 
techniques for analyzing the dynamics of the different intra 
and extra cellular metabolites in this time window, e.g. [2]. 
Besides, often measurements are available of the oxygen 
(O2) and carbon dioxide (CO2) concentrations in the off-
gas of a fermenter, measured by a gas analyzer, and of the 
dissolved oxygen (DO) concentration in the fermentation 
broth.  
 
The latter measurements can be used to reconstruct the 
dynamics of the oxygen uptake rate (OUR) and carbon 
dioxide evolution rate (CER) after the pulse [3], and in turn 
can be used to analyze the metabolism and to verify the 
metabolic models. To reconstruct the OUR and CER first a 
model is required that describes the dynamic relation 
between the OUR and CER (the inputs of the model) and 
the measured quantities provided by the gas analyzer and 
the DO sensor (the outputs of the model). Using this off-
gas model, the OUR and CER can be reconstructed from 
the data (collected during the pulse experiment) by using 
estimation techniques. 
 

2 Modeling 
 
The OUR and CER cannot be directly manipulated or 
measured. However, in order to retrieve information about 
the off-gas subsystem of a fermenter, the O2 and CO2 
concentrations of the gas feed can be varied in an 
identification experiment. In [3] a black-box modeling 
approach has been adopted. Alternatively, this research 

considers a white-box modeling approach. The white-box 
modeling approach has several benefits: 

1. for the identification of the model parameters the 
restriction that only the O2 and CO2 
concentrations of the gas feed can be varied 
requires no approximation. 

2. it is easy to incorporate the nonlinearity into the 
model that is due to a net gas production or 
consumption during the pulse experiment. 

 
3 Estimation 

 
Given an accurate model of the off-gas system, the OUR 
and CER can be reconstructed from measurements of the 
O2 and CO2 concentrations in the off-gas and the DO 
concentration. In this research the OUR and CER are 
modeled as integrated white noise. By augmenting the 
model of the off-gas system with these integrators, OUR 
and CER can be recovered by using Kalman filtering. It 
can be demonstrated that the influence of the nonlinearity 
of the model (due to a net gas production or consumption) 
on the estimate of the OUR, is significant. The measured 
responses of the outputs can be tracked accurately using 
Extended Kalman filtering for the nonlinear white-box 
model. In this way the dynamics of the OUR and CER, that 
are states of the augmented model, can be reconstructed 
accurately. 
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Nitrogen removal is an important step in the treatment
of municipal wastewater. Over the past several years,
biofilter systems have received considerable attention;
see for instance the conference proceedings and journals
of the International Water Association (IWA) (e.g. [4].
The main advantages of these wastewater treatment
systems are their ease of use, compactness, efficiency,
and low energy consumption. New biofilters including
dual-column systems have recently been proposed to
achieve pretreatment, nitrogen and/or phosphorus re-
moval [3, 5].

Based on experimental data collected from a pilot-scale
fixed-bed biofilter, the objective of this work is to de-
velop and validate a dynamic model, which allows the
evolution of the several component concentration pro-
files to be reproduced. This model can be used for sim-
ulation purposes (e.g. for system analysis and design)
or as a basis for the development of a software sensor
(which can be used to estimate unmeasured variables
on-line).

The modeling task involves the selection of appropriate
reaction scheme and kinetics and the derivation of mass
balance partial differential equations (PDEs). The un-
known model parameters are estimated by minimizing
an ad-hoc error criterion measuring the deviation be-
tween the experimental signals and the model predic-
tion. Particular attention is paid to the assumptions on
the measurement errors, and the corresponding formu-
lation of an error criterion.

Actually, this work builds upon a previous modeling
study reported in [1, 2], which was carried out using the
same pilot plant. However, this study was based on the
assumption that steady state operations were achieved
after a few hours, which is not in agreement with exper-

imental observations (in fact, the biofilter experiences
very long transient phases due to the variations in the
input flow rate and concentrations). As a consequence,
the parameter estimation problem was not properly for-
mulated, leading to severe model inaccuracies. Here, a
new model structure is proposed, and a criterion tak-
ing into account the measurement errors is minimized
to estimate the unknown model parameters and initial
conditions.
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1 Abstract

Mathematical modelling of bioprocesses can be based on
mass balances at a macroscopic reaction scheme level. This
paper deals with the use of incomplete data in the exper-
imental identification of the pseudo-stoichiometric coeffi-
cient matrix. Data are made of measured component con-
centrations obtained at different times in different culture
experiments. Incomplete data correspond to measurement
times for which some component concentrations are not
available.

A reaction scheme [1], involvingN components, is of the
form ∑

i ∈Rk

(−νi,k)ξi
ϕk
→

∑
j ∈Pk

ν j,kξ j (1)

for k = 1, ...M where M is the number of reactions,ξi
the i -th component,ϕk the reaction rate,νi,k and ν j,k the
pseudo-stoichiometric (yield) coefficients (νi,k < 0 if ξi is
consumed in reactionk andν j,k > 0 if ξ j is produced in
reactionk), Rk the set of indices of the components which
are reactants (or catalysts) in reactionk andPk the set of in-
dices of the components which are products (or catalysts or
autocatalysts) in reactionk. The mass balance is written as

dξ(t)/dt = Kϕ(ξ, t) − D(t)ξ(t) + u(t) (2)

where ξ ∈ <
N is the vector of concentrations,K ∈

<
N×M is the pseudo-stoichiometric coefficient matrix (N ≥

M), ϕ ∈ <
M is the vector of reaction rates,D ∈ < is the

dilution rate andu ∈ <
N is the vector of the net flow rates

(incoming minus outgoing).

It is possible to identifyK independently of the knowledge
of ϕ. Let G be a matrix such that

GT K = 0 (3)

By multiplying the mass balance byGT a ϕ−independent
differential equation is obtained. Its analytical solution is
easily calculated and this allows one to identifyK using a
maximum likelihood method [3]. The identifiedK is the
one that minimizes a cost functionL where the experimental
dataξmsk appear.ξmsk is thek-th measured point in thes-
th culture experiment. Eachξmsk appears inL combined
with G in the productGTξmsk. This product is generally
impossible to calculate if each of theN components ofξmsk

is not known. For that reason, the not completely known
ξmsk are usually rejected.

However these not completely knownξmsk do contain in-
formation relative to the pseudo-stoichiometry. The present
paper proposes a method to use this information anyway.
Instead of an unique matrixG, different matricesGsk are
used. They are still solutions of eq. (3) but their rows corre-
sponding to the missing components ofξmskare zero, which
allows the calculation of theGT

skξmsk. The matricesGsk are
computed by performing a singular values decomposition of
a suitable matrix deduced fromK .

A four component case study has been presented by Bo-
gaerts and Vande Wouwer [2]. They simulated the growth
of a biomassX on two substratesS1 andS2, with production
of a productP. Details are given in [2]. The simulation re-
sults, corrupted by noise, were used as pseudo-experimental
results in order to test their method of systematic generation
of reaction schemes [2]. In the caseM = 2 reactions, six
reaction schemes were obtained.

These pseudo-experimental results were modified by sup-
pressing one of the 4 measurements in each of the pseudo-
experimental points: in a quarter of the points, the data rel-
ative to X were suppressed, in a second quarter those rela-
tive to S1 were suppressed, and so on. These modified re-
sults were used to perform systematic generation of reaction
schemes. The six schemes obtained were remarkably simi-
lar to the ones obtained using the complete data.
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1  Introduction 

 
As scientists manage to control the structure of materials 
on an ever-finer scale, more and more materials are being 
developed with interesting properties, which are mainly 
related to their nanostructure. In parallel, one sees an 
evolution in solid-state theory where materials properties 
are increasingly better understood from first principles 
theoretical calculations. The merging of these fields will 
enable materials science to evolve into materials design 
[1], that is, from describing and understanding towards 
predicting of materials properties. If this evolution is to be 
continued, it is imperative that the characterization 
techniques keep pace. In order to correlate real properties 
with theoretical simulations, characterization methods in 
the future need to be able to determine atom positions in 
aperiodic structures with a precision of the order of 0.01 Å.  
 

2  Method 
 
In principle, high-resolution electron microscopy (HREM) 
is the most appropriate technique to provide the required 
precision, in spite of the fact that the resolution of modern 
electron microscopes does not exceed 1 Å. One is inclined 
to think that a precision of 0.01 Å requires a resolution of 
0.01 Å, which is far beyond the present possibilities. 
However, precision and resolution are different things. It 
should be realized that it is precise measurement of the 
structure parameters of the specimen under study that one 
is interested in, and not the HREM images as such. 
Therefore, the electron microscope should be regarded as a 
measurement system and not as a pure imaging instrument. 
Extraction of structure information from (noisy) HREM 
images can then be formulated as a parameter estimation 
problem. For this purpose, a physical model is required 
describing the electron object interaction, the transfer in 
the microscope, as well as the image detection. This model 
contains unknown parameters characterizing the structure 
of the object, such as the positions of the atom columns. 
These parameters are estimated by fitting the model to the 
experimentally obtained images using a criterion of 
goodness of fit. This is usually a non-linear optimisation 
problem, since most structure parameters enter the model 
non-linearly.   
 
3  Precision and experimental design: recent results 

 
The attainable precision may be further increased if 
quantitative structure determination is accompanied by 

statistical experimental design. Use of the concept of 
Fisher information allows one to derive an expression for 
the highest precision with which structure parameters can 
be estimated unbiasedly from a set of observations (i.e., 
image pixel values) assumed to obey a certain statistical 
distribution [2]. This expression can be used to evaluate 
the sensitivity of the precision to several adjustable 
experimental parameters. The optimum design of an 
HREM experiment is found in the sense of the experiment 
producing the highest attainable precision. Clearly, the 
availability of an expression for the attainable precision 
allows quantitative evaluation and comparison of 
microscopic settings and new instrumental developments. 
To illustrate this principle, suppose that the microscope is 
able to visualize an atom (or an atom column in projection) 
and that d is the width of the image of the atom, i.e., the 
‘resolution’ in the sense of Lord Rayleigh. The thus 
defined resolution will depend on both object parameters, 
such as the weight of the column, and microscope 
parameters, such as defocus, and spherical aberration 
constant. Then it can be shown that the highest attainable 
precision (i.e., the lowest standard deviation) with which 
the position of the atom can be estimated is of the order of 
d/N1/2, with N the total number of (detected) electron 
counts forming the image of the atom. It is now clear that 
if one wants to optimise the design of an HREM 
experiment in terms of precision, it is not only the 
resolution that matters but also the electron dose. For 
example, it turns out that although the incorporation of a 
monochromator in a transmission electron microscope 
(TEM) does improve the resolution, it usually doesn’t pay 
off in terms of precision, since the improvement of 
resolution is accompanied by a loss of electrons and thus 
signal-to-noise ratio [3]. Another result is the finding that 
although the correction of the spherical aberration in a 
TEM improves the resolution, it does not generally result 
in a higher precision [4]. 
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Abstract

The purpose of a hot finishing mill i s to turn reheated
steel slabs into strips which have the required thickness
as constant as possible. Several passes of rolli ng are
executed by tandem roll ing with six or seven stands.
Between each stand a motor driven looper is used to
keep the strip tension at the reference. The looper fulfils
an important role in tension control : it can absorb the
excess amount of stored strip by adjusting the loop
length of the strip between the stands. Tension and
looper control is the key of successful operations in hot
strip mill . Proper positioning of the looper is also
important for stable operations, so the problem is
simultaneous control of the looper position and the
interstand tension.

In this lecture, a complete modelling of the process is
presented. The modell ing is applied to the Carlam hot
strip mill of the steel maker Usinor (Charleroi, Belgium).
Processing industrial data show the presence of strong
nonlinearities (friction phenomenon, …). Friction and
especially static friction can severely limit the
performance in terms of increasing tracking errors and
the occurrence of limit cycle. In that way, a simple
model of the friction characteristic is proposed and a
method to identify the model parameters during fast
industrial experiments has been developed on the basis
of hysteresis cycle. The results show the importance of
static friction levels.
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1 Constructing a model

Nowadays a lot of interest in Systems Theory is directed
to problems in which separate systems are coupled to each
other. We put some restrictions on the networks/populations
that we want to investigate [1]. The term “cell” is used
to indicate an indivisible subsystem of the network. We
only consider networks where each cell interacts with all
the other cells. The coupling is assumed to be uniform, i.e.
between every pair of cells the interaction is of the same
type and has the same strength. Each cell of the network
is assumed to be astable limit cycle oscillator. This means
that each cell executes a periodic behaviour with a standard
waveform to which it returns after small perturbations. The
interaction between separate cells is assumed to be weak in
order to ensure that each cell keeps moving on its limit cycle,
without this cycle getting deformed. Therefore we assume
that the state dynamics

ẋ = fi (x), x ∈ R
n, fi : R

n
→ R

n

of each cell reduces to a “phase dynamics”

θ̇ = ωi , θ ∈ S1, ωi ∈ R,

with i indicating the index of the cell. When the limit cycle
is parametrized properly inθ , ωi is constant in time. This
constantωi is called the natural frequency of thei -th cell.
The only difference between the cells of the population is
the difference in natural frequency.

The system equations of a population consisting ofN cells
are

θ̇i = ωi +
K

N

N∑
j =1

sin(θ j − θi ), i = 1, · · · , N.

The parameterK denotes the strength of the coupling and
N is the number of cells. The interaction is implemented
by a sine function. We study the model as such. Our model
is therefore more detailed than the current approach in the
literature [1], [2].

2 Partial and Full Synchronization

By changing the parameterK the behaviour of the system
can change as well. ForK = 0, the state of each cell moves
on its limit cycle with its own natural frequency. In the case

ωi 6= ω j , ∀i, j ∈ {1, . . . , N}, this behaviour is called in-
coherent. Anincoherent motionis defined as follows: all
phase differencesθi − θ j , i 6= j are unbounded. IfK 6= 0
the cells start to mutually influence each other. As long as
this coupling strength is smaller than a threshold valueK P
the cells act incoherently.

For K between the valueK P and some valueKT , one can
discern a partially synchronizing of the population. A net-
work of cells exhibitspartial synchronizationwhen between
at least two cells of the network the phase difference has a
lower and an upper bound. Those cells are said to entrain
each other.

If the parameterK exceeds the threshold valueKT , the sys-
tem starts to exhibitfull synchronization, for all time t > T ,
for someT > 0. Full synchronization of the network means
that the phase difference between every two cells of the net-
work is constant in time.

If K increases further, the constant phase differences be-
come smaller. IfK → ∞, the phase differences tend to
zero and all the cells possess the same phase. For a network
of three cells, one can calculate the value ofKT with the aid
of bifurcation theory and in principle this can be done for
any number of cells.

3 Relation to the literature

Our results can be compared to existing results in the lit-
erature. In [2], an analytical expression is obtained for a
threshold valueKC between incoherence and partial syn-
chronization. From our detailed model we realize that such
a bifurcation indeed exists, but we do not have an analytical
result. On the other hand, we can prove the existence of a
bifurcation valueKT between partial and full synchroniza-
tion. This seems to be an original result.
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Abstract

In Support Vector Machines (SVMs) [7] and Least Squares
Support Vector Machines (LS-SVMs) [3, 4] for nonlinear
classification and function estimation the solutions are ob-
tained from a convex quadratic programming problem and
a linear Karush-Kuhn-Tucker system, respectively. As the
Least Squares Support Vector Machines involve the use of a
least squares cost function, the sparseness property of SVMs
is lost. On the other hand the LS-SVMs have been related
to regularization networks, Gaussian Processes and kernel
Fisher Discriminant Analysis [1, 6, 8]. Sparseness in the
LS-SVM can be obtained by sequentially pruning the sup-
port value spectrum, while robustness is obtained by using
a weighted least squares cost function. Compared to mul-
tilayer perceptrons (MLPs), the SVMs have the advantage
of solving a convex optimization problem, while the cost
function for MLPs typically has multiple local minima. On
the other hand the SVM formulations involve the use of a
square kernel matrix with size equal to the number of data
points. This makes a straightforward implementation of ker-
nel methods computationally less attractive for large data
sets. Therefor, large scale methods like conjugate gradient
algorithms have been developed and implemented in LS-
SVMlab in order to solve the optimization problem on the
first level of inference.

A powerful tool to estimate the uncertainties on the predic-
tion and classification of MLPs is the evidence framework
[2]. Bayesian inference can also be used to select the regu-
larization hyperparameters within the statistical framework
and to perform model comparison. In Bayesian methods for
LS-SVMs the kernel matrix also appears in expressions for
Bayesian hyperparameter inference [5, 6]. The inverse ker-
nel matrix is also needed when calculating error bars or class
uncertainties on the output of the regressor or classifier, re-
spectively.

Here we discuss large scale approximations for Bayesian in-
ference for LS-SVMs. A practical implementation using the
Nyström method is implemented in LS-SVMlab which al-
lows to obtain approximate expressions at the different lev-
els of inference within the evidence framework. Although
being a sampling method, it can be shown that the approx-
imation is exact when the sample feature space spans the
feature space of the whole training data set. The Nyström
method was implemented in the matlab LS-SVMlab tool-

box and applied on UCI data sets like, e.g., the the adult data
set with 45222 data points. The use of the Nyström method
allows to perform hyperparameter selection for LS-SVMs
on the so-called second and third level of inference. This
selection criterion yields comparable performances with hy-
perparameter selection from cross-validation. It also allows
to infer the optimal kernel parameters of the kernel func-
tion, which can be related to the relevance of the different
inputs. This inference is called Automatic Relevance Deter-
mination and is used for input selection in nonlinear kernel-
based function estimation and classification.
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1 Abstract

The port-based approach that can be represented by
bond graphs or iconic diagrams optimally supports a
multidomain-modeling context. This approach is for me-
chanical, hydraulic and electrical systems clearly described
in the literature. However, thermal systems or in particular
thermo-fluid systems can be described by various port-based
approaches. Some of these approaches are discussed.

Two bond graph approaches are useful for modeling thermo-
fluid systems in a simulation package (e.g. 20-sim). The
pseudo bond approach (effort and flow are dynamically con-
jugated instead of power conjugated as in true powerbonds),
by Karnopp et al [1] is easy to implement and therefore often
used as its use of variables coincides with the common ap-
proach. However, it may lead to wrong results, e.g. in com-
bination with transformers it becomes invalid. Breedveld’s
approach [2] provides insight and a more systematic way to
model the convection process, unlike Karnopp’s approach.
(The term convection is used for energy transport by a mov-
ing fluid.) A drawback is that the engineer is not always ac-
quainted with the conjugate power variables in this domain.
Apart from the above-mentioned approaches, Brown’s con-
vection bond approach [3] is investigated; he proposes to
use a convection bond in order to cancel the redundant in-
formation. The result of this new representation is a notation
that differs significantly from conventional bond graphs and
is not easily incorporated into most bond graph modeling
environments. Finally, Shoureshi’s approach [4] is exam-
ined for incompressible fluids, which does not correspond
to thermodynamics and is simply incorrect. A major con-
clusion concerning the different approaches is that the three
correct approaches can be transformed into each other, and
give exactly the same results in the test case of an ideal gas
with irreversible convection [5].

A second, but related topic is the causality assignment pro-
cedure of thermal elements. Causality assignment is neces-
sary in order to get assignment statements in a form that is
optimal for numerical simulation. The conventional causal-
ity assignment algorithms do not handle all assignments of
thermal elements. A heat conduction- or RS-element has a
particular causal constraint. A comparable situation occurs
for a multiport C-element representing a single component

system. An algorithm is discussed for the causality assign-
ment of a heat-conduction RS-element and for the three-port
C.

A model of a dual-sided air cylinder, see figure 1, will used
as an example to illustrate the various approaches and rep-
resentations.

Figure 1: Dual sided air cylinder in two representations
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1 Abstract

The theory of hybrid systems studies the interaction between
continuous and discrete behaviour. When discrete software
is combined with mechanical and electrical components, or
is interacting with, for example, chemical processes, an em-
bedded system arises in which the interaction between the
continuous behaviour of the components and processes and
the discrete behaviour of the software is important. Al-
though there are good methods for analizing continuous be-
haviour (control science / system theory) as well as for anal-
izing discrete behaviour (computer science / automata and
process theory), the interaction between those two fields is
largely unexplored. There are only a few models that can
handle (some) interaction, and often these models are still
focussed on one of the two original fields.

In practice, often the discrete part of a system is described
and analysed using methods from computer science, while
the continuous part is handled by control science. The de-
sign is such that interaction is surpressed to a minimum. Be-
cause of this surpressed interaction, analysis is possible to
some extend, but it limits the options during the design pro-
cess. This is the main reason for the development of a theory
on hybrid systems that allows for analysis of broader types
of interaction.

In this presentation, we work on the mathematical modelling
of hybrid systems, from a semantical point of view. We fo-
cus on two main existing semantical models for describing
dynamics, namely the behavioural models, introduced by
Polderman and Willems [1] and the (timed) transition sys-
tem approach, known from computer science [3]. These
two classical models are combined in three different ways,
resulting in: hybrid automata [5], rich time behaviours [4]
and a new model originating from the machines introduced
by Sontag [2]. We compare the expressivity of these three
models, and discuss their useability as models for hybrid
systems.
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1 Introduction

We are concerned with the mathematical modelling of
macroscopic physical-chemical-biological processes for the
purpose of modelling chemical or biological plants. The
ultimate goal of our research is to implement a structured
modelling methodology in a computer program, called the
Modeller, which aims at effectively assisting in the develop-
ment of first principle based dynamic process models. The
underlying methodology of such a computer program must,
of course, be well structured and put on a firm scientific
foundation, such that it can handle a wide range of prob-
lems. The output of the computer program is a first princi-
ples based mathematical model, which can serve as an input
to existing modelling languages and/or simulation packages,
such as gProms, ASCEND, Modelica, Matlab, Maple, Chi.

2 Modelling Methodology

The modelling methodology we use is based on the hier-
archical decomposition of processes into networks ofele-
mentary systemsandphysical connections[4]. Elementary
systems are regarded as thermodynamic simple systems and
represent (lumped) capacities able to store extensive quanti-
ties (such as component mass, energy and momentum). The
connections have no capacity and represent the transfer of
extensive quantities between these systems.

3 Presentation

In this presentation we show that the dynamic part (i.e. the
differential equations) of physical-chemical-biological pro-
cesses can be represented in a concise, abstract canonical
form, which can be totally isolated from the static part (i.e.
the algebraic equations). This canonical form, which is
the smallest representation possible, incorporates very vis-
ibly the structure of the process model as it was defined by
the person who modelled the process[5]: The system de-
composition (physical topology) and the species distribution
(species topology) are very visible in the model definition.
The transport and productions rates always appear linearly
in the balance equations, when presented in this form. The
nonlinearities of a process will therefore always emerge in
the algebraic realations of the model. This formalization
allows us to develop formal model reduction procedures,
which are suitable for computer-based model reduction. An-

other important application of identifying structures in the
modelling process, is to use the extra available information
to perform efficient model manipulations in order to achieve,
for example, superior numerical performance. Ideas to use
model structure for DAE index reduction, for example, can
be found in [1], [2] and [3].

Furthermore, it is shown that the separation of the dynam-
ics and statics of the process model makes it possible to do
far reaching analysis (such as completeness checks, consis-
tency, causal order) at the level of the individual systems
and connections (during the modelling session). This is dif-
ferent from what is being done by current modelling lan-
guages (such as Modelica, ABBACUS II, ASCEND): they
all gather all information from a modelling-session, then
throw it all on one big stack and then the symbolic analy-
sis is done.
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Abstract

When a fault occurs in a certain transmission or distribution
network, circuit breakers must automatically open switches
to ensure that power is no longer fed to the faulty line or to
the smallest possibile zone including the fault.

The circuit breakers (CBs) are controlled at the local level
by relays. When a relay detects a fault in its covering zone
it automatically triggers the appropriate circuit breaker to
clear the fault. Relays are also responsabile for sending sig-
nals about their observation and about their action to the dis-
patching center (via separate comunication links).

The monitoring system in the dispatching center can receive
several tens of messages per second making the interpre-
tation difficult, especially in the case of multiple faults or
incorrect operation of protective devices (PDs) [1, 2].

Automatic interpretation of alarms (messages from different
substation about CBs and PDs activity) may have either of
the following objectives:

• to determine the causes of a dysfunction, to provide
explanation to the operator or to predict future behav-
ior of the system (e.g. to assess the degree of emer-
gency of a situation)

• to react automatically like a back-up protection in case
of circuit breaker failure or missoperation of any pro-
tective device. Expert systems have been proposed for
this back-up fault detection and protection [4].

In the last years the model based approach to fault detec-
tion has become more and more important thanks to the ad-
vances in available tools. We design fault diagnosis algo-
rithms based on mathematical model, describing the power
systems as a timed discrete event systems. Although the
power system itself is a continous time system, its protec-
tion scheme may be viewed as a discrete event system.

Petri Nets are basicaly developed for describing and
analysing information flow, and they are excellent tools for
modeling asynchronous concurrent systems such as com-
puter systems and manufacturing systems, as well as power
protection sytstems [3, 5, 6].

We have developed a timed Petri Net model of the PDs in a
substation. Some of the events in this model are observable,
while others (e.g. short-circuits) are unobservable. Using

timed Petri Nets models for different substations (capturing
the interactions between PDs and CBs) and a model of the
information they exchange, we derive a hierachical fault di-
agnoser. The first level contains local diagnosers that anal-
yse the behavior of the PDs and CBs using only information
from the substation in which they are placed. They send a
“condensed report” to the high level diagnoser. Based on the
information from different substations, the high level dis-
patching center may decide the proper action for the faulted
area.

This fault diagnoser allows fast location of any modelled
fault even when some of the sensors and actuators are unreli-
able. The method can be used for on-line aplications in both
transmission and distribution networks to assist dispatching
center operators during emergencies. It can e.g. be used
to determine the circuit breakers to be triggerd so as to dis-
connect the smallest possible zone needed to prevent unsafe
operations of the power system.
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1 Introduction

Piecewise affine systems received considerable amount of
attention recently, because they frequently arise, for exam-
ple, as an approximation for more complex nonlinear sys-
tems, or as a simple class of hybrid systems.

Stability analysis for piecewise affine systems has been cast
as a set of linear matrix inequalities in [1]. Stabilizing state
feedback design, essentially based on the results in [1], was
presented, for example, in [3].

In [2] stabilizing output feedback design was presented.
Proposed output feedback controller consists of an observer
and a state feedback controller. However, observer and con-
troller design are not separated steps, and can not be sepa-
rated.

In this work we consider a simple class of piecewise affine
systems and propose an observer design procedure. The pro-
posed observer does not require information about the cur-
rently active linear dynamics. Related, but far less general,
approach was presented in [4].

2 Problem statement

We consider the following class of bimodal piecewise affine
systems:

ẋ =

{
A1x + Bu, H T x ≤ 0
A2x + Bu, H T x > 0

(1)

y = Cx, (2)

wherex ∈ Rn, y ∈ Rp, u ∈ Rm, A1, A2 ∈ Rn×n, B ∈

Rn×m, C ∈ Rp×n andH ∈ Rn×1.

Proposed observer for the system (1),(2) has the following
structure:

˙̂x =

{
A1x̂ + Bu + L1(y − ŷ), H T x̂ ≤ 0
A2x̂ + Bu + L2(y − ŷ), H T x̂ > 0

(3)

ŷ = Cx̂, (4)

wherex̂ ∈ Rn, ŷ ∈ Rp, L1, L2 ∈ Rn×p.

Design problem for the observer structure (3), (4) is to de-
termine observer gainsL1, L2, such that‖x̂(t)− x(t)‖ → 0
ast → ∞, for everyx̂(0), x(0).

3 Design procedure

Sufficient conditions for global asymptotic stability of the
state observation error, based on Lyapunov arguments, are
obtained, and presented in the form of linear matrix inequal-
ities.

Following the same line of reasoning basic observer struc-
ture (3), (4) can be extended, to include output prediction
error y − ŷ in the observer switching surface, to improve
convergence of the estimate.

An illustrative example is presented.

4 Conclusions

The observer is proposed that has a simple structure, and can
be easily implemented in practice. Also, design procedure
is numerically efficient.

Future work will focus on generalizations of presented ob-
server design procedure to include more general class of
piecewise affine systems, and hybrid systems. Also, another
important research issue is the design of a control strategy
on the basis of the observed state.
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1 Abstract

In this paper, controlled invariant sets of switched linear sys-
tems are studied. In particular, the problem of finding the
maximal controlled invariant set (MCIS) contained in a lin-
ear space is addressed.

Control of dynamic systems by switchings have been stud-
ied intensively. Typical results include stability properties
[1], sliding mode analysis [2][3] and reachability and con-
trollability issues [4].

The study of controlled invariance in this paper is moti-
vated by controller design paradigm based on viability the-
ory. See, for example, [5] and [6].

The dynamics of the systems considered in this paper can
be described by a family of state-space representations with
shared state-space

ẋ(t) = Ai x(t) + Bi u(t),

i ∈ {1, 2, · · · , m}.

The system admits two inputs, namely the continuous input
u(t) and the discrete input1k that induces the switchings
between the dynamics in the family.

There are two main cases studied in this paper. The first case
deals with the situation where infinitely often switchings are
not allowed. The second case deals with the situation where
they are allowed.

If infinitely often switchings are not allowed, consider the
following iteration.

V0 = V, (1a)

Vi +1 = Vi ∩

 ni⋃
j =1

m⋃
k=1

Vi j ∩ A−1
k

(
Vi j + Im Bk

) . (1b)

HereVi j is a linear space andV =
⋃

j Vi j . The following
theorem can be proved about this iteration.

Theorem 1 Let the iteration (1) converge to V , i.e. there is
a p > 0 such that

i ≥ p ⇐⇒ Vi +1 = Vi = V.

Then V is the maximal controlled invariant set contained in
V.

It is also proved that the iteration follows some tree struc-
ture and that this tree terminates, hence guaranteeing con-
vergence of the iteration after just a finite number of steps.
The limit set of the iteration turns out to be the union of the
maximal controlled invariant subspaces of each individual
mode.

If infinitely often switchings are allowed, then the following
iteration is used instead

V0 = V, (2a)

Vi +1 = {x ∈ Vi | vel(x) ∩ TVi (x) 6= ∅}. (2b)

The symbolvel(x) denotes the polyhedral set of possible
velocity vectors andTV (x) denotes the tangent cone ofV at
x respectively. As in the other case, it is proved that if the
iteration converges, it will be to the MCIS.

Another result is that (2) is a generalization of (1), and by
imposing certain conditions, both (1) and (2) boil down to
the well known algorithm for the construction of maximal
controlled invariant subspace of linear systems [7].
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1 Abstract

Kalman Filters (KFs) are often used as minimum mean
square error (MMSE) state estimators. Although these es-
timators are known to give optimal estimates only when the
system’s process and measurement functions are linear, they
are quite often used for systems with nonlinear functions.
Different KF estimators linearize these functions in different
ways. In order tochoosean estimator for a certain problem,
it is important to have a good insight in the performance of
each of the estimators on this kind of problems.

The performance of the estimators is expressed in terms of
the consistency of the state estimates (the state vector and
its covariance matrix) and their information content. An es-
timate isconsistentif the covariance matrix is large enough
to reflect the uncertainty on the estimate. In order to obtain
consistent estimates, one could artificially increase the co-
variance matrix. However, increasing the covariance matrix
too much corresponds to loosing information about the real
accuracy of the estimate. Therefore, the quality of an esti-
mate is not only determined by its consistency, but also by
its information content. The larger the covariance matrix of
an estimate is, the smaller is its information content.

The first part of the presentation analyzes the performance
of some well-known KFs—i.e., the Extended Kalman Filter
(EKF), the Iterated Extended Kalman Filter (IEKF) and the
Linear Regression Kalman Filter (LRKF)—when they deal
with nonlinear process and measurement updates.The EKF
linearizes the process and measurement functions around
the previous state estimate. The linearization errors are not
taken into account, except if the user provides some approx-
imation of these errors, e.g. obtained by extensive off-line
tuning.The IEKFlinearizes the process function in the same
way as the EKF. The measurement function is linearized
around thenextstate estimate (obtained by iteration). Again,
the linearization errors are not taken into account, except
if the user approximates these.The LRKFis a unified de-
scription of a class of KFs, including the Unscented Kalman
Filter (UKF, [1, 2]). The LRKF (i) linearizes the process
and measurement functions by a statistical linear regression
of the functions through some sampling points in the un-
certainty region around the state estimate; and (ii) defines
the uncertainty due to linearization errors as the covariance
matrix of the deviations between the function values of the

nonlinear and the linearized function in the sampling points.

Besides some well known issues, such as the consistency of
the LRKF state estimates and the inconsistency of the EKF
state estimates, some less known, but important results are
clarified: (i) a good performance of an estimator in the pro-
cess or measurement update, does not guarantee a good per-
formance in the other update; therefore, it can be interesting
to use different estimators for both; (ii) the LRKF measure-
ment update often returns consistent, but non-informative
estimates; and (iii) the IEKF measurement update yields
consistent and informative state estimates when the state—
or at least the part of it that causes the nonlinearity in the
measurement function—is instantaneously fully observable.

The second part of the presentation proposes a “Cascading
Kalman Filter”, consisting of multiple stages of KFs. The
core idea of this new estimator is to estimate different state
variables than the desired ones, but which dependlinearly
on the measurements. There can be more “new” state vari-
ables than the original problem has. In this case, (nonlinear)
constraints between the “new” state variables exist; but, are
not introduced in the (linear) KF. Whenever necessary, the
desired state can be estimated from its initial state estimate
(prior) and the last “new” state estimate. This last step is
performed by an IEKF which gives good results if the mea-
surements up to that time step fully observe the desired state
estimate. The Cascading Kalman Filter can easily be imple-
mented for static state estimates. Although they can not be
extended in general to dynamical systems, some examples
of dynamical state estimation are also given.
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1 Introduction

The presentation is devoted to the problem of asymptotic
regulation of the output of a dynamic system, which is sub-
ject to disturbances generated by an external system. Many
problems in control theory can be considered as particular
cases of the output regulation problem: tracking of a class
of reference signals, rejecting a class of disturbances, stabi-
lization, partial stabilization or controlled synchronization.
For linear systems, the problem is completely solved result-
ing in the well-known “internal model principle”. For non-
linear systems, the problem is much more complicated and
the complete solution is found only in the case of the lo-
cal problem setting. In particular, necessary and sufficient
conditions for the solvability of thelocal output regulation
problem were obtained and a procedure for designing a con-
troller, which solves the problem, was found [1]. A con-
troller resulting from this procedure solves the output regu-
lation problem only for small initial conditions of the closed-
loop system. From an engineering point of view, such solu-
tion is not satisfactory, since the region of admissible initial
conditions is not specified. Thus, once a controller solving
the local output regulation problem is found, there is a need
to determine this region.
In this presentation, we first review the conditions for the
solvability of the local output regulation problem, as well as
the procedure of constructing a controller solving the prob-
lem and, second, explain a method for estimating the set of
initial conditions, for which the controller solves the prob-
lem.

2 Local output regulation problem

In the context of the output regulation problem, we consider
systems modelled by equations of the form

ẋ = f (x, u, w) (1)

y = hm(x, w), e = hr (x, w),

with statex ∈ X ⊂ Rn, input u ∈ U ⊂ Rm, measured
output y ∈ Rl , regulated outpute ∈ Rp and exogenous
disturbance inputw ∈ W ⊂ Rr generated by the exosystem

ẇ = s(w). (2)

The local output regulation problem can be formulated as
follows: find an output feedback controller of the form

ξ̇ = η(ξ, y), u = θ(ξ, y), (3)

such that for the closed-loop system (1)-(3) for small ini-
tial conditions(x(0), ξ(0), w(0)) the regulated output con-
verges to zero: e(t) → 0 as t → ∞. Once a controller solv-
ing the local output regulation problem is found, we have to
estimate the region of initial conditions(x(0), ξ(0), w(0)),
for which the regulated outpute converges to zero.

3 Estimation of the convergence region

For the region of admissiblew(0) we present an estimate in
the form of a ballB: |w| ≤ r , for somer > 0. The number
r is chosen such that solutions of the system (2) starting in
B are defined and small for allt ∈ R. The region of ad-
missible(x(0), ξ(0)) is estimated by an ellipsoidE of the
form (xT , ξT )P(xT , ξT )T

≤ R for someR > 0 and some
positive definite matrixP. The ellipsoid is chosen such that
for any w(t), a solution of (2) passing through the ballB,
the closed-loop system (1), (3) has a unique solutionx̄(t),
such that it lies inE for all t ∈ R and all other solutions
of (1), (3), starting inE, converge tox̄(t). Such property
of the closed-loop system is calledconvergence[2]. The
conditions for convergence allow to find the matrixP and
the numbersR > 0, r > 0, which determine the ballB
and the ellipsoidE. The conditions for the solvability of
the local output regulation problem and the form of the con-
troller solving the problem imply that the regulated output
e = hr (x, w) is equal to zero on(x̄(t), w(t)). Thus, the
regulated outpute tends to zero on any solution of (1)-(3)
starting in(x(0), ξ(0), w(0)) ∈ E × B.

4 Conclusions

We have proposed a method for estimating the region of con-
vergence for a controller solving the local output regulation
problem.

References

[1] C.I. Byrnes, F. Delli Priscoli, A. Isidori.Output reg-
ulation of uncertain nonlinear systems.Birkhauser: Boston,
1997.

[2] B.P. Demidovich.Lectures on stability theory. Nauka:
Moscow, 1967 (in Russian).

Acknowledgments:this research is supported by the Nether-
lands Organization for Scientific Research (NWO).

21st Benelux Meeting on Systems and Control Book of Abstracts

41



Synthesis of rhythmic patterns in small networks of

oscillators

F. Defays
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Abstract

Central pattern generators play an important role in
the control of animal locomotion. They consist of an
intraspinal network of neurons able to generate and to
sustain a cyclic activity. Although animals have neural
networks composed of a huge number of neurons, Gol-
ubitsky et al [1, 2] studied the smallest network able to
reproduce basic rhythmics of gaits. They have proved
that eight ”cells” correctly connected are able to repro-
duce standard gaits1 phase relations of a quadruped.

4 6 8

7531

2

Figure 1: Central Pattern Generator : network model
developed by Golubitsky et al [1, 2]

In the network displayed in Fig 1, each ”cell” is a non-
linear oscillator. We choose for this oscillator the sim-
plest model of ”neural” oscillator [3] consisting in the
feedback interconnection of an inhibitory state with an
excitatory state :

{

τ · ˙xE = −xE + sat(xE − xI + input)
τ · ẋI = −xI + sat(xE)

For networks made of such oscillators, we address
the synthesis problem of selecting the interconnection
structure such as to impose a specific rhythmic pat-
tern in the network, i.e. phase differences between each
oscillator. Moreover, we constrain the interconnection
structure to satisfy Dale’s principle, i.e. that excita-
tory (resp. inhibitory) states, may have only excitatory

1Standard gaits are composed of walk, trot and pace

(resp. inhibitory) actions on other states. Our synthe-
sis method uses averaging theory for the analysis of two
interconnected oscillators, following [4]. This analysis
is extended to the complete network using symmetry
considerations.

To conclude we designed a central pattern generator
able to reproduce rhythmics patterns of gaits, with cell
models matching the basics biological features of animal
neurons.
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1 Abstract

The behavioral approach to systems and control theory has
led to an elegant characterization of the set of all behaviors
which are achievable by interconnecting (on a set ofshared
variables) a given linear time-invariant system (theplant)
with another arbitrary linear time-invariant system (thecon-
troller). This characterization (in some circles known as
Willems’ lemma) takes the form of a double inclusion

N ⊂ K ⊂ P

with K denoting an achievable behavior, andN andP denot-
ing, respectively, thehiddenand themanifestplant behavior,
see e.g. [1, 2, 3].

Purpose of this presentation is to give an alternative, and
supposedly simpler, proof of this lemma, and to show how
this alternative proof directly leads to anonlineargeneral-
ization of Willems’ lemma. Also some implications to the
control of port-Hamiltonian (nonlinear) systems will be in-
dicated.
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1 Summary

Singular values and singular value decompositions are
among the most important tools in linear algebra that have
played a key role in systems analysis, control system de-
sign, model reduction, data compression, perturbation the-
ory, signal analysis and many applications in numerical lin-
ear algebra [1]. The purpose of this presentation is to pro-
pose a definition of a set of singular values associated with
a linear operator defined onarbitrary normed linear spaces.
This generalizes the usual notion of singular values and sin-
gular value decompositions to operators defined on spaces
equipped with thep-norm, wherep is arbitrary. Basic prop-
erties of these generalized singular values are derived and
we consider their relevance in the problem of optimal rank
approximation and a problem of optimal system identifica-
tion. We give sufficient conditions for the existence of opti-
mal rank approximants in thep-induced norm and provide
a characterization of autoregressive models which are opti-
mal in the sense that they minimize a misfit criterion which
reflects thep-norm of a residual signal.

2 Definitions

Let X andY be two finite dimensional vector spaces of di-
mensionn andm and letM : X → Y be linear. For anyp,
let

‖x‖p :=

{(∑n
i =1 |xi |

p
)1/p if p < ∞

maxi =1,...,n |xi | if p = ∞

and define theinduced p-norm of Mas

‖M‖ := sup
06=x∈X

‖Mx‖p

‖x‖p
.

The induced p-norm singular valuesof M are the numbers

σ
(p)
k := inf

L⊆X,
dimL≥n−k+1

sup
06=x∈L

‖Mx‖p

‖x‖p

wherek runs from 1 tilln. It is easily seen that these num-
bers are ordered according toσ (p)

1 ≥ . . . ≥ σ
(p)
n ≥ 0 and

that (for anyp) the firstr singular values are non-zero if and
only if M has rankr .

3 Problem formulations

The above singular values turn out the key tool in the solu-
tion of the following problems.

3.1 Rank deficiency
A reliable numerical implementation to determine rankM
usually calculates thenumerical rankdefined as

rank(M, ε) := min
‖M−M ′‖≤ε

rank(M ′)

whereε > 0 is an accuracy level andp defines the norm of
interest.

3.2 Rank approximation
The problem of approximatingM by a linear mapM ′

:

X → Y of rank at mostk (k < rankM), such that the
p-induced norm

‖M − M ′
‖

is minimal. We refer to this problem as theoptimal rank
approximation problem.

3.3 System identification
Given dataw̃(t), t = 1, . . . , N, we consider the problem of
finding autoregressive models of the form

n∑
i =0

r i w(t + i ) = 0, t ∈ Z+ (1)

where the unknown parameter vectorr = (r0, . . . , rn) min-
imizes the identification criterion

µ(r, w̃) :=
‖e‖p

‖r ‖p

wheree is the residual of (1). Note the relevance of this
problem for different values ofp. In particular, forp = ∞

this problem minimizes the amplitude of the residual signal
e.

We will show the relevance of generalized singular values
for each of these problems.
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1 Abstract

This note discusses an LMI framework to the design of ro-
bust multiobjective dynamic output-feedback controllers for
discrete-time systems with structured uncertainty. The con-
trol objectives considered are guaranteedH2 norm, guar-
anteedH∞ norm and regional pole-placement. The uncer-
tainty that can be dealt with by the proposed approach is al-
lowed to have a quite general structure – it is just assumed to
be such that the state-space matrices of the uncertain system
belong to a given convex set.

2 Introduction

Much attention has been focused on controller and filter de-
sign based on LMIs in the last decade due to the recent de-
velopment of computationally fast and numerically reliable
algorithms for solving convex optimization problems sub-
ject to LMI constraints. Due to the well-known separation
theory, in the case when no uncertainty is present these fil-
ters can directly be coupled with their dual state-feedback
controllers to yield optimal output-feedback controllers. For
uncertain systems, trying to solve the coupled problem of
output-feedback controller design for system with structured
uncertainty one immediately faces a nonlinear, non-convex
problem.

3 Outline of the approach

In [1] a novel approach to the design of guaranteed-cost ro-
bustH2 andH∞ dynamic output-feedback controllers was
proposed. It is well-known that both objectives define a non-
linear, non-convex problem. To circumvent this difficulty, a
two-stage design approach is proposed. First, a multiob-
jective robust state-feedback is designed, represented by the
state-feedback gain matrixF , and second, the matrixF is
fixed constant in the design of the other matrices of the dy-
namic output-feedback controller. Although the second step
remains non-convex, it is shown that by restricting the Lya-
punov function for the closed-loop system to have a certain
block-diagonal structure, this problem can be recast into an
LMI feasibility problem. The conservatism that is sacrificed
by imposing this structural constraint on the Lyapunov func-
tion is, however, well justified by the ability of the approach

to explicitly deal with structured uncertainties in the system.

The approach discussed here makes use of the results ob-
tained in [1], and focuses on the design ofmultiobjective
dynamic output-feedback controllers for discrete-time sys-
tems with structured uncertainties. A sufficient condition,
based on LMIs, to the existence of solution to the following
mixedH2/H∞/pole-placement control problem is proposed

H2 objective: sup
1

‖L2T1
cl (z)R2‖

2
2 < γ2,

H∞ objective: sup
1

‖L∞T1
cl (z)R∞‖

2
∞ < γ∞,

Pole-placement: λ(A1
cl ) ∈ D, ∀1.

(1)

given anyγ2 > 0, andγ∞ > 0, whereT1
cl (z) is denoted

the closed-loop transfer function,1 denotes the (structured)
uncertainty in the system, and the matricesL2, R2, L∞, and
R∞, are used to select the desired input-output channels in
the mixed control objective above. The superscript1 de-
notes dependence on the uncertainty. The complex region
D , in which the closed-loop eigenvalues, denoted asλ(A1

cl ),
are required to lie, is assumed to have the form

D = {z ∈ C : L + zM + z̄MT < 0, L = LT
}.

Due to the fact that the system of LMIs, which implies the
constraints (1), is affine in bothγ2 andγ∞, one may also
wish to consider the optimization problem

min
γ2,γ∞

α2γ2 + α∞γ∞ subject to (1).

for given positive numbersα2 andα∞. The approach has
been tested on a case study with an aircraft model with six
uncertain parameters.
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1 Introduction

One of the reasons thatH∞ synthesis has not yet been
widely used in industry is the high order (i.e. the Mc Millan
degree) of the resulting controller. The order equals the or-
der of the dynamical model plus the order of the weighting
functions. The computation of the controller action becomes
more expensive with increasing controller order. In view
of real-time implementation on electro-mechanical systems
with a very high sampling rate, the need for low-order con-
trollers is obvious. This research aims at facilitating the im-
plementation ofH∞ controllers by developing a direct syn-
thesis method for reduced-order controllers. Although lot of
work has been published on this topic in the literature [2],
[3], [4], there is no method that works well for high-order
models, i.e. order> 50.

2 Fixed-order control problem

We consider the following problem:

Problem 1 (fixed-orderH∞ synthesis) Given a transfer
matrix P of the plant, find a controller with transfer matrix
K of order nc such that the closed loop inter-connection is
asymptotically stable and satisfies‖S(P, K )‖∞ < γ , where
S(P, K ) denotes the lower linear fractional transformation
of P and K and‖ · ‖∞ denotes theH∞-norm.

Problem 1 is equivalent to the following minimization
problem:

Problem 2 (BMI formulation)

min
X,K ,γ

γ

subject to:

 AT
cl Xcl + Xcl Acl Xcl Bcl CT

cl
BT

cl Xcl −γ I DT
cl

Ccl Dcl −γ I

 < 0

Xcl > 0

where the quadruple[Acl , Bcl , Ccl , Dcl ] is the closed loop
state-space system description.

The first inequality constraint in Problem 2 is a bilin-
ear inequality in the unknown Lyapunov matrixXcl and
the state space matrices of the controller. These bilinear
couplings make the problem nonconvex.

3 Interior point method

We propose to use an Interior Point method to solve Prob-
lem 2 as suggested by Gohet.al. [5]. The approach is based
on the predictor-corrector method for nonconvex semidefi-
nite programming of Jarre [1]. This method uses a curved
line-search in the corrector to deal with the nonconvexity.
Because theH∞-norm is invariant under similarity trans-
formations of the controller, we can reduce the number of
decision variables by keeping a part of the Lyapunov matrix
Xcl fixed.
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1 Introduction

In automotive industry, durability tests are used to investi-
gate whether a vehicle endures a long sequence of repeated
cyclic loading. On a so-called ”half-axle” test rig, a suspen-
sion is mounted and loaded in vertical and lateral direction.
In order to subject the suspension to a realistic loading, one
tries to reproduce the vertical and lateral forces measured
on the suspension during a test drive on a special test track.
The reproduction of these forces on the rig, by controlling
the excitation, is a multivariable tracking problem.

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 1: Half-axle test rig, with suspension.

The present-day solution for this tracking problem applies
only feedforward, which is generated in an off-line iterative
process, based on the measured open loop Frequency Re-
sponse Function ( ����� ) of the test rig. An iterative process
is necessary due to the nonlinear dynamics of the suspen-
sion: the measured ����� can’t exactly predict the response
of the test rig. Based on the difference between the target
signal and the measured response, the feedforward control
signal for the next iteration is updated, until the desired ac-
curacy is obtained. [2] explains this method, and determines
its convergence properties. Current research tries to intro-
duce a feedback controller to accelerate this process. In [2]
it is shown that the convergence is faster when a performant
feedback controller is used.

Nonlinearities, measurement noise and spill-over result in
modeling errors, which necessitates a robust feedback con-
trol design. This research considers �
	 -control design.

2 ��	 feedback control and results on the test rig

The design method used is the so-called ”Mixed sensitivity
loop shaping” design method described in [1], which mini-

mizes: ����
����������������������� ��� 	 (1)

with � the controller, � , � and ��� the sensitivity, the
complementary sensitivity and the input sensitivity function
respectively. �!� , ��� and ��� are user-defined weighting
functions. A good choice of the weighting functions tries
to meet the performance, robustness and input-limitation re-
quirements as good as possible.

This presentation discusses the design of a robust and per-
formant multivariable controller for the test setup. The use
of this controller yields a reduction of the number of itera-
tions from 7 (without feedback) to 3 (with feedback). Figure
2 shows these results by means of the evolution of the dam-
age ratio as a function of the iteration number. The damage
ratio is a measure for the difference (in per cent) between
the damage caused to the suspension during the test and by
the desired loading. It is an important evaluation criterion
for durability tests.
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Figure 2: Evolution of the damage-ratio over the iterations.
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1 Introduction

In many chemical plants, the use of P and PI control is still
widely used. Tuning of these controllers is a time consum-
ing matter, because a detailed process model or extensive
plant tests are needed. For this reason, we propose a new
tuning method based on adaptive control and we use it to
determine the parameters in the P and PI controllers. Our
purpose in this paper is twofold. First, we investigate the
needs in process industry and based on that, we develop our
adaptive controller. For a number of examples, the useful-
ness of the developed controller is illustrated. Second, we
use this controller for tuning and derive a set of tuning-rules.
The obtained tuning-parameters are used in a model of an in-
dustrial plant. We emphasize that the developed controller
is only used for tuning and after that replaced by the con-
ventional P or PI controller.

2 Adaptive λ-tracking control

In adaptiveλ-tracking, the main goal is to keep some vari-
ables within bounds. The basic structure (Allgöwer and
Ilchmann [1]) is that of a P-controller (a PI-structure is also
possible) with a time-varying gaink(·):

u(t) = −β k(t) [y(t) − yre f (t)] + δ

k̇(t) =

{
γ (y(t) − yre f (t))2 , ‖y(t) − yre f (t)‖ ≥ λ

0 , ‖y(t) − yre f (t)‖ < λ.

(1)

In this controller, the gaink(·) is strictly monotonically in-
creasing as long as the difference between the outputy(·)

and the reference signalyre f (·) is larger than the givenλ. If
this difference enters theλ-strip the adaptation is switched
off and the gain is kept constant. The parametersβ, δ, λ > 0
andγ > 0 are left to the choice of the designer. The assump-
tions on the plant and the proof that the gaink(·) converges
to a constant value and thaty(·) − yre f (·) converges to the
λ-strip are given in [1]. We make plausible that the assump-
tions on the plant are satisfied in many practical cases. In-
vestigating the needs of process industry, we concluded that
λ-tracking within prespecified time and with input satura-
tion is needed. We incorporated the combination of these
two in the controller (1) and we were able to proof that
limt→T k(t) = kT ∈ R≥0 and limt→T [y(t) − yre f (t)] = 0,
in which T is the prespecified time.

3 Tuning and results

Here, we used the modifiedλ-tracking controller (1) for tun-
ing purposes on three different cases. The reasons to use this
controller for tuning are

• A process model or plant tests are not required and the
tuning of the parameters is done on-line.

• The controller itself does not require much tuning, is
very robust and is easy to implement.

First, we compared the results of Vrančić et al. [4] with our
controller and concluded that the results were only slightly
worse, but much faster obtained because of the reasons
above. We also derived a set of tuning-rules. An activated
sludge process (Georgieva and Ilchmann [2]) that not ful-
filled the assumptions completely, has been controlled and
tuned by the proposedλ-tracking controller. In this case, we
also incorporated the modifications proposed by Polderman
and Mareels [3] in our controller. Finally, because all of the
examples above were single-input, single-output, we tested
the λ-tracking controller in multiple-input, multiple-output
setting on a model of an industrial plant.
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[4] D. Vrančić, Youbin Peng and S. Strm̌cnik (1999),‘A
new PID controller tuning method based on multiple inte-
grations’, Control Engineering Practice,7, pp. 623-633.

Book of Abstracts 21st Benelux Meeting on Systems and Control

48



Model Reduction by Proper Orthogonal Decomposition

Patricia Astrid
Department of Electrical Engineering

Control Systems Group
Eindhoven University of Technology

P.O.Box 513
5600 MB Eindhoven

The Netherlands
p.astrid@tue.nl

Siep Weiland
Department of Electrical Engineering

Control Systems Group
Eindhoven University of Technology

P.O.Box 513
5600 MB Eindhoven

The Netherlands
s.weiland@tue.nl

1 Abstract

REGLA project deals with the control and optimization of
glass melting furnaces. The desired applied control scheme
for the glass melting furnace is the Model-Based Predictive
Control. Currently, a simulating first-principle based model
has been built in a software package and considered as a
good model that approximates the real furnace behaviour.
Since the model of the glass melting furnace comprises
mainly of nonlinear partial differential equations, numerical
implementation of this model will require discretisation of
the computation domain in enormous amount of grid cells
that leads to a slow model. Model reduction becomes an
inevitable need to provide a good simulating model for the
controller that employs much less computational effort, yet
provides a good agreement with the original model. Cur-
rently the Proper Orthogonal Decomposition technique is
investigated for feasibility and after analyzing the results for
some test cases, this method offers an extremely promising
tool for model reduction of glass melting furnaces.

2 Proper Orthogonal Decomposition

It is well-known that the dynamics of a system can be
approximated as linear combinations of its basic modes.
This has been employed for example in the Fourier and
Taylor series.

Consider a general form of a PDE [2]:

∂u

∂t
= D(u) (1)

In the Proper Orthogonal Decomposition (POD) technique,
the solution of the PDE in Eq. 1 can be expressed as [2]:

û = 6N
i =1ai (t)ϕ(x) (2)

The basic modes in POD are the corresponding eigenvectors
obtained from the Singular Value Decomposition of the

empirical data collection [4],[1]. The degree of the reduc-
tion is determined from the number of eigenvectors taken.
An error minimization criteria is applied to determine the
time-varying coefficients for each eigenvectorsai (t).

To test the feasibility of this approach, several test cases
have been built, among others Navier Stokes Equation for
2-D flow and a heat conduction problem. Despite of the
nonlinearity of these physical phenomena, the reduced
model shows good agreement with the original model
although the number of modes taken is very few compared
to the original order of the model. In many examples,
the POD method adapts quite well with the changing of
working points.

In the near future, mathematical properties of the POD
method are going to be investigated and application to the
rigorous software is planned.
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1 Abstract

In industrial plants, many control loops have poor perfor-
mance which implies a decrease of the product quality, un-
necessary high energy consumption, waste of raw material...
An important indication of deterioration of the control per-
formance is the presence of oscillations in the control error
especially due to friction in valve, oscillating load distur-
bances, or badly tuned controller. In this work, a review of
existing approaches, that help to distinguish oscillations due
to valve stiction from oscillations due to other causes, is per-
formed. These methods only use the set point, the process
output and the control signal.

Many methods rely on the shape of the output signal and
of the control signal to determine the origin of an oscilla-
tion. Indeed, usually, in case of stiction, the control signal
is always triangular and the output signal is rectangular for
non-integrating processes and triangular for integrating pro-
cesses.

The method described in [3] compares the output signal with
a set of primitives representing the trends that can appear in
a signal (linear increasing, linear decreasing, curved increas-
ing...). Another method [1], dedicated to self-regulating pro-
cesses, is based on the shape of the correlation function be-
tween process output and controller output. In [2], diagnos-
tic is performed using the shape of the probability density
function of the first or of the second derivative of the output
signal. In cascade loops, some hardware problems can be
diagnosed by studying the plots of the set point against the
output signal [5].

Other methods that do not use the shape of the signals have
also been developed. Such an approach is proposed in [5]
and in [6] where the presence of a nonlinarity inside a con-
trol loop is detected and in [6] where diagnosis of the root
cause of plant-wide oscillations caused by a nonlinearity is
performed.

The results obtained with some of these approaches are il-
lustrated via simulations. To this end, a typical model of a
control loop including a phenomenological model of a con-
trol valve [4] is used. The latter is a nonlinear first-order
model including non-linearities like dead zone, dead time
and velocity saturation. This model allows one to simulate
a control valve in healthy condition and to introduce stic-

tion and hysteresis. Possible limitations of the methods are
pointed out.
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Clinker and raw material grinding is a fundamental
step in cement manufacturing. This highly energy-
consuming operation is usually performed in closed-
loop grinding circuits, including a ball mill and an air
classifier [4].

Modeling of industrial grinding circuits is a delicate
task due to the lack of reliable measurements of some
key variables, such as material hold-up and particle size
distribution inside the mill, which are function of space
and time [1].

In previous studies [2, 3], the authors have developed
and validated a first-principle model of a closed-loop
grinding circuit of the cement manufacturer CBR (Bel-
gium). This first-principle model, which consists of sets
of partial differential equations (PDEs) and algebraic
equations (AEs), can be used as a tool to investigate
process dynamics, to study the effect of changes in ma-
terial properties, and to test control schemes.

Even though this approach has proved quite successful,
the resulting model is too complex in nature to allow
model-based control to be readily implemented. As a
next step, it is therefore required to develop simplified
models and, in [5], a reduced-order model is proposed
for a laboratory-scale fed-batch process.

The objective of the present study is twofold:

• to extend the results presented in [5] to a full-scale
closed-loop grinding circuit. This objective in-
volves the development of a low-order distributed-
parameter model for a continuous ball mill, which
would allow the description of the particle size
distribution along the mill axis, the estimation of
the unknown model parameters, and the valida-
tion of this model with respect to the previously
developed, more complex, first-principle model.

• to design a nonlinear predictive control (NMPC)
based on the low-order distributed-parameter
model.

The main advantage of the proposed modeling approach
– which is still based on elementary mass balances for

several particle size intervals – is that it enables the
description of the particle size distribution inside the
grinding circuit, whereas black-box approaches often re-
fer to some global variables only (such as the material
flow rates or the total mass content of the mill).
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modélisation dynamique, à la simulation et à la
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1 Abstract

We consider an estimation problem for dynamical system
described with an errors-in-variables model (see Figure 1).
We give a recursive solution of the smoothing problem, i.e.,
the estimation problem when all data is available before-
hand. The problem statement is given in Section 2 and the
solution is given in Section 3.

PSfrag replacements

(A,B,C)ūt

ũt

ȳt

ỹt

ut yt

xini

Figure 1: Errors-in-variables model

2 Optimal EIV smoothing problem

Given is a discrete-time LTI state-space system

x̄t+1 = Ax̄t + Būt

ȳt = Cx̄t,

for t = 0, 1, . . . , T − 1, and with given initial condition
x̄0 = xini. The signals ū and ȳ are not measurable. The
measured signals are

ut = ūt + ũt and yt = ȳt + ỹt,

where ũ and ỹ are white, centered, and uncorrelated ran-
dom processes with known covariance matrices var(ũt) ,

R−1 > 0 and var(ỹt) , Q−1 > 0, for t = 1, . . . , T .

The optimal EIV smoothing problem is: find sequences
{ût}

T−1
t=0 , {ŷt}

T−1
t=0 , and {x̂t}

T
t=0 that solve the following

optimization problem

min
û0,...,ûT−1

ŷ0,...,ŷT−1

x̂0,...,x̂T

T−1
∑

τ=0

(

(

uτ − ûτ

)T
R

(

uτ − ûτ

)

+

+
(

yτ − ŷτ

)T
Q

(

yτ − ŷτ

)

)

s.t.
x̂t+1 = Ax̂t + Bût

ŷt = Cx̂t,

(P)

for t = 0, 1, . . . , T −1, and with initial condition x̂0 = xini.

3 Solution

Let {Pt}
T−1
t=0 be the solution of the Riccati difference equa-

tion

Pt = − AT Pt+1B(BT Pt+1B + R)−1BT Pt+1A+

+ AT Pt+1A + CT QC,

for t = T − 1, . . . , 0, with final condition PT = 0, and let
{st}

T−1
t=0 be the solution of the recursion

st = − AT Pt+1B(BT Pt+1B + R)−1(BT st+1 − Rut)+

+ AT st+1 − CT Qyt,

for t = T − 1, . . . , 0, with final condition sT = 0. Then the
optimal smoothed signals solving problem (P) are obtained
from the forward recursion

x̂t+1 = Ax̂t + Bût, ŷt = Cx̂t,

ût = −
(

BT Pt+1B + R
)

−1
×

×
(

BT Pt+1Ax̂t + BT st+1 − Rut

)

.

for t = 0, . . . , T − 1, with initial condition x̂(0) = xini.
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1 Abstract

In this paper we study systems that can occur in a finite num-
ber of partly overlapping states, where the state directly de-
fines the (set of) appropriate control action(s) required to
bring the system back in its ground or equilibrium state. We
describe an approach for the real-time control of such sys-
tems, based on the concurrent aggregation and classification
of numerous heterogeneous noisy sensor data. Starting point
for the approach is a large set of empirical observations of
the given system, represented in the space of the sensor pa-
rameters. The relevant states of the system are identified
with parametric clustering techniques like Gaussian mixture
decomposition. Using this parametric representation, a hy-
pothesis on the actual state of the system can be expressed
in terms of the currently obtained sensor data. The real-
time control approach is based on determining the state of
the system as fast as possible. This is realized by itera-
tively determining the most informative sensor-parameter,
and consequently reading the associated sensor. The newly
collected information will give rise to a new hypothesis on
the system state. This iteration is continued until a specified
confidence level has been met, or all sensors have been red.
Central in our approach is the notion of the most informa-
tive parameter. This entity is defined as the parameter which
has the highest potency for deciding between the competing
hypotheses. This parameter is computed with dynamic pa-
rameter selection, using the optimization of functionals that
express relative state separation and relative parameter rel-
evance, involving the actual hypothesis on the system. The
approach is analysed theoretically, and an application is de-
scribed on real-time production quality control using com-
putational vision.
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1 Abstract

We describe decentralized control laws for the coordi-
nation of multiple vehicles performing spatially distrib-
uted tasks. The control laws are based on a gradient
descent scheme applied to a class of decentralized navi-
gation functions that encode optimal coverage and sens-
ing policies. The approach exploits the computational
geometry of Voronoi diagrams.

Our central motivation in this note is provided by dis-
tributed sensing networks in scientific exploration or
surveillance missions. The motion coordination prob-
lem is to maximize the information provided by a swarm
of vehicles taking measurement of some process.

1.1 Setting up the coverage control
Let {p1, . . . , pn} be the location of n sensors moving
in a Riemannian manifold (with boundary) Q. Let
φ : Q → R+ be a distribution density function. The
measure φ plays the role of an “information density”.
Assume each vehicle has a sensor that provides accurate
local measurements and whose performance degrades
with distance. Formally, let f (dist(q, pi)) (with ‘dist’
the distance defined through the Riemmanian metric)
describe the performance degradation, e.g., noise, loss
of resolution, etc, of the measurement at the point
q ∈ Q taken from the ith sensor at position pi. The
function f : R+ → R+ is monotone increasing.

The overall “sensing performance” is given by,

U(p1, . . . , pn) =
∫

Q

min
i∈{1,...,n}

f (dist(q, pi)) φ(q)dq. (1)

This function (common in geographical optimization
science [1]) measures the ability of a collection of ve-
hicles to provide accurate distributed sensing. The lo-
cational optimization problem is to minimize U .

1.2 Voronoi diagrams
Let the Voronoi region Vi = V (pi) be the set of all
points q ∈ Q such that dist(q, pi) ≤ dist(q, pj) for all
j �= i. The set of regions {V1, . . . , Vn} is called the
Voronoi diagram for the generators {p1, . . . , pn}. When
the two Voronoi regions Vi and Vj are adjacent, pi is
called a (Voronoi) neighbor of pj (and vice-versa).

1.3 Decentralized control protocols
We propose the gradient descent as a decentralized con-
trol law that achieve “uniform coverage” of Q,

ṗi(t) = −∂U

∂pi
. (2)

The following result [2, 3] shows that indeed the con-
trol law is decentralized, in the sense that only depends
on local information, i.e. the location of pi and of its
neighbors,

∂U

∂pi
=

∫
Vi

∂

∂pi
f (dist(q, pi)) dφ(q). (3)

Hence, U provides us with a decentralized navigation
function [4] in the setting of multiple vehicle networks.
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Figure 1: Distribution of sensors obtained by 16 vehicles in
a polygon. The vehicles’ initial positions are in a
tight group in the lower left corner and their final
positions are optimally distributed.
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Abstract

In state-space, the discrete-timeH2-approximation prob-
lem can be stated as follows. Let6 be a given (linear
time-invariant causal) stable system withm inputs andp
outputs and an associated minimal state-space realization
(A, B, C, D) of ordern. For k < n, find an approximat-
ing stable system̂6 and an associated minimal state-space
realization(Â, B̂, Ĉ, D̂) of orderk which minimizes theH2-
distance between6 and6̂, specified by

‖6 − 6̂‖
2
H2

= tr
{
(D − D̂)(D − D̂)∗

}
+

+tr

{(
C −Ĉ

) (
P1 P2
P∗

2 P3

) (
C∗

−Ĉ∗

)}
,

where P1, P2 and P3 are the (unique) solutions of the
discrete-time Lyapunov and Sylvester equations

P1 − AP1A∗
= B B∗,

P2 − AP2 Â∗
= BB̂∗,

P3 − ÂP3 Â∗
= B̂B̂∗.

This criterion is quadratic with respect to the each of the
entries of bothĈ and D̂, so that unique optimal values for
Ĉ and D̂ corresponding to afixedchoice for Â and B̂, are
easily computed as

D̂opt = D,

Ĉopt = C P2P−1
3 .

Substitution of these values into theH2-criterion to be min-
imized yields the following ‘concentratedH2-criterion’

‖6 − 6̂‖
2
H2

= tr
{
C P1C∗

}
− tr

{
C P2P−1

3 P∗

2 C∗

}
.

which is to be minimized over all controllable input pairs
(Â, B̂) with Â asymptotically stable of sizek × k and B̂
of size k × m. Note that the first term of this expression
is equal to theH2-norm squared of the given system6 and
provides an upper bound for the expressionVc(Â, B̂) :=

tr
{
C P2P−1

3 P∗

2 C∗

}
to be maximized.

In this paper we present a case study of a nontrivial multi-
variable example of a given system6 of order 4 with 2 in-
puts and 2 outputs together with an accompanying approx-
imating system6̂ of order 2. This example was designed

in a systematic way such that the entries in the matrices of
the state-space realizations of both6 and6̂ are available in
exact rational format. This makes the example suitable for
testing recently developed exact algebraic methods that can
be employed to decide on global optimality of the approx-
imant. The property of stationarity of the approximant6̂

for the concentratedH2-criterion is part of the design pro-
cedure, but local optimality has to be verified explicitly. For
the case of our example this is achieved by establishing pos-
itive definiteness of the Hessian at the approximant.

To establish global optimality of̂6, the algebraic form of
the concentratedH2-criterion, involving 4 free parameters,
still happens to be far too complicated to be handled directly
by available state-of-the-art algebraic methods and software,
despite the seemingly low values ofm, p, n andk. (This il-
lustrates the intrinsic complexity of the problem, which may
indicate to some extent why a general method to compute
global H2-approximants is still lacking in the literature.)

However, by means of a ‘second concentration step’, con-
sisting of an (unsuccessful) attempt to rewrite the concen-
trated H2-criterion into a form which allows for a general
characterization of all optimal matriceŝB for a fixedgiven
matrix Â, we are able to derive a functionW(Â) which acts
as an upper bound on the achievable value ofVc(Â, B̂) when
keeping Â fixed and varying onlyB̂. These computations
involve the use of so-called Faddeev reachability matrices,
which allow one to express the solution of a discrete-time
Lyapunov or Sylvester equation as a finite sum of matrices.
The upper boundW(Â) turns out to be rational in the entries
of Â. SinceÂ can be chosen to be in canonical (companion)
form, the number of free parameters is reduced to 2, and the
complexity ofW becomes considerably less than that ofVc.

We are finally in a feasible position to apply algebraic tech-
niques for global optimization of rational functions. We
then will show, for the case at hand, that: (i) the upper
bound W(Â) is sharp at the approximant̂6, and (ii) the
upper bound has a global maximum at the approximant
6̂. This leads us to conclude global optimality of the
H2-approximant, providing (to the best of our knowledge)
the first nontrivial multivariable instance of this nature de-
scribed in the literature.
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1 Abstract

Iterative Learning Control (ILC) [1] deals with the problem
of finding the optimal inputu∗ to an unknown plantP by
utilizing information from previous trials. The optimal in-
put is defined in terms of the plant’s output in the sense that
it minimizes the distance between the actual outputy and
some desired outputyd. From a mathematical point of view,
the problem boils down to defining a recursion relation on
the space of inputsU. This relation should define a con-
vergent sequence and moreover it is generally required that
limk→∞ u(k) = u∗.

At first sight, this seems like a difficult, if not impossible
problem to solve. Nevertheless, many papers on ILC have
addressed this problem and a variety of ’solutions’ has been
proposed [2]. The main idea that is common to all these
solutions can easily be explained by means of a simple ex-
ample.

Consider a recursion of the following type

u(k + 1) = u(k) + e(k) (1)

wheree is defined asyd − y. Assume there exists aud ∈ U
such thatPud = yd. If this sequence is convergent, then
necessarily limk→∞ e(k) = 0. Assuming thatP is bounded
on U, it is not hard to show that a necessary and sufficient
condition for convergence is given by

‖I − P‖ < 1 (2)

This implies thatP−1 exists and is bounded. In fact, if this
condition holds, the recursion defined by (1) can be shown to
converge to the fixed point̄u = P−1yd = P−1 (Pud) = ud.
In the context of linear systems this means that, as a neces-
sary condition for convergence,P should be invertible in
RH∞. Clearly only a very limited subclass of LTI plants
satisfies this condition. This makes us wonder whether in
general there exists at all a scheme that converges to the op-
timal input u∗

= ud. If the answer would turn out to be
negative, the limits of performance have to be taken into ac-
count from the start, which means that aiming for perfect
tracking is not a good idea.

In its full generality, there is no way we can answer this
question. One way to constrain the problem is to consider
only recursions that are linear inu.

In this presentation, we will propose a framework for the
analysis of linear recursions of arbitrary order. Within this
framework, the Iterative Learning Control problem reduces
to a discrete time controller design problem on an infinite di-
mensional state space. Then, using the internal model prin-
ciple, we are able to show that a zero steady state error can
only be achieved if the controller has some integral action.
This is illustrated in Figure 1 for the recursion defined by
(1). We will elaborate on the implications of this result.

Pi+

−

−1
1−z

1
1−z

- -

6

- --
yd y(z)

Figure 1: The internal model principle for ILC. The controller
contains a model of the reference input.

References

[1] Kevin L. Moore, “Iterative Learning Control for De-
terministic Systems,” Springer-Verlag, 1993.

[2] Kevin L. Moore, J.-X. Xu (eds.),International Jour-
nal of Control, 73 (10), 2000. (Special issue on Iterative
Learning Control)

Book of Abstracts 21st Benelux Meeting on Systems and Control

56



A behavioral approach to decoding
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1 Abstract

In this paper we present a behavioral interpretation of
the list decoding approach that was proposed in [1].
We concentrate on the behavioral elements and keep
the coding details to a minimum that is just sufficient
to appreciate the lines of thought. A more elaborate
treatment will be presented in a forthcoming paper.
The paper is a follow up of [2] and works out the sugges-
tion made there to put list decoding in the perspective
of multivariable behavioral interpolation.

Briefly, an (n, κ) Reed-Solomon code is defined as fol-
lows. Let F be a finite field, say F = {ξ1, . . . , ξn}. The
message word is a κ-tuple (m0,m1, . . . ,mκ−1) ∈ Fκ.
With this κ-tuple we associate the polynomial m(ξ) =
m0 +m1ξ + . . .+mκ−1ξ

κ−1 ∈ F[ξ]. The codeword c is
then the n-tuple of the evaluations of m(ξ) in the ele-
ments of F: c = (m(ξ1), . . . ,m(ξn)). The codeword c
is transmitted through a channel where errors may oc-
cur so that the received word r is not necessarily equal
to the transmitted codeword c. The decoding problem
consists of reconstructing the original polynomial m(ξ)
from the received word r.

In a recent paper, [1], a list decoding scheme based on
bi-variate interpolation was proposed. In list decoding
a list of possible polynomials m(ξ) is derived from the
received word. Subsequently a unique member is se-
lected on the basis of secondary criteria. This second
step is not discussed in the present paper.

The idea put forward in [1] is as follows. Denote the
received word by r = (η1, . . . , ηn). Let Q(ξ, η) ∈ F[ξ, η]
be a bivariate polynomial of (1, κ− 1) weighted degree,
defined below, such that Q(ξi, ηi) = 0 for i = 1 . . . , n.

1.1 Definition

Let Q(ξ, η) ∈ F[ξ, η], say Q(ξ, η) =
∑
i∈I,j∈J qijξ

iηj .
The (wξ, wη) weighted degree of Q(ξ, η) is defined as

wdegQ(ξ, η) = max
i∈I,j∈J

{iwξ + jwη | qij 6= 0} (1)

In fact, in most but not all cases, the weighted degree is
just the normal degree of Q(ξwξ , ξwη ). In the sequel we
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J.W.Polderman@math.utwente.nl

2Department of Electrical and Electronics Engineering, The
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are only concerned with the (1, κ− 1) weighted degree
and therefore we refer to it as just the weighted degree.
Let ` = wdegQ(ξ, η). Suppose now that the received
word contains less than n − ` errors. Then there ex-
ists a polynomial m̃(ξ) of degree less than κ such that
m̃(ξi) = ηi for at least `+1 values of i. In fact, the orig-
inal polynomial m(ξ) does this, but there can be more.
We conclude that Q(ξ, m̃(ξ)) has at least `+1 zeros. On
the other hand, degQ(ξ, m̃(ξ)) cannot exceed ` since by
assumption wdegQ(ξ, η) = ` so thatdegQ(ξ, m̃(ξ)) ≤ `.
Since a polynomial of degree not exceeding ` can only
have more than ` roots if it is the zero polynomial, it
follows that Q(ξ, m̃(ξ) is indeed the zero polynomial.
But this implies that η − m̃(ξ) divides Q(ξ, η). In par-
ticular η−m(ξ) divides Q(ξ, η). The list decoding now
consists of constructing a polynomial Q(ξ, η) such that
Q(ξ, ηi) = 0 and such that degQ(ξ, ξκ−1) is minimal.
Once Q(ξ, η) has been constructed all factors of the
form η − m̃(ξ) are extracted thus producing a list of
candidate polynomials m̃(ξ). Roughly, our approach is
structured as follows. We write the polynomial Q(ξ, η)
to be constructed as Q(ξ, η) =

∑M−1
j=0 dj(ξ)ηj for an ap-

propriate choice of M . With the data (ξi, ηi) we asso-
ciate n trajectories wi : Z+ → F

M . We then determine
the Most Powerful Unfalsified Model B of these n tra-
jectories. Then we construct a weighted degree row re-
duced matrix R(ξ) ∈ F[ξ] that represents B. From R(ξ)
we select a row d(ξ) of minimal weighted row degree
and finally we define Q(ξ, η) =

∑M−1
j=0 dj(ξ)ηj , where,

of course, the di(ξ)s are the entries of d(ξ). It turns
out that Q(ξ, η) constructed is this way is a bivariate
polynomial of minimal (1, κ − 1) weighted degree that
interpolates the data points (ξi, ηi).
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Abstract

We establish relations between system theory, information
theory and signal processing by computing the principal an-
gles between linear subspaces. Our main result is the equiv-
alence of a weighted cepstral norm of a Gaussian autore-
gressive moving average (ARMA) process and the mutual
information of its past and future.

1 Principal angles between subspaces

Principal angles between linear subspaces were defined by
Camille Jordan [3] in the nineteenth century and statistically
interpreted by Hotelling as canonical correlations [2]. In
systems and control, the principal angles occur in subspace
identification methods [5] and also in damage location [1].
We start with the definition of the principal angles between
linear subspaces and show how the canonical correlations
of two stochastic processes can be interpreted as principal
angles.

2 Principal angles between input and output spaces of a
linear model

We obtain expressions for the canonical correlations of
the past and future input and output processes of a linear
stochastic model, in terms of the model parameters. From
these parametric expressions, the relations between the
different sets of principal angles can easily be deduced,
which are also corroborated by geometric insights.
For single-input single-output (SISO) models, we give a
new characterization for the canonical correlations of the
input and the output: the canonical correlations of the input
and output process of a SISO ARMA model are equal to
the cosines of the principal angles between the row spaces
of the infinite controllability matrix of the model and the
infinite controllability matrix of the inverse model.

1Katrien De Cock is a research assistant at the K.U.Leuven. Dr. Bart De
Moor is a full professor at the K.U.Leuven.

3 A cepstral norm for ARMA models and the mutual
information of past and future

We treat one particular cepstral norm for ARMA models,
derived from a metric in [4]. We show that the cepstral norm
of a model can be characterized as a function of the principal
angles between the row spaces of the controllability matrix
of the model and the controllability matrix of the inverse
model. By using the insights of the first part of the talk,
the norm is related to the canonical correlations of the past
and the future of the output process and hence to the mutual
information of these processes.
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letin de la Socíet́e Math́ematique 3 (1875) 103–174.

[4] R. J. Martin, A metric for ARMA processes, IEEE
Transactions on Signal Processing 48 (2000) 1164–1170.

[5] P. Van Overschee and B. De Moor, Subspace Iden-
tification for Linear Systems: Theory – Implementation –
Applications, Kluwer Academic Publishers, Boston, 1996.

Acknowledgements

Our research is supported by several sources: Research
Council KUL: Concerted Research Action GOA-Mefisto
666, IDO, several PhD/postdoc & fellow grants; Flemish
Government: Fund for Scientific Research Flanders (sev-
eral PhD/postdoc grants, projects G.0256.97 (subspace),
G.0115.01, G.0240.99, G.0197.02, G.0407.02, research
communities ICCoS, ANMMM), AWI (Bil. Int. Collab-
oration Hungary/ Poland), IWT (Soft4s, STWW-Genprom,
GBOU-McKnow, Eureka-Impact, Eureka-FLiTE); Belgian
Federal Government: DWTC (IUAP IV-02 (1996-2001) and
IUAP V-10-29 (2002-2006)), Program Sustainable Develop-
ment PODO-II; Direct contract research: Verhaert, Electra-
bel, Elia, Data4s, IPCOS.

Book of Abstracts 21st Benelux Meeting on Systems and Control

58



Bang-bang Control of Underactuated
Mechanical Systems

M. Gerard
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Abstract

This paper describes the design of a control structure based
on bang-bang control laws in order to generate acrobatic tra-
jectories. As an illustration, we consider the swinging-up of
the free pendulum of the pendubot system and the cart-pole
system.
The goal is to get simple control laws allowing analytical
approximations while minimizing the computation efforts in
practical implementations.

Swing-up specifications

We are interested in swinging-up the free pendulum of the
cart-pole system and the pendubot system by controlling re-
spectively the acceleration of the cart and the angular accel-
eration of the actuated arm.
By choosing an appropriate bang-bang law, we obtain the
following parametrised bang-bang control law :

time
4∆

∆ 2∆

amax

−amax

3∆

u

Figure 1: Control law : acc. of the cart/actuated arm

The shape is chosen symetric in order to satisfy an additional
constraint : we want the cart or the actuated arm to come
back to their initial position. Note also that the acceleration
is bounded.

Design methodology

The system equations are of the form :

ẋ = f(t, x, u) (1)

wherex ∈ IRn, u ∈ {−amax,+amax} is the control law
described in figure 1.
The energy of the free pendulum is equal to :

Epdl =
1
2
Jω2 −mgl(1 + cos θ) (2)

wherem is the mass of the pendulum,l is its length andJ its
moment of inertia. The energy level−2mgl corresponds to
the vertical down position of the pendulum (at rest) and the
energy level0 corresponds to the vertical up position of the
pendulum (at rest). The goal to reach is to supply the free
pendulum a quantity of energy equal to2mgl. We decide
to fix the maximum valueamax of the acceleration and we
play only on the switching time parameter. Then we derive
ananalytical relationbetween the energy levelEpdl and∆ :

Epdl = E(∆)

To obtain this relation, we proceed as follow :

1. We approximate non-linear functionf of equation (1)
by an integrable one ; we consider different system
approximations over successive time intervals.

2. We solve the approximated systems and find analytic
approximations ofθ(t), ω(t) over the interval[0, 4∆]
which are∆ dependent.

3. We introduce the result in expression (2) and find the
minimum value of∆ which zeroes it at timet = 4∆,
i.e. when the end of the energy transfer is reached.
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1 Introduction

Consider theextended chained formsystem (ECF)

ẍ1 = u1, ẍ2 = u2, ẍ3 = u1x2, (1)

which can also be written aṡx = b0(x)+u1b1(x)+u2b2(x)
with b0(x0) = x2

∂
∂x1

+ x4
∂

∂x3
+ x6

∂
∂x5

, b1(x) = ∂
∂x2

+
x3

∂
∂x6

andb2(x) = ∂
∂x4

. This canonical form can be used
to model the dynamics of several mechanical underactuated
systems, for instance the PPR manipulator with unactuated
third joint, the planar VTOL system in the absence of grav-
ity, and the planar, parallel-drive RRR manipulator with any
two joints actuated. Asymptoticstabilizationof the ECF to
the origin is a challenging problem solved in [1] by means of
time-varying, homogeneous feedback. A limitation of con-
trollers of this class, however, is the lack of robustness with
respect to unmodeled dynamics. Uncertainties in the phys-
ical parameter values, for example, may introduce additive
disturbance vector fields in the actual system, and these may
cause instability of the origin. We are thus led to consider
theperturbedsystem

ẋ = b0(x) + hε
0(x) +

∑2
i=1 ui(bi(x) + hε

i (x)), (2)

where thedisturbance vector fieldshε
i —analytic both inx ∈

R6 andε ∈ R—satisfyh0
i (·) = 0 (their magnitudes tend to

zero asε → 0) andhε
0(0) = 0 (the origin is an equilibrium

for the perturbed system). Roughly stated, a feedback law
(x, t) 7→ α(x, t) is considered robust if, for any family of
disturbances(hε

i )i=0,1,2 of a given class, the origin of (2)
with ui = αi(x, t) is locally asymptotically stable whenever
|ε| is small enough. Obviously, this notion of “robustness”
is limited since more general sources of disturbance cannot
be modelled by (2).

2 Robust control law for the ECF

Inspired by existing results, we propose a hybridopen-
loop/feedbackapproach. The principle is simple and
based on a time-varying (indeedT -periodic) feedback-law
(x, t) 7→ α(x, t). α is designed so thatu = α(x0, t), t ∈
[0, T ), drives the system’s state fromx(0) = x0 to a point
x(T ) that is “closer” to the origin (in some particular met-
ric). The control isperiodicallyupdated in terms ofx0 and

used to steer the system. Under appropriate conditions, this
iterative scheme stabilizes the origin of a dynamic exten-
sion to (2), and is robust to a class of perturbations. System
(2) is thus controlled by applyingu(t) = α(x(kT ), t), for
t ∈ [kT, (k+1)T ) andk ∈ K = {bt0/T c, bt0/T c+1, . . .}.
This can be represented by complementing (2) with a dy-
namic extension whose solutiony(·) coincides withx(t) at
the sampling instants(kT )k∈K, and by controlling the sys-
tem withu(t) = α(y(t), t), namely

ẋ = b0(x) + hε
0(x) +

∑2
i=1 αi(y, t)(bi(x) + hε

i (x))
ẏ =

∑∞
k=bt0/Tc+1 δ(t− kT )x(t). (3)

This system is initialized by choosing(x0, y0) ∈ R6 ×
R6 and then setting(x(t0), y(t0)) equal to (x0, x0) if t
mod T = 0, or equal to(x0, y0) otherwise. We propose
the following feedback law

α1(x, t) = a1x1 + a2x2 + bρ(x) cos(ωt)
α2(x, t) = a3x3 + a4x4 − 2ω2

bρ(x) (a5x5 + a6x6) cos(ωt)

where b > 0 and ρ(x) = (
∑6

i=1 |xi|
2
ri )

1
2 with r =

(1, 1, 1, 1, 2, 2). One checks easily that when (1) is initial-
ized atx0 and controlled byu(t) = α(x0, t), t ∈ [0, T ),
the solution satisfiesx(T ) = Ax0 + o(‖x0‖). In the sequel
we assume thatA ∈ R6×6 is discrete-stable, i.e., σ(A) ⊂
{z ∈ C : |z| < 1}. This can be achieved by a proper choice
of the gainsa = (a1, . . . , a6).

Proposition 1 For any family of disturbances(hε
i )i=0,1,2

such thathε
0,k(x) = O(‖x‖2), k = 1 . . . , 6, the origin of

(3) is locally exponentially stablefor |ε| small enough.

The proof of this, our main result, is rather elaborate in part
because it requires the Chen-Fliess series expansion of the
solution x(t), t ∈ [0, T ). We show that the influence of
the potentially “destabilizing” perturbation terms in the ex-
pansion can be made negligible by considering initial values
x0 sufficiently near the origin, and disturbance parametersε
sufficiently near zero. This control strategy has been verified
in simulation; experiments on a real PPR manipulator with
passive third joint are currently underway at our research
group.

References
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Figure 1: Active surge control using drive

1 Introduction

Traditionally, centrifugal compressor surge has been
avoided using surge avoidance schemes that use various
techniques to keep the operating point of the compressor
away from the surge line. Typically, a surge control line
is drawn at a specified distance from the surge line, and
the surge avoidance scheme ensures that the operating point
does not cross this line. Usually a recycle valve around the
compressor is used as actuation. This method works well, as
has been proved by numerous installations. However, due to
the presence of the surge margin, the method restricts the
operating range of the machine, and achievable efficiency is
limited. In this study, which is on compressors with electri-
cal drives, we propose to use the electrical drive as a means
of active surge control, as depicted in Fig. 1. The advantage
of this is that the drive is already present, and no additional
actuation device is required. This means that the compressor
can be operated at low flows without recycling, and there is
a potential for reduced energy consumption of the compres-
sor.

2 Modeling

A Greitzer model with varying speed [1] is used:

˙̂p = a201V
−1
p (m̂− m̂t) (1a)

˙̂m = A1Lc

³bΨc (ω̂, m̂) p01 − p̂p´ , (1b)

˙̂ω = J−1 (bτd − bτc) . (1c)
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Figure 2: Stabilized operating point using torque.

3 Control

The control is derived in two steps. First, the angular speed,
ω̂, is used as control, and then the drive torque bτd, with its
additional dynamics (1c) is used.
Theorem: Using the speed as control, the control law

ω̂ = −cm̂, (2)
where the gain c is chosen according to c > ∂Ψc/∂m

∂Ψc/∂ω
makes

the origin of (1a) and (1b) globally exponentially stable.
Sketch of proof: Consider the Lyapunov function candidate
V =

Vp
2a201

p̂2 + L
2Am̂

2 > 0,∀ (m̂, p̂) 6= (0, 0) .Using (2) it

can be shown that V̇ < −kpp̂2−kmm̂2 < −kV,∀ (m̂, p̂) 6=
(0, 0) and the result follows.

A simulation of active surge control on a industrial size nat-
ural gas pipeline compressor using drive torque is shown in
Fig. 2. The complete analysis and additional simulations
can be found in [2]
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1 Abstract

Nowadays CD/DVD players are mainly controlled by lin-
ear feedback based on the concept of bandwidth. Depend-
ing on the type of disturbance, the bandwidth is set to meet
certain specifications. Within the automotive industry, this
imposes a trade-off. Namely in case of shocks, for exam-
ple due to road excitation, increasing the bandwidth com-
monly results in an increased low-frequency disturbance re-
jection. However the playability [1], a performance measure
related to deteriorated error signals during disc deficiencies
like scratches or fingerprints, decreases due to sensor noise
tracking. To overcome this trade-off, the merits of nonlinear
control design will be studied. Nonlinear control enables a
different amount of disturbance rejection, or playability, de-
pending on: 1) the amount of disturbance, and 2) the type of
disturbance.

Ideally a nonlinear controller may offer the ability of im-
proving both disturbance rejection and playability within a
single control design. Here, it will be shown that improve-
ments in disturbance rejection can be obtained without nec-
essarily affecting the playability. Hereto a hardening control
strategy is presented that switches to a higher value for the
controller gain beyond a pre-defined radial error level. As
a result, large shocks correspond to a large amount of ad-
ditional control effort giving improved disturbance rejection
while, at the same time, small shocks hardly correspond to
additional control thus leaving the playability unaffected.

The nonlinear control design is discussed regarding stabil-
ity and performance. Closed-loop stability is derived on the
basis of the circle criterion [3]. Especially the graphical rep-
resentation of the circle criterion will serve as a tool for non-
linear design. Performance is quantified using a generaliza-
tion of the linear sensitivity function. Based on the ampli-

tude part, the maximum absolute values of the periodic non-
linear responses subjected to harmonic excitations are de-
picted within a frequency range of interest. These responses
are obtained numerically using efficient periodic solvers [2].
With this amplitude measure, improvements in disturbance
rejection are studied for varying parameter values.

Experimental results performed on a lab-scale setup of a
DVD (video) drive subjected to additional vibration exci-
tation are shown to illustrate the possibilities of the nonlin-
ear control design within a real-life application. The results
largely correspond to the numerical results obtained with the
simplified lens model and, therefore, provide a sufficient ba-
sis for further research.
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1 Abstract

A discrete time sliding-mode controller is designed with the
reaching law method. To build up a tracking controller, a
feedforward part is added outside the closed-loop sliding-
mode controller. The robust performance of this tracking
controller in the presence of plant model uncertainty and in-
put disturbance is proved theoretically, and verified on the
X-Y table driven by linear motors.

In continuous-time sliding-mode controller design, a switch-
ing surface is defined as a function of the system state:

s(t) = Csl · x(t). (1)

A continuous-time sliding-mode controller can be designed
such that the evaluation of the scalars satisfy a prescribed
differential equation:

ṡ(t) = −q · s(t). (2)

Discretizing the continuous-time reach law in Equation (2)
yields:

s(k + 1) = (1 − q · T) · s(k). (3)

Given a plant mode as:{
x(k + 1) = (A + 1A) · x(k) + B · u(k) + P · d(k);

y(k) = C · x(k).

(4)

Calculating the command signal with reaching law (3):

u(k) = K ·x(k)−(Csl B)−1
·Csl ·[1A·x(k)+ P ·d(k)] (5)

Where

K = (Csl B)−1
[(1 − q · T) · Csl − Csl · A]. (6)

The command in (5) is not implementable, because1A and
d(k) are unknown. But if we know the boundary of the

model uncertainty1A and the input disturbanced(k) such
that:

|Csl · [1A · x(k) + P · d(k)]| < Ud · T,

Ud > 0
(7)

and modify the command (5) as:

u(k) = K · x(k) − (Csl B)−1
· Ud · T · sign(s) (8)

The command in (8)is implementable now, and it can be
proved that a quasi-sliding-mode bound under this com-
mand satisfies:

|s(k)| <
2Ud · T

1 − q · T
. (9)

Outside this bound, the plant state trajectory moves
monotonously towards this bound. Inside this bound, the
zigzag motion of the system state around the switching line
is not guaranteed because the reaching law in (3) is changed
to:

s(k + 1) = (1 − q · T) · s(k) + Csl · [1A · x(k)+

+P · d(k)] − Ud · T · sign(s).
(10)

The closed-loop system can be derived by substituting Equa-
tion (8) into Equation (4), which yield:

x(k + 1) = Aw · x(k) + 1Ax(k) + P · d(k)−

−B · (Csl B)−1
· Ud · T · sign(s).

(11)

Aw = A + B · (Csl B)−1
[(1 − q · T) · Csl − Csl A] (12)

Notice that if the plant system matrixA is written in the con-
troller canonic form, it can be proved thatAw is only depen-
dent on the switching line parameterCsl and the reaching
law parameterq. This property allow us to build a tracking
controller by adding a robust feedforward part based on the
closed-loop system matrixAw.
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Motivation

It is well-known that the Port-Hamilton [4] equations form a
very suitable and natural framework to describe the dynam-
ics of a broad class of nonlinear electrical, mechanical and
electro-mechanical systems. In this presentation we present
a dual formulation of the dynamics of nonlinear electro-
mechanical systems in terms of the power variables. The
method is based on the classical Brayton-Moser [1] equa-
tions parameterized by the generalized mechanical config-
uration coordinates (positions). The main ingredients are
the kinetic, magnetic and electric co-energy and the defini-
tion of a mixed-potential function. Originally, this frame-
work stems from the early sixties and is very little known
in the systems and control community. In the new set-
ting the mixed-potential function exists of power preserv-
ing potentials and the mechanical, magnetic and electric ap-
plied power and dissipated power. The main advantage of a
well-defined dual formulation is that essential and important
properties can be translated from one framework to another.
One of these useful properties is that the mixed-potential
function is used as a starting point to derive a new family of
storage functions. Instead of using the total stored energy as
a storage function, as with Port-Hamiltonian (PH) systems,
we use the dissipative structure. This will lead to thepower
balance:∫ t

0
[F(τ ) + 8(x(τ ))]> ẋ(τ )dτ ≥ Q(x(t)) − Q(x(0)),

wherex is the state,Q(x) the dissipated power,F the exter-
nal forces and8(x) reflects the interconnection variables of
the different subsystems. Consequently, the system defines a
passive port with respect to the port variables{F, 8(x), ẋ}.

The motivation behind the use of the generalized Brayton-
Moser (BM) framework is the following. In the context
of electrical circuits it is shown in [2] that the BM equa-
tions bear a marked similarity in structure to the PH equa-
tions. The most trivial duality between the two frameworks
is that PH systems assume the circuit elements to be flux and

1Sponsered by Marie Curie Control Training Site (CTS)

charge controlled, while the BM equations impose the re-
striction that the elements are current and voltage controlled.
One reason to work with PH systems is that the equations
are formulated in natural physical variables. However, the
inclusion of static elements, like sources and resistors seems
not so natural in this framework. In principal, the constitu-
tive relations of voltage sources, current sources and resis-
tive elements are rather considered in terms of currents or
voltages (Ohm’s law), instead of fluxes or charges. It seems
therefore more natural to use the BM equations. In the
context of feedback controller design for electro-mechanical
systems, an additional advantage of using the BM equations
for the electrical part of the system is that the dynamics are
directly expressed in measurable quantities. Similar argu-
ments hold for the mechanical part of the system, where it is
more common to measure velocity instead of momenta.

Contribution

The results of this research are very useful to overcome the
dissipation obstacle in electro-mechanical systems that can-
not be stabilized by the energy-balancing technique as re-
cently proposed in [3]. At a more general level, our objec-
tive is to put forth the mixed-potential function and the dis-
sipative structure as a new building block for analysis and
controller design.
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Abstract

The joint research program in cooperation with TNO-TPD
called ”Hybrid Isolation of Structure Borne Noise” studies
the possibilities of reducing the sound radiation at certain
locations in a structure, due to the presence of a vibration
source. A ship engine is such an example of a vibration
source, which causes noise annoyance due to the vibration
transmission through its carrier structure.

The existing passive isolation methods (e.g. rubber mounts)
are insufficient to achieve the desired sound reduction. A
promising approach for this type of applications is the use
of so called hybrid isolation techniques, being a combina-
tion of passive (spring, damper) and active (controlled ac-
tuator) isolation methods. Important issues are optimal per-
formance and integration in the existing construction.

Hybrid mount
(active & passive)

Controller

Receiving structure

Acceleration
sensor (D)

Source

Clamped metal plate (E)

W

feedforward

S'

Reference

Filtered
Reference

acceleration
(error)
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Piezo (C)

Mass (B)

Shaker (A)

Figure 1: Schematic of 1-DOF demonstrator set-up

The experiments are performed with an experimental set-up
for a one degree of freedom (1-DOF) system (see fig. 1). An
electrodynamic shaker(A) serving as a vibration source ex-
cites a mass(B) with an unknown (harmonic) disturbance.
The mass is mounted on a clamped metal plate(E) by a
piezoelectric actuator(C) which operates as a hybrid isola-
tion mount. Setting the frequency of the disturbance close

to the1st or 3rd eigenfrequency of the receiver construction
results in significant sound radiation from the metal plate.
Remark that the mount is designed to transfer only forces
perpendicular to the plate. This means that the mount can
completely isolate the source from the receiver by ensur-
ing that the external force in the mount-plate interconnec-
tion point equals zero. Effectively the hybrid mount needs
to generate an internal force to counteract the force induced
by the mount stiffness and the displacement of the vibration
source. As a consequence the source vibration remains un-
changed while the receiver remains silent.

An adaptive feedforward LMS controller is used for online
calculation of the optimal piezo force which minimizes the
signal measured with the acceleration sensor(D). The two
filter coefficients in the vector̄w are updated according to
the LMS weight update equation[1,2]

w̄(n + 1) = w̄(n) + µx̄a (1)

in whichn is the current sample number,µ the convergence
step size,̄x the filtered reference signal anda the measured
acceleration (error signal). The reference signal needs to
be filtered by an estimation of the transfer function from the
piezo force to the measured acceleration in order to compen-
sate for the mechanical delays in this transfer path. Without
this, the controller may exhibit slow convergence or may
even show divergent behavior, even for appropriate selec-
tion of the step sizeµ. In general, a smallerµ results in
lower convergence speed but diminishes the residual error
and therefore the radiated sound levels.

For the presented configuration the source is almost com-
pletely isolated for the frequency of the harmonic distur-
bance.
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1 Introduction

High-precision machines typically suffer from small but per-
sistent vibrations. As it is difficult to damp these vibrations
by passive means, research at the Drebbel Institute is aimed
at the development of anactive structural elementthat can
be used for vibration control. The active structural element,
popularly referred to as ‘Smart Disc’, is based on a piezo-
electric position actuator and a piezoelectric force sensor.

One of the main problems in active control is to ensure sta-
bility. In this respect it is often advantageous to consider
the use of so-calledcollocatedactuator-sensor-pairs, as this
enables to actively implement a passive control law, which
is robustly stable, irrespective of structural modeling errors.
Within the context of vibration control for lightly damped
structures, collocated actuator-sensor-pairs are known to be
well-suited to obtain robust active damping [1, 2].

2 Example: wafer stepper lens vibrations

A wafer stepper, i.e., the advanced microlithography system
that is at the heart of Integrated Circuit manufacturing, is
an excellent example of a high-precision machine the per-
formance of which is limited by the lack of damping within
the machine frame. Badly damped vibrations of the lens of
the wafer stepper limit the attainable line width of the circuit
patterns.

The lens of the wafer stepper is conventionally suspended
by means of three (passive) lens support blocks, consti-
tuting a kinematically well-designed interface to the so-
called metroframe of the wafer stepper. In order to perform
Smart Disc experiments, the lens support blocks have been
equipped with two piezoelectric stacks, both comprising a
position actuator and a collocated force sensor. Each of the
resulting ‘Piezo Active Lens Mounts’ has two perpendicular
active degrees of freedom.

By applying collocated control to the individual piezoelec-
tric stacks, all six ‘suspension modes’ of the lens can be
damped. Due to the passivity of the control laws, unmod-
eled flexible modes of the lens and the metroframe are also
stabilized.

3 Collocated control versus modal analysis

Control based on collocated actuator-sensor-pairs is inher-
ently in terms oflocal coordinates. Vibration problems how-
ever are usually analyzed in terms ofmodal coordinates,
corresponding to a limited number of vibration modes, as
captured in a simplified model of the mechanical structure.

In terms of the wafer stepper example: we are primarily
interested in the six suspension modes of the lens. From
a modal analysis point of view, it is therefore desirable to
have six SISO control problems, each one directly related to
a single suspension mode. However, due to the symmetry
in the set-up, the frequency response functions from a single
actuator to the collocated sensor are all similar. Tuning of
the local control laws, such that damping for the individual
modes is optimal, is therefore not straightforward.

4 Modal control through decoupling

The above-mentioned problem can be solved by realizing
that decoupling of collocated actuator-sensor-pairs, i.e, the
transformation of the original control problem into modal
coordinates, yields control loops that again enable the im-
plementation of a passive control law. Stability of ‘decou-
pled collocated control’ does not depend on the accuracy of
the model that has been used for decoupling.

This implies that, for the case of the wafer stepper, a simple
‘rigid-body’ model may be used for decoupling of the six
collocated control loops. Obviously, in contrast to stability,
theperformanceof active damping based on ‘decoupled col-
located control’doesdepend on the accuracy of the model.
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1 Abstract

In classic passive suspension design, comfort and road han-
dling are conflicting design criteria. An active or semi-active
suspension offers the possibility to vary the damper charac-
teristics along with the road profile. Such systems have dis-
crete settings or are limited in bandwidth up to 10Hz. This
paper discusses the development of a controller for a pas-
senger car using a recently developed active shock absorber,
were two current controlled valves continuously vary the
damper characteristics. The aim is to control the cars rigid
body modes heave, roll and pitch, as well as wheelhop and
the first bending and torsion modes. The control design is
based on damper and car models that are valid up to these
frequencies. Since the shock absorber is a highly nonlinear
hydraulic system, several nonlinear modeling techniques,
such as neural networks and Wiener-Hammerstein models
are derived. Using the active shock absorber as an actua-
tor, the car itself is identified using linear ide! nt! ification
techniques based on random multisine excitations to find the
best linear approximation of its dynamic behavior. Based
on the identified linear car model, linear controllers are de-
rived. These controllers calculate the actuator forces that
have to be generated by the active shock absorber. Based on
the nonlinear damper models, these desired forces are con-
verted into appropriate currents to be applied at the damper
valves. This requires a nonlinear model inversion. The pa-
per presents experimental results of the proposed controllers
on a quarter car test setup. The performance of several linear
car controllers in combination with nonlinear damper model
inversion strategies are compared.
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Introduction

In thepasttenyears,vehiclesafetybecomesmoreandmoreimportant.Passive safetyrefersto thecomponents
of a vehiclereducingtheoccupantinjurieswhenanaccidentoccurs.Thesecomponentscanbedivided in two
groups;componentswhichdohavecontactwith theoccupantduringacrashandcomponentswhichdonothave
contactwith theoccupantduringthecrash.Thelattergroupis referredto asrestraintsystem,e.g.theairbag.
Currently, restraintsystemsareadaptive only in thesensethat themostappropriatesettingfor theactuatorsof
therestraintsystemis chosenonce,directlyafteracrashhasbeendetected.Obviously, occupantinjurieswill be
lesssevereif it is possibleto manipulatetherestraintsystemduringthecrash.Thegoalof this projectis to set
up a methodto control theoccupantinjuriesby manipulatingtherestraintsystemonline. Themethodis setup
usingmodelsin thefinite elementandmultibodypackageMADYMO, seeFigure1.

Problem statement

Theproblemto startwith is to developadesignmethodto control
andminimizethechestaccelerationby onlinemanipulationof the
beltforcein onestandardizedcrashtest. The control algorithm
will be basedon feedback. The adoptedinjury measureis the
maximal value of the chestacceleration,i.e.

���������
	��
������ 	 .
An appropriatereferencetrajectoryis setup, basedon a simple
representationof acrash. Figure1: Numericalmodelof aBMW

Approach

Thenumericalmodelin Figure1 is complex andnonlinear. Theproblemis how to getinsightinto thebehaviour
of this model,suchthat it is possibleto designa controller. Two problemsarise. The first hasto do with the
complexity of therestraintsystem.This problemis partly solvedby excludingtheairbag.Thesecondhasto do
with MADYMO. MADYMO hasno facilitiesfor modelreductionor linearization.
Therefore,it is chosento identify the transferfunction from beltforceto chestaccelerationby analyzingthe
disturbedchestaccelerationto a stepwise perturbationin the beltforce. The transferfunction of a LTI SISO
systemis identifiedonthedifferencebetweentheoriginalchestaccelerationandthedisturbedchestacceleration.
TheidentifiedSISOsystemhasthebeltforceasinput andthechestaccelerationasoutput.Basedon this SISO
system,acontrollercanbesetup andthenbevalidatedin thecomplex andnonlinearMADYMO model.

Results

Applicationof thecontrollerin thenonlinearMADYMO modelresultsin a reductionof theinjury measureof
approximately60%with respectto thenoncontrolledsituation.

1
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Abstract: Estimation of a single-input single-output block-oriented model is studied. The 
model consists of a linear block embedded between two static nonlinear gains. Hence it is 
called N-L-N Hammerstein-Wiener model. First the model structure is motivated and the 
disturbance model is discussed. The paper then concentrates on parameter estimation. A 
relaxation iteration scheme is proposed by making use of a model structure in which the error 
is bilinear-in-parameters. This leads to a simple algorithm which minimizes the original loss 
function. The convergence and consistency of the algorithm are studied. In order to reduce the 
variance error, the obtained linear model is further reduced using frequency weighted model 
reduction. Simulation study will be used to illustrate the method. 
 
Key words: Identification, nonlinear process, block-oriented model, parameter estimation, 
relaxation algorithm 
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Local linear modeling is one of the many possibilities to
approximate a nonlinear dynamical system. It is based on
partitioning the whole operating range of the nonlinear sys-
tem into multiple, smaller operating regimes and modeling
the system for each of these regimes by a linear model.
By making a weighted combination of these linear models,
one hopes to describe the complete nonlinear behavior suffi-
ciently accurately. In this talk, the following weighted com-
bination of local linear models is considered:

xk+1 =

s
∑

i=1

pi(φk)
(

Aixk + Biuk + Oi

)

yk = Cxk,

where s is the number of local models, xk ∈ R
n represents

the unknown state, uk ∈ R
m is the input, yk ∈ R

` is the out-
put, and pi(φk) ∈ R is the weighting for the ith model. The
weighting vectors pi are unknown functions of the schedul-
ing vector φk ∈ R

q . This scheduling vector corresponds to
the operating point of the system, typically it will depend
on the input and the state. The weighting functions can be
interpreted as model validity functions: they indicate which
model or combination of models is active for a certain op-
erating regime of the system. A weighted combination of
local linear models can be used to approximate a smooth
nonlinear system up to arbitrary accuracy, by increasing the
number of local models.

The identification of local linear model structures has been
studied mainly for input-output systems and for state-space
systems of which the full state vector is measured. The
case where only part of the state is measured is of course
of more general interest. This talk addresses the identifica-
tion of local linear state-space systems where the state is not
measured directly; only an observable linear combination
of some of the states is available as an output. Normalized
radial basis functions are used as weighting functions that
combine the local state-space models to obtain a global de-
scription of the input-output behavior.

For the local linear model structure, an optimization-based
identification procedure has been developed. The system
matrices of the local models are fully parameterized. An

iterative projected gradient search method is used to iden-
tify the local models and the centers and widths of the ra-
dial basis functions. The method deals with the nonunique-
ness of the fully parameterized state-space representation by
first calculating at every iteration the directions in which a
change of parameters does not influence the input-output be-
havior of the model, and subsequently projecting these di-
rections out of the parameter update.

Because of the recurrent nature of the local linear models,
the gradient calculations needed in the projected gradient
search method are governed by dynamic equations. For suc-
cessful identification, these gradient calculations need to be
stable. The stability is discussed for two special cases of
scheduling. When the scheduling is based only on the in-
put signals, stability of the dynamic gradient calculations
can be guaranteed, and hence the training is well-behaved.
In the more general case where scheduling is also based on
the output signals, two training methods are possible, each
having their own advantages and disadvantages. One train-
ing method is based on scheduling with the measured out-
puts; this method behaves well during training, but the re-
sulting model can perform poorly when simulated in free
run. The other training method that uses the model output
for scheduling, does not have this problem, but can suffer
from stability problems during training.

Because the identification procedure is based on solving a
nonlinear optimization problem, an initial estimate of the
local linear models is required. It is proposed to estimate
a global linear model, and use it to initialize all the local
models; in addition the weighting functions are uniformly
distributed over the operating range of the scheduling vector.
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1 Introduction 
 
Glutamine is a nonessential amino acid which supports the 
function of the gut and the immune system. Several organs 
and tissues can both synthesise and degrade glutamine, 
dependent on the physiological condition. Skeletal muscle 
is considered to be the main glutamine producing tissue in 
man. Quantitative assessment of glutamine kinetics is 
required to understand its physiology and to diagnose 
pathology. Tracer dilution experiments with infusion of 
stable isotope amino acids are used to study in vivo 
transport and metabolic processes in human subjects. 
Experimental enrichment data are interpreted in context of 
(linear) compartment models to yield synthesis and 
degradation rates. Under steady-state assumption for both 
tracee and tracer the calculations reduce to algebraic 
equations only requiring measurement of the steady-state 
plateau enrichment. In literature experiments have been 
reported with tracer infusion periods of 8 [2] and 6 or 11 
[3] hours. The obtained rates have caused controversy 
identifying skeletal muscle either as net producer or 
consumer of glutamine. In this paper it is shown that, 
based on non-steady-state identification of new data, the 
tracer steady-state assumption cannot be valid for the 
reported experiments. 
 

2 Model 
 
The tracee and tracer (*) are assumed to be homogenously 
mixed in two compartments: a blood plasma (p) and 
Whole-Body Free (WBF) pool (b). The mass balances of 
tracee and tracer have the same structure (2 sets of 2 
differential equations): 
 

BuAxx +=&  *** BuAxx +=&   (1) 
 
with x = [[gln]p, [gln]b]T and x* = [[gln*]p, [gln*]b]T 
[µmol⋅kg-1]. Vector u(*) [µmol⋅kg-1⋅h-1] contains the fluxes 
which are independent of the model states. Tracee inflow 
is assumed to be constant u = [rinflow, 0]. The tracer 
infusion rinfuse

* is experimentally set: u* = [rinfuse, 0]. 
For the other fluxes a first–order exchange between the 
compartments is assumed, described by rate constants kij 
[h-1], which are the same for tracer and tracee:  
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Stationarity constraints In tracer experiments it is usually 
assumed that the tracee pool concentrations remain 
constant throughout the experiment, i.e. 0x =& . The tracee 

submodel reduces to a static representation and the plasma 
and WBF tracee concentrations become constants V = [V1, 
V2]  [µmol⋅kg-1]. The stationarity condition for the tracee 
yields a set of algebraic equations which set the values of 
V1 and V2, given a specific realisation for the parameters θ 
= [rinflow, k10, k12, k 21]: 
 
     ( ) ( ) ( ) ( )θθθθ BuAV0BuVA 1−−=⇔=+  (3) 

 
To estimate the unknown parameters θ the remaining 
model states x* need to be linked to experimental data. The 
model outputs y are the same quantities as experimentally 
accessible: plasma pool enrichment. y = Cx* with  
 

( )0
1

1
V

diag=C    (4) 

 
3 Identification 

 
During 24 h a [5-15N]-glutamine tracer was supplied to 7 
healthy, male subjects by a continuous intravenous 
infusion in the arm, rinfuse = 0.68 [µmol⋅kg-1⋅h-1]. During 36 
h 46 blood samp les have been taken from the artery 
femoralis (leg) at non-equidistant times. Since the tracer 
infusion is started at t = 0, the initial values [ ]T00*

0 =x . 

For each subject the parameters θ ∈ IR + have been 
estimated with a weighted least squares output error 
criterion using SAAM II (software for identification of 
compartment models based on tracer data [1], [4]) and 
Matlab. The datasets contained both the infusion (load) 
period and the wash-out curve (N=46). The average time 
constants of the 2 pools for the 7 subjects are τ.1 = 32±12 
min and τ 2 = 18.1±2.2 hour. The stationarity condition of 
the tracee pools was verified. 
 

4 Conclusion 
 
The traditional calculations applied to tracer data are 
usually not based on time series data and system 
identification. The model realisation obtained here, shows 
that the required tracer steady-state is not reached during 
the reported experiments. Instead, an infusion of at least 
90h is required to apply traditional calculations, which is 
hardly feasible with human subjects. The tracer steady-
state calculations are not applicable. 
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1 Abstract

Current advanced controller synthesis methods are based
on a mathematical representation of the system to be con-
trolled. Clearly there is a strong correlation between the
performance achieved by the designed controllers and the
accuracy of the essential-dynamics model [1].

The approximation of real systems by means of models can
be applied in any process or mechanism. This approxima-
tion is done by a representation of the relationships between
variables of interest, usually physical quantities that can be
measured or manipulated. The system identification tech-
niques look for a representation based in the real plant to
be modelled. In general these techniques estimate a best-fit
model based on measurements from the real system. This
approach allows the simplification of the representation of
systems whose theoretical model is excessively complex or
uncertain to describe.

Moreover, non-linear mechanical systems with several me-
chanical degrees of freedom that require high dynamical
performance over their whole operating envelope must be
based on dynamic models that carefully represent both the
global non-linear dynamic behavior, the representation of
dominant structural flexible modes and the inclusion of rel-
evant other parasitic dynamic phenomena.

Within this framework, the objective of the SIMONA re-
search Simulator project (SIMONA stands for the Insti-
tute for research in SImulation, MOtion and NAvigation)
is the research in the field of simulation with an advanced
flight-simulator. The SIMONA Research simulator is a
lightweight multi-vehicle-re-configurable cockpit mounted
over a six-degrees-of-freedom motion platform. It is desired
that this simulator work with a wider bandwidth, from 10
Hz to 15 Hz, (actual simulators work in the range of 3 to
5 Hz) that would allow the simulation of special conditions
[2]. The simulation of special conditions make necessary the
high dynamical performance over the flight simulator work
space, which is achieved by means of a model based con-
troller. At present, an approximation of the real system con-
sidering only the motion platform dynamics has been used
for an initial control design. A better approximation of the
dynamics of the whole system is necessary for increasing
the performance in all the working envelope and fulfill band-
width requirements [3].

In the case of the SIMONA research simulator project , sys-
tem identification procedures are applied to the motion sys-
tem that can be described as a Stewart Platform with 6 DOF
(Degrees of Freedom). The objective is to provide a linear
simplified model of the motion of the Stewart Platform. The
proposed model can be used to design a multi variable con-
trol or a Linear Parameter Varying Control of the complete
motion system, the last would require the modelling of the
parameter dependence over the global operating domain.

In order to obtain an adequate model with system identifi-
cation procedures attention should be given to the experi-
ment design. The proper excitation of the system is crucial
in order to obtain measurements with enough information
over the relevant dynamics of the system for the subsequent
use in identification routines. For the particular system of
the SIMONA Research Simulator motion system, subspace
identification techniques provide state space models with
a straightforward application to Multi Input Multi Output
(MIMO) Systems. The Subspace Techniques are used in
combination with optimization routines [4] to obtain mod-
els with good characteristics in terms of analysis of residuals
and prediction of signals in the time domain.
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Introduction

Robotised laser welding, figure 1, is an application which
requires high speed combined with high precision. Off-
line programming is used to reduce the expensive down-
time while programming the accurate and high-speed mo-
tion. Unfortunately, the robot will deviate from the pro-
grammed trajectory due to dynamic limitations at the high
welding speed.

Figure 1: Robotised Laser Welding.

Goal

In order to a priory predict the dynamic performance of the
robot during laser welding of a specific product, realistic
dynamic simulations are combined with Off-line Program-
ming. Realistic dynamic simulations require realistic mod-
els of the robot and controller. Robot identification tech-
niques will be used to find the unknown model parameters.

Robot Identification

A 3 degree of freedom (3DOF) robot model has been for-
mulated which includes lumped inertia parameters, stiffness
parameters of the gravity compensation spring and a -three
parameter- friction model to describe joint friction. The
equations of motion are expressed in the vector of gener-
alised coordinates q and the vector of model parameters p

τ = M(q, p)q̈ + C(q, q̇, p)q̇ + K(q, p)q + g(q, p) ,

where M(q, p) is the reduced mass matrix, C(q, q̇, p)q̇ rep-
resents the Coriolis and the centrifugal forces as well as the
friction model, K(q, p)q includes stiffness properties and
g(q, p) is the vector with external nodal forces, including
gravity, and the driving torques are expressed by vector τ .
The model parameters p are estimated using experimental
parameter identification. The set of model parameters is

found using a linear least squares method. This linear least
squares method requires that the robot dynamic model is
rewritten in a parameter linear form

τ = Φ(q, q̇, q̈)p ,

where Φ(q, q̇, q̈) is known as the regression matrix. Eval-
uation of the dynamic model in a number of samples i =
1 . . . n along the trajectory (q, q̇, q̈) yields the data-set

b = Ap ,

where

b =




τ1
...

τn


 and A =




Φ1(q1
, q̇

1
, q̈

1
)

...
Φn(q

n
, q̇

n
, q̈

n
)


 ,

The least squares solution is given by:

p
LS

= (AT A)−1AT b = A+b .

To be able to apply a least squares fit, A should have full
rank. Consequently, the regression matrix should also have
full rank. This is obtained when the set of parameters p that
will be estimated is minimal.

The quality of the least squares fit depends strongly on the
condition of matrix A. Using excitation trajectories (q, q̇, q̈)
consisting of a Fourier series with 5 frequencies, this condi-
tion can be manipulated by choosing the phases and ampli-
tudes. Non-linear optimisation techniques are used to find
the best phase and amplitude combination while obeying
motion constraints.

Results & Conclusion

A parameter estimation for a 3DOF model has been per-
formed. The torques are obtained by measuring the servo
currents and transforming them to joint torques. The trajec-
tories are programmed in the robot control software. All ex-
periments are done without modifications to the original in-
dustrial robot. The simulations are performed using SPACAR

and MATLAB. Simulation of the 3DOF robot model shows
good agreement with the experimental results. The identi-
fied model parameters closely match the values given by the
robot manufacturer. The end goal is a realistic 6DOF robot
model which enables the accurate and realistic simulations
needed with off-line programming for laser welding.
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Abstract

In general it can be useful to identify disturbances that dete-
riorate the closed-loop behaviour of a control system. Often
the only way to detect disturbances is using a measurement
that is also used in the closed-loop. We can design the con-
troller in a way to effectively deal with disturbances, but in
some cases this will not be enough. When large disturbances
corrupt the measurement, a supervisory control strategy is
sometimes used which adapts the closed-loop controller in
order to cancel the effect of the disturbances. In that case
fast detection of the disturbance is beneficial in minimizing
performance losses.

Feature detection is a technique to extract or isolate infor-
mation from a signal that is important to a certain appli-
cation. It is well known in the field of image processing
were algorithms to detect edges (one dimensional feature
detection) and corners (two dimensional feature detection)
are used. Wavelet analysis [1] shows good results in iso-
lating features (time-patterns in signals), especially short-
living events. Therefore wavelets are already used in several
fields for this purpose, even in engineering [2]. However, ap-
plications found in literature are not time critical: the signals
are processed off-line or quasi on-line in a delayed security
loop.

The need for an on-line feature detector is born within re-
search to improve playability of compact discs. A CD-
player is a complex system in which high-tech mechanical,
control and digital signal processing techniques are com-
bined. In the playback process of discs two servo-loops are
involved: one for focusing and one for radial positioning
of the laser-unit. The radial positioning loop controls the
following of the track and receives input from a reflected
laser beam, which is also used for reconstructing the data on
the disc. Scratches on the disc have much influence on this
measurement and disturb the radial-positioning servo-loop.
Since the actual mechanical system is not disturbed, the con-
troller gets the wrong information: disc-scratches imply ra-
dial tracking errors, which are not present in real. It would

Shaker CD−player
mechanism

Force transducer 
Accelerometer 

Control electronics 

Figure 1: CD-player setup used for feature detection

be beneficial to detect this kind of disturbances in an early
stage to adapt the servo-loop to cancel the consequences of
these effects. For this purpose wavelets are used to build an
on-line feature detector.
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1 Abstract

A deadbeat observer based generalized likelihood ratio
(GLR) test is proposed for the detection and estimation
of a jump in discrete time linear time invariant (LTI) sys-
tems. The proposed approach overcomes the difficulty in
the choice of the window size for the online detection pro-
cedure. The marginalized GLR test is also discussed as the
offline procedure to overcome the difficulty in the choice of
the threshold.

2 Problem Formulation

The problem is to detect and estimate the jump ν and the
jump time t0 from the given sequence of observations {y(t)}
of the discrete time LTI system

x(t + 1) = Ax(t) + Gw(t) + δt0,t ν

y(t) = Cx(t) + v(t)

where x(t) is the state, y(t) is the observation, and {w(t)}
and {v(t)} are independent, zero mean, Gaussian sequences
with variance E[w(t)w(t)T ] = W > 0 and E[v(t)v(t)T ] =
V > 0. The term δt0,t ν represents a jump in the state. Here
t0 is an unknown positive integer, which assumes a value if
a jump occurs and takes the value +∞ if there is no jump.
Also δi,j is the Kronecker delta and ν is the unknown size
of the jump (see [2, 8, 4, 3] for surveys).

One of the most powerful methods for the jump detection is
the GLR test proposed in [7]. The key points of the GLR
test are summarized as follows. Based on the state estima-
tion of the Kalman filter, the residual can be computed at
each time instant. It does not depend on the initial state and
becomes independent Gaussian sequence with/without the
jump. If no jump has occurred, the mean value of the resid-
ual is 0. Once a jump occurs, the mean value of the residual
is linearly dependent on the jump at each time instant. This
linear dependence of the mean value together with the vari-
ance of the residual can be computed utilizing the Kalman
filter gain. Since the log likelihood ratio (LLR) becomes a
function of the unknown jump and the unknown jump time,
they can be estimated by maximizing the LLR over a fixed
interval. The choices of the window size and that of the
threshold have been recognized as key problems.

3 Solution

This paper proposes a deadbeat observer based GLR test to
detect and estimate the unknown jump in discrete time LTI
systems, i.e. we apply the deadbeat observer to generate the
residual as a substitute for the Kalman filter [7] and estimate
the unknown jump and the unknown jump time. Compared
with the Kalman filter based approach, it can be shown that
we can follow the same procedure of the GLR test, and fur-
thermore the small window size at most the McMillan de-
gree of the LTI system is enough for the detection and esti-
mation. Assuming the noninformative prior information for
the size of the noise variance, the marginalized GLR test is
discussed as an offline procedure to overcome the difficulty
in the choice of the threshold (cf. [5, 6]).
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1 abstract

Most adaptive control systems have been derived from
the certainty equivalence principle: at each new itera-
tion of the design, a model of the plant is obtained from
the previous model, and a new controller is designed
on the basis of this updated model. Unfortunately, in
case the uncertainty about the system parameters is too
large, the stability of the real plant controlled by the
model-based controller can not be guaranteed. How-
ever, if the uncertainty about the true system is such
that no matter where we believe that the true system is
and no matter where it actually is, the controller based
on the model stabilizes the actual plant, then we can
safely apply a certainty equivalence type of strategy.

Therefore, we propose to build a test checking at each
iteration whether the parameter uncertainty set is such
that for any models P1, P2 in this set, the controller
based on P1 stabilizes P2. If this condition holds, the
uncertainty set is then said to be strongly robust [?].
Hence, our adaptive scheme splits in two phases de-
picted in Figure 1. In the first phase, we put effort on
identification of the system to be controlled, and once
the condition of Strong Robustness is verified, we switch
to the second phase where the emphasis is gradually put
on control.

Our objective is to present the general structure of our
algorithm, irrespectively of computational issues. In
particular, we show that, for the class of systems we
specify, if we can compute an input sequence such that
the parameter uncertainty set is converging to the point
set {θ0}, where {θ0} denotes the true parameter vec-
tor, then there exists a finite time at which the con-
dition of strong robustness is fulfilled, dismissing the
situation where we would stay in the first phase indef-
initely. Next, assuming that the condition of Strong
Robustness is verified in finite time, since the stabil-
ity of the controlled system is now guaranteed, we can
proceed as in classical adaptive control, i.e. we can de-
sign the controller on the basis of the updated model.
At each new data measurement, the model is updated
into a new model closer to the real system, leading to
an updated controller expected to show better perfor-
mance. Although this is still under investigation, the

   Compute unfalsified set  

        
take measurement

   Apply the identification input,

Apply linear combination of control 
input and identification input;

Take measurement

Initial model  

Design a controller

Yes

NoCheck       Strong
Robustness

   Update the model 

   Compute  the unfalsified set 

   Update the model 

Figure 1: Iterative scheme.

main improvement brought by the introduction of our
multiphase adaptive control system is expected to be
the decrease of undesired transients of the control sys-
tem.
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Abstract: In this work, identification based PID tuning is studied. The proposed approach 
consists of the identification of linear or nonlinear process model and model based control 
design. The identification test can be performed in both open loop and closed-loop. The so-
called ASYM method is used to solve the identification problem. The method can identify a 
low order process model with a quantification of model errors (uncertainty). The PID tuning 
is based on the internal model control (IMC) tuning rules. Two case studies will be performed 
to demonstrate the proposed methodology. The first one is the adaptive control of the 
dissolved oxygen (DO) of a bioreactor; the second one is the nonlinear PID control of a pH 
process. Practical problems will be discussed and new research topics are highlighted. 
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1 abstract

In many servo control application the same task is repeat-
edly performed in the same way. Iterative learning control
has been shown to be a very effective way to obtain con-
trol signals to greatly reduce the errors during these tasks
by using the knowledge of similarity between the tasks
([1],[2],[3],[4]). In 1988 Phan and Longman [5] presented
a setting describing the design of and ILC as a finite time
problem where the input and output vectors of a plant are
considered as discrete finite vectors. This setting is known
as a lifted system description. Some research has been done
towards reducing the calculation complexity of the lifted
system ILC design problem through the use of basis func-
tions [6] but it has only recently been shown that classi-
cal feedback design methods can quite easily be applied to
the lifted system description [7]. In ILC design methods
that are based on infinite time considerations (like transfer
functions,([1])) the nonzero value of the error to be used
by the ILC at the start and end of the trajectory (which can
be caused by system noise), causes problems that need to
be handled separately often resulting in rather heuristic ap-
proaches. Design in the finite time lifted system setting has
as a main advantage that the solution explicitly takes into
account states of the plant at the beginning and end of the
trajectory, resulting in a time varying operation that can be
applied without any extra effort. In addition clear feedback
layout of the lifted system setting enables us to design the
ILC using classical feedback design methods, taking into
account the effects of noise and convergence in a single de-
sign.

One drawback however is that these design methods are
based on a fixed size of the lifted system, which essentially
means that the ILC will be calculated for a fixed length of
the trajectory under consideration and the application to a
trajectory of different length will change the design and re-
quire a recalculation of the ILC. In this presentation is shown
that, for LTI systems, it is very well possible to express the
optimal lifted system ILC in the parameters of the underly-
ing LTI plant. Effectively creating a finite time optimal ILC

1This research project is being sponsored by Philips CFT

design.

This finite time ILC design has been applied to an industrial
grade wafer stage, showing the value of this extrapolated
solution.
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1 Abstract

Cam-follower mechanisms are often used for realizing fast,
periodical motions, as they occur in e.g. car engines and
weaving machines. Traditionally, cam profiles are synthe-
sized based on the assumption that the camshaft speed is
constant. Nevertheless, many cam-follower systems, es-
pecially high-speed systems, exhibit substantial camshaft
speed fluctuation, due to the high inertial torques that result
from the exchange of kinetic energy between the flywheel
on the camshaft and the follower inertia. The fluctuation of
the camshaft speed causes the follower motions to be inac-
curate, since the cams are designed for constant camshaft
speed. As a result, the follower accelerations exhibit unde-
sired harmonics that may excite machine resonances, caus-
ing vibrations, noise and wear.

Two fundamentally different approaches exist to obtain ac-
curately realized follower motions. The first, more tradi-
tional approach consists of taking measures in order to re-
duce the camshaft speed fluctuation. Several methods have
been proposed. First of all, the flywheel size can be in-
creased. The main disadvantage of this method is the re-
sulting bad start/stop behaviour of the machine. A better
method is the application of an advanced control technique
to keep the camshaft speed as constant as possible, see e.g.
[1]. This works fine, but has the disadvantage that the motor
has to deliver large (mainly inertial) torques in high-speed
systems. These torques can however be drastically reduced
by adding an extra mechanism that compensates for the iner-
tial torques, see e.g. [2]. The second, recently developed ap-
proach [3] doesn’t aim at reducing the camshaft speed vari-
ation but explicitly takes it into account when designing the
cam profiles. Theseinertially1 compensatedcams yield ac-
curately realized follower motions, even for small flywheel
sizes. Moreover, the motor has to deliver no inertial torque,
despite the fact that no compensating mechanism is present.

Both the second approach and the (second method of the)
first approach require advanced control strategies in order
to accurately impose the desired constant (first approach)
or fluctuating (second approach) camshaft speed. As cam-

1Only the camshaft speed variation due toinertial forces is taking into
account.

follower systems are nonlinear systems performing repet-
itive motions, Repetitive Control (RC), Iterative Learning
Control (ILC) and (Time-Indexed) Learning Feed-Forward
Control (LFFC) [4] seem applicable. This paper reports on
the application of LFFC to an experimental set-up, consist-
ing of a DC motor driving a cam-follower system. The cam-
follower system is strongly nonlinear, that is, it cannot be
accurately modeled as an underlying linear system with non-
linear distortions. Consequently the LFFC stability analysis
presented in [4] is not applicable as it is based on the transfer
function of the underlying linear system. Nevertheless, sim-
ulation and experimental results point out that controlling
the set-up using LFFC yields satisfactory results.
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This paper presents a new approach towards the design of it-
erative learning control (ILC, Moore, 1993). ILC improves
the tracking accuracy of a (closed-loop) control system by
learning from previous experience prescribing the same tra-
jectory. This is done by updating the feedforward signal in
an iterative way according to a learning law. This process
makes use of a learning filter that is optimal if it equals the
inverse model of the process sensitivity. In linear motion
control systems the design is often complicated by the in-
verse plant sensitivity being non-causal and unstable. We
assume that we have a reliable (linear) model of the inverse
process sensitivity. To evaluate such non-causal system we
split it up in a causal and a non-causal part. The non-causal
part can be written as a linear combination of differentiating
filters. Since in ILC the whole input series is known, we
can use high-performance differentiating filters for this part
(Carlsson, 1989). The output of this non-causal part serves
as the input for solving the causal part. By choosing a solver
for mixed boundary value problems we can put extra con-
straints on begin and end values of the output signal. The ad-
vantages of this new approach over the existing techniques
are demonstrated by examples. First, the new approach is
applied on an academic non-minimum phase system. At this
point, contrary to another widely used technique (ZPETC,
Tomizuka, 1986), the new approach succeeds in calculating
inverse responses of non-minimum phase systems. Next,
both the new approach and ZPETC are applied to an indus-
trial motion system, i.e. an H-drive. Using a tenth order
model of the process sensitivity, the resulting tracking error
for both methods is of the same order of magnitude. Further
exploring the use of mixed boundary value constraints will
be a major issue for future research. In particular, creating
cyclic feedforward signals seems a very attractive option in
motion control. Furthermore, research will focus on opti-
mizing the numerical implementation of the solver to make
this method more efficient and suitable for higher order sys-
tems.
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1 Abstract

Reinforcementlearning(RL) takesits origin in theoptimal
control theory and the dynamicprogramming. It consists
of a collectionof methodsfor approximatingby experience
optimalsolutionsto problemsof unknown dynamics[3].

We focuson how to apply thesemethodsto discretetime
optimal control of systemswith continuousstate-spaces.
The main ideaof the approachusedis to tranformthe dis-
crete time control problem into a Markov Decision Pro-
cess(MDP) by discretizingthe state-space(the discretiza-
tion techniqueweuseis known astriangularisation[2]) and
thento solve the MDP by meansof classicaldynamicpro-
grammingtechniques.

First we concentrateon how a MDP structurecan effec-
tively representthe discretetime optimal control problem
andhow to computethisstructurethroughtheknowledgeof
the dynamicsof the system.Thenwe explain how to esti-
matethis structureby interactingwith thesystem.Validity
of the approximationsandconvergenceof the methodsare
discussed.Moreover an applicationof thesereinforcement
learningmethodsto power systemcontrol is usedas illus-
tration[1].
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1 Introduction

Linear motors are typically used in applications that require
high speed, high force and high precision actuation. A lin-
ear synchronous motor consists of two parts, the moving part
and the stationary part. The motor we investigated had per-
manent magnets fixed on the stationary part. To generate
a force, a three phase current has to be applied with a cer-
tain phase depending on the position. To increase this force,
iron-core coils are used that bundle the flux. The permanent
magnets in the stationary part attract these iron which re-
sults in cogging forces. The motor has preference positions
due to this attraction. By skewing the permanent magnets
this effect can be minimized [1], however, at the cost of a
smaller peak force. If the magnets are placed with small
tolerance and the generated magnetic field would be equal,
the cogging force would be periodic. This would mean that
the cogging force is known before-hand and can be com-
pensated for. However this would require a set of tightly
toleranced magnets that are placed accurately.

The downside of precise placement and a good set of perma-
nent magnets is that it is costly. It would be advantageous to
use a set of inferior magnets and place them with a large tol-
erance. This would result in a cogging force that cannot be
calculated beforehand, thus introducing a disturbance force
that depends on the position of the moving part. Tracking er-
rors will be introduced by this force and these are unwanted
in scanning motions that are performed in semiconductor
manufacturing.

By identifying the current that is required to compensate for
the cogging force as a function of the position and by apply-
ing this as a feedforward signal, precise magnet placement
is not necessary and a set of less costly magnets can be used.

2 Method

Identification of the required compensating currents can be
done with Learning Feed-Forward Control [2]. By moving
the translator over the stationary part, the extent of the cog-
ging force can be determined. This force can be stored in a
linear neural network or in a different function approxima-
tor.

This method has been applied on a linear motor in which the
set of magnets could be exchanged. First, the cogging force
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Figure 1: Error on evaluation path with constant velocity.

of the linear motor with a high quality magnetic field was
determined. This force was stored in a B-spline network as a
function of position and used for compensating the cogging
force in the next run. Next the same procedure was applied
for the set of magnets with inferior specifications.

The result are given in figure 1. The scales of the inferior
magnets are slightly larger. From these figures it is clear that
the tracking error of the configuration with inferior magnets
is worse than the tracking with the good magnets. After the
learning of the individual cogging force, they can be com-
pensated for. The tracking error after the learning is about
equal for both set of magnets.

3 Conclusion

The tracking error of a linear synchronous motor stems
among others form cogging forces. These forces can be
limited by precise construction. However by identifying and
compensation for these forces, it is shown to be possible that
the tolerances on the construction can be loosened without
introducing larger tracking errors. By investing time identi-
fication and control, the construction becomes less costly.
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In previous work [1], we developeda new numericalsta-
bilization procedurefor linear time-delaysystems,called
the continuouspole placementmethod,which canbe con-
sideredas an extension of the classicalpole placement
methodfor ordinarydifferentialequations.Oneof its ap-
plicationsis the calculationof a stabilizing feedbackgain
for linearsystemswith aninput delay,������	��

�������	����������������������
! #"������	�$�
Sincethe closed-loopsystemhasinfinitely many eigenval-
ues,theprocedureconsistsof controllingonly therightmost
or unstableeigenvalues,which are moved to the left half
planein a quasi-continuousway by applyingsmallchanges
to thefeedbackgain  andmeanwhilemonitoringtheother
eigenvalueswith a large real part. The rightmosteigenval-
uescanbecomputedwith themethoddescribedin [2]. The
procedureendswhen the rightmosteigenvaluescannotbe
furthershiftedto theleft usingtheavailablecontrollerpara-
meters;for stabilizablesystemsthismeansthattheexponen-
tial decayrateof thesolutionsis maximal.

However, theresultingcontrolleris oftennotvery robust.

For this reason,we considerin this talk someperturbations
on the parametersof the (stabilizable)systemanddiscuss
a numericalprocedureto determinethe valueof the feed-
backgain,whichmaximizessomerobuststabilitymeasures.
Thesemeasuresarequantitively expressedby stability radii,
whichcanbeinterpretedasthesizeof thesmallestdestabil-
azing perturbations.The procedureconsistsof two steps.
First thecontinuouspoleplacementmethodis applieduntil
stability is reached.In caseof complex perturbations,we
then optimize complex stability radii basedon shapingof
somefrequency responseplots.

The talk consistsof threeparts. First we motivatethe im-
portanceof robustnessconsiderationsin thestabilizationof
delay equationswith the analysisof a scalarand a two-
dimensionalexample. Thereby, it turnsout that the feed-
back gain and the configurationof the eigenvaluescanbe
completelydifferentin thecaseswheresomerobuststabil-
ity measuresaremaximalandwheretheexponentialdecay
rateof thesolutionsis maximal.Moreover, in thelattercase,
robustnesscanbepoor. Secondlywedescribethenumerical
procedurein detail andfinally we apply it to a realisticex-

ample.
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1 Abstract

Genetic programming (GP) is the technique for finding so-
lutions to problems by imitating processes as seen in nature
during the evolution. Starting with a population (i.e. a set of
random generated solutions, also called individuals) opera-
tions as crossover, mutation and reproduction are applied to
create new generations, until a suitable solution is found. To
make this process converge to a suitable solution, the indi-
viduals need to be evaluated for their ’fitness’, i.e. how well
they are able to solve the problem. Individuals with a good
fitness are allowed to evolve, individuals with a bad fitness
are not. In a way this is similar to breeding. Lyapunov’s the-
ory provides a way of proving stability of equilibrium points
for all kinds of systems. If a Lyapunov function exists for
a system, one can draw conclusions regarding the stability.
However, the difficult part is tofind such a function, as there
exists no universal method for finding a Lyapunov function.
On the other hand, it is a well known fact that for the systems
that we study, stability of the system implies that a Lyapunov
function exists that proves it. Consider the set of (non)linear
differential equations represented asẋ = f(x), with f locally
Lipschitz. The Lyapunov theorem for local stability states
that the equilibrium at the origin is locally asymptotically
stable when two conditions are met.

Theorem 1 (Local stability) If, in a ball BR0 , there exist
a scalar functionV (x) with continuous first partial deriva-
tives such that

• V (x) is positive definite (locally inBR0 )

• V̇ (x) is negative semi-definite (locally inBR0 )

then the equilibrium point0 is locally stable. If actually the
derivativeV̇ (x) is locally negative definite inBR0 , then the
stability is asymptotic.

Merging the theories above, we present an algorithm that
helps finding Lyapunov function in many cases. Besides
stability, also performance issues such as the region of at-
traction of an equilibrium point can be addressed within this
framework. To find a Lyapunov function using GP, an as-
sessment of thelikelinessof the function of evolving into a
Lyapunov function needs to be made. To assign the fitness
value (quantification of likeliness) a grid is created in the
search space. The individuals are evaluated on every point

of the grid, while checking if the inequalities of Theorem
1 hold. The best function is the function with fitness value
zero. The fitness of a GP-generated Lyapunov function can-
didate can be conceptually evaluated as follows:

1. EvaluateV (x) and V̇ (x) for all fitness casesp. In-
crease the fitness value for everyp whereV (x) ≤ 0
and/ orV̇ (x) ≥ 0.

2. Evaluate performance (i.e. the region of attraction).
Increase the fitness value according to how well the
performance criteria are met (a small value being
good performance).

This way, the individuals are graded to the likeliness of them
becoming a Lyapunov function. Individuals that fail in most
points on the grid, will end up with a high fitness value.
Whereas individuals that fail on few points, i.e. individuals
that are near being a Lyapunov function, receive a low fit-
ness value. As a benchmark problem, the problem posed by
Johansen [1] is used. For the system:

ẋ1 = −3x1 + x2

ẋ2 = 2x2
1

0.3+(x2+0.4)(x2−0.6) − 2x2
(1)

Lyapunov functions are to be found. The Lyapunov func-
tions found by Johansen and by GP are compared in terms
of the region of attractionr or the decay rateα. Contour
curves of the Lyapunov function found by GP together with
a vector plot of Eq. (2) are shown in the figure below. As

Method Joh. GP
r 0.85 0.94
α 5.06 10.20
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the table shows, GP succeeds in finding better values forr
andα.
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Motivation

Nonlinear passivity-based control (PBC) algorithms for
power converters have proven to be an interesting alterna-
tive for other, mostly linear, control techniques. The con-
trol objective is usually achieved through an energy reshap-
ing process and by injecting damping to modify the dissipa-
tion structure of the system. However, a key question that
arises during the implementation of the controller is how to
tune the various parameters. The first attempt to develop
some guidelines to adjust the damping parameters is to study
the disturbance attenuation properties using L2-gain analy-
sis techniques [5]. Unfortunately, the necessary calculations
become quite complex, especially when dealing with large
converter structures. In previous works, see e.g. [4], the
location where to add the damping is mainly motivated by
the form of the dissipation structure, in the sense that damp-
ing is added to those states that do not contain any damping
terms a priori. For example, in the boost converter case this
means that only damping is injected on the input current, as
the output voltage already contains a damping term due to
the load resistance. However, this leads to a PBC regulated
circuit that is highly sensitive to load variations and also
needs an expensive current sensor to measure the inductor
current. This disadvantage holds for many other (switching)
networks too. Another disadvantage is that in general more
states have to be measured than is strictly necessary, result-
ing in a more expensive controller from both a financial and
computational point of view.

Contribution

In this presentation a solution to these problems is pro-
vided. The method uses the classical Brayton-Moser equa-
tions [1] stemming from the early sixties. First, these equa-
tions are accommodated to include controllable switches.
Due to the passive nature and their close relation with La-
grangian and Port-Hamiltonian dynamics [3], the Brayton-
Moser equations appear to be naturally suited for application
of passivity-based control. Secondly, because the PBC de-
sign is based on the energy and the interconnection structure
of the circuit, it is not surprising that this allows an interpre-
tation in similar physical terms of the controlled closed-loop
system. From a circuit-theoretic point of view, as is dis-
cussed in [2], the controller produces a computed duty ratio
function (switch control) which forces the closed-loop dy-
namics to act as if there are virtual resistors connected in se-

ries and/or in parallel to the real circuit elements. In this way
the characteristic impedance(s) of the filter elements can be
matched dynamically by the controller [2]. However, this
method is quite conservative and not easy to extend to gen-
eral circuits with nonlinear elements. In this talk we present
an alternative methodology to tune the various control pa-
rameters based on modified versions of the stability theo-
rems developed in [1]. These fairly sharp criteria follow-
ing from these theorems form a systematic and straight for-
ward tool for solving the tuning problem for a general class
of PBC controlled power electronic circuits. Both criteria
are compared and tested using the elementary single switch
buck and boost converters. Interestingly enough, the idea of
dynamic parallel damping injection (see figure) provides a
method to control non-minimum phase circuits based on the
corresponding non-minimum phase output(s) only.

Power Converter

Passivity-Preserving
Duty Ratio Synthesizer

PWM

Dynamic Tuning

Capacitor
Voltages

Setpoint
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In the behavioral approach, a system is studied as the set
of trajectories that the system allows. We call this set as
the behaviorof the system. There is no a priori distinc-
tion among the system variables as inputs and outputs. De-
tails of this general approach of studying systems can be
found in [2]. Further, in this context, control of a given sys-
tem is viewed as interconnection of this system with another
system (called the controller) such that the interconnection
brings about a (desired) restriction on the set of allowable
trajectories. This view of treating control problems has been
introduced in [5].

In contrast to [5], where the problems of stabilization and
pole placement were considered for the case thatall system
variables are available for interconnection (the so-called full
information case), we work in the generality that we are al-
lowed to use only some of the system variables for the pur-
pose of interconnection. These variables are called the con-
trol variables. Restricting oneself to using only the control
variables for interconnection brings in the notion ofimple-
mentability into the control problem. Necessary and suf-
ficient conditions for implementability of a behavior have
been obtained and they can be found in [4] and [3].

Another important role is played by the notion ofregular in-
terconnection. This too was introduced in [5]. We deal with
interconnections that are regular in this paper. Regular in-
terconnections turn out to be precisely the interconnections
that bring about a restriction ononly the controllable part
of a behavior and thus do not interfere with the autonomy
within a plant. This captures the intuitive idea that a plant’s
autonomy must not be interfered upon by a controller.

We combine these notions of regular interconnection with
that of implementability and establish necessary and suf-
ficient conditions for the existence of aregularly imple-
mentablesubbehavior. This result is then applied to solve
the problems of stabilization and pole placement by inter-
connection.

A noteworthy feature here (like in most other literature on
behaviors) is that the results have been formulated in terms
of properties of the behaviors themselves andnot in terms of
any particular set of equations that the behaviors are repre-

sented by. The above results along with the proofs can also
be found in [1].
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1 Abstract

In this article the authors deal with the optimization of the
fuel burned during orbit plane change corrections under time
constrained situations. A necessary and sufficient condition
for which a three impulse maneuver burns less propellant
than the standard non-coplanar Hohmann transfer (the single
impulse plane change maneuver) is given. For the case when
the condition is satisfied, the authors derive the (optimal)
value of the transfer orbit semi-major axis for which the fuel
expenditure during the maneuvering is minimized. Some
practical applications of these results are delineated in the
contribution as well.

2 Introduction

The majority of investigations carried out on satellite or-
bital plane changes have been concentrated on techniques
that minimize the fuel consumption. This is an optimization
problem, which, to this day, hasonly been posed consider-
ing as a cost function theexpenditure of fuelregardless of
the time needed to perform the maneuver. However, in a
number of situations, it might be desirable to optimize the
maneuver fuel consumption subject to time constraints.

3 Results

The fuel burned during an orbital maneuver is often ex-
pressed in terms of thechange in velocityneeded to achieve
the new location and conditions. It can be easily proved that
this1V is a direct measure of such propellant consumption.
In this contribution the authors use the same criterion.

Although the standard orbit plane change maneuver is the
so-called simple impulse maneuver (or the non-coplanar ex-
tension to Hohmann transfer maneuver) in the paper the au-
thors propose to make use of another type of maneuver, the
so-called Bi-elliptic plane change maneuver (see [1]). We
apply the latter to obtain better results regarding less fuel
consumption when compared with the standard manuever.
The problem we solved can be formulated as follows:

1This paper presents research results of the Belgian Programme on
Inter-University Poles of Attraction, initiated by the Belgian State, Prime
Minister’s Office for Science, Technology and Culture. The scientific re-
sponsibility rests with its authors.

Problem: Minimization of the fuel consumption applying
bi-elliptic transfers subject to time constraints:

Minimize 1V = f (r1, θ, n) subject to

g(r1, n) ≤ tmax (1)

with θ the plane change angle,r1 the radius of the orbit in
which the satellite is coasting,n =

r2
r1

,n > 1, r2+r1
2 the

semi-major axis of the transfer orbits andg a function that
expresses the duration of the orbit plane change transfer ma-
neuver in terms ofr1 andn.

The optimization problem is solvable ifftmax > Pr1, with
Pr1 the period of the orbit of radiusr1.

1. Forθ ≥ 48.94◦ the ration =
r2
r1

is determinedonly
by the time constraint inequalityn ≤

α
r1

( 3
√

tmax − 1)

with α =
3
√

2µe
π2 . The optimal value ofn, denoted by

n∗, is n∗
=

α
r1

( 3
√

tmax − 1).

2. Forθ < 48.94◦ we have:

n?
=

2λ − 1 − λ2

2λ2 + 4λ − 2
(2)

wheren? is the solution that maximizes the difference
in 1V when performing a three-impulse maneuver in-
stead of an one-impulse maneuver (λ = sin( θ

2)). The
optimal value ofn is given by(2) if n? < α

r1
( 3
√

tmax−

1), otherwise it isn∗
=

α
r1

( 3
√

tmax − 1).

4 Applications

Orbiting satellites need orbit corrections several times dur-
ing their lifetime. We studied some satellite formation
flights guaranteeing that at each time one of the satellites
is operational while the others are in stand-by to replace the
operational one. The maneuver needed to put in the opera-
tional orbit one of the stand-by satellites is cost inexpensive
if the time for doing this operation is long enough. This
procedure can be repeated several times giving as a result a
better overall performance.
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1 Abstract

Dynamic system such as an aircraft is best described with
non-linear stochastic models, possibly with correlation be-
tween process and measurement noise. Estimation of aero-
dynamic parameter of aircraft from this kind of model gives
closer approximation to reality of the system. The objective
of this work is therefore to develop an algorithm of param-
eter and state estimation for non-linear stochastic systems,
considering correlation of process and measurement noise
into account.

Investigation of the nature of noise has been conducted for
aircraft dynamic model. Correlation can happen if control
input measurement is noisy, hence corrupts both state- and
measurement equations. By taking a similar approach to
Sage and Melsa[1], an extended Kalman filter has been de-
veloped to obtain state estimates for this system. Further-
more, Maximum Likelihood parameter estimation algorithm
was established to identify aerodynamic parameters of the
system.

The algorithm is implemented in MATLAB environment. It
has been validated by using Citation II short period motion
simulation and gave a desired performance in identifying the
aerodynamic parameters. Applying the algorithm to flight
test data completed the validation of the software. The re-
sults shows superior performance compared to linear Max-
imum Likelihood algorithm. Further improvement can be
obtained as non-linear aerodynamic model is implemented
to the algorithm, especially in the estimation of x-axis aero-
dynamic parameters.
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Problem formulation

The problem of slow moving targets detection by means of
a moving pulsed radar is examined for monostatic radars,
where the transmitter and the receiver are co-localized. The
radar uses a linear antenna and transmits a train of coherent
pulses. Combining this space (antenna) and time (train of
pulses) informations can enhance target detection.

The signal received from reflexions on the ground is divided
in range gates. For a given range gate, the signal is a space-
time snapshot. Applying a 2D FOURIER transform to the
snapshot allows us to determine the spatial and DOPPLER

frequencies
���

and
���

of the scatterer under interest.

The most important challenge is the rejection of interfer-
ences coming from the fixed background (clutter). The
space-time repartition of the clutter power is found by plot-
ting the clutter DOPPLER frequency as a function of the clut-
ter spatial frequency. (direction-DOPPLER trajectories).

The optimum clutter rejection is provided using Space-Time
Adaptive Processing (STAP) [1, 3]. For each range gate � , a
new processor is applied. The optimum processor (OP) for
a given � is [1]� ���
	�� ��
 � ��������� 
���� ��� � ��
�� � ��
 � ��������� 
 �
where � is the space-time clutter-plus-noise covariance ma-
trix and � , the space-time steering vector. The construction
of the OP implies the estimation of � , based on informa-
tion contained in neighboring snapshots [3]. The estimator�� � ��
 for the range gate � is obtained by using ��� snapshots
centered about � , i.e.,�� � ��
��  

�!� "�#%$ � �
#

 $ & � �

#



for ��')(+* ���, -/.0- �213(+* �4�, and .65�/� . $ � �
#

 is the

received snapshot for the �
#
th range gate.$ � �

#

 being a random process, the clutter spectrum is the

2D FOURIER transform of
�� � ��
 (or

$ � �
#

 $ & � �

#

 ) for a

given � . An accurate estimator is found by applying the
MVE to

$ � �
#

 $ & � �

#

 [1]. The resulting clutter spectrum

is composed of a clutter ridge that has the same shape as
the corresponding direction-DOPPLER trajectory. A non-
biaised estimator is obtained only if the clutter spectrum is
range-independant in the �7� range gates. This is not the
case for non-sidelooking monostatic radars. The only exist-
ing method to compensate for this range-dependence is the
DOPPLER warping [2]. However, the performance decreases
as the crab angle of the antenna increases.

Proposed solution

This method appies to each
$ � �

#

 $ & � �

#

 a non-linear trans-

formation that fit the clutter ridge of each
$ � �

#

 $ & � �

#

 to

that of the range gate of interest, before application of STAP.
The deformation studied here is a 2D dilatation.

After estimation of � , the OP must be applied in the space-
time domain. However, the clutter spectrum is found by
a non-linear power spectrum estimator that has no inverse
transformation. The dilatation must then be done in the
space-time domain. Working with discrete snapshots, 2D
replicas of the clutter spectrum must first be suppressed in
the space-time domain by applying a 2D interpolation filter
to
$ � �

#

 $ & � �

#

 .

The optimum trade-off between low sidelobes and reduction
of high frequencies amplitudes is the 2D-KAISER window.
This solution is examined and compared to the DOPPLER

warping technique.
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1 OPTIMAL PARAMETRIC SENSITIVITY CONTROL :
AN EXAMPLE

In bioprocess modelling substrate limitation is usually mod-
elled in terms of the well-known Monod kinetics with
unknown coefficientsµmax and KS , that is µ(CS) =
µmax

CS

KS+CS
, whereµmax (1/min) is the maximum spe-

cific growth rate,KS (g/l) the half-saturation coefficient and
CS (g/l) the substrate concentration. A natural question is
how the input sequence should be chosen in such a way that
the parameters can be optimally estimated. This is the well
known problem of ‘optimal’ input design, which is a classi-
cal problem in the identification literature. Recently, Stigter
and Keesman (2001) [1] have shown how a closely related
problem for a fed-batch reactor can be solved analytically
using the minimum principle of Pontryagin. In that paper
only the simplest case,i.e. input design for eitherKS or
µmax in a fed-batch reactor using direct state measurements,
has been considered.

In this presentation the emphasis is now on finding a ‘feed-
back’ control law that maximizes the parameter sensitiv-
ity yθ , ∂y

∂θk
for the specificparameterθk from the set

{θi, i = 1, . . . , p} related to the model structure(f, g), to
allow more or less simple analytical solutions, under indi-
rect state measurements, continuous flow in the bioreactor
and input or state weighting.

Define the following simple cost function, withy = x, that
has to be maximized:J =

∫ tf

t=0
x2

θ(τ)dτ under the dynamic
constraints given by state equation:ẋ(t) = f(x(t), θ) +
bu(t) and related sensitivity equation. Using Pontryagin’s
minimum principle [2] the singular arc condition (or inte-
rior boundary condition) can be derived asxθ(t) = − fxθ

fxx
.

Under the interior boundary condition the optimal input is
found from u∗(t) = − [fθfxx+ffxxθ+xθ(t)(fxfxx+ffxxx)}]

b[fxxθ+xθ(t)fxxx] ,

wherefθ = ∂f
∂θ , fx = ∂f

∂x , ...

Let us illustrate the procedure for estimatingKS in a prac-
tical context using the dilution rate for compensating the
growth in the biomass to avoid growth effects. Hereto, the
following equations of the fed-batch reactor are introduced:

dCS

dt = −µ(CS)
YX/S

CX + F
V (u− CS)

dCX

dt = µ(CS)CX − F
V CX

dV
dt = F

(1)

whereYX/S (-) is the yield coefficient,F (l/min) the flow

rate,V (l) the volume of the reactor andu = CS,in (g/l) the
variable substrate concentration in the influent. The biomass
concentrationCX is kept constant atC∗X , the biomass set-
point, by selectingF = µ(CS)V . Consequently,

dCS

dt
= µ(CS)[−CS − C∗X

YX/S
+ u] (2)

The following singular arc condition is found:xθ(t) = CS

KS
.

The corresponding simple optimal control law is:u∗(t) =
C∗X

YX/S
. Hence, an experiment could be organized as:

(i) Apply an impulsive input att = 0, such thatCS,0 = 20
g/l. From the first measurements ofCS , given YX/S and
C∗X , the unknown parameterµmax, can be estimated.

(ii) Keep u(t) = 0, so that pure water is fed into the reac-
tor with flow F (t) = µmax

CS(t)
KS+CS(t)V (t) using initial es-

timates of bothµmax andKS and measured substrate con-
centrations and volumes. Observe whether the singularity
conditionxθ(t) = CS

KS
with xθ(0) = 0 holds.

(iii) Once the singularity condition is satisfied, switch to the
controlu?(t) = C∗S,in = C∗X

YX/S
, ι.e.feed the reactor with a

flow F2 = 1
YX/S

C∗X
CS

F (l/min) from a buffer withconstant

concentrationCS (g/l) and a pure water flowF1 = F − F2

(l/min), such that the substrate concentration in the continu-
ously stirred buffer tank isC∗S,in(= u∗) and estimateKS .

2 CONCLUDING REMARKS

Analytical solutions to the generalone-dimensionaloptimal
parameter sensitivity problem have been found. For the es-
timation of the Monod constantKS , under fed-batch condi-
tions with regulated biomass concentrationC∗X , the simple

control law:u∗(t) = C∗X
YX/S

has been derived. Solutions with
input or state weighting or with nonlinear output relation-
ships and under different flow conditions can be derived in
a similar way.
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1 Abstract

The measurements of the main component concentrations
in bioprocesses are useful for on-line monitoring and con-
trol of the process. But in most cases, hardware sensors in-
volve several problems (cost, sterilization, sample destruc-
tion, time delay, discrete time measurements, etc.). These
problems encourage the use of software sensors which give
on-line measurement estimates (in continuous time) based,
on the one hand, on the available hardware sensors signals
and, on the other hand, on a mathematical model. The algo-
rithm is called a state observer whose goal is thus to provide
a state estimate converging towards the true state of the pro-
cess.

Many state observer techniques have been applied to bio-
processes, trying to deal with the nonlinear models involved
in this field. Bastin and Dochain [1] distinguish the expo-
nential state observers from the asymptotic observers. The
former ones allow to handle a tuning parameter for the rate
of convergence towards the true state. The main drawback
is that the results are strongly dependent on the model qual-
ity. The extended Kalman filter, extended Luenberger ob-
server and high gain observer are exponential observers. On
the other hand, the rate of convergence of the Bastin and
Dochain’s asymptotic observer [1] is completely determined
by the experimental conditions (namely the dilution rate)
and does not own any tuning parameter. This may lead to
a very slow convergence in the case of a low dilution rate or
even, in the limit case of a batch process, to a constant state
estimation error. However, the main advantage is that the
kinetic model is not necessary anymore, this model being
most of time badly known.

In order to combine both advantages of exponential ob-
servers (i.e., fast convergence with a good model) and
asymptotic observers (i.e., convergence without any knowl-
edge on the kinetic model), hybrid observers have been de-
veloped. They estimate the state of the bioprocess together
with a confidence parameter

�
w.r.t. the kinetic model qual-

ity. The structure of the hybrid observer evolves continu-

ously between the two limit cases, namely
�����

(100% con-
fidence in the kinetic model) which then corresponds rigor-
ously to the exponential observer and

�����
(0% confidence

in the kinetic model) which then corresponds rigorously to
the asymptotic observer. Two cases of such hybrid observers
have already been proposed, the former using an extended
Kalman filter as exponential observer [2] and the latter us-
ing a full horizon (or optimization based) observer [3]. This
contribution tackles the case of a hybrid observer based on
the extended Luenberger observer. Its basic principle and
properties are given and the performances are illustrated in
simulation in the case of a bacterial fed-batch fermentation
with substrate measurement and no biomass measurement.
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Abstract

To qualify and quantify the influence of external signals on
bacterial gene expression, continuous culture steady-state
experiments have been performed throughout the past [1, 2].
These costly, labor-intensive and time consuming experi-
ments can be reduced to a minimum with the aid of a math-
ematical model that describes the intrinsic properties of the
dynamic bioprocess.
Although the advantages of model based optimization and
control of fermentations(e.g., baker’s yeast production pro-
cesses and biological wastewater treatment systems) are
well established, the introduction of mathematical model-
ing in the field of genetic engineering is fairly recent. The
scarce, knowledge based models that have been developed
are usually characterized by complex kinetic expressions in-
volving a high number of parameters.

In this contribution it is illustrated that sensitivity function
analysis is a powerful tool to reduce the complexity of a
knowledge based model.
As a vehicle to present the model reduction methodology
and the results obtained, a bacterial gene expression case
study is considered in which the influence of dissolved
oxygen concentration on the expression of thecytNgene in
Azospirillum brasilenseSp7 is modeled.
In a first approach available physiological knowledge is
incorporated into a mass balance equation model with 3
states and 14 parameters.
The large differences in order of magnitude of the identified
parameter values, is a clear indication that not all these
parameters are significant. A careful sensitivity function
analysis revealed that a reduced model with only 6 parame-
ters is almost as accurate as the original model.
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1 Abstract

Much effort has been put towards the mathematical descrip-
tion of mammalian cell cultures during the last few decades.
Early attempts revealed a very global view of the cells acting
as biocatalysts that reproduce themselves, excrete metabo-
lites and often overexpress proteins of interest, e.g. for phar-
maceutical purposes. Simple models have been developed,
which give a phenomenological representation of the cell
activities. Their validity for describing eucaryotic cells is,
however, limited to a relatively small range of culture con-
ditions.

Nevertheless, simple models have been successfully used
for process design [1]. A survey on unstructured models for
hybridoma cell growth and metabolite production is given
by Pörtner and Scḧafer [2]. The authors also discuss the
structured kinetic model of Batt and Kompala [3] distin-
guishing four compartments inside the cell. The major sub-
strates (glucose and amino acids) and metabolites (lactate
and ammonia) are considered. Glutamine is distinguished
from the other amino acids to emphasize its important role
in the metabolism, since it additionally serves as a carbon
source besides a nitrogen source typical for amino acids.

During the last decade, mass balancing techniques have
been used for Metabolic Flux Analysis to calculate the spe-
cific reaction rates in a considered metabolic pathway net-
work in steady-state cultures [4, 5]. Bonariuset al. [6]
discuss the problem of underdetermined networks and the
choice of additional constraints.

Recently, Biener [7] formulated a dynamic model based
on the major metabolic pathways including amino acid
metabolism. This model allows several limiting influences
to be described, e.g. energy limitation, and accounts for ir-
reversible reaction pathways.

In this contribution, a class of dynamic models based on
metabolic reaction pathways is analysed, showing that sys-
tems with complex intracellular reaction networks can be
represented by macroscopic reactions relating extracellu-
lar components only. Based on rigorous assumptions, the

model reduction procedure is systematic and allows an
equivalent ‘input–output’ representation of the system (i.e. a
representation in terms of extracellular components, such as
substrates and products) to be derived. The resulting macro-
scopic reaction scheme can be useful for system analysis as
well as for the development of model-based optimisation,
sensor and control techniques.
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Abstract

We generalise the optimisation technique of dynamic pro-
gramming for discrete-time systems with an uncertain gain
function. The main objective in optimal control is to find
out how a system can be influenced, or controlled, in such
a way that it its behaviour satisfies certain requirements,
while at the same time maximising a given gain function.
A very effective method for solving such problems, is the
well-known recursive dynamic programming method, intro-
duced by Richard Bellman [1].

α
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Figure 1: A Simple Example

To explain the ideas behind this method, we refer to Fig-
ure 1. If the optimal paths from b, c and d to the final state
e are known to be α, γ and η, respectively, then to find the
optimal path from a to e, we only need to compare the paths
λα, µγ and νη. This follows from Bellman’s principle of
optimality, by which λβ, νδ and νε cannot be optimal, since
in that case β, δ and ε would be optimal. Based on these
observations, an efficient recursive algorithm can be con-
structed to calculate optimal paths.

We now wish to weaken the assumption that the gain associ-
ated with every path is exactly known. This problem is most
often treated by modelling the uncertainty about the gain
function by means of a probability measure, and by max-
imising the expected gain under this probability measure,
rather than the (unknown) gain itself—we could call this the
Bayesian approach. It turns out that, due to the linearity of
the expectation operator, this approach does not change the
nature of the optimisation problem, and the usual dynamic
programming method can therefore still be applied to find
the ‘optimal’ controls.

But it has often been argued that uncertainty cannot always

be modelled adequately by probability measures, because,
roughly speaking, there will in certain cases not be enough
information in order to identify a single probability measure.
In those cases, the available information can be represented
through so-called imprecise probability models (see [3] and
references therein), such as comparative probability order-
ings, Choquet capacities, belief functions, possibility mea-
sures, lower previsions, sets of desirable gambles, or convex
sets of probability distributions.

This approach naturally gives rise to a strict preference or-
der on paths. But, in contradistinction to the Bayesian ap-
proach, this order is only partial. This means that two paths
will not always be comparable and that there may be no
maximally preferred path, i.e., there may be no path that
is strictly preferred or equivalent to all other paths. How-
ever, we have shown [2] that the principle of optimality still
holds, if we look for undominated paths, these are paths for
which there is no other path that is strictly preferred to it. An
efficient recursive dynamic programming-like algorithm fol-
lows. It turns out that as imprecision increases, more paths
become undominated, and consequently, decisions based on
the model also become more indeterminate. As imprecision
decreases, we recover the classical theory of dynamic pro-
gramming as a special case.
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1 Introduction

Many problems in system theory can be reformulated as op-
timization problems where the criterion function is a poly-
nomial or rational function. For example in system identifi-
cation of linear systems, one may try to estimate the transfer
function of a system, which is a rational function, from the
data by the least squares method. The function to be esti-
mated depends in general on some parameters that need to
be identified. This procedure is nothing else that minimiza-
tion of a rational function.
Another application area is the model reduction of the order
of a system. There one tries to approximate a given transfer
function by one of a lower degree which reduces again to
optimization of a rational function.
We believe however that the applications are much more nu-
merous.
In this paper we study unconstrained global optimization
of rational functions. We give first few theoretical results.
Then we give a relaxation of the initial problem which can
be solved using LMI techniques. Therefore, in general our
procedure will produce a lower bound of the infimum of the
original problem. However, under no degeneracies, it is pos-
sible to check whether the relaxation was in fact exact.

2 Main results

Lemma 1 Let a(x)/b(x) be a rational multivariate func-
tion, with a(x), b(x) relatively prime polynomials. If
a(x)/b(x) ≥ 0, ∀x ∈ Rn

\ {x ∈ Rn
| b(x) = 0}, then

one of the two following statements holds:

• a(x) ≥ 0, b(x) ≥ 0 ∀x ∈ Rn,

• a(x) ≤ 0, b(x) ≤ 0 ∀x ∈ Rn.

Next, we discuss the application of Lemma 1 to rational op-
timization problems.

Consider the problem

min
x∈Rn

p(x)

q(x)
, with p(x), q(x) ∈ R[x] relatively prime.

(1)

Theorem 2 Let p(x)/q(x) be a rational function with
p(x), q(x) relatively prime. If p(x)/q(x) is bounded from
below, then q has constant sign onRn.

Corollary 3 Let p(x)/q(x) be a rational function with
p(x), q(x) relatively prime polynomials. If q(x) changes
sign onRn thenminx∈Rn p(x)/q(x) = −∞.

Note that the reciprocal is not true. However, we can refor-
mulate now the problem (1). Suppose thatq(x) ≥ 0 ∀x ∈

Rn. Then problem (1) is equivalent to

max α

s.t. p(x) − αq(x) ≥ 0, ∀x ∈ Rn.
(2)

Obviously the largestα satisfying the condition is the
infimum of p(x)/q(x).

Note that the feasibility domain of (2) may be the empty set.
That is, there is noα ∈ R satisfying the polynomial inequal-
ity for everyx ∈ Rn. In this case the maximum will be−∞.

Using the technique described in [2], [1], one can
construct a relaxation of (2)

max α

s.t. Q(α, λ) � 0.
. (3)

HereQ(α, λ) is a symmetric matrix, affine inα ∈ R andλ ∈

Rk andk + 1 is the dimension of the affine space (see [1]).
Therefore (3) is a standard LMI problem . The solution of
(3) is in general a lower bound on (2). However, in general,
there are ways to check whether the relaxation was exact.

3 Conclusions

The rational optimization problem is rewritten as con-
strained polynomial optimization. A relaxation of the latter
problem can be subsequently solved using LMI’s.
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1 Abstract

We consider the Newton method on Riemannian manifolds
and its application to the particular case of finding a sta-
tionary point of the (generalized) Rayleigh quotient on the
Grassmann manifold ofp-dimensional subspaces ofRn.
This yields an iterative method that cubically converges to
the p-dimensional invariant subpaces of a symmetricn-by-
n matrix. Emphasis will be laid in the presentation on the
intuitive meaning of the Newton method, and illustrations
will be given in the casep = 2, n = 3.

In Rn, thekth iteration of the Newton method for a smooth
cost function f : Rn

→ R computesx(k+1)
∈ Rn from

x(k)
∈ Rn in the following way (see e.g. [2]):

(a) solveH (k)N = −gradf (x(k)) for N ∈ Rn (1a)

(b) setx(k+1)
= x(k)

+ N (1b)

where gradf (x̂) denotes the Euclidean gradient off at x̂ ∈

Rn, namely gradf (x̂) = (∂ f/∂x1(x̂), . . . , ∂ f/∂xn(x̂))T ,
and H (k) is the Hessian off at x(k), that is H (k)

=

(∂gradf/∂x1(x(k)), . . . , ∂gradf/∂xn(x(k))). Note that the
term H (k)N appearing in (1a) is nothing else than the direc-
tional derivative of gradf in the direction ofN. An intuitive
interpretation of (1) is that we compute by (1a) a “direction
of motion” N in which the gradient varies as the opposite of
gradf (x(k)), and then make a step in this direction (1b), the
aim being to find a new pointx(k+1) where the gradient ap-
proximately vanishes. And indeed, it can be proved (see e.g.
[2]) that, under mild hypotheses onf , the Newton method
is well defined and quadratically converges to a stationary
point of f , i.e. a pointx∗ such that gradf (x∗) = 0.

The following generalization of the Newton method to a
Riemannian manifoldM is due to Smith [5]:

(a) solve∇Ngradf = −gradf (x(k)) (2a)

for N ∈ Tx(k) M

(b) setx(k+1)
= ExpN (2b)

whereTx M denotes the tangent space toM at x, ∇ the Rie-
mannian (also called Levi-Civita) connection, and Exp the
exponential mapping. All these differential geometric con-
cepts are explained in introductory books on Riemannian ge-
ometry (see e.g. [3]). The term∇Ngradf can be thought of
as the variation of gradf in the direction ofN, while the ex-
ponential generalizes the concept of step in the direction of
N. Again, this iteration quadratically converges to station-
ary points of f , provided f does not behave too badly.

We will show how this applies to the following case. The
manifold M is the Grassmann manifold Gr(p, n), i.e. the
set of thep-dimensional subspaces ofRn. Note that any ele-
mentY of Gr(p, n) can be represented as the column span of
ann-by-p matrixY with full rank. Let A be a symmetricn-
by-n matrix. The cost function considered is the generalized
Rayleigh quotientρA(span(Y)) := trace[(YT Y)−1YT AY].
This cost function has the interesting proprety that its sta-
tionary points are thep-dimensional invariant subspaces of
A. The Newton iteration in this case maps a subspaceX to a
new subspaceX+ according to the following procedure [4]:
(a) Pick an orthonormaln-by-p matrix X such that
span(X) = X.
(b) Solve the following Sylvester equation

XT
⊥

AX⊥K − K XT AX = −XT
⊥

AX (3)

for K ∈ R(n−p)×p, whereX⊥ is any orthonormaln-by-(n−

p) matrix such thatXT X⊥ = 0.
(c) X+ := span(X + X⊥K ).

We will show how this iteration compares to the generalized
Rayleigh quotient iteration we presented last year [1].
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1 Introduction

Consider the infinite-dimensional system

ẋ(t) = A(x(t), y(t) = Cx(t),

with initial conditionx(0) = x0 on the infinite-dimensional
state spaceH (Hilbert space). We assume thatA is the in-
finitesimal generator of aC0-semigroupT(t) on the Hilbert
spaceZ, and thatC is a bounded operator from the domain
of A to another Hilbert spaceY. Furthermore, we assume
that for every initial conditionx0 the outputy is square inte-
grable.

We want to derive necessary and sufficient conditions for
exact observability. The above system is (by definition) ex-
actly observable if and only if

∫
∞

0 ‖y(t)‖2dt ≥ m‖x0‖
2, for

some positivem.

2 Conjecture

Some ten years ago, Russell and Weiss posed the following
conjecture: The system is exactly observable if and only if

‖(s − A)x‖
2
+ |Re(s)|‖Cx‖2

≥ m1Re(s)2
‖x‖

2

for somem1 > 0, all x in the domain ofA, and all complex
s with negative real part.

We show that in general this conjecture is not true. Further-
more, we show that this conjecture should be reformulated.
This new conjecture is still open.
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1 Motivation

This presentation describes the control of temperature pro-
files using model predictive control (MPC) based on re-
duced models obtained by proper orthogonal decomposition
(POD). A simple heat transfer problem will be used as an
example. The basic ideas will in future be extended to (parts
of) glass melting furnaces, where the behaviour of physical
variables, such as temperature, is described by partial differ-
ential equations (PDE). The main processes taking place in
the glass melt (melting, fining and mixing) must take place
in different parts of the domain. This results in requirements
on the temperature profile in the glass melt.

Numerical models that are used to simulate the temperature
behaviour are based on discretisation of the spatial domain.
The number of state variables in these models is high (˜105)
to achieve acceptable accuracy. Therefore reduced models
are nescessary for controller design. Next it is explained
how these by POD reduced models are used in a controller.

2 Strategy

Consider the following partial differential equation:

∂x (ξ, t)
∂t

= D (x (ξ, t) , u (ξa, t)) (1)

wherex (ξ, t) is the state,D (·) is an operator (e.g. partial
derivatives ofx (ξ, t)) andξa is a finite dimensional vector
of actuator positions. Suppose the control problem is given
by:

u (ξa, t) = arg min ||r (ξ, t)− x (ξ, t)||2 (2)

that is, track a reference profiler (ξ, t) as close as possible.
If (1) is discretised with respect to space, then:

dx̄ (t)
dt

= f (x̄ (t) , ū (t)) (3)

where x̄ ∈ Rn, u ∈ Rm and f : Rn × Rm → Rn.
Through the snapshot method a set of orthogonal basis vec-
tors{ϕi}l

i=1 is found (POD basis, [1], [3], [2]) to approxi-
mate the state:

x̄ (t) =
l

∑

i=1

ai (t) ϕi + εx (t) (4)

where the coefficientsai (t) are calculated byai (t) =
〈x̄ (t) , ϕi〉. DefineΦ =

[

ϕ1 ϕ2 · · · ϕl
]

anda =
[

a1 a2 · · · al
]T

to find an approximate model for
the coefficientsai (t):

ȧ (t) = ΦT f (Φa (t) , ū (t)) (5)

Furthermore, assume a finite number of measurements at lo-
cations that are given inξm, y (ξm, t) = g (x (ξm, t)) which
givesȳ (t) = g (Φa (t)). A reduced control problem is for-
mulated using a discretised reference trajectoryr̄ (t):

ū (t) = arg min ||aref (t)− a (t)||2

wherearef,i (t) = 〈r̄ (t) , ϕi〉 or aref (t) = ΦT r̄ (t) and
aref , a ∈ Rl. An observer is used to estimate the vector
of coefficientsa (t) rather than the statēx. To demonstrate
the approach a 1D heat transfer example will be presented
with a considerable reduction of state space dimension in the
controller,l << n.

3 Conclusions

The original control problem (2) inRn can be translated into
a reduced control problem onRl. Results achieved up to
now are promising and the strategy may also be feasible for
more difficult 3D problems.

Future work on this subject will be done on the incorpora-
tion of equality and inequality contraints and the effects of
modeling errors (e.g.εx (t)).

References
[1] P. Astrid. Model reduction by proper orthogonal de-
composition. Submitted to Benelux meeting on Systems and
Control, December 2001.

[2] J. A. Atwell and B. B. King. Proper orthogonal
decomposition for reduced basis feedback controllers for
parabolic equations. Mathematical and Computer Mod-
elling, 33:1–19, 2001.

[3] K. Kunisch and S. Volkwein. Control of burgers’
equation by a reduced order approach using proper orthog-
onal decomposition.Journal of Optimization Theory and
Applications, 102(2):345–373, 1999.

Book of Abstracts 21st Benelux Meeting on Systems and Control

98



Spectral Factorization of
Meromorphic Functions of Finite Order

for Distributed Parameter Systems

Frank M. CALLIER, Joseph J. WINKIN
University of Namur (FUNDP), Department of Mathematics

8 Rempart de la Vierge, B–5000 NAMUR, BELGIUM
frank.callier@fundp.ac.be, joseph.winkin@fundp.ac.be

Spectral factorization is a paramount problem in feedback
control system design, see e.g. [10], [7] and the references
therein. In particular, the spectral factorization problem of
the so-called Popov function constitutes an essential step
in the solution of the Linear-Quadratic optimal control
problem for infinite-dimensional state-space systems, see
e.g. [1], [3], [6], [9], [11] and the references therein.

This contribution is devoted to the analysis of the spectral
factorization problem for a large class of distributed param-
eter system transfer functions, [4]. More specifically, this
question is studied for (coercive) spectral densities which
are meromorphic functions of finite order, see e.g. [8], in
the framework of the Callier-Desoer algebra of distributed
parameter system transfer functions, see e.g. [2],[5].

In particular, criteria for the elementary rational factor
infinite product representation of a coercive spectral density
and for the convergence of the spectral factorization pro-
cedure based on such representation are developed. These
criteria are based on the knowledge of the comparative
asymptotic behavior of the spectral density poles and zeros,
i.e. on the pole-zero absolute and relative errors.
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1 Abstract

The sub-optimal Hankel norm approximation problems have
been studied extensively in the literature and we have noth-
ing to add in this direction. The new contribution of this
paper is to present an elementary derivation of the reduc-
tion of the sub-optimal Hankel norm approximation prob-
lem to a J−spectral factorization problem. We do this for
the Wiener class of matrix-valued functions. The solution of
this J−spectral factorization problem can then be obtained
solving two equations involving projection operators, hence
obtaining an explicit parameterization of all solutions to the
sub-optimal Hankel norm approximation problem.

The first source of the connection between the sub-optimal
Hankel norm approximation problem and aJ−spectral
factorization problem is Ball and Helton [1], although
it is not stated explicitely there. Various corollaries of
this abstract paper have been stated, but there is a gap
between the abstract theory in [1] and the elementary
looking corollaries. This motivated the search for an
elementary self-contained proof in many papers. These
elementary proofs were important steps along the way to
solving the sub-optimal Nehari problem or the sub-optimal
Hankel norm approximation problem for specific classes of

infinite-dimensional systems. Consequently, there were sev-
eral slightly different versions presented.

The results presented in this paper refines and/or generalizes
the preceding lemmas in Sasane and Curtain [4] and Iftime
and Zwart [2]. We use in an essential way the notion of
equalizing vectors, introduced by G. Meinsma [3].
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Abstract

We address the design of nonlinear feedback controllers for
the set point control of Euler-Lagrange (EL) systems

∂L

∂q
(q, q̇) −

d

dt
[
∂L

∂q̇
(q, q̇)] −

∂F

∂q̇
(q̇)+ Mu = 0 (1)

with vector of generalized coordinatesq ∈ Rm and input
u ∈ Rr . L(q, q̇) is the Lagrangian andF (q̇) is Rayleigh’s
dissipation function, which satisfies

q̇′
∂F

∂q̇
(q̇) ≥ 0 ; ∀q̇ ∈ Rm (2)

We consider the case of collocated actuator-sensor control.
This implies that the output is

w = M ′q ∈ Rr (3)

We study controllers for EL systems that allow the existence
of several closed loop equilibrium points. We rely on princi-
ples from dissipativity and Liapunov theory. The controllers
contain a linear dynamic output feedback component and
several nonlinear components. They have the general form

ż = Az− B f (σ )+ η(w) (4)

σ = C′z (5)

u = ψ(z, w) (6)

in the case of displacement feedback, while the controller’s
input and output readη(ẇ) andu = ψ(z, ẇ) in the case of
velocity feedback. The controller statez ∈ Rn; A ∈ Rn×n

is nonsingular;B, C ∈ Rn×s and (A,B) is controllable;
f (σ ) = col[ fi (σi ); i = 1 . . . s]; σ = col[σi ; i = 1 . . . s].
η ∈ Rn andψ ∈ Rr are suitably designed nonlinearities.

Our approach is to find conditions that ensure the con-
vergence of every bounded solution to one of the closed

loop equilibria. Systems having this property behave in a
nonoscillating way : As time increases every solution either
tends to infinity or it converges to an equilibrium state. If
all solutions remain bounded then the set of the equilibria is
globally convergent. The results constitute a basis for con-
trol systems synthesis in such cases where the existence of
several stable closed loop equilibria is acceptable or desir-
able.

The conditions for convergence of the closed loop involve
a frequency domain criterion on the tranfer matrixG(s) of
the controller’s linear component and some restrictions on
the nonlinear amplifier characteristics. Several possibilities
are investigated : First we consider velocity feedback, using
controllers with sector-type bounds on the amplifier charac-
teristics and a corresponding Popov-type criterion onG(s).
A second class of controllers is characterized by slope re-
strictions on the nonlinearities resulting in a modified fre-
quency condition onG(s). Subsequently we consider dis-
placement feedback instead of velocity feedback. Finally we
develop controllers possessing hard constraints on the con-
trol force amplitude. The four proposed types of controllers
are compared w.r.t. their conditions of applicability and the
local and global dynamic behaviour of the closed loop. They
are applied to the example of a rotational-translational proof
mass actuator which has been proposed as a benchmark
problem for nonlinear control systems design.
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Abstract

The proliferation of scientific contributions in the field of
synchronization of coupled dynamical systems reflects the
importance of this subject. The reason for this importance
appears to be threefold: synchronization is common in na-
ture, it displays a very rich phenomenology, and, finally,
synchronization may be useful in applications [1].

In this paper we study the existence and stability of linear
invariant manifolds in a network ofk diffusively coupled
dynamical systems:{

ẋ j = f (x j ) + Bu j
y j = Cxj

(1)

where j = 1, . . . , k, x j (t) ∈ Rn is the state of thej -th sys-
tem,u j (t) ∈ Rm andy j (t) ∈ Rm are, respectively, the input
and the output of thej -th system, andB, C are constant
matrices of appropriate dimension. The coupling between
the systems is assumed to be in the form of static relation
between systems’ inputs and outputs:

u j = −γ j 1(y j −y1)−γ j 2(y j −y2)−. . .−γ jk(y j −yk) (2)

whereγi j = γ j i ≥ 0 are constants such that
∑k

j 6=i γ j i > 0
for all i = 1, . . . , k. Let us rewrite the collection of the
dynamics of the elements (1),(2) in the more compact form

ẋ = F(x) + Gx (3)

where we denotedx = col(x1, . . . , xk), F(x) =

col( f (x1), . . . , f (xk)) ∈ Rkn andG = −0 ⊗ BC with the
coupling matrix defined as follows:

0 =


∑k

i =2 γ1i −γ12 · · · −γ1k

−γ21
∑k

i =1,i 6=2 γ2i · · · −γ2k
...

...
. . .

...

−γk1 −γk2 · · ·
∑k−1

i =1 γki

 (4)

whereγi j = γ j i ≥ 0 and all row sums are zero.

Let us recall here that given a dynamical system as (3), the
linear manifoldAM = {x ∈ Rkn

: Mx = 0}, with M ∈

Rkn×kn, is invariant if Mẋ = 0 wheneverMx = 0, that is,
if at a certain timet0 a trajectory is on the manifold,x(t0) ∈

AM , then it will remain there for all time,x(t) ∈ AM for all

t . The problem can be summarized in the following terms:
givenG andF(·) find M a solution to

M F(x(t0)) + MGx(t0) = 0 (5)

for all x(t0) for which Mx(t0) = 0. There is no general so-
lution to this, however, if these objects satisfy certain prop-
erties, it is possible to find a class of matricesM that solve
(5). A natural way to do this is to exploit the symmetry of
the network.

For this sort of systems we are able to prove the following
result related [2] to the existence of linear invariant mani-
folds: i) given a permutation matrix5 that commutes with
0, the setker(Ikn − 5 ⊗ In) is a linear invariant manifold
for system (3)and ii) suppose there is a permutation matrix
5 commuting with0, and an n× n constant matrix J sat-
isfying J f(x) = f (J x) for f (·) in (1), with J commuting
with the n× n matrix BC. Then the setker(Ikn − 5 ⊗ J) is
a linear invariant manifold for system (3).

Once the existence of the linear invariant manifolds is estab-
lished it is possible to study its stability. We preent sufficient
conditions guaranteeing the existence of globally asymptot-
ically stable invariant compact subset of the invariant mani-
fold. The stability criterion is formulated in terms of eigen-
values of the coupling matrix0 [3].

The consequences of the stability test are discussed by a
number of examples.

Acknowledgements

G. Santoboni wishes to thank NWO for financial support.

References

[1] I. Blekman,Synchronization in science and technol-
ogy, ASME Press, New York (1988).

[2] A. Yu. Pogromsky, G. Santoboni and H. Nijmeijer,
”Partial synchronization through permutation symmetry,”,
submitted to 15th IFAC World Congress, Barcelona, Spain
(2002).

[3] A. Yu. Pogromsky and H. Nijmeijer, “Cooperative
oscillatory behaviour of mutually coupled dynamical sys-
tems,”IEEE Trans. Circ. Sys. I48,152-162(2001).

Book of Abstracts 21st Benelux Meeting on Systems and Control

102



Energy functions and balancing for nonlinear
discrete-time systems: an application example

Ricardo Lopezlena
Control Systems Engineering Group, ITS

Delft University of Technology
P.O. Box 5031, 2600 GA Delft, The Netherlands

E-mail: R.Lopezlena@ITS.TUDelft.nl

Jacquelien M.A. Scherpen
Control Systems Engineering Group, ITS

Delft University of Technology
P.O. Box 5031, 2600 GA Delft, The Netherlands

E-mail: J.M.A.Scherpen@ITS.TUDelft.nl

1 Abstract

The study of systematic tools for model reduction of dy-
namic systems has been an early topic of interest in the sys-
tems and control fields. Model approximation based on the
Hankel norm and the balancing method have shown to be
useful tools for model reduction for linear systems. Today
singular values-based balancing, LQG balancing and

���
balancing are important practical tools for linear model re-
duction. Therefore the study of model reduction for linear
systems can be considered a mature topic.

For nonlinear systems, there has been important progress
with the continuous nonlinear extensions of systematic
methods of balancing (singular-value-based, LQG and� �

), mainly based on the controllability and observabil-
ity functions [2], [3]. Rougly speaking, in such procedure
a Hamilton-Jacobi equation and a Lyapunov-like partial dif-
ferential equation have to be solved in order to determine
the energy functions. Then a nonlinear transformation trans-
forms the system in balanced form. The mathematical com-
plexity in solving such partial differental equations has stim-
ulated the search for alternative methods to determine the
energy functions [4].

In [1] energy functions for stable nonlinear discrete-time
systems are discussed with the purpose of extending the
continuous-time theory exposed in [2], [3]. Since the deter-
mination of such energy functions are a fundamental con-
dition for nonlinear balancing and model reduction, the im-
portance of this results lies on the establishment of firm steps
towards a methodology suitable for computer implementa-
tion for the reduction of nonlinear discrete-time systems.

Consider the following discrete-time nonlinear system,

�����	��
 ��
������������������
 ��
�������� �! #"
The energy functions of this system are naturally defined:
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as the controllability function and
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as the observability function. These discrete time versions
of the energy functions are discussed and analized, provid-
ing necessary existence conditions. Instead of looking for
the solution of a Hamilton-Jacobi-Isaacs and a Lyapunov-
like partial differential equations as in the continuous-time
case, an optimization approach and an iterative algorithm
are proposed to find

$ %
and

$ G
respectively.

Moreover, since the resulting energy functions are continu-
ous in its arguments, several tools originally developed for
balancing of continuous-time systems are directly applica-
ble to discrete-time systems.

Although the applicability of one of these methods depends
on the invertibility of an associated nonlinear map, this is
not really a strong restriction since discrete-time systems
that result from discretization of continuous-time systems
are invertible. The relevance of these results lies on its ap-
plicability to model reduction and system identification for
discrete-time nonlinear systems.

Furthermore, with the availability of nonlinear discretization
procedures, such methods may provide alternative balancing
algorithms for continuous-time systems. This is presented
with an ad hoc application example consisting on the non-
linear balancing of a universal motor.
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Abstract

This paperstudiesthe feedbackinterconnectionof a pas-
sive systemwith the nonlinearproportional-integral block���������
	���
���������������	���������������������������	! "�#������� .

−
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In theparticularcasewherethepassivesystemis anintegra-
tor, thefeedbackinterconnectionreducesto theVanderPol
equation.

For any ��
%$'& , this equationis well known to possessa
limit cycle in thephaseplanefor ����$(& . This limit cycle is
globally asymptoticallystable(all solutionsconvergeto the
limit cycleexceptfor theunstablezeroequilibrium).

In this paperwe prove that for any ��
%$'& , thereexists a
stablelimit cycle for abroadrangeof valuesfor theparame-
ter ��� in thegeneralcaseof a linearpassivesystemwhich is
controllable,observable,of relativedegreeoneandwhithout
any purelyimaginaryzero.

The paperdiscussessomeimplications of this result for
roboticapplications.
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Abstract

In the Netherlands, soft fruit vegetables such as tomatoes,
cucumbers and sweet pepper are produced at large
quantities in greenhouses. The total production area for
these three vegetables is 3000 ha. The average size of the
nursery has increased throughout the last decades to more
than 1 ha and large production facilities of around 5 ha
are quite common today.

Today, labour is the largest cost factor of a modern
greenhouse holding. More than 30% of the total production
costs are spent on wages for the grower and his employees.
Obviously, to cope with saturating market demands and
increasing competition, the grower is looking for ways to
improve the over-all efficiency of the production process.
Improving the efficiency of human labour or even reducing
the amount of human labour seems to be a key issue.

Therefore, in 1996, IMAG began research on the
development of an autonomous cucumber harvesting
robot supported by the Dutch Ministry of Agriculture,
Food and Fishery ([1]). The task of designing robots for
agricultural applications raises issues not encountered in
other industries. The robot has to operate in a highly
unstructured environment in which no two scenes are the
same. Both crop and fruit are prone to mechanical
damage and should be handled with care. The robot has
to operate under adverse climatic conditions, such as high
relative humidity and temperature as well as changing
light conditions. Finally, to be cost effective, the robot
needs to meet high performance characteristics in terms
of speed and success rate of the picking operation. In this
project these challenging issues have been tackled by an
interdisciplinary approach in which mechanical
engineering, sensor technology (computer vision),
systems and control engineering, electronics, software
engineering, logistics, and, last but not least, horticultural
engineering partake.

This paper describes the concept of an autonomous robot
for harvesting vegetable fruit in greenhouses. To facilitate
automatic harvesting a new cultivation system was
adopted, the so-called high wire cultivation system. A

description is given of the working environment of the
robot and the logistics of harvesting. It is concluded that
for a 2 ha Dutch nursery, 4 harvest robots and one
docking station are needed during the peak season. Based
on these preliminaries, the design specifications of the
harvest robot are defined. The main requirement is that a
single harvest operation may take at most 10 s. Then, the
paper focuses on the individual hardware and software
components of the robot. They include the autonomous
vehicle, the manipulator, the end-effector, the two
computer vision systems for detection and 3D imaging of
the fruit and the environment, high-level control of the
manipulator including collision-free path planning and
low-level control of the whole robot. A task analysis
revealed the sufficiency of a 7DOF manipulator. The end-
effector handles soft fruit without loss of quality. The
thermal cutting device used prevents transport of viruses
through the greenhouse. The computer vision system is
able to detect up to 95% of the cucumbers in a
greenhouse. Using geometric models the volume
(ripeness) of the cucumbers can be estimated with an
accuracy of 97%. A motion planner based on the A*-
search algorithm assures collision-free eye-hand co-
ordination. For more details refer to [2].

In 2001 system integration took place and the robot was
tested in an experimental greenhouse. With a success rate
of 80%, field tests in the experimental greenhouse at
IMAG b.v confirmed the ability of the robot to pick
cucumbers without human interference.
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1 Introduction

At Philips CFT controllers for electromechanical position-
ing systems, such as wafer stages and component mounters,
traditionally have been designed manually in a loop-shaping
fashion, even for multivariable systems. However, in or-
der to meet the increasingly stringent specifications for con-
troller performance , a lot of research has been conducted to-
wards model based design of multivariable controllers. Ro-
bust controller design was investigated initially to cope with
position dependent dynamics, but very recently modern LMI
based synthesis mehtods [1] are used to design multivariable
LPV controllers. At present however, the theory of system
identification of LPV models is still underdeveloped.

2 Project goal

The main objective of this research project is to develop the-
ory for LPV identification that is applicable in the first place
to electromechanical positioning systems. First, the research
is focussed on frequency domain identification, which is
common practice for electromechanical systems. Frequency
domain identification can be viewed as the problem of in-
terpolating complex valued numbers in a set of frequency
points, using a real rational function of given order. The
observation that the closely related problem of real valued
interpolation with real rational functions can be translated
to a linear program (LP) motivates a convex programming
approach. Analysis of theL∞ optimal frequency domain
identification problem has shown that the solution set is non-
convex. However, we propose a relaxation that renders the
solution set convex, at the expense of conservatism. Us-
ing this relaxation the frequency domain identification prob-
lem can be translated to a so-called conic quadratic pro-
gram [2] that can be solved efficiently using interior point
(IP) solvers. The method can be directly extended to multi-
variable, frequency weighted identification for some classes
of LPV models.
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Introduction

At the group Advanced Mechatronics we are investigating
the possibilities of using Active Magnetic Bearings (AMBs)
in a so-called CD-mastering device. These machines make
the master CD (DVD), used in the (mass) production of the
CDs. The most restricting factor for further increasing the
data density of CD and DVD mastering systems is the so-
called Non-Repetitive Run Out (NRRO) of the rotor.

For the next generation of optical storage devices, the pitch
of the tracks will further decrease. With a pitch of 300 nm
the NRRO needs to be around 1 nm. The currently used air
bearings have a NRRO of about 10 nm (at 6000 rpm), which
seems to be the limit of the current technology.

Also, the decrease in pitch distance, might well require vac-
uum production of the master CD. These two reasons make
AMBs an attractive candidate.

Reduce Bias Flux

The force a single standard E-core actuator generates, is de-
scribed by the following equation:

F = 3Dkamb
i 2

x2
g
, (1)

wherekamb represents some properties of the AMB,i is the
current through the coil, andxg the air gap. Common prac-
tise in operating the AMBs is to linearise around a work-
ing point, using two opposite AMBs which preload the rotor
with a bias current (i0). This gives:

F = 3Dkxx + ki i, (2)

wherekx = 3D4kamb
i 2
0

x3
g
, andki = 3D4kamb

i0
x2

g
.

In machines with extreme positioning demands, the accu-
racy is limited because of the vibrations in the frame. Sep-
aration of the measurement and force frames is then used to
further increase the positioning accuracy.

In these kind of machines the use of actuators like (2) has
two disadvantages. First, the position dependent term intro-
duces disturbances to the rotor, since in practise the machine
frame is not without vibrations. Secondly, the preloading
introduces a bias flux through the rotor. When rotating this
introduces Eddy-currents. This will heat up the rotor (defor-
mation) and will introduce (velocity) coupling between the
frame and the rotor.

Non-Linear Compensation

If we want to reduce the position coupling, we have two
options; increase the airgap and/or decrease the bias current.
It follows from (1) that the air gap cannot be increased too
much, which leaves reducing the bias current.

Ideally we would have no bias current. This forces us to
deal with the zero gain aroundi = 3D0. From (1) it is sus-
pected that a square root should be used in the drive. Indeed,
the square root function shows an infinite gain ati = 3D0,
compensating the zero gain of the actuator.

If the current to the AMB would be set to:

i = 3Dxg
√

α, (3)

with α the output of the controller, then the actuator would
reduce toF = 3Dkα.

The method described above has two disadvantages. Thirst,
the infinite gain of the square root function ati = 3D0 is im-
plemented on a discrete system, which does not have infinite
gain. Secondly, since an AMB always has attracting forces
(1), two opposite AMB are used. This implies a switching
behaviour, which could limit the position accuracy.

A practical preliminary investigation was performed using
a 1 DoF AMB. The performance of 3 different methods are
compared in terms of achievable bandwidth and accuracy.
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1 Background

For the production of Integrated Circuits (ICs), wafer scan-
ners are used. Positioning of the wafer with respect to the
imaging optics is accomplished with a so called wafer stage.
Keeping the servo errors within nanometer accuracy is cru-
cial for obtaining satisfactory overall performance of a wafer
scanner.

As often in servo systems, varying (anti)-resonances are
present. In the case of the wafer stage, plant dynamics al-
ter with different operating points. Therefore, this effect is
referred to as “position dependent dynamics”. Making the
controller robust against position dependent effects can be
used to tackle this problem, yet at the expense of perfor-
mance. However, for the next generation wafer scanners,
performance specifications become even tighter and this ro-
bust control strategy might fail to accomplish the desired
performance level.

Therefore, more advanced controller techniques are investi-
gated, among others Linear Parameter-Varying (LPV) con-
trol. Based on a system description which accurately cap-
tures the position dependent dynamics of a system, LPV
control offers a framework to compute a controller which
adjusts its dynamics to the operating position, thereby avoid-
ing the conservatism which is present with robust control.
Guarantees for stability and performance for each position
can be given as well. However, conservatism due to tech-
nical assumptions necessary for the LPV controller synthe-
sis and numerical problems therein could prevent achieving
the expected performance improvement compared to robust
control. Another major issue is LPV modeling which is still
at its infancy. Generating an LPV model is therefore not a
straightforward task.

2 Approach

To implement LPV control for an experimental wafer scan-
ner, the following steps are taken. First of all, an accurate
LPV model has to be obtained. To use this model for LPV
controller synthesis, it is transformed into the so called LFT
structure: a structure similar to that used forµ-synthesis.
Second, an LPV controller is designed. To investigate the
effect of numerical problems and conservatism, various al-
gorithms are used and results are compared. Finally, the
LPV controller is implemented for the wafer stage and its
performance is compared to a standard PID-like LTI con-

troller.

3 LPV modeling

For LPV modeling, a rather custom-made approach is cho-
sen. For a finite number of positions, frequency response
functions are measured and transfer functions are fitted and
transformed into a canonical form. By the specific arrange-
ments of the varying elements in that form, an LFT model
can be constructed. For intermediate positions, an interpo-
lation technique is used and consequently this pragmatic ap-
proach does not lead to a model with guaranteed validity for
all positions. Besides, if more positions were used the re-
sulting LPV model would become more complex, which is
a serious threat for the synthesis algorithms. To deal with
these two effects, as an extra ingredient physical knowledge
of the setup is used. First of all, the “smoothness” assump-
tion for interpolation is justified. Second, taking into ac-
count that mode shapes cause the position dependent effects
might reduce the number of parameters needed to describe
the phenomenon resulting in an LPV model with fewer pa-
rameters.

4 Synthesis

Numerical problems and conservatism play an important
role in LPV synthesis algorithms. Numerical problems are
handled mainly by trial and error. Unfortunately, a generic
systematic approach is currently unavailable. There is a
trade-off between conservatism and complexity of the LPV
controller synthesis inequalities. For example, the rate of pa-
rameter variations can assumed to be unbounded to limit the
complexity of LPV controller synthesis, although it might
cause conservatism for most practical applications. Re-
search on reducing conservatism and complexity might in-
volve extensions and alterations of the currently used design
inequalities.

5 Presentation

The stepwise approach to implement LPV control for the
wafer stage will be discussed and illustrated with experi-
mental results. Shortcomings in LPV modeling and prob-
lems in the LPV synthesis step will be given special atten-
tion.
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Abstract

Ramp metering is an advanced traffic management system
that can be implemented quickly and easily on motorways
in Belgium as well as in the Netherlands. It consists of a
traffic light that is placed at the on-ramp of a motorway.
Vehicles are allowed to enter the motorway in a controlled
way, avoiding ’bursts’ of cars that would disrupt the traffic
flow on the motorway too much.

In this talk we start with the discussion of the poten-
tial benefits of ramp metering on a qualitative level. What
is ramp metering and how is it implemented? Why does
ramp metering work and what can be expected of it? We
answer these questions using the notion of the fundamental
diagram, a well known concept in traffic theory.

After the qualitative approach, we quantify the perfor-
mance of the motorway system under study by defining
a cost function corresponding to the traffic state. The
motorway system is simulated using a second order traffic
flow model that is discretised in time and space [1], [2]
and [4]. The cost function that we study in this talk is
the total time spent by all the vehicles in the network and
can be calculated based on the simulated traffic density on
the motorway. The cost function can then be minimized
by optimizing the metering rate at the on-ramp or, stated
otherwise, by temporarily limiting the number of vehicles
allowed to enter the motorway through the on-ramp [3].
This boils down to a non-linear optimization problem with
constraints. In order to illustrate the potential benefits of
ramp metering, we simulate a motorway stretch with an
on-ramp without control and compare this to a simulation
with a ramp metering set-up in a model predictive control

framework.
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1 Abstract

The steadily increasing number and length of traffic jams
on motorways has led to the use of several dynamic traf-
fic management measures all over the world such as ramp
metering, incident warning, and route information. Usu-
ally these measures operate based on local data (occupancy
or intensity measurements). However, recently more and
more researchers and practitioners have started to recognize
that considering the effect of the measures on the network
level has many advantages compared to local control. We
apply model predictive control to optimally coordinate vari-
able speed limits and ramp metering. It is clear that ramp
metering is only useful when traffic is not too light (other-
wise ramp metering is not needed) and not too dense (oth-
erwise breakdown will happen anyway). The basic idea is
that speed limits can increase the range in which ramp me-
tering is useful. For the prediction we use a slightly adapted
version of the METANET [1] traffic flow model that takes
the variable speed limits into account. The optimal control
signals aim at minimizing the total time that vehicles spend
in the network. The coordinated control results in a net-
work with less congestion, a higher outflow, and a lower
total time spent. In addition, the receding horizon approach
of model predictive control results in an adaptive, on-line
control strategy that can take changes in the system auto-
matically into account. We illustrate our approach using a
simple network for which we compare the cases ‘ramp me-

Figure 1: Ramp metering at the A13 near Delft.

tering only’ and ‘coordinated ramp metering and speed lim-
its’ for a typical demand scenario.
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1 Introduction

Throughout the world, combustion of municipal solid waste
(MSW), better known as household waste, is used for the re-
duction of its volume, otherwise being disposed of by means
of landfilling, and for the production of energy. An MSW
combustion plant, see figure 1, is subject to both economic
operational objectives and environmental requirements be-
ing enforced by law. In the fulfillment of these objectives,
the control system plays an essential role.

Boiler

FurnaceBunker

Bottom ash

Steam

Fly ash, gypsum,
and others

Stack

Flue gas
cleaning /

post-
combustion

control

Grate

Figure 1: Schematic view of an MSW combustion plant.

Among many MSW combustion plant managers there is a
need to optimize the process operation performance. This is
due to the ever becoming more stringent environmental reg-
ulations and ever growing higher energy efficiency demands.
As a result, research is being carried out in order to im-
prove this operation performance. One important research
direction aims at improving this performance by investigat-
ing the feasibility of advanced control strategies of which
fuzzy control and Model Predictive Control (MPC) are at
present the main representatives. The motivation for this re-
search is that the conventional (PI(D)) combustion control
systems are not able to fulfill properly the present and fu-
ture energy efficiency and environmental needs of an MSW

combustion plant.

2 Outline of the talk

A feasibility study is presented on the application of MPC
as a tool for obtaining an improved operation performance
for MSW combustion plants. First, the main operational
and control objectives for these plants are identified. Sub-
sequently, a specific MSW control problem is selected. On
the basis of this control problem a comparison is made be-
tween the control performance of a conventional (PI(D))
control system, as determined by measurements, and that
obtained with a linear model predictive controller, as deter-
mined through simulations. The latter were performed using
an estimated process and disturbance model. These were
obtained from a large scale MSW combustion plant in The
Netherlands via a specific system identification procedure
which is discussed in [1].

The presented results are also discussed in [2]
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1 Introduction

Model Predictive Control (MPC), also known as moving
or receding horizon control, has originated in industry as a
real-time computer control algorithm to solve linear multi-
variable problems that have constraints and time delays. The
various MPC algorithms differ mainly in the type of model
used to represent the process and its disturbances, as well
as the cost functions to be minimized, with or without con-
straints. The on-line optimization can be typically reduced
to either a linear program or a quadratic program. The MPC
controller solves on-line a constrained optimization problem
and determines an optimal control input over a fixed future
time-horizon, based on the predicted future behaviour of the
process, and based on the desired reference trajectory.

2 MPC algorithm

In this presentation we consider a nonlinear MPC scheme
where the predicted future process behaviour is represented
as a cumulative effect of a nonlinear prediction component
and a component based on linear time-varying models de-
fined along the predicted trajectory ([4]). The first compo-
nent constitutes a future output prediction using nonlinear
simulation models, given past process inputs and measured
disturbance history. The second component uses linearized
models for prediction of future process outputs as required
for calculation of optimum future process input manipula-
tions that bring the process behavior closest to the desired
behavior (see, for example [1, 2]).

The constrained optimization problem leads to the quadratic
programming problem, which can be split into a steady state
and a dynamic optimization. The MPC module solves a con-
strained optimization problem on-line and determines opti-
mal control inputs over a fixed future time-horizon, based
on the predicted future behavior of the process using a time
variant linear model (a set of linear time invariant models
over the prediction horizon). Although more than one con-
trol move is generally calculated, only the first one is imple-

mented. At the next sampling time, the optimization prob-
lem is reformulated and solved with new measurements ob-
tained from the system. Given the initial status of the pro-
cess, estimates of disturbances and the reference trajectories,
the optimizer in the MPC module produces the manipulated
variable such that input and output trajectories follow the
reference trajectories as close as possible subject to the con-
straints imposed in the optimization.

To reduce computational complexity quadratic program-
ming problem is solved using a structured interior-point
method (see [3]). The described above MPC problem was
properly reformulated to apply this optimization algorithm.
The cost of this approach is linear in the horizon length,
compared with the cubic growth for the standard approach.
A discrete Riccati recursion is used to solve the linear
equations efficiently at each iteration of the interior-point
method. We can expect this recursion to be numerically sta-
ble although it was motivated originally by structural rather
than numerical considerations. The effectiveness of this ap-
proach will be demonstrated in the presentation by applying
this MPC algorithm to a distillation process.
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Abstract

Tensegrity systems are composed of tensile members (ten-
dons) and compressive members (bars) [1]. These structures
have been studied for a long time, see,e.g., [2], whose ter-
minology consisted of ties and struts instead of tendons and
bars. In a class 1 tensegrity structure, as considered here, the
bar endpoints, or nodal points, are only connected to ten-
dons, not to other bars. The integrity (stability) of a tenseg-
rity structure is due to pre-stress withtensile forces in the
tendons, hence the nametensegrity.
Because bars are connected by tendons, and not directly, the
stiffness of the structure may be diminished: tendons are
elastic. Furthermore, pre-stress gives rise to heavier mem-
bers, to avoid yield or buckling when forces are increased
due to pre-stress. On the other hand, a proper choice of mate-
rial for these systems is easier to achieve and stiffness can be
improved by controlling the tendon or bar lengths. Changing
member lengths also enables shape control. The net result of
disadvantages and advantages may make tensegrity systems
the systems of choice for a reasonable wide class of appli-
cations.
We discuss how a balanced choice of topology and geome-
try improves the stiffness and stiffness-to-mass properties of
tensegrity systems. We also incorporate controllability re-
quirements, by constraining the tendon length, that should
exceed a certain minimum length, so there is room for the
joint structures and for installation of a mechanism used
to change the tendon length in the case closed loop tendon
length control is applied.
Optimization of topology and geometry of structures has
been studied for a long time. One of the results is the formu-
lation of Optimality Criteria [3]. Furthermore, several ap-
proaches for numerical optimization are known [4], while
recent approaches are,e.g., free material modeling [5, 6], or
optimization of trusses starting from a fully populated grid
[7]. In practice we encounter problems that require to

• incorporate constraints (nonlinear) for failure of the
structure, like yield and buckling,

• tackle a wide class of geometries and boundary and
loading conditions, which excludes approaches using
linear models,

• stabilize the system by requiring pre-stress in the
structure.

Although there are approaches that address some of these
issues, none of these combines all of them.

Our goal is to reduce this gap in the knowledge base, and to

• incorporate requirements for static equilibria for pre-
stressed mechanical structures, both loaded and un-
loaded,

• show the influence of incorporating nonlinear failure
constraints,

• investigate the handling of requirements of installing
actuating devices to control the length of the tendons.

To illustrate our approach we apply it on a tensegrity system
build up from several elementary stages and compare it to
an approach from literature.
The computations are done with a nonlinear programming
approach and most design aspects (static equilibrium, yield
and buckling limits, force directionality,etc., both for the
unloaded and loaded cases) can be, and are, incorporated.
By using an efficient and robust solver, by employing the
structure of the Jacobian of the nonlinear constraints, and/or
by providing analytical expressions for the Jacobian, this ap-
proach appears to be feasible.
From this work it becomes clear that certain topologies are
clearly advantageous, especially the ones that are built up
from a mix of class one (each nodal point is connected to
one bar only) and class two (where in a nodal point up to
two bars can connect) systems.
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1 Abstract

Emulsification is an essential manufacturing technology in
the food industry. Examples of emulsions are mayon-
naise and all kind of dressings. For profit maximization it
is desirable to decrease the production time of emulsions
while maintaining the product quality specifications. In this
project we focus on the model-based optimization of emulsi-
fication. The quality of emulsions is strongly influenced by
the drop size distribution (DSD). For the aim of this study
models that predict the course of the DSD in time are used.

This work addresses the model-based computation of stir-
rer profiles for reaching a certain predefined DSD in mini-
mal time. The model involved describes the evolution of the
DSD as a function of time in a vessel that is operated in a
fed-batch way. The model consists of compartment models
and for each compartment a population balance equation is
formulated to model the DSD. For simulation purposes the
model was discretized using the method of [1]. Each state
corresponds to the number of drops with a certain drop size
in a certain compartment.

The breakage phenomena (the breakage condition, the
breakage frequency, the number and the sizes of the formed
drops) depend heavily on the stirrer speed and exhibit dis-
crete events. A very small increase of the stirrer speed may
already lead to the breakage of certain drop sizes that did
not break with the slightly lower stirrer speed. Comparable
behavior is observed for the formation of certain drop sizes;
until some stirrer speed they are not formed whereas they
are formed very rapidly at a stirrer speed that is only slightly
higher. A further increase of the stirrer speed may suddenly
lead to the non-formation or even breakage of these drop
sizes. These phenomena make the model strongly non-linear
and in fact almost discontinuous. Gradient based optimiza-
tion techniques like SQP will fail because of this behavior.
Also non-gradient based methods like genetic algorithms do
not guarantee satisfactory behavior. It is unsure if the global
optimum will be reached and even if a feasible solution will
be found.

In this work we suggest an approach that approximates the
original non-linear optimization problem as a Mixed Integer
Linear Program (MILP). This method does enable to solve
the optimization problem and if the global optimum of the

MILP is found, then this is also a good solution to the orig-
inal minimal time optimization problem. The method is de-
rived as follows. First, by model analysis it can be shown
that the strong nonlinearity is only in the dependence on the
stirrer speed. Further, in small intervals of the stirrer speed
the dynamics are approximately linear. These intervals form
themodesof the system. At any given time, the system finds
itself in exactly one mode; its mathematical behavior is then
described by a given set of evolution ODE equations. A
transition from one mode to another is triggered when the
stirrer speed passes a certain critical value. Hence, the stir-
rer speed determines completely in which mode the system
is and when the transitions occur. This suggests that the
model can be reformulated as a state-transition network [2]
where linear dynamics describe the behavior in a certain in-
terval of the stirrer speed and where transitions between dif-
ferent modes are modeled using integer decision variables.
The objective, being to reach a certain end point condition
in minimum time, can be enforced through the introduction
of another set of integer decision variables. This way, the
minimum time optimization problem can be reformulated as
a MILP , which can be solved using well-proven, standard
optimization codes. The feasibility of the approach is illus-
trated by means of an example, the computation of stirrer
profiles for reaching a certain predefined DSD in a minimal
amount of time.
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Abstract

In this paper we consider feedback Nash equilibria in a dis-
turbed differential game. Like inH∞ theory, we assume that
the uncertainty is modeled as an additive deterministic dis-
turbance term entering the system. That is, we consider the
system

ẋ = Ax + B1u1 + B2u2 + Ew, x(0) = x0

wherew ∈ Lq
2(0, ∞) represents the unknown disturbance,

x denotes the state of the system andui is the control of
player i . We assume that the information structure of the
players is a feedback pattern and that the control functions
are of the formui = Fi x, where(F1, F2) are such that they
stabilize the system.
We assume that the performance criterionJi the individ-
ual players like to minimize is given by an indefinite linear
quadratic function, i.e.

Ji :=

∫
∞

0
{xT (t)Qi x(t) + uT

i Ri ui (t) − wT Vi w}dt,

where Qi are only assumed to be symmetric;Ri and Vi
positive definite.Vi expresses the risky attitude of playeri .
Sufficient conditions for existence of feedback Nash equi-
libria for such a game are given. Furthermore, the one
player case is elaborated to show the consequences of the
stabilizing feedback assumption in this context.
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Introduction

Objective functions in economic steady-state optimization
for chemical processes are often determined by linear terms,
for instance corresponding to maximization of feed- or prod-
uct flows. This leads to optimal steady-states close to the
constraints on process variables, controlled variables (c.v.’s)
and manipulated variables (m.v.’s). Due to process distur-
bances and plant-model mismatch, one is forced to keep
some distance to the constraints. This problem of selecting
a suitable back-off is a trade-off between avoiding frequent
constraint violation and concessions on the profit rate of the
process. The hard part in solving this problem consists of the
interaction between the tuning of the model predictive con-
trollers and the selection of the optimal steady-state. Bet-
ter tuning leads to profitable reduction of the back-off from
the constraints. In [5] this problem is addressed for a plant-
model mismatch case in which the back-off is selected for
randomly distributed model parameters, biases and worst-
case parameter variations. These results incorporate con-
trol in the back-off selection, but the operating condition is
optimized for a fixed controller and fixed back-off. Only
in [3, 2], the authors solve a nonlinear back-off problem in
which they iterate between computation of optimal operat-
ing conditions and controller parameters and worst-case dis-
turbances.

A new approach to the problem

In this work, we will formulate a different optimization
problem in which the optimal operating condition, the con-
troller parameters and the back-off are optimized simultane-
ously. The control configuration corresponding to our strat-
egy is depicted schematically in figure 1 and is discussed in
[1] for the LQG problem. The objective is to find an optimal
linear controller and an optimal steady-state operating con-
dition which maximize the profit rate of a chemical process
while guaranteeing a bound on the probability that the state
and/or input constraints are not violated. In [4] we show
that we can globally solve this problem using a two step ap-
proach in which we borrow techniques from multi-objective
control [6, 7]. Due to the computational burden of these
techniques, we also propose an suboptimal but fast iterative

procedure relying on the linearization of certain constraints.
The LTI-design is justified by viewing it as an important first
step for closed-loop MPC design.

Optimizer

Controller

Plant

�

�

�
���

������

�	��
�

��

� �
��

�

Figure 1: The control configuration
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Abstract

While linearmodelpredictivecontrolis popularsincethe70sof thepastcentury, the90shavewitnessedasteadily
increasingattentionfrom controltheoretistsaswell ascontrolpractitionersin theareaof nonlinearmodelpredictive
control (NMPC). Thepracticalinterestis drivenby the fact that today’s processesneedto beoperatedundertighter
performancespecifications.At thesametime moreandmoreconstraints,stemmingfor examplefrom environmental
andsafetyconsiderations,needto besatisfied.Oftenthesedemandscanonly bemetwhenprocessnonlinearitiesand
constraintsareexplicitly consideredin thecontroller. Nonlinearpredictive control,theextensionof well established
linearpredictivecontrolto thenonlinearworld, appearsto beawell suitedapproachfor thiskind of problems.In this
notethe basicprinciple of NMPC is reviewed, the key advantages/disadvantagesof NMPC areoutlinedandsome
of the theoretical,computational,andimplementationalaspectsof NMPC arediscussed.Furthermore,someof the
currentlyopenquestionsin theareaof NMPCareoutlined.

1 Principles, Mathematical Formulation and Propertiesof
Nonlinear Model PredictiveControl

Model predictive control (MPC),alsoreferredto asmoving horizoncontrolor recedinghorizoncontrol,hasbecome
an attractive feedbackstrategy, especiallyfor linear processes.Linear MPC refersto a family of MPC schemesin
which linearmodelsareusedto predictthesystemdynamics,eventhoughthedynamicsof theclosed-loopsystemis
nonlineardueto thepresenceof constraints.LinearMPCapproacheshavefoundsuccessfulapplications,especiallyin
theprocessindustries.A goodoverview of industriallinearMPCtechniquescanbefoundin [64,65],wheremorethan
2200applicationsin a very wide rangefrom chemicalsto aerospaceindustriesaresummarized.By now, linearMPC
theory is quite mature. Importantissuessuchasonline computation,the interplaybetweenmodeling/identification
andcontrolandsystemtheoreticissueslikestability arewell addressed[41,52,58].
Many systemsare,however, in generalinherentlynonlinear. This, togetherwith higherproductquality specifications
andincreasingproductivity demands,tighterenvironmentalregulationsanddemandingeconomicalconsiderationsin
the processindustryrequireto operatesystemscloserto the boundaryof the admissibleoperatingregion. In these
cases,linearmodelsareofteninadequateto describetheprocessdynamicsandnonlinearmodelshaveto beused.This
motivatestheuseof nonlinearmodelpredictivecontrol.
Thispaperfocusesontheapplicationof modelpredictivecontroltechniquesto nonlinearsystems.It providesareview
of the main principlesunderlyingNMPC andoutlinesthe key advantages/disadvantagesof NMPC andsomeof the
theoretical,computational,andimplementationalaspects.Note,however, thatit is not intendedasa completereview
of existingNMPC techniques.Insteadwe referto thefollowing list for someexcellentreviews[4, 16,22,52,58,68].
In Section1.1andSection1.2 thebasicunderlyingconceptof NMPC is introduced.In Section2 someof thesystem
theoreticalaspectsof NMPC arepresented.After an outlineof NMPC schemesthatachieve stability oneparticular
NMPC formulation,namelyquasi-infinitehorizonNMPC (QIH-NMPC) is outlinedto exemplify the basicideasto
achievestability. Thisapproachallowsa(computationally)efficientformulationof NMPCwhile guaranteeingstability
andperformanceof theclosed-loop.
Besidesthe basicquestionof the stability of the closed-loop,questionssuchasrobust formulationsof NMPC and
someremarkson theperformanceof theclosed-looparegivenin Section2.3andSection2.2.Section2.4givessome
remarkson theoutput-feedbackproblemin connectionwith NMPC. After a shortreview of existing approachesone
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specificschemeto achieveoutput-feedbackNMPC usinghigh-gainobserversfor staterecovery is outlined.Section3
containssomeremarksanddescriptionsconcerningthenumericalsolutionof theopen-loopoptimalcontrolproblem.
Theapplicabilityof NMPCto realprocessesis shown in Section4 consideringthecontrolof ahighpurity distillation
column. This shows, thatusingwell suitedoptimizationstrategiestogetherwith theQIH-NMPC schemeallow real-
time applicationof NMPC even with todayscomputingpower. Final conclusionsand remarkson future research
directionsaregivenin Section5.
In the following, ����� denotestheEuclideanvectornormin � n (wherethedimensionn follows from context) or the
associatedinducedmatrix norm. Vectorsaredenotedby boldfacesymbols. Whenever a semicolon“;” occursin a
functionargument,thefollowing symbolsshouldbeviewedasadditionalparameters,i.e. f � x;γ � meansthevalueof
thefunction f at x with theparameterγ.

1.1 The Principle of Nonlinear Model PredictiveControl

In general,themodelpredictive controlproblemis formulatedassolvingon-linea finite horizonopen-loopoptimal
controlproblemsubjectto systemdynamicsandconstraintsinvolving statesandcontrols. Figure1 shows thebasic
principle of modelpredictive control. Basedon measurementsobtainedat time t, the controllerpredictsthe future

closed-loop

input u

state x

closed-loop

control horizon Tc

prediction horizon Tp

set-point

future/prediction

t 	 δt t 	 Tc t 	 Tp

past

predicted state x̄

open loop input ū

Figure1: Principleof modelpredictivecontrol.

dynamicbehavior of thesystemoverapredictionhorizonTp anddetermines(overacontrolhorizonTc 
 Tp) theinput
suchthatapredeterminedopen-loopperformanceobjectivefunctionalis optimized.If therewerenodisturbancesand
nomodel-plantmismatch,andif theoptimizationproblemcouldbesolvedfor infinite horizons,thenonecouldapply
theinput functionfoundat time t � 0 to thesystemfor all timest � 0. However, this is notpossiblein general.Dueto
disturbancesandmodel-plantmismatch,thetruesystembehavior is differentfrom thepredictedbehavior. In orderto
incorporatesomefeedbackmechanism,theopen-loopmanipulatedinput functionobtainedwill beimplementedonly
until thenext measurementbecomesavailable.Thetimedifferencebetweentherecalculation/measurementscanvary,
however often it is assumedto befixed, i.e themeasurementwill take placeevery δ samplingtime-units. Using the
new measurementat time t 
 δ, thewholeprocedure– predictionandoptimization– is repeatedto find a new input
functionwith thecontrolandpredictionhorizonsmoving forward.
Notice, that in Figure 1 the input is depictedasarbitrary function of time. As shown in Section3, for numerical
solutionsof the open-loopoptimal control problemit is often necessaryto parameterizethe input in an appropriate
way. This is normally doneby usinga finite numberof basisfunctions,e.g. the input could be approximatedas
piecewiseconstantover thesamplingtime δ.
As will be shown, the calculationof the appliedinput basedon the predictedsystembehavior allows the inclusion
of constraintson statesand inputsaswell as the optimizationof a given cost function. However, sincein general
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thepredictedsystembehavior will differ from theclosed-loopone,precautionmustbe takento achieve closed-loop
stability.

1.2 Mathematical Formulation of NMPC

We considerthe stabilizationproblemfor a classof systemsdescribedby the following nonlinearsetof differential
equations1

ẋ � t ��� f � x � t ��� u � t ����� x � 0��� x0 (1)

subjectto input andstateconstraintsof theform:

u � t ��������� t � 0 x � t ��������� t � 0 � (2)

wherex � t ����� �!� n andu � t �����"�#� m denotesthevectorof statesandinputs,respectively. Thesetof feasibleinput
valuesis denotedby � andthesetof feasiblestatesis denotedby � . We assumethat � and� satisfythefollowing
assumptions:

Assumption1 �%$&� p is compact,�'�(� n is connectedand � 0 � 0�)���+*,� .

In its simplestform, � and� aregivenby boxconstraintsof theform:� : �.- u �&� m / umin 
 u 
 umax0 � (3a)� : �.- x �(� n / xmin 
 x 
 xmax0�1 (3b)

Hereumin, umax andxmin, xmax aregivenconstantvectors.
With respectto thesystemwe additionallyassume,that:

Assumption2 Thevectorfield f : � n *&� m 2 � n is continuousand satisfiesf � 0 � 0�3� 0. In addition, it is locally
Lipschitzcontinuousin x.

Assumption3 Thesystem(1) hasanuniquecontinuoussolutionfor anyinitial conditionin theregionof interestand
anypiecewisecontinuousandright continuousinput functionu �4�5� : 6 0 � Tp 7 2 � .

In orderto distinguishclearlybetweenthe realsystemandthesystemmodelusedto predictthe future “within” the
controller, we denotetheinternalvariablesin thecontrollerby a bar(for examplex̄ � ū).
Usually, the finite horizonopen-loopoptimal control problemdescribedabove is mathematicallyformulatedasfol-
lows:
Problem1 Find min

ū 8:9 ; J � x � t �<� ū �=�>� ;Tc � Tp �
with

J � x � t �<� ū �=�>� ;Tp � Tc � : �@? t A Tp
t F � x̄ � τ �<� ū � τ �B� dτ (4)

subjectto:

˙̄x � τ ��� f � x̄ � τ ��� ū � τ �B�)� x̄ � t ��� x � t � (5a)

ū � τ �C�D���E� τ �D6 t � t 
 Tc 7 (5b)

ū � τ �F� ū � τ 
 Tc ���G� τ �D6 t 
 Tc � t 
 Tp7 (5c)

x̄ � τ �������E� τ �D6 t � t 
 Tp7 (5d)
where Tp andTc are thepredictionandthecontrol horizonwith Tc 
 Tp.
Thebardenotesinternalcontrollervariablesand x̄ �4�5� is thesolutionof (5a)drivenby the input ū �4�5� : 6 t � t 
 Tp7 2 �
with initial conditionx � t � . The distinctionbetweenthe real systemandthe variablesin the controller is necessary,
sincethepredictedvalues,evenin thenominalundisturbedcase,neednot,andin generallywill not,bethesameasthe
actualclosed-loopvalues,sincetheoptimal input is recalculated(over a moving finite horizonTc) at every sampling

1In this paperonly the continuoustime formulation of NMPC is considered.However, notice that most of the presentedtopics have dual
counterpartsin thediscretetime setting.
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instance.
ThefunctionF , in thefollowingcalledstagecost,specifiesthedesiredcontrolperformancethatcanarise,for example,
from economicalandecologicalconsiderations.Thestandardquadraticform is thesimplestandmostoftenusedone:

F � x � u ���H� x I xs� TQ � x I xs��
J� u I us� TR� u I us�K� (6)

wherexs andus denotegivensetpoints;Q andR denotepositive definite,symmetricweightingmatrices.In orderfor
thedesiredreference� xs � us � to bea feasiblesolutionof Problem1, us shouldbecontainedin the interior of � . As
alreadystatedin Assumption2 we consider, without lossof generalitythat � xs � us �L�M� 0 � 0� is the steadystatethat
shouldbestabilized.Notetheinitial conditionin (5a):Thesystemmodelusedto predictthefuturein thecontrolleris
initializedby theactualsystemstate;thusthey areassumedto bemeasuredor mustbeestimated.Equation(5c) is not
aconstraintbut impliesthatbeyondthecontrolhorizonthepredictedcontroltakesaconstantvalueequalto thatat the
laststepof thecontrolhorizon.
In thefollowing anoptimalsolutionto theoptimizationproblem(existenceassumed)is denotedby ū NO�4� ;x � t �<� Tp � Tc � :6 t � t 
 Tp 7 2 � . The open-loopoptimal control problemwill be solved repeatedlyat the samplinginstancest �
jδ � j � 0 � 1 �B���B� , oncenew measurementsareavailable. Theclosed-loopcontrol is definedby theoptimalsolutionof
Problem1 at thesamplinginstants:

u N � τ � : � ū N � τ;x � t �<� Tp � Tc ��� τ �C6 t � δ 7 1 (7)

Theoptimalvalueof theNMPC open-loopoptimal controlproblemasa functionof thestatewill bedenotedin the
following asvaluefunction:

V � x;Tp � Tc ��� J � x � ū PQ�4� ;x � t ��� ;Tp � Tc � 1 (8)

The valuefunction playsan importantrole in the proof of the stability of variousNMPC schemes,asit servesasa
Lyapunov functioncandidate.

1.3 Properties,Advantages,and Disadvantagesof NMPC

In generalonewould like to usean infinite predictionandcontrolhorizon,i.e. Tp andTc in Problem1 aresetto ∞.
5case)to minimize theperformanceobjective determinedby thecostHowever asmentioned,theopen-loopoptimal
controlProblem1, thatmustbesolvedon-line, is oftenformulatedin a finite horizonmannerandthe input function
is parameterizedfinitely, in orderto allow a (real-time)numericalsolutionof thenonlinearopen-loopoptimalcontrol
problem.It is clear, thattheshorterthehorizon,thelesscostlythesolutionof theon-lineoptimizationproblem.Thus
it is desirablefrom a computationalpoint of view to implementMPC schemesusingshorthorizons.However, when
a finite predictionhorizon is used,the actualclosed-loopinput andstatetrajectorieswill differ from the predicted
open-looptrajectories,evenif no modelplantmismatchandno disturbancesarepresent[4]. This fact is depictedin
Figure2 wherethesystemcanonly moveinsidetheshadedareaasstateconstraintsof theform x � τ ���R� areassumed.
This makesthe key differencebetweenstandardcontrol strategies,wherethe feedbacklaw is obtaineda priori and

x1

x2

x̄ S 0 T δ Ux S 0U�V x̄ S 0U V x S δ U
W

x̄ S δ T Tp Ux̄ S 0 T Tp U
Figure2: Thedifferencebetweenopen-looppredictionandclosed-loopbehavior.

NMPC wherethe feedbacklaw is obtainedon-lineandhastwo immediateconsequences.Firstly, the actualgoal to
computeafeedbacksuchthattheperformanceobjectiveovertheinfinitehorizonof theclosedloopis minimizedis not
achieved. In generalit is by no meanstrue thata repeatedminimizationover a finite horizonobjectivein a receding
horizonmannerleadsto anoptimalsolutionfor theinfinite horizonproblem(with thesamestagecostF) [10]. In fact,
thetwo solutionsdiffer significantlyif a shorthorizonis chosen.Secondly, if thepredictedandtheactualtrajectories
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differ, thereis no guaranteethat the closed-loopsystemwill be stable. It is indeedeasyto constructexamplesfor
which the closed-loopbecomesunstableif a (small) finite horizonis chosen.Hence,whenusingfinite horizonsin
standardNMPC,thestagecostcannotbechosensimply basedon thedesiredphysicalobjectives.
Theoverallbasicstructureof a NMPC controlloop is depictedin Figure3. As canbeseen,it is necessaryto estimate

Plant

state estimator

u y

system model
cost function

+
constraints

optimizer
dynamic

NMPC controller

x̂

Figure3: BasicNMPC controlloop.

thesystemstatesfrom theoutputmeasurements.
SummarizingthebasicNMPC schemeworksasfollows:

1. obtainmeasurements/estimatesof thestatesof thesystem

2. computeanoptimalinput signalby minimizing a givencostfunction overa certainprediction horizon in the
futureusinga modelof the system

3. implement the first part of the optimal input signal until new measurements/estimatesof thestateareavail-
able

4. continuewith 1.

Fromtheremarksgivenso far andfrom the basicNMPC setup,onecanextract the following key characteristicsof
NMPC:X NMPC allows theuseof anonlinearmodelfor prediction.X NMPC allows theexplicit considerationof stateandinput constraints.X In NMPC aspecifiedperformancecriteriais minimizedon-line.X In NMPC thepredictedbehavior is in generaldifferentfrom theclosedloop behavior.X Theon-linesolutionof anopen-loopoptimalcontrolproblemis necessaryfor theapplicationof NMPC.X To performthepredictionthesystemstatesmustbemeasuredor estimated.

In the remainingsectionsvariousaspectsof NMPC regardingthesepropertieswill be discussed.The next section
focuseson systemtheoreticalaspectsof NMPC.Especiallythequestionson closed-loopstability, robustnessandthe
outputfeedbackproblemareconsidered.

2 SystemTheoretical Aspectsof NMPC

In thissectiondifferentsystemtheoreticalaspectsof NMPC areconsidered.Besidesthequestionof nominalstability
of theclosed-loop,whichcanbeconsideredassomehow maturetoday, remarksonrobustNMPC strategiesaswell as
theoutput-feedbackproblemaregiven.
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2.1 Stability

One of the key questionsin NMPC is certainly, whethera finite horizon NMPC strategy doeslead to stability of
the closed-loop.As pointedout, the key problemwith a finite predictionandcontrol horizonstemsfrom the fact
that the predictedopenandthe resultingclosed-loopbehavior is in generaldifferent. Ideally onewould seekfor a
NMPCstrategy thatachievesclosed-loopstability independentof thechoiceof theperformanceparametersin thecost
functionaland,if possible,approximatesthe infinite horizonNMPC schemeasgoodaspossible.A NMPC strategy
that achievesclosed-loopstability independentof the choiceof the performanceparametersis usuallyreferredto a
NMPC approachwith guaranteedstability. Dif ferentpossibilitiesto achieve closed-loopstability for NMPC using
finite horizonlengthhave beenproposed.After giving a shortreview abouttheseapproacheswe exemplarypresent
on specificapproachthatachievesguaranteedstabilit, thesocalledquasi-infinitehorizonapproachto NMPC (QIH-
NMPC) . This approachachievesguaranteedclosedloopstabilitywhile beingcomputationallyfeasible.
Hereonly thekey ideasarereviewedandno detailedproofsaregiven. Furthermorenotice,thatwe will not coverall
existingNMPC approaches,insteadwe referthereaderto theoverview papers[4, 22,52].
For all thefollowing sectionsit is assumedthatthepredictionhorizonis setequalto thecontrolhorizon,Tp � Tc.

2.1.1 Infinite Horizon NMPC

Themostintuitivewayto achievestabilityis theuseof aninfinite horizoncost[10,39,54], i.e. Tp in Problem1 is setto
∞. In thenominalcasefeasibility atonesamplinginstancealsoimpliesfeasibilityandoptimalityat thenext sampling
instance.This follows from Bellman‘sPrincipleof Optimality [7], i.e. the input andstatetrajectoriescomputedas
the solutionof theNMPC optimizationProblem1 at a specificinstancein time, arein factequalto the closed-loop
trajectoriesof the nonlinearsystem,i.e. the remainingpartsof the trajectoriesafter onesamplinginstanceare the
optimalsolutionat thenext samplinginstance.This factalsoimpliesclosed-loopstability.
Key ideasof the stability proof: Sincenearlyall stability proofsfor NMPC follow alongthesamebasicstepsasfor
the infinite horizonproof, the key ideasareshortlyoutlined. In principle the proof is basedon the useof the value
functionasa Lyapunov function. First it is shown, that feasibility at onesamplinginstancedoesimply feasibility at
the next samplinginstancefor the nominalcase.In a secondstepit is establishedthat the valuefunction is strictly
decreasingandby this thestateandinput convergeto theorigin. Utilizing thecontinuityof thevaluefunctionat the
origin andthemonotonicityproperty, asymptoticstability is establishedin the third step.As feasibility thusimplies
asymptoticstability, thesetof all states,for which theopen-loopoptimalcontrolproblemhasa solutiondoesbelong
to theregionof attractionof theorigin.

2.1.2 Finite Horizon NMPC Schemeswith GuaranteedStability

Differentpossibilitiesto achieve closed-loopstability for NMPC usinga finite horizon lengthhave beenproposed,
seefor example[3,17,20,23,34,35,38,39,44,51,53,55,56,60,62,63,70]. Most of theseapproachesmodify the
NMPC setupsuchthat stability of the closed-loopcan be guaranteedindependentlyof the plant andperformance
specifications.This is usuallyachievedby addingsuitableequalityor inequalityconstraintsandsuitableadditional
penaltytermsto thecostfunctional.Theseadditionalconstraintsareusuallynot motivatedby physicalrestrictionsor
desiredperformancerequirementsbut have the solepurposeto enforcestability of the closed-loop.Therefore,they
areusuallytermedstability constraints[49,50,52].
Thesimplestpossibilityto enforcestabilitywith afinite predictionhorizonis to addasocalledzero terminalequality
constraint at theendof thepredictionhorizon[39,51,53], i.e. to addtheequalityconstraint

x̄ � t 
 Tp;x � t �<� t � ū ��� 0 (9)

to Problem1. This leadsto stability of theclosed-loop,if theoptimalcontrolproblempossessesa solutionat t � 0,
sincethe feasibility at onetime instancedoesalsoleadto feasibility at the following time instancesanda decrease
in thevaluefunction. Onedisadvantageof a zeroterminalconstraintis that thesystemmustbebroughtto theorigin
in finite time. This leadsin generalto feasibility problemsfor shortprediction/controlhorizonlengths,i.e. a small
regionof attraction.Additionally, from acomputationalpointof view, anexactsatisfactionof azeroterminalequality
constraintdoesrequireaninfinite numberof iterationsin thenonlinearprogrammingproblem[17]. Ontheotherhand,
themainadvantagesarethestraightforwardapplicationandtheconceptualsimplicity.
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Many schemeshavebeenproposed(i.e. [17,20,34,38,51,56,60,63]), thattry to overcometheuseof azeroterminal
constraintof theform (9). Mostof themeitherusea socalledterminalregion constraint

x̄ � t 
 Tp �Y� Ω �F� (10)

and/ora terminalpenaltytermE � x̄ � t 
 Tp �B� which is addedto thecostfunctional:

J � x � t �<� ū �=�>� ;Tp �Z� [ t A Tp

t
F � x̄ � τ �<� ū � τ ��� dτ 
 E � x̄ � t 
 Tp ��� 1 (11)

Note that the terminalpenaltyterm is not a performancespecificationthat canbe chosenfreely. RatherE andthe
terminalregionΩ in (10)aredeterminedoff-line suchthatstability is “enforced”.Wedonot review all thesemethods
here. Insteadwe exemplify the basicidea consideringone specificapproach,the so called quasi-infinitehorizon
NMPC approach[17].

2.1.3 Quasi-Infinite Horizon NMPC

In the quasi-infinitehorizon NMPC method[15,17] a terminal region constraintof the form (10) and a terminal
penaltytermE � x̄ � t 
 Tp �B� asin (11) areaddedto the standardsetup.As mentionedthe terminalpenaltyterm is not
a performancespecificationthat canbe chosenfreely. RatherE andthe terminal region Ω aredeterminedoff-line
suchthatthecostfunctionalwith terminalpenaltyterm(11)givesanupperapproximationof theinfinite horizoncost
functionalwith stagecostF . Thusclosed-loopperformanceover the infinite horizonis addressed.Furthermore,as
is shown later, stability is achieved,while only an optimizationproblemover a finite horizonmustbe solved. The
resultingopen-loopoptimizationproblemis formulatedasfollows:

Problem2 [Quasi-infinite Horizon NMPC]:
Find

min
ū 8:9 ; J � x � t �<� ū �4�5� ;Tp � (12)

with:

J � x � t ��� ū �4�5� ;Tp � : � [ t A Tp

t
F � x̄ � τ �<� ū � τ ��� dτ 
 E � x̄ � t 
 Tp ��� 1 (13)

subjectto:

˙̄x � τ �\� f � x̄ � τ �<� ū � τ ����� x̄ � t ��� x � t � (14a)

ū � τ �)�D���%� τ �D6 t � t 
 Tp7 (14b)

x̄ � τ �Y�����]� τ �D6 t � t 
 Tp 7 (14c)

x̄ � t 
 Tp �)� Ω 1 (14d)

If the terminal penaltyterm E and the terminal region Ω are chosensuitably, stability of the closed-loopcan be
guaranteed.To presentthestability resultsweneedthatthefollowing holdsfor thestagecost-function.

Assumption4 ThestagecostF : � n *^� 2 � is continuousin all argumentswithF � 0 � 0�_� 0 andF � x � u �Q` 0 �Y� x � u �a�� n *C�%bK- 0 � 00 .
Giventhis assumption,thefollowing result,which is aslight modificationof Theorem4.1 in [14], canbeestablished:

Theorem1 Suppose

(a) thatAssumptions1-4are satisfied,

(b) E is C1 with E � 0 � 0�L� 0, Ω �c� is closedand connectedwith the origin containedin Ω and there existsa
continuouslocal control law k : � n 2 � m with k � 0��� 0, such that:

∂E
∂x

f � x � k � x ����
 F � x � k � x �B� 
 0 �E� x � Ω (15)

with k � x �Y���d� x � Ω
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(c) theNMPCopen-loopoptimalcontrol problemhasa feasiblesolutionfor t � 0.

Thenfor any samplingtime 0 e δ e Tp the nominal closed-loopsystemis asymptoticallystablewith the region of
attraction f beingthesetof statesfor which theopen-loopoptimalcontrol problemhasa feasiblesolution.

A formalproofof Theorem1 canbefoundin [14,16] andfor a linearlocal controllerasdescribedbelow in [17].
LooselyspeakingE is a local Lyapunov functionof thesystemunderthe local controlk � x � in Ω. As will beshown,
Equation(15) allows to upperboundthe optimal infinite horizon cost inside Ω by the cost resultingfrom a local
feedbackk � x � .
Notice,that theresultin Theorem1 is nonlocalin nature,i.e. their existsa region of attractionf of at leastthesize
of Ω. The region of attractionis givenby all statesfor which the open-loopoptimal control problemhasa feasible
solution.
Obtaininga terminalpenaltyterm E anda terminal region Ω that satisfy the conditionsof Theorem1 is not easy.
If the linearizedsystemis stabilizableand the cost function is quadraticwith weight matricesQ and R, a locally
linear feedbacklaw u � Kx canbeusedandtheterminalpenaltytermcanbeapproximatedasquadraticof theform
E � x ��� xTPx. For this case,a procedureto systematicallycomputetheterminalregion anda terminalpenaltymatrix
off-line is available[17]. AssumingthattheJacobianlinearization� A � B� of (1) is stabilizable,whereA : � ∂f

∂x � 0 � 0� and

B : � ∂f
∂u � 0 � 0� , this procedurecanbesummarizedasfollows:

Step1 : Solve the linearcontrolproblembasedon theJacobianlinearization � A � B� of (1) to obtaina locally stabi-
lizing linearstatefeedbacku � Kx.

Step2 : Choosea constantκ ��6 0 � ∞ � satisfyingκ eCI λmax� AK � andsolve theLyapunov equation� AK 
 κI � T P 
 P � AK 
 κI �Q��Ihg Q 
 KTRKi (16)

to geta positivedefiniteandsymmetricP, whereAK : � A 
 BK.

Step3 : Find thelargestpossibleα1 defininga region

Ω1 : �.- x �(� n / xTPx 
 α1 0 (17)

suchthatKx �c� , for all x � Ω1 �F� .

Step4 : Find thelargestpossibleα ��� 0 � α1 7 specifyinga terminalregion

Ω : �.- x �(� n / xTPx 
 α 0 (18)

suchthattheoptimalvalueof thefollowing optimizationproblemis non-positive:

max
x
- xTPϕ � x �jI κ � xTPx / xTPx 
 α 0 (19)

whereϕ � x � : � f � x � Kx �_I AKx.

Thisprocedureallowsto calculateE andΩ if thelinearizationof thesystemattheorigin is stabilizable.If theterminal
penaltytermandtheterminalregionaredeterminedaccordingto Theorem1, theopen-loopoptimaltrajectoriesfound
at eachtime instantapproximatetheoptimalsolutionfor the infinitehorizonproblem.
Thefollowing reasoningmake thisplausible:Consideraninfinite horizoncostfunctionaldefinedby

J∞ � x � t ��� ū �4�5�B� : � [ ∞

t
F � x̄ � τ �<� ū � τ ��� dτ (20)

with ū �=�>� on 6 t � ∞ � . This costfunctionalcanbesplit up into two parts

min
ū 8:9 ; J∞ � x � t �<� ū �=�>����� min

ū 8:9 ;Yk [ t A Tp

t
F � x̄ � τ �<� ū � τ ��� dτ 
l[ ∞

t A Tp

F � x̄ � τ ��� ū � τ �B� dτ m 1 (21)

Thegoalis to upperapproximatethesecondtermby aterminalpenaltytermE � x̄ � t 
 Tp � . Without furtherrestrictions,
this is notpossiblefor generalnonlinearsystems.However, if weensurethatthetrajectoriesof theclosed-loopsystem
remainwithin someneighborhoodof theorigin (terminalregion) for thetime interval 6 t 
 Tp � ∞ � , thenanupperbound
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onthesecondtermcanbefound.Onepossibilityis to determinetheterminalregionΩ suchthata localstatefeedback
law u � k � x � asymptoticallystabilizesthenonlinearsystemandrendersΩ positively invariantfor theclosed-loop.If
anadditionalterminalinequalityconstraintx � t 
 Tp �_� Ω (see(14d)) is addedto Problem1, thenthesecondtermof
equation(21) canbeupperboundedby thecostresultingfrom theapplicationof this local controlleru � k � x � . Note
that the predictedstatewill not leave Ω after t 
 Tp sinceu � k � x � rendersΩ positively invariant. Furthermorethe
feasibility at the next samplinginstanceis guaranteeddismissingthe first part of ū andreplacingit by the nominal
open-loopinput resultingfrom the local controller. Requiringthat x � t 
 Tp �a� Ω andusingthe local controller for
τ ��6 t 
 Tp � ∞ � weobtain:

min
ū 8:9 ; J∞ � x � t ��� ū �4�5�B� 
 min

ū 8n9 ;�k [ t A Tp

t
F � x̄ � τ �<� ū � τ ��� dτ 
l[ ∞

t A Tp

F � x̄ � τ �<� k � x̄ � τ ���o� dτ m 1 (22)

If, furthermore,theterminalregion Ω andtheterminalpenaltytermarechosenaccordingto conditionb) in Theorem
1 (asfor exampleachievedby theproceduregivenabove),integrating(15) leadsto[ ∞

t A Tp

F � x̄ � τ �<� k � x̄ � τ ���o� dτ 
 E � x̄ � t 
 Tp ��� 1 (23)

Substituting(23) into (22)we obtain

min
ū 8:9 ; J∞ � x � t ��� ū �4�5�B� 
 min

ū 8:9 ; J � x � t �<� ū �=�>� ; t 
 Tp � 1 (24)

This implies that the optimal valueof the finite horizonproblemboundsthat of the correspondinginfinite horizon
problem.Thus,thepredictionhorizoncanbe thoughtof asextendingquasito infinity which givesthis approachits
name.Equation(24)canbeexploitedto proveTheorem1.
Like in the dual-modeapproach[56], the useof the terminal inequality constraintgives the quasi-infinitehorizon
nonlinearMPC schemecomputationaladvantages.Note also, that as for dual-modeNMPC, it is not necessaryto
find optimalsolutionsof Problem1 in orderto guaranteestability. Feasibilityalsoimpliesstability here[17,70]. In
differenceto the dual-modecontroller, however, the local control law u � k � x � is never applied. It is only usedto
computetheterminalpenaltytermE andtheterminalregion Ω.
Many generalizationsandexpansionsof QIH-NMPCexist. For examplediscretetimevariantscanbefoundin [21,33].
If thenonlinearsystemis affine in u andfeedbacklinearizable,thena terminalpenaltytermcanbedeterminedsuch
that (23) is exactly satisfiedwith equality [14], i.e. the infinite horizon is recoveredexactly. In [18,19,44] robust
NMPC schemesusinga min-maxformulationareproposed,while in [27] anextensionto index oneDAE systemsis
considered.A variationof QIH-NMPCfor thecontrolof varyingsetpointsis givenin [28,30].

2.2 Performanceof Finite Horizon NMPC Formulations

Ideally one would like to usean infinite horizon NMPC formulation, since in the nominal case,the closed-loop
trajectoriesdo coincidewith theopen-looppredictedones(principleof optimality). Themainproblemis, thatinfinite
horizonschemescanoftennot beappliedin practice,sincetheopen-loopoptimalcontrolproblemcannotbesolved
sufficiently fast. Using finite horizons,however, it is by no meanstrue that a repeatedminimization over a finite
horizonobjectivein a recedinghorizonmannerleadsto anoptimalsolutionfor theinfinite horizonproblem(with the
samestagecostF). In fact,thetwo solutionswill in generaldiffer significantlyif ashorthorizonis chosen.
Fromthis discussionit is clearthatshorthorizonsaredesirablefrom acomputationalpointof view, but longhorizons
arerequiredfor closed-loopstability andin orderto achievethedesiredperformance.
TheQIH-NMPCstrategy outlinedin theprevioussectionallows in principleto recovertheperformanceof theinfinite
horizonschemewithout jeopardizingthe closed-loopstability. The valuefunction resultingfrom Problem2 canbe
seenasanupperboundof the infinite horizoncost. To bemoreprecise,if the terminalpenaltyfunctionE is chosen
suchthata correspondinglocal control law is a goodapproximationof thecontrol resultingfrom theinfinite horizon
controllaw in aneighborhoodof theorigin, theperformancecorrespondingto Problem2 canrecovertheperformance
of theinfinite horizoncostevenfor shorthorizons(assumingtheterminalregionconstraintcanbesatisfied).
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2.3 Robustness

So far only the nominalcontrol problemwasconsidered.The NMPC schemesdiscussedbeforedo requirethat the
actualsystemis identicalto themodelusedfor prediction,i.e. thatnomodel/plantmismatchor unknown disturbances
arepresent.Clearly this is a very unrealisticassumptionfor practicalapplicationsandthedevelopmentof a NMPC
framework to addressrobustnessissuesis of paramountimportance.In this notethe nonlinearuncertainsystemis
assumedto begivenby:

ẋ � t ��� f � x � t �<� u � t �<� d � t ��� (25)

wherethe uncertaintyd �=�>� satisfiesd � τ �p�rqs� x � u� and q is assumedto be compact. Like in the nominalstability
andperformancecase,the resultingdifferencebetweenthe predictedopen-loopandactualclosed-looptrajectoryis
themainobstacle.As additionalproblemtheuncertaintyd hitting thesystemnow leadsnot only to onesinglefuture
trajectoryin theprediction,insteadawholetreeof possiblesolutionsmustbeanalyzed.
Eventhoughtheanalysisof robustnesspropertiesin nonlinearNMPCmuststill beconsideredasanunsolvedproblem
in general,somepreliminary resultsare available. In principle one must distinguishbetweentwo approachesto
considerthe robustnessquestion.Firstly onecanexaminetherobustnesspropertiesof theNMPC schemesdesigned
for nominalstability andby this take theuncertainty/disturbancesonly indirectly into account[40,47]. Secondlyone
canconsiderto designNMPC schemesthatdirectly take into accounttheuncertainty/disturbances.

2.3.1 Inherent Robustnessof NMPC

As mentionedabove, inherentrobustnesscorrespondsto the fact, that nominalNMPC cancopewith input model
uncertaintieswithout takingthemdirectly into account.This factstemsfrom thecloserelationof NMPC to optimal
control.Assumingthatthesystemunderconsiderationis of thefollowing (inputaffine) form

ẋ � t ��� f � x � t ���)
 g � x � t ��� u � t �<� x � 0��� x0 (26)

andthecostfunctiontakestheform:

J � x � t �<� ū �=�>� ;Tp � : � [ t A Tp

t

1
2
� u � 2 
 q � x � dτ 
 E � x̄ � t 
 Tp ��� (27)

whereq is positive definite,that thereareno constraintson thestateandthe input andtheresultingcontrol law and
the value function satisfiesfurther assumptions(u P beingcontinuouslydifferentiableand the value function being
twice continuouslydifferentiable).Thenonecanshow [47] that the NMPC control law is inverseoptimal, i.e. it is
alsooptimalfor a modifiedoptimalcontrolproblemspanningoveraninfinite horizon.Dueto this inverseoptimality,
the NMPC control law inheritsthe samerobustnesspropertiesasinfinite horizonoptimal control assumingthat the
samplingtimeδ goesto zero.In particular, theclosed-loopis robustwith respectto sectorboundedinputuncertainties;
thenominalNMPC controlleralsostabilizessystemsof theform:

ẋ � t ��� f � x � t ���)
 g � x � t ��� φ � u � t ����� (28)

whereφ �4�5� is a nonlinearityin thesector � 1t 2 � ∞ � .
2.3.2 Robust NMPC Schemes

At leastthreedifferentrobustNMPC formulationsexist:X Robust NMPC solving an open-loopmin-max problem[18,45]:
In this formulationthestandardNMPC setupis kept,however now thecostfunctionoptimizedis givenby the
worstcasedisturbance“sequence”occurring,i.e.

J � x � t �<� ū �=�>� ;Tp � : � max
d̄ 8:9 ; [ t A Tp

t
F � x̄ � τ ��� ū � τ �B� dτ 
 E � x̄ � t 
 Tp ��� 1 (29)

subjectto

˙̄x � t ��� f g x̄ � t ��� ū � t ��� d̄ � t � i � x̄ � t ��� x � t � 1 (30)
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Theresultingopen-loopoptimizationisamin-maxproblem.Thekey problemis, thataddingstabilityconstraints
like in thenominalcase,might leadto thefact thatno feasiblesolutioncanbefoundat all. This mainly stems
from thefact,thatoneinput signalmust“reject” all possibledisturbancesandguaranteethesatisfactionof the
stability constraints.X H∞-NMPC [11,18,45,46]: Anotherpossibility is to considerthestandardH∞ problemin a recedinghorizon
framework. The key obstacleis, that an infinite horizon min-max problemmust be solved (solution of the
nonlinearHamilton-Jacobi-Isaacsequation).Modifying the NMPC cost functionssimilar to the H∞ problem
andoptimizingovera sequenceof control laws robustly stabilizingfinite horizonH∞–NMPCformulationscan
be achieved. The main obstacleis the prohibitive computationaltime necessary. This approachis in close
connectionto thefirst approach.X Robust NMPC optimizing a feedbackcontroller usedduring the sampling times [45]:
The open-loopformulation of the robust stabilizationproblemcan be seenas very conservative, sinceonly
open-loopcontrolis usedduringthesamplingtimes,i.e. thedisturbancesarenotdirectlyrejectedin betweenthe
samplinginstances.To overcomethisproblemit hasbeenproposednotto optimizeovertheinputsignal.Instead
of optimizing theopen-loopinput signaldirectly, a feedbackcontrolleris optimized,i.e. thedecisionvariable
ū is not consideredasoptimizationvariableinsteada “sequence”of control laws ui � k i � x � appliedduringthe
samplingtimesis optimized.Now theoptimizationproblemhasasoptimizationvariablestheparameterizations
of the feedbackcontrollers - k1 � 1B1�1 � kN 0 . While this formulation is very attractive sincethe conservatismis
reduced,thesolutionis oftenprohibitively complex.

2.4 Output FeedbackNMPC

Sofar it wasassumed,thatthesystemstatenecessaryfor predictionis (perfectly)accessiblethroughmeasurements.In
generalthisis notthecaseandastateobserver, asalreadyshown in Figure3 mustbeimplicitly or explicitly includedin
thecontrol loop. Two mainquestionsarisefrom theuseof a stateobserver. Firstly thequestionoccurs,if theclosed-
loop including the stateobserver possessesthe samestability propertiesas the statefeedbackcontribution alone.
Secondlythe questionarises,what kind of observer shouldbeusedto obtaina goodstateestimateandgoodclosed
loopperformance.Thesecondpoint is notconsideredin detailhere.It is only noted,thatadualof theNMPCapproach
for controldoesexist for the stateestimationproblem. It is formulatedasan on-lineoptimizationsimilar to NMPC
andis namedmoving horizonestimation(MHE). It is dual in thesense,thata moving window of old measurement
datais usedto obtainanoptimizationbasedestimateof thesystemstate,seefor example[1, 57,66,67,69,75].

2.4.1 PossibleSolutionsto the Output FeedbackNMPC Problem

The mostoften usedapproachfor output-feedbackNMPC is basedon the “certainty equivalenceprinciple”. The
estimatestatex̂ is measuredvia a stateobserver andusedin the modelpredictive controller. Even assuming,that
the observer error is exponentiallystable,often only local stability of the closed-loopis achieved [42,43,71], i.e.
theobservererrormustbesmallto guaranteestability of theclosed-loopandin generalnothingcanbesaidaboutthe
necessarydegreeof smallness.Thisis aconsequenceof thefactthatnogeneralvalid separationprinciplefor nonlinear
systemsexists.Neverthelessthis approachis appliedsuccessfullyin many applications.
To achieve non-localstability resultsof the observer basedoutput-feedbackNMPC controller, differentpossibilities
to attacktheproblemexist:X Dir ect consideration of the observer error in the NMPC controller: Onecould in principle considerthe

observer error asdisturbancein the controlleranddesigna NMPC controller that canrejectthis disturbance.
Thehurdleof this approachis thefact,thatsofaranapplicablerobustNMPC schemeis not available.X Separationof observer error fr om the controller [31,37,57]: In this approachtheobservererror is “decou-
pled”/separatedfrom thecontrollerby eithera time scaleseparation,i.e. makingtheobservermuchfasterthan
the othersystempartsor by projectionof the observer error. For exampleusingspecialseparationprinciples
basedon high-gainobservers,semi-regional stability resultsfor the closed-loopcanbe established.The key
componentis, thatthespeedof theobservercanbemadeasfastasnecessary.X Usageof I/O models[65]: OnecouldusesuitedI/O modelsthathaveno internalstatesfor prediction.
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In thefollowing weshortlyreview onepossibleapproachfor output-feedbackNMPC usinga time-scaleseparationof
theobserverandcontroller.

2.4.2 Output FeedbackNMPC usingHigh-Gain Observers

We proposeto combinehigh-gainobserverswith NMPC to achievesemi-regionalstability. I.e. if theobservergainis
increasedsufficiently, thestability regionandperformanceof thestatefeedbackis recovered.Theclosedloopsystem
is semi-regionallystablein thesense,thatfor any subsetu of theregionof attractionf of thestate-feedbackcontroller
(compareTheorem1, Section2.1.3)thereexistsanobserver parameter(gain),suchthat u is containedin theregion
of attractionof theoutput-feedbackcontroller.
The resultsare basedon “nonlinear separationprinciples[6, 72]” and it is assumed,that the NMPC feedbackis
instantaneous(seebelow). We will limit the presentationto a specialSISOsystemsclassandonly give the main
result. ThemoregeneralMIMO caseconsideringtheNMPC inherentopenloop controlparts(i.e. no instantaneous
feedback)canbefound[31,37].
In thefollowing weconsiderthestabilizationof SISOsystemsof thefollowing form:

ẋ � Ax 
 bφ � x � u� (31a)

y � x1 1 (31b)

with u � t ���!�v$w� andy � t �Y�&� . Theoutputy is givenby thefirst statex1. Then * n matrix A andthen * 1 vectorb
have thefollowing form:

A �
xyyyyyz 0 1 0 �B��� 0
0 0 1 �B��� 0
...

...
0 �B�����B��� 0 1
0 �B�����B���{�B��� 0

|>}}}}}~
n � n � b ��� 0 �B��� 0 1 � Tn � 1 � (32a)

Additional to theAssumptions1-4we assume,that:

Assumption5 Thefunctionφ : � n *C� 2 � is locally Lipschitz in its argumentsover the domainof interest. Fur-
thermoreφ � 0 � 0��� 0 andφ is boundedin x everywhere.

Notethatglobalboundednesscanin mostcasesbeachievedby saturatingφ outsideacompactregionof � n of interest.
Theproposedoutputfeedbackcontrollerconsistsof a high-gainobserver to estimatethestatesandaninstantaneous
variantof the full statefeedbackQIH-NMPC controllerasoutlinedin Sect.2.1.3. By instantaneouswe meanthat
the systeminput at all times(i.e. not only at the samplinginstances)is given by the instantaneoussolutionof the
open-loopoptimalcontrolproblem:

u � x � t �B� : � uP � τ � 0 ;x � t �<� Tp � 1 (33)

This feedbacklaw differsfrom thestandardNMPC formulationin thesensethatno open-loopinput is implemented
overasamplingtime δ. Insteadu � t � is consideredasa“function” of x � t � .
To allow thesubsequentresultto hold,we have to requirethat thefeedbackresultingfrom theQIH-NMPC is locally
Lipschitz.

Assumption6 Theinstantaneousstatefeedback (33) is locally Lipschitz.

Theobserverusedfor staterecovery is a high-gainobserver [6, 72,73] of thefollowing form:

˙̂x � Ax̂ 
 bφ � x̂ � u��
 H � x1 I x̂1 � (34)

whereH �s� � α1 t ε � α2 t ε2 � 1�1B1 � αn t εn � 1 Theαi ’s arechosensuchthatthepolynomial

sn 
 α1 sn � 1 
^���B��
 αn � 1s
 αn � 0 �
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is Hurwitz. Here 1
ε is thehigh-gainparameterandcanbeseenasa time scalingfor theobserverdynamics(34). A, b

andφ arethesameasin (31).
Noticethattheuseof anobservermakesit necessarythattheinputalsobedefined(andbounded)for (estimated)states
thatareoutsidethefeasibleregionof thestatefeedbackcontroller. Wesimplydefinetheopen-loopinput for x ���f as
fixedto anarbitraryvalueuf �c� :

u � x �\� uf � � x ��pf 1 (35)

Thistogetherwith theassumptionthat � isboundedseparatesthepeakingof theobserverfromthecontroller/system[26].
Usingthehigh-gainobserver for staterecovery, the following result,which establishessemi-regionalstability of the
closed-loopcanbeobtained[36,37]:

Theorem2 Assumethat the conditionsa)-c) of Theorem 1 and Assumption5-6 hold. Let u be any compactset
containedin the interior of f (region of attractionof thestatefeedback). Thenthere existsa (smallenough)ε N�` 0
such that for all 0 e ε 
 ε N , theclosed-loopsystemis asymptoticallystablewith a region of attractionof at leastu .
Further, theperformanceof thestatefeedback NMPCcontroller is recoveredasε decreases.

By performancerecovery it is meantthat thedifferencebetweenthetrajectoriesof thestatefeedbackandtheoutput
feedbackcanbemadearbitrarily smallby decreasingε. Theresultsshow that theperformanceof thestatefeedback
schemecanbe recoveredin the outputfeedbackcase,if a stateobserver with a suitablestructureanda fastenough
dynamicsis used.
Figure5 shows thesimulationresultfor an illustrative applicationof theproposedoutputfeedbackschemeto a two
dimensionalpendulumcar systemasdepictedin Figure4 andpresentedin [36]. The anglebetweenthe pendulum

u � t �
z1 � t �

Figure4: Sketchof theinvertedpendulum/carsystem

andthevertical is denotedby z1, while theangularvelocity of thependulumis givenby z2. The input u is theforce
appliedto thecar. Thecontrolobjective is to stabilizetheuprightpositionof thependulum.To achievethisobjective,
a QIH-NMPC schemewith andwithout (state-feedbackcase)a high-gainobserver is used.For theresultsshown in
Figure5 the pendulumis initialized with an offset from theuprightposition,while the high-gainobserver is started
with zeroinitial conditions.Thefigureshowstheclosedlooptrajectoriesfor statefeedbackQIH-NMPCcontrollerand
theoutput-feedbackcontrollerwith differentobserver gains.Thegrayellipsoidaroundtheorigin is the terminalre-
gionof theQIH-NMPCcontroller. Theouter“ellipsoid” is anestimateof theregionof attractionof thestate-feedback
controller. As canbeseenfor smallenoughvaluesof theobserverparameterε theclosedloop is stable.Furthermore
theperformanceof thestatefeedbackis recoveredasε tendsto zero.More detailscanbefoundin [36].
Furthermorethe recovery of the region of attractionandtheperformanceof the state-feedbackis possibleup to any
degreeof exactness.In comparisonto otherexisting output-feedbackNMPC schemes[42,71] theproposedscheme
is thus of non-localnature. However, the resultsare basedon the assumptionthat the NMPC controller is time
continuous/instantaneous.In practice,it is of coursenotpossibleto solvethenonlinearoptimizationprobleminstanta-
neously. Instead,it will besolvedonly atsomesamplinginstants.A sampledversionof thegivenresult,in agreement
with the“usual” sampledNMPCsetupcanbefoundin [31]. Noticealso,thattheuseof ahighgainobserveris critical,
if theoutputmeasurementsareverynoise,sincethenoisewill beamplifieddueto thehighgainnatureof theobserver.

3 Computational Aspectsof NMPC

NMPC requirestherepeatedon-linesolutionof a nonlinearoptimalcontrolproblem.In thecaseof linearMPC the
solutionof theoptimalcontrolproblemcanbecastasthesolutionof a (convex) quadraticprogramandcanbesolved
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Figure5: Phaseplot of thependulumangle(z1) andtheangularvelocity (z2)

efficiently evenon-line. This canbeseenasoneof the reasonswhy linearMPC is widely usedin industry. For the
NMPC problemthesolutioninvolvesthesolutionof a nonlinearprogram,asis shown in theprecedingsections.In
generalthesolutionof a nonlinear(non-convex) optimizationproblemcanbecomputationalexpensive. However in
the caseof NMPC the nonlinearprogramshows specialstructurethat canbe exploited to still achieve a real-time
feasiblesolutionto theNMPC optimizationproblem.
For thepurposeof thisSectiontheopen-loopoptimalcontrolProblem2 of Section2.1.2will beconsideredin amore
optimizationfocusedsetting. Especiallyit is considered,that the stateandinput constraintsx �D� , u �w� canbe
recastedasa nonlinearinequalityconstraintof the form l � x � u � 
 0. Furthermorefor simplicity of exposition it is
assumedthatthecontrolandpredictionhorizoncoincideandthatnofinal regionconstraintis present,i.e. weconsider
thefollowing deterministicoptimalcontrolproblemin Bolzaform thatmustbesolvedateverysamplinginstance:
Problem3: Find

minū 8:9 ; J � x � t �<� ū �=�>� ;Tp � (36)

with J � x � t ��� ū �4�5� ;Tp � : � ? t A Tp
t F � x̄ � τ ��� ū � τ ��� dτ 
 E � x̄ � t 
 Tp �B� (37)

subjectto: ˙̄x � τ ��� f � x̄ � τ �<� ū � τ ���)� x̄ � t ��� x � t � (38a)

l � ū � τ �<� x̄ � τ ��� 
 0 ��� τ �]6 t � t 
 Tp 7 1 (38b)

3.1 Solution Methods for the Open-Loop Optimal Control Problem

In principlethreedifferentapproachesto solve theoptimalcontrolProblem3 exist (seefor example[9, 48]):X Hamilton-Jacobi-Bellmannpartial differ ential equations/dynamicprogramming: This approachis based
on thedirectsolutionof thesocalledHamilton-Jacobi-Bellmannpartialdifferentialequations.Ratherthanjust
seekingfor theoptimalu � τ � trajectorytheproblemis approachasfinding a solutionfor all x � t � . Thesolution
derivedis a statefeedbacklaw of theform u P � k � x � andis valid for every initial condition. Thekey obstacle
of this approachis, that sincethe “complete” solutionis consideredat once,it is in generalcomputationally
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intractableandsuffers from the so calledcurseof dimensionality, i.e. canbe only solved for small systems.
Ideally onewould like to obtainsucha closedloop statefeedbacklaw. In principle the intractability of the
solutioncanbeseenasthekey motivationof recedinghorizoncontrol.X Euler-Lagrange differ ential equations/calculusof variations/maximum principle: This methodemploys
classicalcalculusof variationsto obtainanexplicit solutionof the input asa functionof time u � τ � andnot as
feedbacklaw. Thus it is only valid for the specifiedinitial conditionx � t � . The approachcanbe thoughtof
as the applicationof the necessaryconditionsfor constrainedoptimizationwith the twist, that the optimiza-
tion is infinite dimensional.Thesolutionof theoptimal controlproblemis castasa boundaryvalueproblem.
Sincean infinite dimensionalproblemmustbe solved, this approachcannormally not be appliedfor on-line
implementation.X Dir ectsolution usinga finite parameterization of the controlsand/or constraints: In thisapproachtheinput
and/ortheconstraintsareparametrizedfinitely, thusanapproximationof theoriginalopen-loopoptimalcontrol
problemis seeked. The resultingfinite dimensionaldynamicoptimizationproblemis solved with “standard”
staticoptimizationtechniques.

For anon-linesolutionof theNMPC problemonly thelastapproachis normallyused.Sinceno feedbackis obtained,
theoptimizationproblemmustbesolvedat every samplinginstancewith thenew stateinformation. In thefollowing
only thelastsolutionmethodis consideredin detail.

3.2 Solution of the NMPC ProblemUsing a Finite Parameterization of the Controls

As mentionedthe basicideabehindthe direct solutionusinga finite parameterizationof the controlsis to approxi-
mate/transcribethe original infinite dimensionalprobleminto a finite dimensionalnonlinearprogrammingproblem.
In thisnotethepresentationis limited to aparameterizationof theinputsignalaspiecewiseconstantoverthesampling
times. The controlsarepiecewise constanton eachof the N � Tp

δ predictedsamplingintervals: ū � τ ��� ūi for τ �6 τi � τi A 1 � , τi � t 
 iδ, comparealsoFigure6. Thusin the optimal control problemthe “input vector” - ū1 � 1�1B1 ūN 0 is

closed-loop

closed-loop
input u

state x

control/prediction horizon Tp

set-point

future/predictionpast

t 	 δt t 	 Tp� t 	 Nδ

ū1

ū2

open loop input sequence � ūk �
ūN

predicted state x̄

Figure6: Piecewiseconstantinputsignalfor thedirectsolutionof theoptimalcontrolproblem.

optimized,i.e. theoptimizationproblemtakestheform

min� ū1 � � � � ūN � J � x � t �<�4- ū1 � 1B1�1 ūN 0 ;Tp � (39)

subjectto thestateandinput constraintsandthesystemdynamics.Basicallytwo differentsolutionstrategiesto this
optimizationproblemexist [8, 9,13,48,74]:
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X Sequentialapproach: In this methodin every iterationstepof theoptimizationstrategy thedifferentialequa-
tions(or in thediscretetime casethedifferenceequation)aresolvedexactly by a numericalintegration,i.e. the
solutionof thesystemdynamicsis implicitly doneduringtheintegrationof thecostfunctionandonly theinput
vector - ū1 � 1�1B1 ūN 0 appearsdirectly in theoptimizationproblem.X Simultaneousapproach: In this approachthesystemdynamics(38a)at thesamplingpointsenterasnonlinear
constraintsto theoptimizationproblems,i.e. at every samplingpoint thefollowing equalityconstraintmustbe
satisfied:

s̄i A 1 � x̄ � ti A 1; s̄i � ūi � 1 (40)

Heres̄i is introducedasadditionaldegreein theoptimizationproblemanddescribesthe“initial” conditionfor
thesamplinginterval i, comparealsoFigure7. This constraintrequires,oncetheoptimizationhasconverged,

time

x � τ �

t t � δ t � Tp

s̄2

s̄N

x̄ � t � δ; s̄1 � ū1 �
s̄1 � x � t �

x̄ � t � Nδ; s̄N � 1 � ūN � 1 �

Figure7: Simultaneousapproach.

that thestatetrajectorypiecesfit together. Thusadditionallyto the input vector - ū1 � 1�1�1 ūN 0 alsothevectorof
the s̄i appearsasoptimizationvariables.

For bothapproachestheresultingoptimizationproblemis oftensolvedusingsequentialquadraticprogrammingtech-
niques(SQP).Bothapproacheshavedifferentadvantagesanddisadvantages.For exampletheintroductionof the“ini-
tial” states̄si asoptimizationvariablesdoesleadto a specialbanded-sparsestructureof theunderlyingQP-problem.
This structurecanbetaken into accountto leadto a fastsolutionstrategy [8, 24,74]. In comparisonthematricesfor
the sequentialapproachareoften denseandthusthe solutionis expensive to obtain. A drawbackof the simultane-
ousapproachis, that only at the endof the iterationa valid statetrajectoryfor the systemis available. Thusif the
optimizationcannotbefinishedin time,nothingcanbesaidaboutthefeasibility of thetrajectoryat all.

3.2.1 Remarks on Stateand Input Equality Constraints

In thedescriptiongivenabove, thestateandinput constraintswerenot taken into account.Thekey problemis, that
they shouldbe satisfiedfor the whole stateand input vector. While for a suitableparametrizedinput signal (e.g.
parametrizedaspiecewiseconstant)it is not a problemto satisfytheconstraintssinceonly a finite numberof points
mustbechecked,thesatisfactionof thestateconstraintsmustin generalbeenforcedover thewholestatetrajectory.
Differentpossibilitiesexist to considerthemduringtheoptimization:X Satisfactionof the constraintsat the sampling instances:An approximatedsatisfactionof theconstraintscan

beachievedby requiring,thatthey areat leastsatisfiedat thesamplinginstances,i.e. at thesamplingtimesit is
required:

l � ū � ti �<� x̄ � ti ��� 
 0 1 (41)
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Notice,thatthisdoesnot guaranteethattheconstraintsaresatisfiedfor thepredictedtrajectoriesin betweenthe
samplinginstances.However, sincethis approachis easyto implementit is oftenusedin practice.X Adding a penalty in the costfunction: An approachto enforcetheconstraintsatisfactionexactly for thewhole
input/statetrajectoryis to addanadditionalpenaltytermto thecostfunction. This term is zeroaslong asthe
constraintsaresatisfied.Oncetheconstraintsarenot satisfiedthevalueof this termincreasessignificantly, thus
enforcingthesatisfactionof theconstraints.Theresultingcostfunctionmaylook asfollowing:

J � x � t ��� ū �4�5� ;Tp � : � [ t A Tp

t
� F � x̄ � τ �<� ū � τ ����
 p � l � x̄ � τ ����� ū � τ �B��� dτ 
 E � x̄ � t 
 Tp ��� (42)

wherep in thecasethatonly onenonlinearconstraintis presentmight look likeshown in Figure8. A drawback

0 l � x � u �

p � l � x � u �

Figure8: Constraintpenaltyfunctionfor onenonlinearconstraint.
.

of this formulationis, that theresultingoptimizationproblemis in generaldifficult to solve for exampledueto
theresultingnon-differentiabilityof thecostfunctionoutsidethefeasibleregionof attraction.

3.2.2 Efficient NMPC Formulations

Oneshouldnotice,thatbesidesanefficient solutionstrategy of theoccurringopen-loopoptimalcontrolproblemthe
NMPC problemshouldbealsoformulatedefficiently. Differentpossibilitiesfor anefficientNMPC formulationexist:X Use of short horizon length without loss of performance and stability [17,34,63]: As was outlined in

Section2 shorthorizonsaredesirablefrom a computationalpoint of view, but long horizonsarerequiredfor
closed-loopstabilityandin orderto achievethedesiredperformancein closed-loop.ThegeneralNMPCscheme
outlinedin Section2.1.2offersa way out of this dilemma. It usesa terminalregion constraintin combination
with a terminal penaltyterm. The terminal penaltyterm canbe usedto given a goodapproximationof the
infinite horizoncostutilizing a local control law. Additionally the terminalregion constraintis in generalnot
very restrictive, i.e. doesnot complicatethe dynamicoptimizationproblemin an unnecessarymanner, asfor
examplein the zero terminalconstraintapproach.In somecases,e.g. stablesystems,feedbacklinearizable
systemsor systemsfor which a globally valid control Lyapunov function is known it caneven be removed.
Thussuchan approachoffers the possibility to formulatea computationallyefficient NMPC schemewith a
shorthorizonwhile not sacrificingstability andperformance.X Useof suboptimal NMPC strategies,feasibility implies stability [17,34,56,70]: In generalnoglobalminima
of the open-loopoptimizationmust be found. It is sufficient to achieve a decreasein the value function at
every time to guaranteestability. Thusstability canbe seenasbeing implied by feasibility. If oneusesan
optimizationstrategy thatdeliversfeasiblesolutionsat every sub-iterationanda decreasein thecostfunction,
the optimizationcan be stoppedif no more time is available and still stability can be guaranteed.The key
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obstacleis that optimizationstrategiesthat guaranteea feasibleanddecreasingsolutionat every iterationare
normallycomputationallyexpensive.X Taking the systemstructur e into account[2, 60,61]: It is alsonoticeable,thatthesystemstructureshouldbe
takeninto account.For examplefor systemsfor whichaflat outputis known thedynamicoptimizationproblem
canbe directly reducedto a staticoptimizationproblem. This resultsfrom the fact that for flat systemsthe
input andthe systemstatecanbe given in termsof the outputandits derivativesaswell asthe systeminitial
conditions.Thedrawbackhowever is, that thealgebraicrelationbetweentheoutputandthederivativesto the
statesandinputsmustbeknown, which is not alwayspossible.

Combiningthe presentedapproachesfor an efficient formulationof the NMPC problemand the efficient solution
strategiesof theoptimalcontrolproblem,theapplicationof NMPC to realisticallysizedapplicationsis possibleeven
with nowadayscomputationalpower. Besidesthe problemof stability of the closed-loopand the output-feedback
problem,theefficient solutionof theresultingopen-loopoptimalcontrolproblemis importantfor any applicationof
NMPC to realprocesses.Summarizing,a real-timeapplicationof NMPC is possible[8,29,59] if: a) NMPC schemes
that do not requirea high computationalload anddo not sacrificestability andperformance,like QIH-NMPC, are
usedandb) theresultingstructureof theopen-loopoptimizationproblemis takeninto accountduringthenumerical
solution.

4 Application Example–Real-Time Feasibility of NMPC

To show thatnonlinearpredictivecontrolcanbeappliedto evenratherlargesystemsif efficient NMPC schemesand
specialtailorednumericalsolutionmethodsareused,wegivesomeresultsfrom areal-timefeasibilitystudyof NMPC
for a high-purity distillation columnaspresentedin [5,24,25,59]. Figure9 shows the in this studyconsidered40
tray high-puritydistillation columnfor theseparationof Methanolandn-Propanol.Thebinarymixture is fed in the

L xD

V

xB

F, xF

40

28

21

14

1

Figure9: Schemeof thedistillationcolumn

columnwith flow rateF andmolar feedcompositionxF . Productsareremovedat thetop andbottomof thecolumn
with concentrationsxB andxD respectively. Thecolumnis consideredin L/V configuration,i.e. theliquid flow rateL
andthevaporflow rateV arethecontrol inputs.Thecontrolproblemis to maintainthespecificationson theproduct
concentrationsxB andxD. For controlpurposes,modelsof thesystemof differentcomplexity areavailable.As usual
in distillation control,xB andxD arenot controlleddirectly. Insteadan inferentialcontrolschemewhich controlsthe
deviationof theconcentrationsontray14and28from thesetpointsis used,i.e. only theconcentrationdeviationsfrom
thesetpointon trays14 and28 plustheinputsarepenalizedin thecost-function.TheQIH-NMPC controlschemeis
usedfor control.Theterminalregionandterminalpenaltytermhavebeencalculatedassuggestedin Sect.2.1.3.
In Table1 themaximumandaverageCPUtimesnecessaryto solveoneopen-loopoptimizationproblemfor theQIH-
NMPC schemein caseof a disturbancein xF with respectto differentmodelsizesareshown. Consideringthat the
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Table1: Comparisonof theaverageandmaximumCPUtime in secondsnecessaryfor thesolutionof oneopen-loop
optimal control problem. The resultsareobtainedusingMUSCOD-II [12] andQIH-NMPC for modelsof different
size.Thepredictionhorizonof is 10 minutesanda controllersamplingtime δ � 30secis used

modelsize max avrg
42 1.86s 0.89s

164 6.21s 2.48s

samplingtime of theprocesscontrolsystemconnectedto thedistillation columnis 30sec,theQIH-NMPC usingthe
appropriatetool for optimizationis evenreal-timefeasiblefor the 164th ordermodel. Notice, thata straightforward
solutionof the optimalcontrol problemfor the42nd ordermodelusingthe optimization-toolboxin Matlabneedsin
average620secto find thesolutionandis hencenot real-timeimplementable.Also a numericalapproximationof the
infinite horizonproblemby increasingthe predictionhorizonsufficiently enoughis not real-timefeasibleasshown
in [32]. More detailsandsimulationresultsfor the distillation columnexamplecanbe found in [5, 24,59]. First
experimentalresultson a pilot scaledistillationcolumnaregivenin [25].

Thepresentedcasestudyunderpins,thatNMPCcanbeappliedin practicealreadynowadays,if efficientnumerical
solutionmethodsandefficientNMPC formulations(likeQIH-NMPC) areused.

5 Conclusions

Model predictive control for linearconstrainedsystemshasbeenshown to provide anexcellentcontrolsolutionboth
theoreticallyandpractically. Theincorporationof nonlinearmodelsposesa muchmorechallengingproblemmainly
becauseof computationalandcontroltheoreticaldifficulties,but alsoholdsmuchpromisefor practicalapplications.
In this noteanoverview over the theoreticalandcomputationalaspectsof NMPC is given. As outlinedsomeof the
challengesoccurringin NMPC arealreadysolvable.Neverthelessmany unsolvedquestionsremain.Hereonly a few
arenoticedasa guidefor futureresearch:X Output feedbackNMPC: While somefirst resultsin the areaof outputfeedbackNMPC exist, noneof them

seemto beapplicableto realprocesses.Especiallytheincorporationof suitablestateestimationstrategiesin the
NMPC formulationmustbefurtherconsidered.X Robust NMPC Formulations: By now afew robustNMPC formulationsexist. While theexistingschemesin-
creasethegeneralunderstandingthey arecomputationallyintractableto beappliedin practice.Furtherresearch
is requiredto developimplementablerobustNMPC strategies.X Industrial Applications of NMPC: Thestateof industrialapplicationof NMPC is growing rapidly andseems
to follow academicallyavailableresultsmorecloselythanlinearMPC.However, noneof theNMPCalgorithms
providedby vendorsincludestabilityconstraintsasrequiredby controltheoryfor nominalstability; insteadthey
rely implicitly uponsettingthepredictionhorizonlong enoughto effectively approximatean infinite horizon.
Futuredevelopmentsin NMPC control theorywill hopefully contribute to makingthe gapbetweenacademic
andindustrialdevelopmentsevensmaller.
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[27] R. FindeisenandF. Allg öwer. Nonlinearmodelpredictive control for index–oneDAE systems.In F. Allg öwer
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Abstract

This paperproposesa relatively simpleadaptive controllerfor systemswith higherrelative degree.Only little
informationonthesystemis needed:only therelativedegreeandalowerboundonthepositivehigh-frequency gain.
The zero-dynamicsdoesnot needto be asymptoticallystable,boundednessis sufficient. The controllerachieves
λ-trackingfor a large classof nonlinearsystemsandconsistsof a high-gainobserver, a high-gainobserver-state
feedbackandacommonadaptationof bothhigh-gainparameters.Theadaptationincreasesthegainsof theobserver
andthestate-feedbackwhenever thecontrolobjective,namelythatthetrackingerroris of magnitudenot largerthan
λ, is notattained.Thecontroller’sadaptationconvergesandthecontrolobjective is achievedat leastasymptotically.

1 Moti vation

For many control applications,goodmodelsarenot availableor their parametersarenot preciselyknown. A pos-
sibility to control thesesystemsis to usean adaptive λ-trackingcontroller. For designingthis controller, only the
knowledgeof themodelstructure,not of preciseparametervaluesis needed.Therefore,thecontrolleris robustfor
a large classof uncertainties.In particular, the relative degreeof the systemis neededandhasto be strong. The
controllerorder is equalto the relative degree,independentlyof the systemdimension.The zero-dynamicsof the
systemcanbelocally unstable,asymptoticstability is only requiredn thelarge.Thelastpieceof informationneeded
is a lower boundof the high-frequency gain. Together, this enablesthe stabilizationof a relatively large classof
systems.

Exacttrackingis notrequiredfor many applications.Basedonthenecessaryperformanceandonthemeasurement
quality, theusercanspecifya tolerancefor thetrackingerrorwhichshouldbeachieved.Theobjectiveof λ-tracking
is thatthetrackingerrorasymptoticallytendsto

���
λ � λ � whereλ is a tolerancespecifiedby theuser.

Most controllersachieving λ-trackingcanonly beusedfor systemshaving a relative degreeof one.Theadaptive
λ-trackingcontrollerproposedin this thesisextendsthesystemclassto systemswith higherrelative degree.This is
achievedby having in thecontrolleranobserverwhichestimatestheoutputof thesystemanditsfirst r

�
1 derivatives.

Anothercomponentof thecontrolleris anobserver-basedstate-feedback.Both thecontrollerandthestate-feedback
includea high-gainparameter, thecontrollergaink. For a sufficiently largevalueof this parameter, thecontrolleris
guaranteedto achieve λ-tracking. Insteadof fixing this parametera priori, thefollowing adaptationschemeis used.
Theparameterk is increasedif theoutputis outsideof theλ-stripandkeptconstantwithin. Thisallows to startwith
a relatively smallvaluefor k and,nevertheless,beingrobustfor a largeclassof uncertainties.

A furtheradvantageof theproposedadaptiveλ-trackingcontrolleris its relatively simplestructurewhichis helpful
for implementingit andfor understandinghow thecontrollerworks.Themaindrawbacksof theadaptiveλ-tracking
controllerarethat the performanceis not directly addressedandthat the parameterk might becomelarge. On the
onehand,this increasesthesensitivity to measurementnoise.Also peakingis thenmorelikely. On theotherhand,a
smallk usuallymeansthatthetrackingerroris for quitea long timerelatively large.

1.1 λ-tracking

A classicalcontrolobjective is to asymptoticallyregulatetheoutputy of a systemto a constantreferenceyref , i.e.
for y � t ���
	

y � t ��� yref for t � ∞ 

1
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In many practicalapplications,suchanobjective is eithernot achievableor too restrictive. Instead,a certainoutput
error is often a betterchoice. For example,if an upperandlower boundfor a temperatureduring normalopera-
tion is specified,why shouldthe controllerkeepthe temperatureconstantup to the precisionof the thermometer?
Asymptoticλ-stabilization,usuallyjust calledλ-stabilization,is a suitablecontrol objective for suchapplications.
Theoutputis not requiredto convergeexactly to thesteady-stateyref , but to a ball of radiusλ � 0 aroundit, i.e. for
y � t ���
	 ,

y � t � � yref � ���
λ ��� λ � for t � ∞ �

seealsoFigure1.

0 t

y

y
ref

2 
λ

Figure1: Sketchof λ-stabilization.Outputy in solid, referenceyref in dashed,λ-stripasdottedlines.

The conceptof approximatetracking was introducedin the field of adaptive controllersin [17]. The term λ-
trackingwascoinedin [13], (seealso[12, 20]). If thereferenceis asteady-state,thenthis controlobjective is called
λ-stabilization[20].

A classicalexampleof approximatetrackingis relaycontrollersthatstabilizea systemup to a limit cycle (seefor
example[11, 9]). If the limit cycle lies insidetheλ-strip, this is a sortof λ-stabilization.Anotherwell established
resultis thesteady-stateoffset:Linearsystemswithoutanopen-looppoleat theorigin donotconvergeto aconstant,
non-zeroreferenceunderproportionalcontrol (seefor example[24]). Closelyrelatedis alsotheconceptof strong
practicalstability [16]. In contraryto λ-tracking,wherethe λ-strip is only attractive, strongpracticalstability also
requirestheλ-strip to beinvariant,i.e. that theoutputdoesnot leave theλ-strip andthat theoutputerrorduringthe
transientcanbemadearbitrarily small.Thus,it guaranteesthatthereis no peaking(see[22])

Anothermethodachieving asymptoticoutputtrackingis to includeamodelof thereferencesignalin thecontroller
(internalmodelprinciple,see[10]). For minimumphase,relative degreeonesystems,asymptotictrackingcanalso
beachievedwithoutaninternalmodelby usinga discontinuouscontrollerof thefollowing form [19]

u � �
k ��� y �

yref ��� sign� y �
yref ���

for a sufficiently largek. This controlleris similar to sliding modecontrollers(seefor example[15]), wherey
�

yref

is equivalentto the heightabove the sliding surface � x � y � x� � yref � 0� . Sucha controller requiresarbitrary fast
switchingandwill usuallyleadto chattering.Therefore,for many applications,acontinuouscontrolleris preferable.
Suchacontrolleris proposedin thefollowing.

1.2 High-gain

Theproposedcontrollerachievesλ-trackingby increasinga gainasmuchasnecessary. This gain increaseleadsto
robustnessagainstmodeluncertainties.An importantconditionin this context is high-gainstabilizabilitywhich is
definedin Definition1 below andillustratedby thefollowing example.

A verysimplefeedbackis thefollowing proportionaloutputfeedback:

u � �
ky
 (1)

Thiscontrollerhasonly oneparameter, namelyk. It canfor examplebeusedto stabilizelinearsystemsof dimension
one,i.e.

ẏ � αy � βu (2)
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with positivehigh-frequency gainβ. It is easyto seethatif aspecificsystem(2) canbestabilizedby thecontroller(1)
with k � k� , thenalsoany largerk stabilizes(2). A controllerwith this propertyis calledhigh-gaincontroller, see
Definition1 below.

Definition 1 (High-gain controller, parameter, stabilization) A controller parameterizedby a singleparameter
k stabilizinga givensystemfor any k � k� is called high-gaincontroller, its parameterk high-gainparameter. A
systemstabilizablebya high-gaincontroller is calledhigh-gainstabilizable.

Definition1 is a generalizationof thedefinitionin [8, 12] wherethecontrolleris astaticoutputfeedback.
Themainrestrictionof thecontroller(1) is that this high-gaincontrollercanonly beusedfor systemsof relative

degreeoneandsomeof relativedegreetwo (seee.g.[8, 3]).

2 Setup

This sectionfirst presentsthe systemclassthe proposedadaptive observer-basedstate-feedbackcontrollercanbe
appliedto. Thenthecontrollercomponents,theobserver, thestate-feedbackandtheadaptationarepresentedsepa-
rately.

2.1 Systemclass

Theproposedcontrolleris applicableto single-inputsingle-outputsystemsthatareaffine in theinput:

ẋ � f � x��� g � x��� u � x ��	 n � (3a)

y � h � x� 
 (3b)

For theresultsto hold, thefollowing assumptionson thesystemmustbesatisfied.

Assumption1 (Known relativedegree)Therelativedegreer is knownandstrong, i.e. for all x �
	 n

LgLi
f h � x��! 0 � i � 0 �"
"
#
#� r �

2 �
g � x��� LgLr $ 1

f h � x�&%� 0 
 (4)

Assumption 2 (Positive high-fr equency gain)The high-frequencygain g � x� is strictly positive and globally
boundedawayfromzero bysomeknownconstantg � 0,

g � x�'� g for all x ��	 n 

Thefollowing definitionis neededfor describingthesystemclass.

Definition 2 (Affine sectorbound)A function f : 	 n �(	 n is in theset ) if for somem � 0 it canbedecomposed
as

f � x��� f 0 � x��� F � x� x � f 0 �*�+� : 	 n �,	 n � F �*�+� : 	 n �,	 n - n �
where for all x �
	 n .

f 0 � x� .&/
m� .

F � x� .&/
m


Remark 1 Specialcasesof functionsf �*
+�'�0) are functionssatisfyingfor someconstantsm1, m2.
f � x� .&/

m1 � m2
.
x
. �

or

lim1
x
132

∞

.
f � x� ..
x
. � m2 


Therefore, the class ) is a generalizationof sectorboundednonlinearities.Figure 2 showsa sketch of a possible
one-dimensionalfunction. 4
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x

f � x�

Figure2: Exampleof aone-dimensionalfunction f �0) .

Thisenablesto statethemainassumptionon thesystemclass.

Assumption 3 (Bounded nonlinearities) There existsa coordinatetransformation
�
ξT � ηT � T � T � x� transform-

ing (3) into input-normalizedByrnes-Isidorinormalform (5) (see[6, 7, 14])

y � ξ1

ξ̇i � ξi 5 1 for i � 1 �"
"
#
#� r �
1

ξ̇r � α � ξ � η ��� g � ξ � η � u
η̇ � θ̃ � ξ � η � (5)

with

ξ � t �6� �
ξ1 � t � �"
#
"
�� ξr � t �*� T ��	 r

η � t �7�0	 n $ r �
where thefollowingconditionshold:

1. α �*�+�'�0) ,

2. g �*�+� is bounded,

3. θ̃ ����� ξ2 �"
#
"
�� ξr � η ���8) for all � ξ2 �#
"
#
#� ξr � η ���
	 n $ 1,

4. θ̃ � ξ1 �"�9�"
#
"
��"�+� is boundedfor all ξ1 �
	 .

Assumption4 (Zero dynamics)Thezero-dynamicsof (5) canbedecomposedas

η̇ � θ̃ � 0 � η ��� θ � η ��� w̃ � η �
where w̃ ���:� is boundedandthedynamicsη̇ � θ � η � aregloballyexponentiallystable.

UnderAssumption3 and4, (5) canberewrittenas

ξ̇ � Jξ � b � ψT � ξ � η � ξ � φT � ξ � η � η � g � ξ � η � u � v � ξ � η � �;� (6a)

η̇ � χ � ξ � η � y � θ � η ��� w � ξ � η � (6b)

y � cTξ � (6c)

with ξ � t �'�
	 r , η � t ����	 n $ r and

J � <===> 0 1 0
...

1
0

?+@@@A � b � <===> 0...0
1

?+@@@A �
cT �CB 1 0 
"
#
 0D 


All functionsarebounded:

g � ξ � η �'� g � v� θ � w � χ � φ � ψ �0E ∞ �F	 n � 
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Remark 2 In [21] it is shownthatanylinear systemwith relativedegreer is transformableinto

ξ̇ � Jξ � b � ψT ξ � φTη � gu�
η̇ � χy � Hη

y � cT ξ 

Thesystem(6) canbeseenasa nonlineargeneralizationof this. 4
2.2 Objective

The control objective is to asymptoticallytrack a referencesignalyref �*�+� while toleratinga trackingerror smaller
thanauser-definedλ (λ-tracking): � y �

yref �G� �
0 � λ �F


All statesshouldremainbounded,i.e. x ��E ∞ � � 0 � ∞ � � . Thereferencesignalyref �*�+� is consideredto be in Wr H ∞, the
setof all boundedfunctionsthatareabsolutelycontinuouson compactsubintervalsandwhosefirst r derivativesare
essentiallybounded.

For thegivensystemandobjective, anadaptive output-feedback“state-space”controlleris designed.It consists
of anadaptivehigh-gainobserverandanadaptivehigh-gainstate-feedbackcontroller, describedin thefollowing.

3 Controller structur e

Theadaptiveλ-trackingcontrollercanbedecomposedinto a high-gainobserver (Section3.1)anda high-gainstate-
feedback(Section3.2). Theadaptationof thegainsis describedin Section3.3.

3.1 Full-order observer

Theobserver is anadaptive versionof thehigh-gainobserver introducedby [18] (seealso[23]) asproposedin [5].
Theobserver is presentedin observability normalform [26] andgivenby

˙̂x � Âκ̂x̂ � pκ̂e (7a)

e � y
�

yref (7b)

with x̂ � t �'�
	 r and

Âκ̂ � J
�

pκ̂cT � pκ̂ �CB pr $ 1 � κ̂ pr $ 2 � κ̂2 
#
"
 p1 � κ̂r $ 1 p0 � κ̂r D T 

Theparameterspi arechosensuchthat p � s�6� sr � ∑r $ 1

i I 0 pisi is Hurwitz. For any positivevalueof theobservergain
κ̂, thespectrumof Âκ̂ lies in theopenleft half planeandtheobserverdynamicsarestable.No furtherknowledgeof
thesystembesidesthatof therelativedegreeis neededfor thedesignof thisobserver. Theobservergainκ̂ is adapted
accordingto theadaptationlaw describedbelow.

3.2 Observer-statefeedbackcontroller

Thecontrolleris anobserver-statefeedback

u � �
qκx̂ � (8)

where

qκ � B q0 � κr �J�#�"�K� qr $ 1 � κ D T 

Theparametersqi arechosensuchthat

qg � s��� sr � g
r $ 1

∑
i I 0

qis
i (9)

is Hurwitz for all g � g whereg is a lower boundof thehigh-frequency gainof thesystem.A root-locusargument

in g shows thatqg � s� is Hurwitz for all g � g if andonly if ∑r $ 1
i I 0 qisi is Hurwitz andtheqi aresufficiently small.

Theadaptationlaw for thecontrollergainκ is describedbelow.
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3.3 Gain adaptation

Theadaptationfor theobservergainκ̂ andthecontrollergainκ is chosensuchthatthegainsareincreasedaslongas
theamplitudeof thetrackingerrore is largerthantheuser-definedboundλ (thecontrolobjective).

Theobserverandcontrollergainsaregivenby

κ̂ � kα (10a)

κ � kβ (10b)

wheretheparametersα andβ haveto satisfy

α � β � 0 
 (11)

For givenpolynomialsp �*�+� andqg̃ �*�+� , thereexist positive constantsε andµ suchthat for all g̃ � g, p �*�+� andqg̃ �*�+�
arein H � ε � µ� , seeAppendixC. Theparametersε andµ canbeinterpretedasameasureof robustnesswith respectto
timescalingfor ε andthedecayrateof thedifferentialequationcorrespondingto thepolynomialfor µ.

With someλ � 0, γ � 0 andk � 0��� k0 � 0, theadaptationparameterk satisfiesthedifferentialequation:

k̇ � d2
λ � e� k� � (12a)

dλ � e� k��� γ
kγ̃ L � e� � λ for � e�M� λ �

0 for � e� / λ � (12b)

whereγ̃ hasto satisfy

γ̃ � 2αε �N� α �
β �O� 2r

�
3� � 1

2
for r � 1 � (12c)

γ̃ � 2βε
� 1

2
for r � 1 
 (12d)

Remark 3 Theparametersα andβ canbeusedto tuneindividually the“gains” of theobserverandthecontroller,
respectively. The adaptationlaw ensures a monotonicincreaseof the observerand controller gains. Also the
observergain κ̂ growsfasterthanthecontroller gain κ for k � 1.

Theparameter̃γ slowsdowntheadaptation,particularly whenk is large. Its lower bounddependson therelative
degree, thechoiceof theexponentsα andβ andon thepolynomialsp ���:� andq ���:� . For systemswith relativedegree
one, ε canbechosento bezero, and γ̃ � 0 is a valid choicefor therelativedegreeonecase. 4
4 Result on λ-tracking and convergenceof the adaptation

Themainresultis Theorem1 statingthatthecombinationof theadaptiveobserver(7) with theadaptivecontroller(8)
andusingtheadaptationlaw (12)with (10)and(11)to closetheloopfor anarbitrarysystemsatisfyingAssumptions1
to 4 yields asymptoticconvergenceof the trackingerror to the λ-strip. Furthermore,the adaptationconverges,no
finite escapetime canoccurandall statesremainbounded.

Theorem1 (Full-order adaptiveλ-tracking controller)
Definetheconstantsε � 0 andµ � 0 so that the polynomialsp ���:� andqg̃ �*�+� are in H � ε � µ� for all g̃ � g. Thenthe

applicationof the λ-tracking controller (7), (8), (12) with κ̂ � kα, κ � kβ and α � β � 0 to any systemsatisfying
Assumptions1 to 4 with anyreferencesignalyref �*�+�7� Wr H ∞ resultsin a closed-loopsystemwhich, independentlyof
theinitial valuesx � 0�'�P	 n, x̂ � 0�7�P	 r andk � 0�'� 0 hasa uniquesolutionexistingon thewholehalf axist � �

0 � ∞ �
and,moreover,

a) � x ���:�Q� x̂ �*�+� � k ���:�#�7�8E ∞ � � 0 � ω � � ,
b) limt

2
∞ � y � t � � yref � t �G� / λ.

The proof of Theorem1 consistsof five steps.The first part shows that k cannotgo to infinity on the maximal
domainof existence.Then,boundednessof theobserver stateŝx andthusof theplant input u is proven. Part three
shows boundednessof theplantstatesx. Stepfour yieldsthat thesolutionof thedifferentialequationsexistsfor all
times. A consequenceof thefirst andfourth stepis theconvergenceof theadaptationparameterk andby thatof κ
andκ̂. Theproofconcludesby showing thatthetrackingerrorconvergesto theλ-strip.
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Proof (of Theorem1)

1.a)Boundednessof the adaption parameters. Sincethis partof theproof is rathertedious,a shortsketchof the
proof is given. First, the closedloop is transformedinto a coordinatesystemwith statesfor the trackingandthe
observererrorandtheir time-derivatives(x̄-coordinates).Thenak-dependenttimescalingis applied(¯̄x-coordinates).
In the resultingcoordinatesit is possibleto definea Lyapunov-like functionV suchthat it canbeusedto boundk̇:
k̇
/

M̄V � ¯̄x � k � for someM̄ � 0. Theboundednessof k is concludedby contradiction:It is assumedthatk grows to
infinity. Upperboundingthederivative of V alongclosed-looptrajectoriesyields thatV̇

/R�
2µ̃V � V̇max for some

µ̃ � 0. An upperboundfor V canbe derived by the integrationof V̇max. This boundis thenusedtogetherwith
k̇
/

M̄V � ¯̄x � k� to show thatk cannotgrow to infinity. Therefore,theadaptationparameterk hasto remainbounded.
Thenonlinearclosed-loopsystemis givenby (6), (7),(8), (12), andtakestheform

ξ̇ � � J � bψT � ξ � η � � ξ � b � φT � ξ � η � η � g � ξ � η �O� � qT
κ x̂��� v � ξ � η � � (13a)

η̇ � χ � ξ � η � y � θ � η ��� w � ξ � η � � (13b)

˙̂x � Âκ̂x̂ � pκ̂e� (13c)

k̇ � d2
λ � e� k� � (13d)

e � cT ξ
�

yref (13e)

with

ξ � 0�S� ξ0 �
	 r � η � 0�6� η0 �
	 n $ r

x̂ � 0�S� x̂0 ��	 r � k � 0�6� k0 � 0 

In thefollowing, theargumentsof g �*�+� , φ �*�+� , χ �*�+� , θ ���:� , v �*�+� andw ���:� aredroppedto increasereadability.

For thereferencesignalandits derivatives,thefollowing notationis used:

ŷref �UT yref � ẏref �V
"
"
#� y W r $ 1X
ref Y T �
	 r �

yref �UT yref � ẏref �V
"
"
#� y W r Xref Y T ��	 r 5 1 

It clearlyholdsthat

˙̂yref � Jŷref � by W r Xref 

Introducethecoordinates

x̄ � <> x̄1

x̄2

x̄3

?A � <> ξ̂η
ê

?A � <> ξ �
ŷref

η
ŷref

�
x̂

?A �
whereξ̂ � B e ė 
#
"
 eW r $ 1X D T

denotesthetrackingerrorandits derivatives,andê is theobservererror, theclosed-
loopsystemis givenby

˙̄x � <====> � J � bψ̄T �*�+� � � x̄1 � ŷref ��� bφ̄T �*�+� x̄2
�

bḡ �*�+� qT
κ � x̄1

�
x̄3 ��� bv̄ ���:� � Jŷref

�
by W r Xref

χ̄ �*�+�O� cT x̄1 � yref ��� θ̄ � x̄2 ��� w̄ �*�+�� J � bψ̄T �*�+�"�Z� x̄1 � ŷref ��� bφ̄T �*�+� x̄2
�

bḡ �*�+� qT
κ � x̄1

�
x̄3 ��� bv̄ ���:� � Jŷref

�
by W r Xref� � J �

pκ̂cT �O� x̄1
�

x̄3 � � pκ̂cT x̄1

?+@@@@A
� <==> � J � b � ψ̄T �*�+� � ḡ ���:� qT

κ �[� x̄1 � bφ̄T x̄2 � bḡ �*�+� qT
κ x̄3 � bv̄ ���:��� B̄yref

χ̄ ���:� cT x̄1 � θ �*�+��� w̄ �*�+��� χ̄ ���:� yref

b � ψ̄T ���:� � ḡ �*�+� qT
κ � x̄1 � bφ̄T �*�+� x̄2 �\� bḡ �*�+� qT

κ � Âκ̂ � x̄3 � bv̄ �*�+��� B̄yref

?+@@A (14a)

e � cT x̄1 (14b)

with

B̄ � b B ψT �*�+�Z� � 1D
v̄ � x̄1 � x̄2 � ŷref �S� v � ξ � η � �

similarly for w̄ �*�+� � χ̄ ���:�Q� θ̄ �*�+� � φ̄ ���:�Q� ψ̄ �*�+� andḡ �*�+� 
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Usingthat κ̂ � kα andκ � kβ, thematricesJ
�

ḡ �*�+� bqT
κ andÂκ̂ � J

�
p̂κ̂cT canbothbefactoredwith thehelpof

thematrix

Kr � diag� 1 � k �#
"
#
"� kr $ 1 �
as

J
�

ḡ ���:� bqT
κ � kβKβ

r
¯̄A11K

$ β
r

Âκ̂ � J
�

pκ̂cT � kαKα
r

¯̄A33K
$ α
r (15)

with

¯̄A11 � ḡ �*�+�"�6� J
�

ḡ ���:� bqT with q � qκ � κ I 1 �
¯̄A33 � J

�
pcT with p � b̂κ̂ ]] κ̂ I 1 


By assumption,thepolynomialsp �*�+� andqg̃ ���:� arein H � ε � µ� for all g̃ � g. Therefore,thematrices¯̄A11 � ḡ �*�+�"� and
¯̄A11 � ḡ �*�+�"� arein thesetH � ε � µ� for all g � g, seeDefinition 4.

A k-dependenttime-scalingis now appliedto (14) by definingnew coordinates̄̄x via a gain-dependenttransfor-
mation:

¯̄x � ¯̄C ¯̄K $ 1x̄ (16)

where

¯̄C � diag� c1Ir � c2Im � c3Ir �
ci � k�6� kc̃i � c̃i ��	^� i � 1 � 2 � 3 �

¯̄K � diag� Kβ
r � Im � Kα

r �_

Thematrix ¯̄K $ 1 canbeseenasa k-dependenttimescalingof (14).

Thecoefficientsc̃1, c̃2 andc̃3 have to satisfythefollowing inequalities:� � r � 1
2
� β ` c̃2

�
c̃1 ` 1

2
β � (17a)� � r � 1

2
�O� α �

β �6` c̃1
�

c̃3 ` � � r � 3
2
�Z� α �

β �Q� (17b)� � r � 1
2
� α ` c̃2

�
c̃3 � (17c)

c̃2 ` c̃1 � (17d)

c̃3
� � r �

1� α ` c̃1 � 1
2

α � (17e)

0 � max� βε � c̃1 � αε � c̃3 � � 1
2

c̃1 � (17f)

γ̃ � c̃1 � � 1
2

 (17g)

Remark 4 Theinequalities(17a)to (17f) areneededto boundV̇. More precisely, theinequalities(17a), (17b)and
(17c)arenecessaryfor thecompensationbyquadratic expansionof thecrossterms

.
¯̄xi
.a.

¯̄xj
.

with i %� j in (36). The
inequalities(17d)and(17e)arecomingfromthelinear termsin

.
¯̄xi
.

in (36). Inequality(17f) ensuresthat thefactor

of k̇
k in d

dtV is non-positive, see(32). Finally, inequality(17g)makesit possibleto bound k̇
k byV, see(28). 4

Lemma1, page15 shows thattheinequalities(17)aresolvablefor c̃1, c̃2 andc̃3.
Thetimederivativeof thecoordinatetransformationmatrices¯̄C and ¯̄K $ 1 is

d
dt

¯̄C � diag� d
dt

c1Ir � d
dt

c2Im � d
dt

c3Ir �_� d
dt

ci � c̃
k̇
k

ci �
d
dt

K $ α
r � �

α
k̇
k

∆K $ α
r � d

dt
K $ β

r � �
β

k̇
k

∆K $ β
r
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with

∆ � diag� 0 � 1 �#
"
"
"� r �
1 �_


In the ¯̄x-coordinates,theclosed-loopdifferentialequationsare

d
dt

¯̄x � <====> K $ β
r b ¯̄A11 � b ¯̄ψT ���:�"c Kβ

r ¯̄x1 � c1
c2

K $ β
r bφT ¯̄x2 � c1

c3
K $ β

r b ¯̄g �*�+� qT
κ Kα

r
¯̄x3 � K $ β

r c1b¯̄v �*�+�
c2
c1

¯̄χ �*�+� cT ¯̄x1 � c2θ̄ � c$ 1
2

¯̄x2 ��� c2 ¯̄w ���:�
c3
c1

K $ α
r b � ¯̄ψT �*�+� � ¯̄g ���:� qT

κ � Kβ
r x̄1 � c3

c2
K $ α

r bφT ¯̄x2 � K $ α
r b b ¯̄g �*�+� qT

κ � ¯̄A33c Kα
r x̄3 � c3K $ α

r b¯̄v �*�+�
?+@@@@A

� ¯̄C

<=> K $ β
r B̄

¯̄χ �*�+� c̃
K $ α

r B̄

?+@Ad eQf gI : ¯̄B

yref
� k̇

k

<=> �
c̃1 � β∆�

c̃2�
c̃3 � α∆

?+@Ad eQf gI :Ψ

¯̄x

� <=> kβ ¯̄A11¯̄x1
¯̄θ � ¯̄x2 �

kα ¯̄A33¯̄x3

?+@A � <=> ¯̄E11
¯̄E12

¯̄E13
¯̄E21

¯̄E22
¯̄E23

¯̄E31
¯̄E32

¯̄E33

?+@A <> ¯̄x1
¯̄x2
¯̄x3

?A <> c1K $ β
r b¯̄v �*�+�

c2 ¯̄w �*�+�
c3K $ α

r b¯̄v ���:� ?A � ¯̄C ¯̄Byref
� k̇

k
Ψ¯̄x (18a)

e � c$ 1
1 cT ¯̄x1 (18b)

with

¯̄E11 � K $ β
r b ¯̄ψT �*�+� Kβ

r � ¯̄E12 � c1

c2
K $ β

r bφT � ¯̄E13 � c1

c3
K $ β

r b ¯̄g �*�+� qT
κ Kα

r �
¯̄E21 � c2

c1

¯̄χ ���:� cT � ¯̄E22 � ¯̄E23 � 0 �
¯̄E31 � c3

c1
K $ α

r b � ¯̄ψT �*�+� � ¯̄g ���:� qT
κ � Kβ

r � ¯̄E32 � c3

c2
K $ α

r bφT � ¯̄E33 � K $ α
r b ¯̄g ���:� qT

κ Kα
r 


To shortenthenotation,the highestexponentof k in any matrix elementwill bedenotedby ordk �*�+� (seeDefini-
tion 5, page18). Straightforwardcalculationsgive thefollowing bounds:

ordk
¯̄E11 � 0 � ordk

¯̄E12 �ih c̃1

c̃2 j � � r �
1� β ` β

2

ordk
¯̄E13 � h c̃1

c̃3 j �k� r �
1�O� α �

β ��� β ` α � β
2

ordk
¯̄E21 �ih c̃2

c̃1 j ` β
2
� ordk

¯̄E22 � ordk
¯̄E23 � 0

ordk
¯̄E31 � h c̃3

c̃1 j � � r �
1�O� α �

β ��� β ` α � β
2

ordk
¯̄E32 �ih c̃3

c̃2 j � � r �
1� α ` α

2
� ordk

¯̄E33 � β 

where

¯̄B1 � K $ β
r B̄ ordk

¯̄B1 � � � r �
1� β

¯̄B2 � ¯̄χ ���:� c̃ ordk
¯̄B2 � 0

¯̄B3 � K $ α
r B̄ ordk

¯̄B3 � � � r �
1� α

¯̄θ � ¯̄x � k��� c2θ̄ � c$ 1
2

¯̄x2 �
¯̄g � ¯̄x� k��� g � x� x̂ � ŷref �Q� ibid. for ¯̄v� ¯̄w � ¯̄χ � ¯̄φ � ¯̄ψ 


As thematrices¯̄A11 � ḡ �*�+�"� and ¯̄A33 arein thesetH � ε � µ� for all g � g, thereexist symmetric,positivedefinitesolutions
P1 andP3 suchthatfor any g �*�+��� g thefollowing Lyapunov equationshold:

¯̄AT
ii Pi � Pi

¯̄Aii
/l�

µPi � i � 1 � 2 � 3 � (19a)

Pi � ∆ � εI ���k� ∆ � εI � Pi �K� 0 i � 1 � 3 
 (19b)
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Thefunctions¯̄x1 m� V1 � ¯̄x1 �n� ¯̄xT
1 P1¯̄x1 and¯̄x3 m� V3 � ¯̄x3 �o� ¯̄xT

3 P3¯̄x3 areusedasasortof Lyapunov functioncandidatesfor
¯̄x1 and¯̄x3, respectively. By Assumption4, thereexist positiveconstantsm1, m2, m3 andm4 andafunctionη m� Ṽ2 � η �
suchthat

m1
.
η
. 2 /

Ṽ2 � η � /
m2

.
η
. 2 � (20a)

∂
∂η

Ṽ2 � η � H2 � η � /p�
m3

.
η
. 2 � (20b). ∂

∂η
Ṽ2 � η � .&/

m4
.
η
. 
 (20c)

This resultcanfor examplebefoundin [25]. In the ¯̄x2-coordinates,

V2 � ¯̄x2 �S� c2
2Ṽ2 � c$ 1

2
¯̄x2 �

canbechosenasa Lyapunov functioncandidate.It thenfollows from (20) that

m1
.
¯̄x2

. 2 /
V2 � ¯̄x2 � /

m2
.
¯̄x2

. 2 (21a)

∂
∂¯̄x2

V2 � ¯̄x2 � ¯̄θ2 � ¯̄x2 � /p�
m3

.
¯̄x2

. 2 (21b). ∂
∂¯̄x2

V2 � ¯̄x2 � .&/
m4

.
¯̄x2

. 
 (21c)

Now, theLyapunov functioncandidatesVi �*�+� arecombinedto a singlefunction

V � ¯̄x � k�6� 1
2

D2 � ¯̄x � k� (22a)

with

D � ¯̄x � k�6� L ν � ¯̄x� � ρ � k�Q� if ν � ¯̄x�'� ρ � k �
0 � if ν � ¯̄x�'` ρ � k � 
 (22b)

This is a sortof Lyapunov functioncandidatefor (18a)where

ν � ¯̄x�6�\q V1 � ¯̄x1 ��� V2 � ¯̄x2 ��� V3 � ¯̄x3 � � (22c)

ρ � k�6� λ
2

c1 � k�r .
P$ 1

1

. 
 (22d)

Thek-dependentparameterρ hasbeenchosenin sucha way that

ν � ¯̄x � /
2ρ � k��st� e� / λ s k̇ � 0 
 (23)

To seethis,combine(16), (18b)and(22) to� e� / .
¯̄x1

.
c1

/ r .
P$ 1

1

.
c1 � k � ν � ¯̄x� / r .

P$ 1
1

.
c1 � k� q 2V � ¯̄x � k��� λ

2

 (24)

Since

ν � ¯̄x� /
2ρ � k�vu V � ¯̄x � k� / 1

2
ρ2 � k� � (25)

(22d)and(24)yield

ν � ¯̄x� /
2ρ � k�SsV� e� / λ �

which is in thedead-zoneof thegainadaptation,implying that

ν � ¯̄x� /
2ρ � k�Ss k̇ � 0 


21st Benelux Meeting on Systems and Control Book of Abstracts

151



ThefunctionV � ¯̄x � k� will beusedto upperboundk̇. From(12), thedefinitionof theadaptation,it holdsthat

k̇
/ γ2

k2γ̃ �#� e� � λ � 2 
 (26)

From(24) followsthat �#� e� � λ � 2 / .
P$ 1

1

.
c2

1 � k� 2V � ¯̄x � k� 
 (27)

Combining(26) and(27)yields

k̇
/ γ2

k2γ̃

.
P$ 1

1

.
c2

1 � k� 2V � ¯̄x � k�Q
 (28)

Using(17g), it holdsfor someM̄ � 0 that

k̇
k

/
M̄V � ¯̄x � k � 
 (29)

(29) is thefirst key inequalityof Step1 of theProof.
Fromnow on thek-dependency of V �*�+� , D �*�+� andρ �*�+� will bedroppedto increasethereadability.
Fromthetheoryof ordinarydifferentialequationsit follows thattheinitial valueproblem(13)possessesanabso-

lutely continuoussolution � ¯̄x �*�+� � k �*�+�"� : �
0 � ω �S�(	 n5 1, maximallyextendedover

�
0 � ω � for someω �w� 0 � ∞ � .

Thederivativeof V alongthetrajectoryof thesystem(13)(denotedfor easeof expositionby d
dt ) is for all t � �

0 � ω �
andfor all valuesof ¯̄x

d
dt

V � ¯̄x��� D � ¯̄x� d
dt

D � ¯̄x�S� D � ¯̄x�7h d
dt

ν � ¯̄x� � d
dt

ρ � k� j � D � ¯̄x�yx d
dt � V1 � ¯̄x1 ��� V2 � ¯̄x2 ��� V3 � ¯̄x3 �#�

2ν � ¯̄x� � dρ � k�
dt z� 1

2
D � ¯̄x�
ν � ¯̄x� h kβ ¯̄xT

1 2P1
¯̄A11¯̄x1 � 2

∂V2 � ¯̄x2 �
∂¯̄x2

H2 � ¯̄x2 ��� kα ¯̄xT
3 2P3

¯̄A33¯̄x3 � 2
3

∑
j I 1

¯̄x1
TP1

¯̄E1 j ¯̄x j� 2
∂V2 � ¯̄x2 �

∂¯̄x2

¯̄E21¯̄x1 � 2
3

∑
j I 1

¯̄x3
TP3

¯̄E3 j ¯̄x j � 2¯̄x1
TP1c1K $ β

r bv ���:��� 2
∂V2 � ¯̄x2 �

∂¯̄x2
c2w �*�+�� 2¯̄x3

TP3c3K $ α
r bv�*�+���R� 2¯̄x1

TP1c1K $ β
r B̄ � 2

∂V2 � ¯̄x2 �
∂¯̄x2

c2χ ���:� c̃T � 2¯̄x3
TP3c3K $ α

r B̄� yref� k̇
k

¯̄x1
T2P1Ψ1¯̄x1

�
2

k̇
k

∂V2 � ¯̄x2 �
∂¯̄x2

Ψ2¯̄x2
� k̇

k
¯̄x3

T2P3Ψ3¯̄x3 j � k̇
k

ordk � ρ � ρ � k� D � ¯̄x�Q

(30)

Thelastfour termsin (30)areanalyzedfirst:

N � ¯̄x � : � � D � ¯̄x�
2ν � ¯̄x� x k̇

k
¯̄x1

T2P1∆1¯̄x1 � 2
k̇
k

∂V2 � ¯̄x2 �
∂¯̄x2

∆2¯̄x2 � k̇
k

¯̄x3
T2P3∆3¯̄x3 � k̇

k
ordk � ρ � ρ � k � 2ν � ¯̄x� z� � D � ¯̄x�

ν � ¯̄x� k̇
k
b � � βε

�
c̃1 � ¯̄xT

1 P1¯̄x1
�

c̃2¯̄xT
2 P2¯̄x2 �k� � αε

�
c̃3 � ¯̄xT

3 P3¯̄x3 � c̃1ρ � k� ν � ¯̄x� c � (31)

where(19b)hasbeenused.For
.
¯̄x
. � 2ρ, (31)simplifiesto

N � ¯̄x � /
D � ¯̄x� k̇

k
h max� βε � c̃1 � αε � c̃3 � � c̃1

2 j ν2 � ¯̄x� (32)

andusing(17f) to

N � ¯̄x � /
0 
 (33)

In thecaseof
.
¯̄x
.&/

2ρ, (23)yields

N � ¯̄x ��� 0 
 (34)
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Combining(33) and(34), it holdsfor all ¯̄x that

N � ¯̄x � /
0 
 (35)

Using(35), (30)simplifiesto

d
dt

V � ¯̄x� /{� D � ¯̄x�
ν � ¯̄x� x kβV1 � ¯̄x1 ��� m3

m1
V2 � ¯̄x2 ��� kαV3 � ¯̄x3 ��� ∑

i I 1 H 3 3

∑
j I 1

.
Pi

.K. ¯̄Ei j
.|.

¯̄xi
.a.

¯̄xj
.

� . ∂V2 � ¯̄x2 �
∂¯̄x2

.a. ¯̄E21
.K.

¯̄x1
. � ∑

i I 1 H 3ci
.
Pi

.a. ¯̄K $ 1
i b

.K.
¯̄xi
. � v �*�+�Z��� c2

. ∂V2 � ¯̄x2 �
∂¯̄x2

.a.
w �*�+� .� h ∑

i I 1 H 3ci
.
Pi

.|. ¯̄K $ 1
i B̄

.K.
¯̄xi
. � c2

. ∂V2 � ¯̄x2 �
∂¯̄x2

.|.
χ �*�+� .a. c̃ . j .

yref
. z 


Now assumethat k tendsto infinity ast � ω. This will leadto a contradiction.The assumptionthat yref � Wr H ∞
impliesthatyref is boundedalmosteverywhere.Also almosteverywhereboundedarev �*�+� , w ���:� andχ �*�+� . Therefore,
thereexistsa constantM � 0 suchthatfor almostall t � �

0 � ω �
d
dt

V � ¯̄x� /l� D � ¯̄x�
ν � ¯̄x� h µ

2
kβV1 � ¯̄x1 ��� m3

m1
V2 � ¯̄x2 ��� µ

2
kαV3 � ¯̄x3 � � M

3

∑
i I 1

3

∑
j I 1

. ¯̄Ei j
.a.

¯̄xi
.|.

¯̄x j
.�

M b c1k $ W r $ 1X β . ¯̄x1
. � c2

.
¯̄x2

. � c3k $ W r $ 1X α .
¯̄x3

. c j 
 (36)

Usingquadraticexpansion,theboundson
.
Ei j

.
, inequalities(17)andmonotonicityof k, thereexist positiveconstants

µ̃, M1 andM̃ anda time t1 � �
0 � ∞ � suchthatthegaink � t � is sufficiently largefor almostall t � �

t1 � ω � to ensure

d
dt

V � ¯̄x� / �
µ̃

D � ¯̄x�
ν � ¯̄x� h V1 � ¯̄x1 �}� V2 � ¯̄x2 �}� V3 � ¯̄x3 � �

M̃c2
1k $ M1 j �

µ̃D � ¯̄x �~h ν � ¯̄x� �
M̃k $ M1c1

c1

ν � ¯̄x� j 

By (22d)andmonotonicityof k, thereexistst2 � �

t1 � ∞ � suchthatfor almostall t � �
t2 � ω �

d
dt

V � ¯̄x� /l�
µ̃D � ¯̄x�~h ν � ¯̄x� � ρ

ρ
ν � ¯̄x� j 
 (37)

For ν � ¯̄x�7� ρ, this reducesto

d
dt

V � ¯̄x� /l�
µ̃D � ¯̄x��� ν � ¯̄x� � ρ �K
 (38)

In thecaseof ν � ¯̄x� /
ρ, (37) is simplifiedto

d
dt

V � ¯̄x� /
0 asD � ¯̄x��� 0 
 (39)

Thus,by combining(38)and(39) it holdsfor all ¯̄x andfor almostall t � �
t2 � ω � that

d
dt

V � ¯̄x� /l�
µ̃D2 � ¯̄x��� �

2µ̃V2 � ¯̄x�Q

Therefore,for all t � �

t2 � ω � ,
V � ¯̄x � t �Q� k � t �"� /

e$ 2µ̃ W t $ t2 X � V � ¯̄x � t2 � � k � t2 �"�Q
 (40)

Inequality(40) is thesecondkey inequalityof this partof theProof. If ω ` ∞, then(29) and(40) yield thatk ���:�y�E ∞ � � 0 � ω ��� . If ω � ∞, thenby (40), V entersin finite time the interval B 0 � ρ2 � 2D which by (23) and(25) implies
that � e� / λ. Whence,the dead-zonein the gain adaptation(12) yields that k �*�+�y��E ∞ � � 0 � ω � � . In both cases,this
contradictstheassumptionon unboundednessof k ���:� , thusproving boundednessof k �*�+� .
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1.b) Boundednessof the observer states. As k �*�+� is bounded,dλ ���:�y�PE 2 � � 0 � ω � � . From this, (12) andthe Hölder
inequality
�

, it follows that

γ $ 1kγ̃ ���:� dλ �*�+�'�0E 2 � � 0 � ω ���a
 (41)

Using(12)againyields

γ $ 1kγ̃dλ � e� k��� L � e� � λ for � e�;� λ �
0 for � e� / λ 


Therefore, � e�*�+�Z� � γ $ 1kγ̃ �*�+� dλ � e���:�Q� k �*�+�"�7�0E ∞ � � 0 � ω � � 
 (42)

Combining(41) and(42)yields� e���:�G�Z�}� e���:�G� � γ $ 1kγ̃ �*�+� dλ ���:�d eQf g� �
∞ ��� 0 H ω X � � γ $ 1kγ̃ ���:� dλ �*�+�d eQf g���

2 ��� 0 H ω X � �0E ∞ � � 0 � ω � � 
 (43)

Boundednessof k ���:� ensurestheexistenceof a kω suchthat

kω � lim sup
t
� � 0 H ω X k � t �Q


DefiningÂ � Âκ̂ I kα
ω , Â1 � Âκ̂

�
Â, (13c)is equivalentto

˙̂x � Âx̂ � Â1x̂ � b̂e� (44)

whereÂ is Hurwitz,
.
Â1

.
decreasesmonotonicallyto zeroand

.
b̂
.

is bounded.Therefore,it follows from Variation
of Constantŝx is bounded,i.e.

x̂ �*�+�'�0E r
∞ � � 0 � ω ���a
 (45)

As u � �
qkx̂, this directlyensuresthat

u �*�+�'��E ∞ � � 0 � ω � � 
 (46)

1.c)Boundednessof the systemstates. Thepreviousparthasshown thate andy areboundedalmosteverywhere.
Theinternaldynamicsof (6) are

η̇ � H � η ��� χ � ξ � η � y � w � ξ � η �Q

By Variationof Constants,it followsthat

η �*�+�'�0E n $ r
∞ � � 0 � ω � � 
 (47)

Theremainingstates� , i.e. ξ, satisfy

ξ̇ � Jξ � b � ψT �*�+� ξ � φT �*�+� η � g ���:� u �*�+��� v �*�+� �� � J � bψT �*�+� � ξ � bṽ � (48)

whereṽ ��E ∞ � � 0 � ω �"� . It is trivial to seethatthesystem(48) is observablefrom ξ1. Therefore,thereexistsa l ��	 1 - r

s.t.

ζ̇ � � J � bψT �*�+� � ζ � l � y �
lc�� � J �

lc � bψT �*�+� � ζ � ly�
Thispartof theproof is dueto G. Weiss,ImperialCollege,London.
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is anobserver for (48) in thecaseof ṽ ! 0, if J
�

lc is Hurwitz andsufficiently robustto copewith theperturbation
b
�

ψT �*�+� (seee.g.Theorem2 in [2]). Boundednessof y ensuresboundednessof ζ. Theobservererror, ξ
�

ζ satisfies

d
dt

� ξ �
ζ �S�}� J �

lc � bψT ���:�#�O� ξ �
ζ ��� bṽ 


Therefore,it is boundedand

ξ ���:�7�8E r
∞ � � 0 � ω �"�|
 (49)

1.d) Global existenceof a unique solution. As k, x andx̂ areboundedon
�
0 � ω � , it followsby maximalityof ω that

ω � ∞.

1.e)Convergenceof the tracking error. It remainsto show thattheλ-strip is attractive. This is achievedby show-
ing that limt

2
∞ dλ � e� t � � k � t �"�'� 0. Sincee���:� andk �*�+� arebounded,it follows that k̇ ���:�'� d2

λ �*�+�7��E 1 � � 0 � ω � � . Using
ė � c

�
Ax

�
bqkx̂� � ẏref andtheboundednessof x �*�+� andx̂ �*�+� , it canbeconcludedthatė�*�+�'�8E ∞ � � 0 � ∞ � � . As

d
dt

d2
λ � 2dλ h γ

kγ̃
eė� e� � γ̃

k̇
k

dλ j �0E ∞ � � 0 � ∞ �"�|�
d2

λ ���:� is uniformly continuous. This, togetherwith d2
λ �*�+����E 1 � � 0 � ∞ � � yields, by Barb̆alat’s Lemma [1] that

limt
2

∞ d2
λ � t �S� 0.

Thiscompletestheproof of Theorem1.

5 Extensions

Theorem1 requiresthat α � β. The limiting caseα � β canalsobe handledif the following extra conditionsare
satisfied

1. Thematrix Ã � J
�

pcT �
gbqT is Hurwitz for all possibleg.

2. Thematrix � A11 bqT

bqT Ã � is Hurwitz for all possibleg.

Theseconditionsarenecessaryas the state-feedbackand the observer areadaptedat the samespeed.Thus, it is
necessarythat the observer is stableunderthe “perturbation” by the state-feedback(first condition) and that the
cross-couplingbetweentrackingandobservationerroris not too large(secondcondition).

Anotherpossibleextensionis to allow time-variationof thesystem.As longasthevariationsareslow enough,the
controlobjective is attainedby thesamecontroller.

6 Conclusions

This paperproposesanadaptiveλ-trackingcontrollerwith full-order observer thatguaranteesto achieveλ-tracking
for a largeclassof nonlinearsystemsandreferencesignal. If thesystemcanbetransformedByrnes-Isidorinormal
form asin Assumption3 andtherelativedegreeanda lowerboundof thehigh-frequency gaing areknown, thenthe
adaptiveλ-trackingcontrollerproposedhereis well suitedfor achieving thatthetrackingerrory

�
yref asymptotically

convergesto theλ-strip. Thewidth of this strip,λ, is a parameterwhich canbechosenby theuseranddoesusually
dependon the specifications,on modeluncertaintiesandon the quality of the measurement.In comparisonwith
otherapproaches,thecontrollerproposedhereusesa full-order high-gainobserver. This hastheadvantagethat the
outputy doesnot enterthe feedbackpart of the controllerdirectly. As this observer estimatesfiltered derivatives
of theoutputy andthefeedbackpart is a linearcombinationof theobserver states,thecontrollerhasa very simple
structure.Thismakesit mucheasierto tunetheparametersof thecontrollersasthey havea clearmeaning.

Thepracticalapplicabilityandperformanceof theproposedcontrollerhasbeenshown whenappliedto a control
problemin anesthesia[4].
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A Scalingcoefficients

Lemma 1 (Scalingfunctions in the Proof of Theorem1) For any γ̃ satisfying(12c), (12d)thereexist k-dependent
functionsc1, c2 andc3 satisfyingtheinequalities(17).

Proof (of 1)

2.a)Solvability for c̃2. Combining(17a)and(17d)yieldstheinequality� � r � 1
2
� β ` c̃2

�
c̃1 ` 0 �

or, equivalently

c̃2
�

c̃1 � δ � δ � Iδ �\� � � r � 1
2
� β � 0�Q
 (50)

Inequality(17b)canbewritten in thefollowing way:

c̃1
�

c̃3 � � � r � 1
2
�O� α �

β ��� γ � γ � Iγ �}� 0 � α �
β � (51)

Adding (50)and(51) resultsin

c̃2
�

c̃3 � � � r � 1
2
�O� α �

β ��� δ � γ� � � r � 1
2
�O� α �

β � � � r � 1
2
� β 


Thus,

c̃2
�

c̃3 � � � r � 1
2
� α �

which is thesameas(17c). As Iδ is nonemptyfor positiveβ, theinequalities(17)aresolvablefor c2 for any givenc1

andc3.

2.b) Solvability for c̃1 and c̃3.
Case: c̃1 � βε � c̃3 � αε:
As α � β, it follows from (17b)that

0
/

c̃1
�

c̃3 ` � � r � 3
2
�O� α �

β �Q

This inequalityis solvableonly if r � 1. Therefore,c̃1 � βε � c̃3 � αε impliesthatr � 1.

Using c̃1 � βε � c̃3 � αε, (17f) is simplifiedto

0 � βε � 1
2

c̃1

which is equivalentto

c̃1
/p�

2βε 
 (52)

Case: c̃1 � βε ` c̃3 � αε:

0 � αε � c̃3
� 1

2
c̃1 


Using(51) this inequalitycanbesolvedfor c1:

0 � αε � c̃1 �k� r � 1
2
�O� α �

β � � γ
� 1

2
c̃1 �
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or, equivalentlyto

c̃1 ` �
2αε

�
2 � r � 1

2
�O� α �

β � 
 (53)

Case:arbitrary c̃3:
Combining(52) and(53), thefollowing inequalityhasto besatisfiedby c1 independentlyof c3:

c̃1
/p�

2βε for r � 1 �
c̃1 ` �

2αε
� � α �

β �O� 2r
�

1� for r � 1 
 (54)

By (17g),

c̃1 � �
γ̃
� 1

2

 (55)

Combining(54) with (55)yields �
γ̃
/

c̃1 ` �
2αε

�
2 � α �

β �Z� r � 1
2
� for r � 1 � (56a)�

γ̃
/

c̃1
/p�

2αε for r � 1 
 (56b)

By (12c), (12d), theseinequalitiesaresolvablefor c̃1.

Rewriting inequality(17b)as

c̃3
�

c̃1 `l� r � 1
2
�Z� α �

β �S�\� r � 1
2
� α � � r � 1

2
� βd eQf g� 0

revealsthat(17e)is containedin (17b). Thus,givena c̃1 satisfying(56), any c̃3 satisfying(17b)andany c̃2 satisfy-
ing (17a)is a solutionof thesystemof inequalities(17).

B Polynomials in H � ε � µ�
Thecontrollerdescribedin Section4 performsasortof adaptivetimescaling.A Lyapunov functionfor suchasystem
canbefoundif thesystemis stableandtheadaptationis not too fast,seeRemark7 in AppendixC. To characterize
the possibleadaptationspeed,it is necessaryto introducemeasuresfor the decayrateµ, andthe robustnesswith
respectto time-scalingε, of a Hurwitz polynomialor matrix.

Definition 3 (Polynomial in H � ε � µ� ) A polynomialp �*�+��� sr � ∑r $ 1
i I 0 pisi belongsto theclassH � ε � µ� if there exists

a symmetric,positivedefinitematrix P such that thecompanionmatrix

Ac � <===> 0 1
...

. . .
0 1�
p0 
[
G
[
[
G
 �

pr $ 1

?+@@@A
satisfiesfor Ψr � diag� 0 � 1 �|
"
#
"� r �

1� theinequalities

AT
c � P � P � Ac

/l�
2µP� (57a)

Ψr � P � P � Ψr � �
2εP
 (57b)

Remark 5 By (57a), H � ε � µ� is a subsetof theHurwitz polynomials.It is shownin [3] that for anypolynomialp �*�+�
thereexist scalarsε andµ̄ such that

p �*�+�'� H � ε � µ� for all ε � ε andfor all µ
/

µ̄
 4
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C Matrices in H � ε � µ�
Definition 4 (Matrix in H � ε � µ� ) A matrixAc belongsto theclassH � ε � µ� if thereexistsa symmetric,positivedefinite

matrix P such that for Ψr � diag� 0 � 1 �|
#
"
"� r �
1 � theinequalities(57a)and (57b)aresatisfied.

Remark 6 If Ac � H � ε � µ� thenanymatrix Ac
�

mΨr is Hurwitz for m ` µ
ε . 4

Remark 7 Definethesystem

ẋ � kKAK $ 1x

with A ��	 r a Hurwitzmatrix and

K � diag� 1 � k �"
#
"
"� kr $ 1 �
where k is a positivefunctionincreasingmonotonicallyover time. Definethecoordinates

z � K $ 1x 

Then

ż � kAz
� k̇

k
Ψrz (58)

with

Ψr � diag� 0 � 1 �|
#
"
�� r �
1 �_


In thez-coordinates,a Lyapunov-functionV caneasilybedefined:

V � k $ 2γzTPz (59)

for someγ andanypositivedefinitematrix P satisfying

0 � ATP � PA 
 (60)

Then,alonganytrajectoryof (58), thetimederivativeof (59) is

V̇ � k $ 2γzT h PA � ATP
� k̇

k
� PΨr � ΨrP � 2γP� j z
 (61)

Ask � 0 andk̇ � 0, V̇ in (61) is negativedefinitefor anyk, k̇ only if

0 � PΨr � ΨrP � 2γP
 (62)

If A � H � ε � µ� , thenthereexistsa positivedefinitematrix P̄ satisfying(60)such that�
2γ̄P̄ � P̄Ψr � Ψr P̄ � �

2εP̄ 

for any γ̄ � γ. Thus,for anyγ

/
ε, V � k $ 2γzTPzis a Lyapunov function. 4

Remark 8 Analyzing(62) revealsthat Ψ̃r � Ψr � γI satisfies

0 � P̄Ψ̃r � Ψ̃rP̄ 

Thematrix Ψ̃r correspondsto thetime-scalingmatrix K̃ � k $ γK. 4
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D Order of a matrix

Thefollowing definitionhelpswriting theboundson thematricesin a morecompactway.

Definition 5 (Order of a polynomial) Thehighestexponentof k in anyelementof a matrixM is denotedordk � M � ,
i.e. for thematrixM definedby

Mi H j � l � i � j �max

∑
l I l � i � j �min

kl mW i H j Xl � ordk � M ��� max
i H j � l W i H j Xmax ��


For example,ordk � αk2 � β � γk $ 1 ��� 2.
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USING MODEL-BASED OPTIMIZATION 

TO IMPROVE

BIOTECHNOLOGICAL PROCESSES

âWEDNESDAY, MARCH 20, 8:30 -9:30:

âPART (i): LOCAL OPTIMIZATION METHODS
âTHURSDAY, MARCH 21, 10:00 - 11:00:

âPART (ii): GLOBAL OPTIMIZATION METHODS

Structure of talks

PART (i): LOCAL OPTIMIZATION METHODS

â Introduction

â Mathematical Models of Bio-Processes

â Optimization of Dynamic Models

â Dynamic Optimization: statement and solution methods

â Sensitivity Analysis: first and second order

â TNHp: a new second order code

â Case Studies (bioreactors)

â Extension to distributed systems

â Conclusions and Future Work

PART (i): Summary
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Introduction

DSS
Decision

Support Systems

Mathematical
Optimization

Design

Operation

Control

Bio-process 
Model Using models to 

improve 
bioprocesses...

Mathematical Models of Bio-Processes

Main characteristics:

â Non-linear, dynamic models (i.e. batch or semi-batch 
processes)

â Nonlinear constraints coming from safety and/or quality 
demands

â Distributed systems (temperature, concentration, etc.), 
usually with coupled transport phenomena

âThus, mathematical models consist of sets of DAEs, PDAEs, or 
even IPDAEs, with possible logic conditions (transitions, I.e. hybrid 
systems) 

â PDAEs models are usually transformed into DAEs (I.e. discretization
methods) 
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Optimization of Dynamic Models: Some Problem Types

âDynamic optimization (open loop optimal control)
To find the optimal operating policies (controls) of a nonlinear 
dynamic system in order to optimize a performance index
(functional)

âIntegrated process design and control optimization

Find simultaneously the static design variables, the operating 
conditions and the controllers which minimize capital and 
operation costs while maximizing controllability

â Parameter estimation (inverse problem, model calibration)

Find the parameters of a nonlinear dynamic model which give the
best fit to a set of experimental data

Statement of (dynamic) optimization problems

Find u(t), v and tf to minimize:

s.t.

Path constraints:

0vuzzf =),,,(&
System dynamics (DAEs):

0vuzg ≤)t,),t(),t((

0vuzh =)t,),t(),t((

Bounds:

∫φ+ψ=
f

0

t

t
f dt)t),t(),t(())t((),(J uzzuz

UL )t()t()t( uuu ≤≤
UL

vvv ≤≤

z ∈ ℜn  : state variables
u ∈ ℜσ : control variables
v ∈ ℜη : time invariant parameters

This problem is usually 

converted to an NLP-DAEs

(e.g. via CVP in the case of DO)
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Ë Dynamic programming techniques (e. g. IDP) è very costly, hard to tune

Ê Indirect methods: numerical solution of the necessary conditions for  
optimality (MPP) è two or multipoint BVP, difficult to solve

Ì Direct methods transform the original problem into a nonlinear
programming (NLP) problem. Two strategies:

â Simultaneous, or complete  parameterization (collocation)

â Sequential, or control vector parameterization (CVP)        

*

*

Dynamic optimization: solution methods

Nonlinear dynamic optimization
problem

NONLINEAR 
PROGRAMMING PROBLEM

(NLP)
Find the parameters v to 
minimize the objective J

Control Vector Parameterization (CVP)

• Time horizon is divided into ρ elements
• Controls are approximated using some basis functions 

(e.g. piecewise-constant or linear)

èOuter NLP which requires the solution of an inner IVP for each function 
evaluation, with gradients computed through first order sensitivities 
(solution of extended IVP)

CVP
u

t
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Resulting NLP-DAEs problem

â Find v to minimize:

â subject to constraints

Û Path constraints:

Û System dynamics (DAEs):

Û Upper & lower bounds:

v : decision variables
z : state variables
p : parameters

),,( pzvcC =

=

00 )(
0),,,(
xz

pvzzf
=t

UL vvv ≤≤

0),,(
0),,(

≤
=

vpzg
vpzh

·

Solving the NLP-DAEs problem

ê Direct methods transform the original problem into a 
constrained NLP

G If this NLP is convex, it can be solved efficiently by local 
(gradient-based methods)

+New second order local method (with V. S. Vassiliadis)

G If the NLP is non-convex, global optimization (GO) 
techniques must be used

+Stochastic & deterministic GO methods (part II)
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Sensitivity analysis within CVP methods allows the calculation
of the gradient of the objective w.r.t. v using first order sensitivities:

Sensitivity analysis: first order
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«Original DAEs and first order sensitivities share the same Jacobian:
èDirect decoupled integration schemes are possible

J Could we use second order sensitivities to compute exact Hessian?







∂
∂

∂
∂

z
f

z
f

,
&

ρ×ρ⋅

ρ

ρρ

=












∂

∂
+

∂
∂

∂∂
∂

+
∂
∂

∂∂
∂

+
∂
∂

∂∂
∂

+












∂∂
∂

+
∂
∂

∂

∂
+

∂
∂

∂∂
∂

+
∂
∂

∂∂
∂




















∂
∂

⊗+
∂

∂




 ⊗
∂
∂

+












∂∂
∂

+
∂
∂

∂∂
∂

+
∂
∂

∂

∂
+

∂
∂

∂∂
∂




















∂
∂

⊗

+












∂∂
∂

+
∂
∂

∂∂
∂

+
∂
∂

∂∂
∂

+
∂
∂

∂

∂




















∂
∂

⊗+












∂

∂




 ⊗
∂
∂

+
∂

∂




 ⊗
∂
∂

~~n2

22222

2

222

T

n2

2
~

22

2

22T

n

222

2

2T

n2

2
~

2

2
~

0
v

f
v
u

vu
f

v
z

vz
f

v
z

vz
f

uv
f

v
u

u

f
v
z

uz
f

v
z

uz
f

v
u

I
v

u
I

u
f

zv
f

v
u

zu
f

v
z

z

f
v
z

zz
f

v
z

I

zv
f

v
u

zu
f

v
z

zz
f

v
z

z

f
v
z

I
v

z
I

z
f

v

z
I

z
f

&
&

&
&

&
&

&&&
&

&

&&
&

)()t(
2
0

2

02

2
v

v

z

v

z

∂

∂
=

∂

∂

)t( f2

2

v

z

∂

∂
2

2J
v∂

∂HessianF

Sensitivity analysis: second order

«Original DAEs, first and second order sensitivities still share the same Jacobian!
èDirect decoupled integration scheme possible for gradient & Hessian

èBUT, full evaluation of state variables Hessian very costly!

η+σρ=ρ~

ρ×ρ×+ρ×+ ~~n~nn
Size of full extended IVP
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> Original system (DAEs)> Original system (DAEs)

f(z,z,u,v)=0n
. z(t0)=z0(v)

> First order sensitivities> First order sensitivities
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Restricted second order information

Use product form of Hessian times a search direction, H.p, as used in Truncated 
Newton (TN) algorithms (e.g. Nash, 1984) :

Size of extended IVP using H.p

«The original TN code of Nash uses finite differences to generate H.p, which is 
then used for the iterative solution of Newton equations

èTNHp code: the exact H.p is used by a modified TN code, resulting in 
enhanced and fast convergence, even for large-scale problems

èThe computational cost of exact H.p is roughly twice that of a first order 
sensitivity evaluation, and can be done efficiently

èTo achieve high discretization levels (ρ) with moderate computation times:    
mesh refiningmesh refining approach (successive re-optimizations of increasing ρ values)

Book of Abstracts 21st Benelux Meeting on Systems and Control

168



Initialization:  u0, 
ρi, ρf, int_toli and rρ

k<=NRO
Yes

Optimization with TNHp

Compute NRO and δtol
)1NRO(

i

f r −
ρ=

ρ
ρ

)tolint_tol(int_
NRO

1
fitol −=δ

ρk=ρk-1 rρ

int_tolk=int_tolk-1-δtol

opt_tolk=int_tolk tol_ratio

No

uk-1

uk

Solution for ρf
END

Refining loop

Mesh refining approach

k=k+1

DAEs + 1st + 2nd  
order sensitivities 

solved by IVP code

States1st ord. sens.2nd ord. sens.

Objective & 
constraints

GradientH.p

NLP 
solver

(TNHp)

New v

Original DAE System

Symbolic 
Manipulation

t

u(t)

Basic scheme of CVP approach used in TNHp
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Case I: Park-Ramirez (PR) fed-batch bioreactor:

§The objective is to maximize the secreted heterologous protein by a yeast 
strain in a fed-batch culture. 

§The dynamic model accounts for host-cell growth, gene expression, and the 
secretion of expressed polypeptides.

§ One control variable (glucose input feedrate) and five state variables.

TNHp: optimization of fed-batch bioreactors

TNHp: optimization of fed-batch bioreactors

Glucose (z4)

Yeast

Protein (z1)

)t(z)t(zJ f5f1=

s. t.:

[ ]T15100)0(z =

151211 z)z/u()zz(gz −−=&

25322 z)z/u(zgz −=&

35333 z)z/u(zgz −=&
)z20)(z/u(zg3.7z 45334 −+−=&

uz5 =&
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1 g12.0
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Case I: Park-Ramirez (PR) fed-batch bioreactor:
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TNHp: optimization of fed-batch bioreactors
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Example of results: optimal control profile for PR 

ØTNHp computed better performance indexes than those previously reported
ØVery modest CPU times (9 - 300 s of PC/Pentium III), i.e. from 20 up to 400 

times faster than previous results, even for very refined profiles (300 s for the case of 
320 time elements).

Case II: Lee-Ramirez (LR) fed-batch bioreactor:

§The objective is to maximize the profitability of a process of induced foreign 
protein production by recombinant bacteria in a fed-batch bioreactor, using 
the nutrient and the inducer feeding rates as the control variables.

§Different values (Q) for the ratio of the cost of inducer to the value of the 
protein production were considered.

§Two control variables and seven state variables.

TNHp: optimization of fed-batch bioreactors
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TNHp: optimization of fed-batch bioreactors
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Case II: Lee-Ramirez (LR) fed-batch bioreactor:

TNHp: optimization of fed-batch bioreactors
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Example of results for LR bioreactor: optimal controls for Q = 0

«TNHp computed similar performance indexes to those previously reported
«Very fast: 3-5 s of CPU time (PC/Pentium III)
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TNHp: additional advantages

Very good convergence, low noise, 
even for singular arcs
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Faster and with better convergence 
properties than latest dynamic 

programming methods (e.g. IDP)

TNHp
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Conclusions

The use of exact first and second order information, implemented in 
TNHp, resulted in two major advantages:

¶ a significant reduction in function and gradient evaluations was 
observed due to the use of second order information, which although 
requires the more expensive second order information evaluation, results 
in overall computational savings

· the ability to consider very fine discretization levels for the underlying 
controls has been enhanced both by the high precision and speed of 
convergence but also by the use of the mesh-refining technique

In terms of performance and quality of solutions for many case studies, results
achieved are comparable or better than the ones found in literature,with much 
reduced computation times

* On-going work:

¶ A version for dynamic optimization of distributed process systems using sparse 
IVP solvers is already operative, and cases of up to 5000 states have been solved.

· A closed-loop (receeding horizon dynamic optimization) version in the near future.
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USING MODEL-BASED OPTIMIZATION 

TO IMPROVE

BIOTECHNOLOGICAL PROCESSES

âWEDNESDAY, MARCH 20, 8:30 -9:30:

âPART (i): LOCAL OPTIMIZATION METHODS

âTHURSDAY, MARCH 21, 10:00 - 11:00:

âPART (ii): GLOBAL OPTIMIZATION METHODS

Structure of talks

PART (ii): GLOBAL OPTIMIZATION METHODS

â Introduction

â Optimization of Dynamic Models

â Multimodality: Need of Global Optimization (GO)

â How to Solve It? Global Optimization Methods 

â Complexity Issues

â Stochastic methods of GO

â Case Studies

â Scaling up: Cluster Computing

â Conclusions and Future Work

PART (ii): Summary
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Optimization of Dynamic Models: Some Problem Types

âDynamic optimization (open loop optimal control)
To find the optimal operating policies (controls) of a nonlinear 
dynamic system in order to optimize a performance index
(functional)

âIntegrated process design and control optimization

Find simultaneously the static design variables, the operating 
conditions and the controllers which minimize capital and 
operation costs while maximizing controllability

â Parameter estimation (inverse problem, model calibration)

Find the parameters of a nonlinear dynamic model which give the
best fit to a set of experimental data

Resulting NLP-DAEs problem

â Find v to minimize:

â subject to constraints

Û Path constraints:

Û System dynamics (DAEs):

Û Upper & lower bounds:

v : decision variables
z : state variables
p : parameters

),,( pzvcC =

=
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Solving the NLP-DAEs problem

ê Direct methods transform the original problem into a 
constrained NLP

G If this NLP is convex, it can be solved efficiently by local 
(gradient-based methods)

G If the NLP is non-convex, global optimization (GO) 
techniques must be used

+Stochastic & deterministic GO methods

Multimodal (non-convex) optimization problems

Multimodal (non-convex)

Unimodal

Unconstrained, 2D simple visual example:

âStandard methods  (e.g. SQP, or even ms-SQP) fail !

â Need of Global Optimization (GO) methods
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Main difficulties:

§ The objective function and constraints are usually not smooth

§ Each simulation is expensive (large CPU time)

§ Gradients must be computed numerically

• Increased number of simulations needed

• Tolerances cause more non-smoothness

±There is a need for gradient-free, robust and efficient 
methods capable of working with black-box models

Global Optimization of Nonlinear Dynamic Systems

Global Optimization Methods

Global Optimization MethodsGlobal Optimization Methods

StochasticStochasticDeterministicDeterministic HybridsHybrids

(Storn and Price, 1997)

Evolutionary 
computation

GAs, ES, EP, etc.

Evolutionary 
computation

GAs, ES, EP, etc.
Simulated 
Annealing
Simulated 
Annealing

Adaptive 
Stochastic

Methods

Adaptive 
Stochastic

Methods

ClusteringClusteringB & BB & B 2-phase2-phase

HomotopyHomotopy

RelaxationRelaxation
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Global Optimization of Nonlinear Dynamic Systems

â Deterministic methods: recent work of the group of Floudas, based on B&B.
Û Elegant approach, solving to global optimality
Û Drawbacks: 

•significant computational effort even for small problems
•several differentiability conditions

â Stochastic methods: several approaches (Luus et al, Banga et al, etc. 1990-2001)
Û Approximate solutions found in reasonable CPU times
Û Arbitrary black-box DAEs can be considered (incl. discontinuities etc.)
Û Main drawback:

•Global optimality can not be guaranteed

4Our objectives:

Û Methods:
èTo select the best stochastic methods (efficient, robust // constraints)
èTo design hybrid methods

Û Problems:
èTo solve NLP-DAEs with IVP of “black-box” type
èTo solve large-scale NLP-DAEs (> 100 decision vars, > 10000 states)

"I would rather be certain of a good result than hopeful of a great one…"
(Warren Buffett)

Stochastic Methods: a critical review of promising methods

â GA, SA and other metaheuristics (TS, ACO, etc.): very popular but ... 

âES and several adaptive stochastic methods have nice properties:

v pretty good efficiency and robustness

v good scaling properties (almost linear...)

v inherent parallel nature

Genetic
Algorithms
(Holland, ’70s)

Genetic
Algorithms
(Holland, ’70s)

Evolution
Strategies 

(ES)
(Rechenberg & 
Schwefel,’60s)

Evolution
Strategies 

(ES)
(Rechenberg & 
Schwefel,’60s)

Adaptive 
Stochastic
Methods

(Rastrigin,’50s)

Adaptive 
Stochastic
Methods

(Rastrigin,’50s)

Simulated 
Annealing
(Kirkpatrick et 

al, ’80s)

Simulated 
Annealing
(Kirkpatrick et 

al, ’80s)
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Complexity Issues

§NFL theorem (Wolpert and McReady, 1997)

§Basics: impossibility theorem?

“Without any structural assumptions on an optimization problem, no 
algorithm can perform better on average than blind search”

(“needle in a haystack”)

§Real implications (ANFL theorem)

§Convergent approaches

§Ordinal optimization (Y. C. Ho)

§Soft computing

§Evolutionary methods

§Adaptive stochastic methods

Examples of Applications of GO in Bioprocess Engineering

§ Integrated process design:

§Aseptic processing

§Wastewater treatment plants

§ Parameter estimation:

§Distributed diffusion-reaction systems

§Nonlinear biochemical pathways

§Optimal experimental design (dynamic exp.)

§ Dynamic optimization:

§Batch and semi-batch liquid fermentation

§Distributed diffusion-reaction systems

§Thermal processing (sterilization, pasteurization)

§Air drying

§Solid-state fermentation

Book of Abstracts 21st Benelux Meeting on Systems and Control

180



Simultaneous approach

It considers operability
together with

economic issues
(challenging problems)

Traditional approach
Sequential design

(ignores the interaction
of design and control)

Optimal steady state
w.r.t. 

economic measure

Process control
issues

Step 1

Step 2

Integrated process design

Integrated process design: statement

â Find v to minimize:

â subject to constraints

Û Path constraints:

Û System dynamics (DAEs):

Û Upper & lower bounds:

φ1 : capital cost

φ2 : operation cost

φ3 : controllability cost

v : decision variables
x : state variables
p : parameters

321 φφφ ++=C
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Integrated process design: waste-water plant example

Û 44 states, 8 design variables

Û 33 DAEs

Û 32 path constraints

Û 120 bounds on states

qi si xi

qpqp
qr   sr   xrqr   sr   xr

qq22 qrqr2 2 sirsir22 xirxir22
qq33

qqsalsalqq11 qq2222 ss22qq1212 ss11

qr1

fk2

xd1
xb1
xr1

xirxir11

sirsir11

xx1 1 cc11 xx22 cc22fk1

ss11 s2
xd1
xb1
xr1

PerturbationsPerturbations

Manipulated 
variable

Manipulated 
variable

Controlled 
variable

Controlled 
variable

F Objetive: to find the design of the units, the operating conditions and the 
parameters of the controller which minimize a weighted sum (C) of economic 
terms (φecon) and a controllability measure (ISE)

(* Model from Gutiérrez & Vega, 2000)
Integrated process design: selected results

F Csendes’ GLOBAL clustering method, simple adaptive stochastic methods 
(e.g. ICRS) and DE presented the best convergence rates, with reasonable 
CPU times (minutes in a PC-PIII)

F ES methods: similar performance but with longer CPU times

F SQP local method failed (as expected)

GLOBAL ICRS DE SQP

C 1544.54 1551.02 1545.47 3495.7
φ econ 1145.87 1165.14 1138.16 3002.94
ISE 0.3986 0.3858 0.4073 0.4927

CPU,s 251.84 916.35 983.89 35.18

Neval 8307 19229 10530 330
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F SQP always converged to local solutions (even with multi-start N=500)

Objective function

fr
eq

ue
nc

y

40002500 500030001500

Histogram for ms-SQP
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8

Large number of local 
solutions.The best ms-SQP 
result (after 500 runs) was: 

C=1644.65

Integrated process design: failure of multi-start

F Sequential design method (traditional two-steps): plant design cheaper

than the one found by the simultaneous approach, but its controllability is 

very poor (very large ISE value, 25 times larger)

0 200 400 600 800
400

500

600

700

time,h

qr
1

20 40 60 80 100
400

500

600

700

Sequential design
Simultaneous design

Manipulated variable
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Sequential design
Simultaneous design

Controlled variable

Traditional vs. integrated process design

Moles, C.G., G. Gutierrez, A.A. Alonso and J.R. Banga (2001) Integrated Process Design and Control via
Global Optimization: a Wastewater Treatment Plant Case Study. European Control Conference (ECC) 2001, 
4-7 September, 2001, Porto (Portugal). 
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â Highly non-linear, large dynamic models

Û Usually > 20 DAEs 

Û Usually > 50 decision variables (parameters to estimate)

F Objetive: minimize time-weighted sum

∑∑
= =

−=
n

i

m

j
jteorij iyiywf

1 1
exp )))()((( β

Parameter estimation for DAEs models

yexp : experimental data
yteor : predicted values

â subject to DAEs constraints

Parameter estimation for nonlinear  biochemical pathways

â Collaboration with P. Mendes (Virginia Bioinformatics Institute)

Û Small metabolic pathway (3-step, 36 parameters) seems tractable
(several hours of PIII using uES, with record results)

Û Cases with 100 parameters still not solved succesfully...

FOn-going work.....
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Optimal Experimental Design (OED)

²Performing experiments to obtain a rich enough set of ym(t) is a costly 
and time-consuming activity

Ø The purpose of optimal experimental design (OED) is to devise the 
necessary dynamic experiments in such a way that the parameters are 
estimated from the resulting experimental data with the best possible 
statistical quality

²Statistical quality: usually a measure of the accuracy and/or 
decorrelation of the estimated parameters

²OED applied to linear steady state models is a well known subject

JOED of non-linear dynamic models (DAEs): more challenging

Collaboration with Jan Van Impe & K. Versyck (K. U. Leuven)

Statement of OED problem (dynamic systems)

² The OED problem can be formulated as a dynamic optimization (optimal control) 
problem:

+To find a set of time-varying input variables (controls) for the dynamic 
experiments optimizing the quality of the estimated parameters in some 
statistical sense.

² Criteria based on the Fisher information matrix:

where Q is inverse of the measurement error covariance matrix.

âScalar functions φ of F evaluated in po are used as OED criteria for 
increasing the practical identifiability of the model parameters from 
experimental data. 

² Remark: for linear systems, F-1 evaluated in p* is the error covariance matrix of the BLUE. For
non-linear models, we assume the output can be approximated as a 1st order Taylor series 
expansion in the vicinity of p*. During experimental design for parameter estimation a so-called 
nominal parameter set po is to be used instead of the unknown true process parameters p*
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Find u(t) and tf to minimize:

J = φ(F) , with 
S.t.

System dynamics (DAEs) and algebraic constraints:

Bounds for the controls:

Statement of OED as a Dynamic Optimization Problem

UL )t()t()t( uuu ≤≤
x ∈ —n  : state variables
y ∈ —n  : output variables
u ∈ —σ : control variables
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Scalar functions of F as OED criteria

²Examples of common scalar functions of F (to min.) are:

²D-criterion (determinant of F), which measures the global accuracy of 
the estimated parameters

²Modified E-criterion (condition number of F), which measures the 
parameter decorrelation

²A-criterion (trace of inverse of F), which measures the arithmetic mean 
of estimation error

²Which one? It depends on the requirements of the application

² Remark: the minimum of the modified E-cost is known exactly (1.0)

( ) )(/)( FFF minmaxJ λλ=Λ=

F−=J

)1−= Ftrace( J

*

*
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OED: case study

+Estimation of kinetic parameters of unstructured microbial growth models

Model: dynamics of a fed-batch bioreactor where one biomass is growing on one 
limiting substrate, assuming non-monotonic Haldane growth kinetics.

Objective: to estimate the Haldane parameters Kp and Ki based on measurements 
of two model outputs, i.e. the substrate concentration CS and the biomass 
concentration CX. The volumetric feed rate u(t) into the fed-batch bioreactor is 
considered as the control input for the dynamic experiments.

JOED (DO) problem: to find u(t) so as maximum global accuracy and/or 
decorrelation of the estimates for Kp and Ki is obtained, s.t.:
Ø the differential equality constraints (model dynamics),
Ø bounds for the control and the states,
Ø path inequality constraints on CS to guarantee model validity (balanced growth).

Remarks: information matrix F computed from the sensitivities obtained by solving an extended IVP. 
For Q: additive, uncorrelated, zero-mean white Gaussian noise is assumed on the measurements 
of the substrate concentration CS and the biomass concentration CX

OED case study: dynamic model
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CS,µ=(KpKi)
1/2 CS [g/L]

m [1/h]

CS [g/L] (volumetric) concentration of limiting substrate
CX [g DW/L] biomass concentration
V [L] volume of the liquid phase
CS,in [g/L] substrate concentration in the influent
Fin [L/h] flow rate of influent
σ [g/g DW h] specific substrate consumption rate
µ [1/h] specific growth rate
YX/S [g DW/g] biomass on substrate yield coefficient
m [g/g DW h] (overall) specific maintenance demand

Kp [g/L] indicates how fast the optimum for µ is reached
Ki [g/L]  is the inhibition parameter
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OED subproblems

The following two sub-problems were considered:

¶ Optimal control for parameter decorrelation: the cost 
function is the modified E-cost (ratio of the maximum and 
minimum eigenvalues of matrix F).

· Optimal control for parameter accuracy: the cost function is 
the D-cost (determinant of matrix F).

For these problems, Versyck et al (1997) followed an ad hoc heuristic 
procedure, based on theoretical analysis of the optimal process performance 
feed rate profile, to design optimal control inputs. Their results are used for 
comparison.

( ) )(/)( FFF minmaxJ λλ=Λ=

F−=J

Min.

Min.

OED: numerical solutions using CVP methods

èControl parameterizations based on piecewise constant and 
piecewise linear polynomials were tested, taking 10-20 time 
elements (fixed & varying length)

Solution of the main NLP:

H Several deterministic (SQP-based) local solvers were tested, but 
many difficulties were encountered: convergence failures, or 
convergence to local solutions after excessive computation times 
were found (alternative reformulation?)

H In contrast, the stochastic ICRS and DE solvers arrived to very 
good solutions in very reasonable computation times
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OED sub-problem [1] (modified E-cost)

è The stochastic solvers arrived to cost functions very close to 1.0 (within a 
tolerance of 10-5) in very modest computation times (order of minutes in a PC 
Pentium-II). In this case, we know these solutions are globally optimal.

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

0.01 0.1 1 10 100 1000

CPU time (s)

P
er

fo
rm

an
ce

 in
de

x,
 J

DE
ICRS

OED: comparison of results (modified E-cost)

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

ICRS

DE

Optimal feed rate by Versyck et 
al (1997), J = 1.0

Optimal feed rates obtained with 
ICRS and DE, J = 1.0

Time (h)

Fin (L/h)

Time (h)

Fin (L/h)

Banga, J. R., K. J. Versyck and J. F. Van impe (2000) Numerical strategies for optimal
experimental design for parameter identification of non-linear dynamic (bio-)chemical 
processes. Presented at ESCAPE-10, May 7-10, Firenze, Italy.
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Other examples

²Several challenging problems have been solved in other 
collaborations kept with:

²Optimization of hybrid dynamic systems (Prof. P. Barton)

²Non-linear model predictive control (Prof. W. D. Seider)

²Dynamic optimization of thermal processing (Prof. Paul Singh)

²Dynamic optimization of microwave processing (EU project coordinated by 
Prof. B. Nicolaï)

²Dynamic optimization of large dynamic systems (Prof. Y. Kevrekidis)

Check papers at 

http://www.iim.csic.es/~julio/
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Chalmers
PARALIZE

Virtual
Network 
Computing

Matlab

Stochastic methods are easy to parallelize
(e.g. “islands approach”)

âscheme “master-worker”, using PARALIZE

âable to run on heterogeneous networks

âeasy to implement (no need of PVM or MPI) by 
means of:

Speedup for ICRS in a LAN of NT PCs

Scaling-up: parallelization & cluster computing
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â Global optimization of dynamic models: a means of ensuring optimality in 
decision support tools for:

âProcess design
âOperating procedures synthesis
âModel calibration

â For many bioprocesses, optimal operating procedures provide significant 
improvements over nominal processes

â Local strategies (e.g. SQP), even with multi-start, are of little help

â GO methods: simple adaptive stochastic methods, clustering methods and 
Evolution Strategies (ES) presented the best performance

â Parallel versions of these methods can be created very easily using 
standard environments

â Be careful with over-hyped “popular” techniques!

â On-going work on deterministic and hybrid GO methods...

Conclusions

F On-going work:

v Scaling up to larger and more complex problems

Û Integrated design and control of large plants and distributed 
systems with > 104 states using the parallel solvers

Û Extension to process and control superstructures (different design 
alternatives) problems (MIOCPs)

ÛParameter estimation problems with >100 parameters

ÛOptimal control of large (e.g. distributed) systems with > 104 states 
(ROM via POD)

Current and future work
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Minicourse

Benelux Meeting on Systems and Control 2002

Financial Engineering

and Control

Hans Schumacher

Department of
Econometrics and Operations Research

Tilburg University

Purpose of the minicourse

Topics to be treated:

• how to model financial markets

• how to construct protection against
unpredictable changes

• applications including: pension funds,
energy markets

Topic not to be treated:

• how to make a million dollars by trading
in the stock market.

2

Main concern: risk management

Some truisms about risk:

• risk cannot be avoided

• risk can be diminished

• reduction of risk comes at a price.

Also: there is economic value in reducing risk.

The minicourse will concentrate on financial
risk and the use of financial instruments.

Financial risk arises due to fluctuations in
markets (exchange rates, interest rates, energy
prices, stock prices, . . . ) as well as from
general economic factors such as inflation, and
from other sources.

3

Two main methods of reducing risk

General ways of reducing risk:

• diversification

Markowitz, Sharpe, . . .

• hedging

Black, Scholes, Merton, . . .

Diversification concentrates on the joint
characteristics of assets; hedging concentrates
on the risk factors behind asset prices. (No
sharp distinction.)

Both methods may be developed in a static as
well as in a dynamic setting.

Examples . . .

4
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A simple example of diversification

How to divide investment between two assets
such that total risk is minimized?

Assume:

the values of the two assets (say, X1 and X2)
are jointly normally distributed, with
expectations µ1 and µ2, variances σ

2
1 and σ

2
2,

and correlation coefficient ρ.

Problem:

find α1 and α2, with α1 ≥ 0, α2 ≥ 0,
α1 + α2 = 1, such that the variance of
α1X1 + α2X2 is minimized.

Is the best policy to invest everything in the
asset that has the lowest variance?

5

Solution

Solve a quadratic optimization problem.

Invest everything in the safest asset if

ρ ≥ σ1/σ2

(assuming X1 is the safest asset). If the
above inequality is not satisfied, then the
minimum is reached for a nontrivial
combination of the two assets.

Numerical example: assume σ1 = 1, σ2 = 2,
and ρ = 0. Then the optimal solution is to
invest 80% in the safe asset and 20% in the
risky asset. Variance obtained with this
allocation:

0.82 ∗ 1 + 0.22 ∗ 4 = 0.64 + 0.16 = 0.8.
If everything would have been invested in the
safest asset, the variance would have been 1.

6

Variants

The story becomes different when

• not only variance, but also expected value
is taken into account
(mean-variance optimization)

• negative (“short”) positions are allowed.

Further extensions:

• multiple periods, or continuous time
(leading to stochastic optimal control)

• non-normal distributions
(various risk measures)

• include liabilities

• robustness.

7

A simple example of hedging

Consider a pension fund that holds a bond
portfolio to cover its future liabilities.

Let r be the annual interest rate (assumed to
be the same for all maturities.)

Current value of expected payments to be
made:

P =
KX
k=1

(1 + r)−kPk.

Current value of bond portfolio:

B =
KX
k=1

(1 + r)−kBk.

We would like to have at least B = P . But
there is more.

8
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Duration matching

Both current values are sensitive to changes in
the interest rate. Define the duration of a
series of cash flows C1, . . . , Ck by:

D(C1, . . . , Ck) =

PK
k=1 k(1 + r)

−kCkPK
k=1(1 + r)

−kCk
.

The relative change of the current values of
the cash flows Ck due to a change ∆r in the
interest rate r is approximately equal to

− ∆r

1 + r
D(C1, . . . , Ck).

Consequently, the position of the pension fund
is made insensitive to interest rate changes, at
least to first order, if the payments
(P1, . . . , Pk) and the bonds (B1, . . . , Bk) are
duration matched, that is,

D(B1, . . . , Bk) = D(P1, . . . , Pk).

9

Extensions

Hedging aims at obtaining insensitivity to
certain risk factors by finding suitable
combinations of assets that are all influenced
by the same risk factors.

This is a model-based activity because the
dependence of asset values on risk factors
needs to be modeled.

For instance, it was assumed above that the
interest rate is the same for all maturities.
This is a model assumption. Like all model
assumptions, it is not entirely true. More
advanced hedging schemes use models for the
entire term structure of interest rates.

The Black-Scholes revolution in finance is
based on the introduction of dynamic hedging
strategies.

10

General picture

noise

dynamical
system

observa-
tions

assets liabilities

inputs portfolio -
controlled

outputs

Observations typically include current asset
prices.

Inputs usually are portfolio weights. The
controlled output is often a net value.

11

Peculiarities of financial models

Financial models have a number of peculiar
properties, which distinguish them from
general dynamical models.

• The value of the sum of two portfolios is
the sum of their values.

This is a linearity property which relates to
the effects of inputs (portfolio weights) on
controlled outputs.

• No control strategy can produce a
noise-free positive net value from a zero
initial investment.

This is an economic principle known as
absence of arbitrage. It leads to a constraint
on the way that asset prices depend on state
variables; this will be discussed in more detail
below.

12

Book of Abstracts 21st Benelux Meeting on Systems and Control

194



Another peculiarity

There is also a certain constraint on input
functions that needs to be imposed.

This is most easily explained in discrete time.
Let St denote a vector of asset prices and let
ut denote a vector of corresponding portfolio
weights. The control {ut} is said to be
self-financing if for all t:

ut+1 · St+1 = ut · St+1
This entails a single linear constraint on the
vector of control inputs at each time t.

Rewrite the above using the forward difference
operator:

∆(ut · St) = ut · (∆St).
This suggests the continuous-time version

d(ut · St) = ut · dSt
where d is an ”infinitesimal forward
difference.”

13

Result of a portfolio strategy

Let St denote a vector of asset prices, and let
ut be a vector of corresponding portfolio
weights. The portfolio value is given by

Vt := ut · St.
In discrete time, the change in portfolio value
between time t and time t+ 1 is given by

Vt+1 − Vt = ut · (St+1 − St)
or in ∆ notation

∆Vt = ut ·∆St
So portfolio value at time T is given by

VT = V0 +
T−1X
t=0

ut ·∆St

The analogous formula in continuous time is

VT = V0 +

Z T

0
ut · dSt

14

The chain rule

We think of the vector of asset prices St as
dependent upon state variables and time, say
St = π(t,Xt); moreover, a differential
equation for Xt would be given. To write
controlled output Vt =

R t
0 uτ · dSτ as a

function of inputs and states, it would then be
natural to use the chain rule

dSt =
∂π

∂t
dt +

∂π

∂x
dXt.

Consider in general the relation

y(t) = φ(x(t)).

According to the usual chain rule, we can
compute y(t) approximately by

y(t) ≈ y(0) +
X

φ0(x(ti))(x(ti+1)− x(ti))
but it turns out that this may not be a good
approximation if x(·) is a highly irregular
function of time.

15

The need for a second-order term
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A modified chain rule (Itô)

A better approximation is obtained if we also
include the second-order term. So our new
chain rule becomes: if y(t) = φ(x(t)), then

dy = φ0(x) dx + 1
2 φ
00(x) d[x, x]

where the term ”d[x, x]” is the infinitesimal
version of

∆[x, x](t) = (x(t +∆t)− x(t))2.

We will also need a vector version:

dy =
∂φ

∂x
(x) dx + 1

2 tr

Ã
∂2φ

∂x2
(x) d[x, x]

!

where now d[x, x] is a matrix with entries of
the form d[xi, xj], and tr denotes ”trace”.

17

A general financial model

A state-space model:

dXt = µX(t,Xt)dt + σX(t,Xt)dWt

St = πS(t,Xt)

dVt = ut · dSt

where

• we follow (largely) the convention of
denoting stochastic variables by capital
letters

• we also follow the convention of using µ
for ”drift” and σ for ”volatility”

• Wt denotes Brownian motion, so dWt/dt
is ”white noise”

• π is a mnemonic for ”price”.

18

Example 1: Black-Scholes (Samuelson)

State equation:

dXt = µXt dXt + σXt dWt

where µ and σ are constants and Wt is
Brownian motion.

Assets:

St = Xt
Bt = e

rt

where r is a constant.

This is a model for a stock price (St) and a
fixed-interest account (Bt).

An alternative formulation of the same model:

dZt = (µ− 1
2σ
2)dt + σdWt

St = exp(Zt)

Bt = e
rt

This is obtained from the transformation
Zt = logXt.

19

Example 2: Vasicek

State equations: (drop subscript t)

dX1 = a(b−X1)dt + σdW
dX2 = X1X2dt

where a and b are constants.

Assets:

M = X2
BT = πT (X1)

This is a simple model for bond prices. The
asset M denotes a ”money market account”
(a checking account that brings a variable
interest rate X1). The asset BT is a bond
that pays one euro at time T .

The pricing function πT is not specified in the
model above, but it has to satisfy certain
constraints. . .

20

Book of Abstracts 21st Benelux Meeting on Systems and Control

196



Absence-of-arbitrage requirement

Consider again the state-space model

dXt = µX(t,Xt)dt + σX(t,Xt)dWt

St = πS(t,Xt).

By making use of the chain rule we can write

dSt = µS(t,Xt)dt + σS(t,Xt)dWt

for certain functions µS = µS(t, x) and
σS = σS(t, x).

Recall: ”arbitrage” means that a riskless profit
can be made from a zero investment.

Thm. The above model allows no arbitrage if
and only if there exist functions ρ(t, x) and
λ(t, x) such that

µS − ρπS = σSλ.

21

The Black-Scholes equation

Condition for absence of arbitrage:

µS − ρπS = σSλ.
Interpretation of the left hand side: net return
(ρ is the short-term interest rate).
Interpretation of the right hand side:
sensitivity coefficients times risk premia.

By expanding the functions µS and σS using
the chain rule, we obtain the following more
explicit form:

∂πS
∂t

+
∂πS
∂x
µX +

1
2 tr

∂2πS
∂x2

σXσ
T
X − ρπS
=
∂πS
∂x
σXλ.

This is the Black-Scholes equation. It is a
linear partial differential equation that specifies
a relation between the state space parameters
µX and σX and the pricing function πS.

22

Market completeness

The Black-Scholes equation may be written in
the form

µS = [πS σS ]

·
ρ
λ

¸
Note: all variables are functions of t and x.
Sizes:

µS, πS: m-vectors (m = number of assets)

σS: m× k matrix (k = number of noise
inputs)

ρ: scalar (short-term interest rate)

λ: k-vector (risk premia).

When the matrix [πS(t, x) σS(t, x)] of size
m× (k + 1) has full column rank for all (t, x),
our model is said to be a complete market.

Obviously this requires m ≥ k + 1.

23

Finding the risk premia

In a complete market, the functions ρ and λ
may be inferred from the model data.

Example: the standard Black-Scholes model.

µS =

·
µx
rert

¸
, πS =

·
x
ert

¸
, σS =

·
σx
0

¸
It follows that

ρ = r, λ =
µ− r
σ

.

Pricing functions for other assets that depend
on the state variables of the model can now be
determined from the BS equation. Moreover,
a hedging strategy can be developed. . .

24
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Noise cancellation (a.k.a. replication)

Let a state space model be given, and assume
it is a complete market. Introduce a liability L
(say a contract to pay at a given time T an
amount ν(XT )) and let πL(t, x) be its price
function, which must satisfy the BS equation.

We want to find a replication strategy:
ut = φ(t,Xt) such that VT = ν(XT ).

Determine φ = φ(t, x) such that

[πL σL ] = φ
T [πS σS ]

i.e. πL = φ
TπS and σL = φ

TσS. Because
µL − ρπL = σLλ (BS eqn.) it follows that
also µL = φ

TµS.

From φTπS = πL it follows that φ is
replicating. To show that φ is self-financing,
note:

dV = dL = µLdt + σLdW

= φT (µSdt + σSdW ) = φ
TdS.

25

Remarks on replication

It has been shown that, in a complete market,
every liability can be hedged in such a way
that no risk remains – i.e. total noise
cancellation. This seems to good to be true.

• It has been assumed that trading can
take place continuously, without
transactions costs

• The model may neglect a number of risk
factors, so that the market is not really
complete

• The hedge will not be fully effective if the
true dynamics is not as supposed in the
model

The standard BS model supposes that the
parameter σ (”volatility”) is constant. This is
often seen as the main source of error in
hedging. A typical remedy is to ”re-calibrate”
the model frequently (i.e. choose new
volatility on the basis of observed prices).

26

Effect of rebalancing frequency

Monthly rebalancings (left bars) vs. daily
rebalancings (right bars).
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It is still assumed in this simulation that
volatility is constant.

27

Hedging against inflation

A model for bond prices that also takes
inflation into account:

dX1 = X2dt

dX2 = α(X̄2 −X2)dt + σ2dW
dX3 = β(X̄3 −X3)dt + σ3dW

where the noise input W has dimension 2.
Bond prices are fixed by assuming
specifications for the short-term interest rate ρ
and the risk premium λ:

ρ(t, x) = x2 + x3, λ(t, x) = λ (constant).

The interpretation is as follows: X1 is
log-inflation; X2 is the rate of inflation; X3 is
the short-term interest rate after correction for
inflation.

One may now ask for instance whether it is
possible to construct a strategy based on
(nominal) bonds that will produce an indexed
bond (payment of exp((X1)T ) at time T ).

28
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A general Gaussian bond market

More generally than above:

dX = (FX + f)dt +GdW

(F , G constant matrices, f a constant
vector), and

ρ(t, x) = h0x, λ(t, x) = λ

(h and λ constant vectors).

Bond prices can be determined from the BS
equation. After some computation:

πT (t, x) = exp(a(T − t) + b(T − t)x)
where the scalar function a(t) and the vector
function b(t) can be determined explicitly; in
particular

b(t) = −h0
Z t

0
eFsds.

29

Checking for completeness

The indexed bond can be manufactured from
nominal bonds if the model defines a complete
market, where assets are bonds of various
maturities.

From the pricing function πT , the volatility
σT can be determined via the chain rule:

σT (t, x) = −πT (t, x)h0
ÃZ T−t

0
eFs ds

!
G.

Sufficient condition for market completeness:
the matrix

1 −h0
³R T1−t
0 eFs ds

´
G

... ...

1 −h0
³R Tk+1−t
0 eFs ds

´
G


is invertible for each t ∈ [0, T ].

30

Completeness in the inflation model

Alternative formulation of sufficient condition
for completeness:

for all k-tuples of unequal times t1, . . . , tk,
the k × k matrix

M(t1, . . . , tk) :=

 h0eFt1...
h0eFtk

G
is invertible.

In our original inflation model, this comes
down to checking invertibility of

M(t1, t2) =

"
e−αt1 e−βt1
e−αt2 e−βt2

#·
σ2
σ3

¸
.

We find that, assuming the row vectors σ2 and
σ3 are independent, the model is complete
with three bonds if α 6= β. And so the indexed
bond can be formed (in the model. . . ).

31

Equivalent martingale measures

We have used the Black-Scholes equation to
describe absence of arbitrage. There is an
alternative (stochastic) formulation:

”Main theorem of mathematical finance”

Arbitrage is excluded if and only if there exists
a probability distribution on the set of paths in
the model such that the relative price of any
asset at a given time t is equal to the
expected relative price of the asset at any
given later time, the expectation being taken
based on the information available at time t.

“Relative price”: price with respect to a fixed
asset (”numéraire”).

A probability distribution as above is called a
”martingale measure.”

32
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Intuition behind the theorem

Existence of an arbitrage opportunity means
that there is some strategy that produces a
positive result along all trajectories.

Existence of a martingale measure implies
that, for any strategy, the average result over
all trajectories (w.r.t. that measure) is zero.

Therefore the existence of a martingale
measure implies that there can be no arbitrage
opportunity.

The main theorem of mathematical finance
states that the reverse conclusion is true as
well.

33

An alternative pricing formula

Prices can be computed on the basis of the
Black-Scholes equation. An alternative
formula can be given on the basis of
equivalent martingale measures:

St
Nt

= EQ

·
ST
NT

¯̄̄̄
Ft
¸

where Q denotes the martingale measure, and
N is a chosen numéraire.

In continuous-time models, change of measure
comes down to change of drift (Girsanov’s
theorem). Therefore the above formula is
often convenient.

Thm.: An arbitrage-free market is complete if
and only if there is exactly one equivalent
measure (for a given numéraire) such that all
relative price processes are martingales.

34

Optimization in a complete market

Consider a problem of the form

maximize E[U(VT ) ]

subject to dVt = utdSt, V0 = v0

where St may be given as an output of a state
space model driven by one or more Brownian
motions, and U(·) denotes a utility function.
Standard approach: apply method of dynamic
programming. This leads to a nonlinear partial
differential equation.

Assume now that we have a complete market
and that our variables are already taken with
respect to a numéraire. Then there is a unique
equivalent martingale measure that makes
{St} a martingale, and we have the
replication theorem. Note: {Vt} becomes a
martingale too.

35

The martingale method

Break up the optimization problem in two
steps:

1. maximize E[V ] subject to the single
constraint EQ[V ] ≤ v0 (Q denotes the
equivalent martingale measure)

2. use the replication theorem to determine
the strategy that will produce V .

Note: first step is a static optimization
problem with a single side constraint. Second
step requires the solution of a linear partial
differential requation. (In some applications,
the second step need not be carried out.)

This is the ”martingale method.” It may be
generalized to the case of incomplete markets,
but the application is more complicated
(requires minimization over the set of all
equivalent martingale measures).

36
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The story of Metallgesellschaft

Metallgesellschaft AG (Frankfurt) is a large
corporation doing business in metal, mining,
and engineering. It owned a US-based oil
business MGRM (MG Refining and
Marketing). In 1992, MGRM set up a scheme
in which it granted long-term contracts for
delivery of oil to customers for a fixed price,
covering periods up to ten years. The
exposure to oil price risk was hedged by the
purchase of short-term contracts (”futures”)
for which a liquid market exists.

Under market conditions of 1993, the strategy
required an enormous amount of cash input
with no substantial income yet from oil
deliveries. MG decided to stop the hedging
scheme and wrote off about $ 1.5 billion.

A case of financial engineering failure?

37

A model for the oil price

Assume a model with one state and one noise
input; take the oil price Xt as state variable.

dXt = µX(Xt) dt + σX(Xt) dWt

Let µX(x) be positive when x is low, and
negative when x is high.

Oil may be used for consumption as well as for
investment. The BS equation is therefore
written as follows (r is interest rate, K is
storage cost):

µX(x)− rπX(x)−K ≤ σX(x)λ(x)

λ(x) ≥ 0

where for each x at least one of the
inequalities is satisfied with equality. Solve to
find the market price of oil price risk:

λ(x) = max

µ
µX(x)− rπX(x)−K

σX(x)
, 0

¶
38

The price of a futures contract

A futures contract with maturity T is a
contract to deliver a given commodity, say one
barrel of oil, at time T for a price FT to be
paid when delivery is made. So the market
value at time t of a contract to deliver a barrel
of oil at time T is e−r(T−t)FT . This value
should satisfy the BS equation. The BS
equation for the T -futures price πT (x)
becomes:

µT (t, x) = σT (t, x)λ(x)

where

µT =
∂πT
∂t

+
∂πT
∂x
µX +

1

2

∂2πT
∂x2

σ2X

σT =
∂πT
∂x

σX

with the final condition πT (T, x) = x.

This may be solved numerically.

39

Special cases

Case 1: oil price high – oil is consumption
good.

In this case the price of oil risk is zero. The
futures price is then the expected price of a
barrel of oil at time T according to the given
model. (”Expectation-based” pricing.)

Case 2: oil price low – oil is investment good.

In this case the futures price is equal to the
cost of buying a barrel of oil now and storing
it until maturity. (”Arbitrage-based” pricing.)

The formula of the previous transparency
interpolates between the two (”two-regime
pricing”, Bühler et al., 2001).

Some concrete results: see Fig. 1.

40
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Different models: different feedback
rules

Idea of hedging: since both (say) the 6-month
futures contract and the contract for delivery
in 10 years are sensitive to the current oil price
in a well-defined way (given a model), take a
position in 6-month futures so that the loss or
gain in value of this position due to oil price
change will offset the corresponding loss or
gain in the 10-year contract.

However, different models lead to rather
different policies (see Fig. 2).

MGRM used the arbitrage-based rule.

Note: a mis-hedge does not necessarily lead to
a loss; it may actually produce a gain. Risk
reduction is not achieved, however.

41

Stability?

It is a common assumption in financial
modeling that individual traders cannot
influence market dynamics.

However, the joint behavior of all traders does
affect market dynamics.

Fig. 3 shows electricity prices at the
Amsterdam Power Exchange (APX) during
2001. Electricity has been traded at APX
since 1999. The exchange now covers about
10% of the Dutch electricity market.

Investigations are being carried out concerning
the cause of the peaks in June and December
2001. Similar price peaks caused interruptions
of power delivery to Californian homes in the
winter of 2000/2001.

42

Conclusions (1)

• A new branch of engineering is emerging:
financial engineering

• Model-based thinking has gained
acceptance in the finance industry during
80s and 90s – process still continuing;
keyword: liquidity

• Main focus not so much stock markets,
but rather loans (fixed/floating swaps,
credit ratings,. . . ), and commodities incl.
energy

• Dynamic hedging: taking decisions on the
basis of incoming observations – familar
to control theory

• Peculiarities of financial markets: absence
of arbitrage, martingale measures

43

Conclusions (2)

• Basic point of view: model asset prices as
dependent on basic risk factors

• Strong laws as a result of absence of
arbitrage (especially in continuous time)

• Models focused on particular markets; no
attempt to model ”the economy”

• Martingale method: new optimization
technique

• Developments just beginning: robustness,
noisy observations,. . .

44

Book of Abstracts 21st Benelux Meeting on Systems and Control

202



Figure 1: Adapted from: W. Bühler, O. Korn, R. Schöbel, Pricing and Hedging of Oil Futures. A Unifying
Approach, working paper, 2001.

45

Figure 2: Adapted from Bühler et al., 2001.

46

Figure 3: Taken from www.apx.nl.
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