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Introduction

Min-Max Optimization has wide applications in machine learning:
> Nonsmooth optimization
> Generative adversarial networks

> Distributionally robust optimization
Example (Minimax optimization)
min max L(z,y) = ¢(x,y) + g(x) — h(y) 1)

TER™T yER™Y

where ¢ is not necessarily convex in z and concave in y. g(-) and h(-) are lower semi-continuous and convex, for
example, they are usually chosen as l1, l2 regularization terms or indicator functions (constrained case).

Remarks: o Fz=(Vao(z,y), —Vyé(z,y)), Az = (9g(z), Oh(y))
o From an operator point of view: the problem can be translated as
finding zeros of F + A
o We will start our analysis from the unconstrained case, i.e. A =0

IHEI]  Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 53



Recap — Extragradient & Monotone Case

Definition (Operators)

> An operator F: R — R? is said to be monotone if (Fz — F2',z — 2') > 0,Vz, 2’ € R?
> F is maximal monotone if there is no monotone operator that properly contains it.

> An operator F : R — R is said to be L-Lipschitz for L > 0 if ||Fz — F2'|| < L||z — 2'||,Vz, 2/ € R?

o Recall the extragradient (EG) algorithm from ? ], which is a de facto algorithm for monotone VI problems:

zt =2t —yF2t,

S+l (EG)

=2t —~yFZ.
o EG can be seen as an approximation to the proximal point method z!*1 = 2t — yF(2t+1)
o For F monotone and L-Lipschitz (¢ convex-concave, L-Lipschitz smooth), EG has tight last iterate

convergence rate O(%) in terms of gap function 1. [? ]. While average iterate enjoys O(%) convergence
rate. [? ]

1 Gap function: GAPz p p(z) = max./cznB(z D><Fz, z—2z')
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Convergence plot for ExtraGradient — Bilinear Game
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Figure: Left: Convergence plot of EG for bilinear game; Right: decrease of || F'z*||? over number of iterations

> For strongly monotone and affine operators (e.g. bilinear games), last iterate converges exponentially
fast [? | (compared with O(1/T) for average iterate)
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Convergence plot of EG — Forsaken game (non-monontone)

> For non-monotone case, we do not have guarantees for average iterates (Jensen's ineq not applicable), and
even no guarantees for best iterate

min max ,Y) = —0.45 -
|z\§3/2IyISaS/2¢(m v) = aly Sl =) (Forsaken)

where ¢(z) = /422 — 1/22* 4+ 1/62°

Figure: Last iterate convergence plot (limit cycle marked with dark cicle)
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Go beyond monotone cases?

> Why Non-monotone? Nonmonotone captures nonconvex-nonconcave minimax by generalizing it.

> Weak Minty is the (structured) type of nonmonotonicity that we will study.
- it captures the forsaken example we considered in the last slide
- with weak Minty VI assumption, we could establish nice descent inequality (will appear in the next slide)

Definition (Variational Inequalities)

> Minty VI is a sufficient condition for optimality :(F'(z),z — 2*) > 0
> Weak Minty VI: (F(2),z — z*) > p||F(2)||2, for some p < 0

MvVI Weak-MVI
—Fz —Fz
z z* z z*
(=Fz,z¥—2) >0 (=Fz,z* — z) > p||Fz|)?

Figure: MVI versus weak MVI
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Why can we have positive result for weak Minty?

> Consider a class of non-monotone problems characterized by Weak MVI
> Descent inequality for proximal point method (2!t = 2t — yF(2111)):

Descent Inequality

254t — 2% =||2* — 25| + 2IF ()2 - 2(2* — 2% v F (')
=|l2* = 2* 2 +PUF I - 20" — 2% yF () — 202" — 2L yF (2

2t—ztHl =y Fat+l 2)
=ll2t — 2|7 = 2l = 22 = 2 EEY), 2 - o)
2pl| F(ztF1)[|2
To ensure strict descent between neighboring steps, we need
’)/2+2’yp>0:>p>—% 3)

Weak Minty is the largest class for which PPM still has a decrease of distance to optimum every iteration.
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An explicit scheme in unconstrained case: ExtraGradient+

EG+ is EG with a smaller 2nd step size

? ] introduced EG+, which provably converges to a stationary point for a class of non-monotone problems
provided Weak Minty Variational Inequalities (MVI).

Z! = (id —yF)2t,

EG+
2l =2t — ayFZzt. ( )

We now show the choices of «, following the tighter analysis in ? ].
2571 = 2% = ||2* = 2*||1? + o® |V FZ'|? — 2a (yFZ*, 2" — 2*) 4)

Cocoercivity assumption can “convert” (Fzt, 2t — 2*) into || Fz¢|?!
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Cocoercivity of id —vF

Definition (Cocoercivity)
An operator F : R¢ — R? is said to be S-cocoercive for 8 > 0 if (Fz — Fz',z — 2') > p||Fz — FZ'||?, for all
z,2' €RY.

Claim
Suppose F' is L-Lipschitz and v < 1/L. Then, the mapping H = id —yF is 1/2-cocoercive

Proof.
(Hz— Hz,z— %) =(Hz— Hz,Hz — Hz + vFz — vF%)
=||Hz — HZ||> + v(Hz — HZ,Fz — FZ%)
71 2 1
Loz — HE|? = Z|Fz = Fa|l® + - |12 - #I)° ®)
2 2 2

1 o 1 A2L2\ 5 1 i
—5||HZ*HZ|| + (5 - T)”Z —zlI" > 5||HZ*HZ||
2

7 2z — 2| = $|Hz — Hz|? + L-||Fz — F2|? + v(HZ — Hz,Fz — Fz) o
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EG+ requires a small constant step size

We use cocoercivity assumption and weak-Minty VI to bound the (yFz!, 2% — 2*) term:

(yFzt 2t —2*) =  (yFzt, 2t — 2% 4+ (yFzt 2t — 2%)
id — F is 1/2 cocoercive weak MVI (6)

ol EE |2 4yl F2 2

\Y

Thus, the descent inequality becomes

25 =22 < Jl2f = 252+ ar?(a—1—20/5) |FZ )
make sure it is smaller than O

Fixing v = 1/L, to ensure a strict descent, we must have & < 1+ 2pL. For a more negative p, i.e. a wider
range of class, a needs to be very small.
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Extend to a more general setting?

> Adding constraints characterized by the A operator: find 0 € Tz = Az + Fz
for Lipschitz continuous operator F' and maximally monotone operator A

> Allow for larger stepsizes (bigger o) and a wider range of problem

EG+

Figure: When the weak MVI constant p does not satisfy algorithmic requirements of (EG+), i.e. p € (—1/8L, 0], and (EG+)
does not converge to a stationary point but rather the attracting limit cycle (marked in dark circle)
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Algorithm

Compile error
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Assumptions

Assumptions
For T'= A + F. Given Assumptions

> Operator A : R" — R™ is maximally monotone
> Operator F' : R™ — R"™ is L-lipschitz continuous
> Weak Minty condition holds: i.e. 3 nonempty S* € zer T, s.t. Vz* € S* and p € (—1/2L, +o0)

<’U,Z - Z*> > p||1]||2, V(Z,U) € gph(T)
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Generalization of EG+

Theorem (Convergence to stationarity under weak MVI)

Let X\t € (0,2), v+ € (Lf2pJ+, 1/L] where |z ]+ = max{0,z}, ¢ € (—7t/2, p], liminfy oo Ak (2 — Ag) > 0,
and lim inf,_, oo (8¢ + 7¢/2) > 0. Consider the sequences (2!)ren, (2!)ren generated by

(id +'ytA) -t (zt — 'thzt). Then for all z* € S*, One can establish the following convergence result:

1
min —2||H2t - Hth2 < ||z0 - z*||2 (8)
t

k=0,..,m 7 K(m + 1)
where k = lim infk—)oo )\k(2 — /\k)(dk + "/k/2)2.

Remark:
o gph(A) = {(z,y) ER* xR |y € Ar}
o LHS denotes the gap between two updates: 21! = 2t + Moy (HZ! — H2?)
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Proof ideas

> Construct a half space that contains the solution set:
D(z) = {w | (5,2 —w) > p||5]*} (9)

onto which we could iteratively project: TIp(z?)

> To evaluate 9, use v € T(z'). As H = id —F, the update of z provides a way to evaluate T' (show in the
next slide)

> The algorithm update can be casted as KM iteration:

21 = (1—=XA¢) 2t 4+ ATt (Zt)

10
with I e (2%) = 2% + ap (HZ' — H2Y) (10)

> Use best iterate convergence result of KM iterate
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Proof | — Preparation

> To use weak-MVI, we need to verify (2°,1/v.(Hz" — Hz")) € gph(T)
As H =id —y¢F and zt = (id +*ytA)71 (zt — 'thzt), we have

P4 AZ = HZ? (11)
zZt -y Fzt + 4 Azt = Hz! —  Fzt (12)
1
—(Hz* — Hz") € AZ' + Fzt =T7 (13)

Yt
> Verify H is 1/2-cocoercive: refer to slide 11
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Proof Il — Construct a half-space containing solution set

Following Lectue 3: each step of EG is a projection onto a particular hyperplane. We are aiming at the following

construction: 4
zt = (id +'ytA) (zt - 'thzt) (14)

A= (1= M)zt + MIIp, (21) (15)
where Dy is constructed to contain the solution set. As %(Hzt — Hz') € gph(T), we have

Weak-MVI 26t &

1 4
(=@t —Hz'), 2~ =) > D H - HPS S H - HE? (16)
vt V¢ Vi
Thus we can construct D; as
5
Dy = {w | (Hzt — Hzt, 2t — w) > —t||HztfH2t||2} (17)
Yt

Note due to the 1/2-cocoercivity of H, our chosen step size oy is positive and bounded away from 0:

st t >t t
s, , (=2 HZ —H2) 1 &
=% 4= 18
KT |Hz — HzH)2 — 2 4 (18)
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Proof Ill - Projection onto the constructed half space

Lemma
The projection IIp(x) := argmin,cp %Hz — x||? onto the set D = {z | (a,z) > b} is given for x ¢ D as,

Op(z) =z — %a. (19)

The projection onto D; for any v ¢ Dy is given by

(7t — v, Hzt — Hzt) — 3| Hzt — HzY||2
Tt

— t St
IIp, (v) =v+ e (Hz"* — HZz")
For v = zt, we have
Ip, (%) = 2 + ay(HZ' — H2Y) (20)
We can thus rewrite an update step as
2= (1= M)zt + M (2F — a(H2' — HZY)) (21)
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Proof IV - Formulate as KM iteration

Krasnosel'skii-Mann (KM) iteration
Let S : R — R? be an operator and A > 0. The KM iteration is given by

2 = (1 — \)2t + AS2? (KM)

Remarks

> An operator S : R% — R? is said to be firmly nonexpansive if
1Sz — S2'||2 + ||(id —=S)z — (id —8)2||? < ||z — 2'||* V=, 2" € R (22)
> Let C' be a nonempty closed convex subset. Then the projector Il is firmly nonexpansive.

As Dy is closed convex set, Ilp, is firmly non-expansive
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Proof V - Best iterate result of KM

Theorem (Best iterate of KM - Recall Lecture 3)

Suppose S : R — R? is firmly nonexpansive. Consider the sequence (zt)scn generated by 7? with \ € (0,2).
Then, for all z* € fix S, it holds that

. t 12 ||ZO _Z*HQ
min [[Sz* — 2| £ ———. (23)
te{0,...,T—1} A2—-NT
Directly apply the theorem, we have
0 *|2
. Lo 2t — 2t)2 < 12" = 2| 24
t:g,un,m” Di% z ” - /\t(2—/\z)(m+1) ( )
t )2 20 775t )2 1 0ey2y )2
ITp, =" = 2 = o f12* — Ha|? > (5 + 24) st — | (25)
Choose k = liminf;—s00 At (2 — )\t)(% + 6¢)2, we directly have
1 1
min | [[Hzt - HEH2 < — |0 — 2 (26)
t=0,...,m V; k(1 +m)
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Additional results on the last iterate — z*
Limit points of zt belong to zer T

Claim 1

Following the same assumptions as the main theorem, (2!);cn is bounded and its limit points belong to zer T;;

Proof ldeas.
> Since lim infs— o0 €t = At(2 — )\t)(% +8:)2 >0, as

&
28 — 2% |12 < |2t — 2*||2 — 5| Hzt — HE!|)?
Vi

(’Y%HH? — H2z'|?)ren converges to zero.
t

> ||zt — 2*||2 converges, we have z¢ bounded. 7: is bounded, F' and the resolvents (id ++v;A)~' are Lipschitz
continuous, so is their composition. Thus, zt is also bounded.
> (24,1/y,(Hzt — Hz')) € gph(T), that is
Yy (Hz! — HE') € T3

As limy ;o0 1/~ (Hzt — HZ') =0, we have 0 € Tz*
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Additional results on the last iterate — z*

Limit points of 2zt stay close to z¢.

Claim 2

Following the same assumptions as the main theorem, if in addition lim sup;,_, .o vt < 1/L and 8* = zer T, then
(2 ken, (2))ken both converge to some 2* € zer T.

Lemma

If A is L-Lipschitz, then T =id —nA, n € (0,1/L), is (1 — nL)-monotone, and in particular
|Tw — Tv|| > (1 —nL)||u — v|| for all u,v € R™.

> if v = limsup_,,, vt < 1/L, following Lemma ??, we have
(1= D)5t — 2t < | HE" — H'|

Therefore, (|2t — 2t||)xen converges to zero. Hence, (2!)ren[k € K] also converges to z € zer T

IGHEI]  Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 25/ 53



Connection to other existent algorithms

A constant step size variant

2t = (id 4+, A) (2t — yF2Y), 2Tl =2t —au(HZ — Hz2Y). (CEG+)
According to the main theorem, convergence is guaranteed when \; € (0, 2), that is when &; < 2a;. We could

choose constant stepsize a € (07 14+ 275)

g, <14 206 200 23 -2t HE - H2Y) (27)
(677 _— s — — = 20t
Mt Ve |Hzt — Hzt||?

> Larger second stepsize than EG+. As the setting of EG+, in the unconstrained case, i.e. A =0, for the
smallest p that EG+ allows (p = —1/8L), EG+ chooses v¢ = 1/L and oy = 1/2. While we can select

~v¢ =1/L and oy € (0,3/4) here.
> Connection to FBF. In the monotone case. i.e. p =0, choose v¢ € (0,1/L) and oo = 1, we have
2ttt = 3t 4 yF2t — yFzt, which is the forward-backward-forward algorithm proposed by ? ]
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Adaptive Step Size according to Local Curvature

> A larger stepsize ¢ would guarantee global convergence to a wider class of problem, as p > —%

> Global Lipschitz constant is inherently pessimistic — use local curvature instead

o Adaptive in ¢ . ____CurvatureEG+

Algorithm Lipschitz constant backtracking

Initialize 2t € R, 7 € (0,1), v € (0,1)
Set initial guess v = v||JE(z)|| 7!, and let G,(zt) =
(id—i—'yA)_l(zt —A/th)
while (G (1)) — 74| > ]G () — ]| do 5 < o
Return ¢ = v and 2t = G (2%)

Figure: CurvatureEG+ is able to escape the
attractive limit cycle in the Forsaken game
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Overview of the stochastic part

o In the last lecture,
> Extra-gradient+ algorithms with adaptive stepsize;
> Convergence result for deterministic case.

o This lecture,
> Extra-gradient+ algorithm in the stochastic setting: Bias-corrected algorithm;
> Prove the convergence of the bias-corrected algorithm in unconstrained case;
> Extend the algorithm to constrained case;
> Extend the algorithm to the primal-dual setting with asynchronous update;

o Thomas Pethick, Olivier Fercoq, Puya Latafat, Panagiotis Patrinos, and Volkan Cevher. Solving Stochastic
Weak Minty Variational Inequalities Without Increasing Batch Size. In The Eleventh International Conference
on Learning Representations, 2023. URL https://openreview.net/forum?id=ejR4E1jaH9k.
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Recall: formulation

Find z € R™, such that
0€Tz:=Az+ Fz, (28)

where A maps to a set (captures the constraints) and F' maps to a single vector (captures the objective).
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Recall: formulation

Find z € R™, such that
0€Tz:=Az+ Fz, (28)

where A maps to a set (captures the constraints) and F' maps to a single vector (captures the objective).

o Limitation of the last lecture: Need exact deterministic evaluation of F'z.
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Recall: formulation
Find z € R™, such that
0€Tz:=Az+ Fz, (28)
where A maps to a set (captures the constraints) and F' maps to a single vector (captures the objective).
o Limitation of the last lecture: Need exact deterministic evaluation of F'z.
o Such deterministic evaluation can be expensive or even unavailable.

> E.g., the gradient of training a deep neural network.

o EG+: needs large enough exploration stepsize. Otherwise, may get stuck in a limit cycle.
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Recall: formulation

Find z € R™, such that
0€Tz:=Az+ Fz, (28)

where A maps to a set (captures the constraints) and F' maps to a single vector (captures the objective).
o Limitation of the last lecture: Need exact deterministic evaluation of F'z.
o Such deterministic evaluation can be expensive or even unavailable.

> E.g., the gradient of training a deep neural network.

o EG+: needs large enough exploration stepsize. Otherwise, may get stuck in a limit cycle.
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Stochastic oracle

o Instead, the evaluation of F'z can be stochastic.
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Stochastic oracle

o Instead, the evaluation of F'z can be stochastic.

o We can not directly evaluate the deterministic F'z, but get access to a stochastic oracle F(z,f).
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Stochastic oracle

o Instead, the evaluation of F'z can be stochastic.

o We can not directly evaluate the deterministic F'z, but get access to a stochastic oracle F(z,f).
o E.g., Stochastic Gradient Descent (SGD) for training deep neural network.

> min, f(2) = % Z fi(z)

> Atstep t, 't =2t — NV fi, ('), where i; is randomly sampled from [N].

> In this example, z = @, £ = is, F'(z,€) = Vi, (2.
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Stochastic oracle
o Instead, the evaluation of F'z can be stochastic.
o We can not directly evaluate the deterministic F'z, but get access to a stochastic oracle F(z,f).

o E.g., Stochastic Gradient Descent (SGD) for training deep neural network.
> min, f(z) = % Z fi(x)
> Atstep t, 't =2t — NV fi, ('), where i; is randomly sampled from [N].

> In this example, z = @, £ = is, F'(z,€) = Vi, (2.

Assumption (Assumptions on £'(z,¢))
For the operator F'(-,£) : R" — R™, the following holds.
1. Unbiased: E¢ [F(z,6)] = Fz Vz€eR"
2. Bounded variance: E [HF(z,{) — F(z)Hz] <o VzeR™
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Stochastic oracle
o Instead, the evaluation of F'z can be stochastic.

o We can not directly evaluate the deterministic F'z, but get access to a stochastic oracle F(z,f).

o E.g., Stochastic Gradient Descent (SGD) for training deep neural network.
> min, f(z) = & Z fi(zx)
> Atstep t, 't =2t — NV fi, ('), where i; is randomly sampled from [N].

> In this example, z = @, £ = is, F'(z,€) = Vi, (2.

Assumption (Assumptions on £'(z,¢))
For the operator F'(-,£) : R" — R™, the following holds.
1. Unbiased: E¢ [F(z,6)] = Fz Vz€eR"
2. Bounded variance: E [HF(z,{) — F(z)Hz] <o VzeR™

Remarks: o Assumption 1 holds for SGD when i is uniformly sampled.

o Assumption 2 is common. Easily satisfied when z restricted to a compact set.
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Why ‘unbiased’ and ‘bounded variance’?

o Stochastic Gradient Descent (SGD).

> min f(2) = & Y1 fil®)

> Atstep t, 2zttt =2t — nV fi, (z*), where i, is randomly sampled from [N].
o Unbiased: E[V f;,(z")] = & 3" Vfi(z) = Vf(a").

o Bounded variance: Assume E[||V f;, (z*) — V f(z")|]*] < o7.
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Why ‘unbiased’ and ‘bounded variance’?

o x* € argming f(z).

o gt = Vfi,(a").
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Why ‘unbiased’ and ‘bounded variance’?
o x* € argming f(z).
o gt = Vfi, (z?).
o One-step iterate of SGD.
ll

t+1 x*HQ

=llz* —2* —ngel|®
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Why ‘unbiased’ and ‘bounded variance’?

o x* € argming f(z).

o gt = Vi ().

o One-step iterate of SGD.
ettt — a2

=[|lz* — z* — nge|®

112

=|lz* — ng:||® — 2n(z’® — =*, g¢) + n?lge||?

=lla’ —a*|? = 2z’ —2*, Vf(@")) - 2n(e’ — 2", g¢ — Vf(@")) +n?|Vf(2") + ge — V(")
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Why ‘unbiased’ and ‘bounded variance’?

o x* € argming f(z).
o gt = Vi ().
o One-step iterate of SGD.
ettt — a2
=[|lz* — z* — nge|®
12 = 2n(2® — 2%, ge) +n°llge ]|
=|lz" —a*|]?> = 2n(z" — &*, Vf(a")) - 2n(z" — ¥, gt — Vf(2")) + ?(IVf(z") + g: — Vf(=")]?
=z’ —2*||> = 2n(a’ — 2%, V(@) + n?(|V f(=")]?
deterministic terms
—2n(z" —a*, gt — Vf(a")) + 20°(Vf(@*), g¢ — Vf(a"))
has expectation 0 by the ‘unbiased’ property

+ n?llge — V(2|2
-~

:”xt — Nyt

gn%i in expectation by the ‘bounded variance’ property
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Recall: assumptions

Assumption (Assumptions on F' and A)
1. The operator F : R™ — R"™ is Lp-Lipschitz with Ly € [0,00), i.e.,
||Fz - Fz/H < Lp ||z - z'” Vz,z' € R™.

2. The operator A : R™ 3 R"™ is a maximally monotone operator.

3. Weak Minty variational inequality (MVI) holds, i.e., there exists a nonempty set S* C zer T such that for
all z* € §* and some p € (—ﬁ, oo)

(v,z—z%) > p|jv||?, forall (z,v) € gphT.
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Further assumptions on F(z,g)

Assumption

> Two-point oracle: The stochastic oracle can be queried for any two points z,2’ € R™, F(z, &), F (#',¢)

where § ~ P.
> Lipschitz continuity: The operator F(-,£) : R* — R™ is Lipschitz continuous in mean with Ly €10,00) :

e |70 - £ (9] <23 [l -

for all z, 2" € R™.
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Further assumptions on F(z,g)

Assumption

> Two-point oracle: The stochastic oracle can be queried for any two points z,2’ € R™, F(z, &), F (#',¢)
where § ~ P.

> Lipschitz continuity: The operator F(-,£) : R* — R™ is Lipschitz continuous in mean with Ly €10,00) :
i b () 2 2 /1|2
Be || £~ F ()] < 23 [l =7
for all z, 2" € R™.

Remarks: o Two-point oracle assumption is reasonable for SGD by choosing the same ;.

o Will see: Lipschitz continuity critical for algorithm design and variance reduction.
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Oblivious extension of EG+?

o Extension of EG+ with A = 0 to the stochastic setting:

=2t —y— Z 5“ 2T =2t —ayy= ZF ,EH . (EG+)

=1
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Oblivious extension of EG+?

o Extension of EG+ with A = 0 to the stochastic setting:
L B
=2t —y— Z 5“ A =2ty = ZF 7&1
i=1

o Let 2t == 2t — yFzt and 211! == 2t — auyF2t.

o Due to the unbiased assumption of F', we have Eg, (2¢) = 2*.
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Oblivious extension of EG+?

o Extension of EG+ with A = 0 to the stochastic setting:

=2t —y— ﬁ'(zt,gt‘i), 2T =2t —ayy= ZF 7&1 . (EG+)

o Let 2t == 2t — yFzt and 211! == 2t — auyF2t.

o Due to the unbiased assumption of F', we have Eg, (2¢) = 2*.

Observation

When F is linear, we have,

1 N _
_ t+1\ _ _t _ =t _
Be 5 () =2 —onle | & ZE&\&F (28.6.4) | =

Remark: The linearity of F' leads to unbiased update

2t — arEe, Fzt =2t — at'yF(EgtEt) = 1

(Linear F)

of z and convergence result when A = 0.
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What if F is nonlinear or A = 0?

Observation
In general,

B, g, (2'11) = 2* — anyBe, F2'#2" — auyF(Be, 2') = 2+ (Nonlinear F)

o Bias appears with nonlinear F'.

IGEHEEI]  Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 36/ 53



What if F is nonlinear or A = 0?

Observation

In general,

B, g, (2'11) = 2* — anyBe, F2'#2" — auyF(Be, 2') = 2+ (Nonlinear F)

o Bias appears with nonlinear F'.

o How to reduce the bias in ztT1?

> Ideally, the above equality holds with deterministic extrapolation point z*.

> The smaller the variance of zt, the better.
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What if F is nonlinear or A = 0?

Observation
In general,
B, g, (2'11) = 2* — anyBe, F2'#2" — auyF(Be, 2') = 2+ (Nonlinear F)

o Bias appears with nonlinear F'.

o How to reduce the bias in ztT1?

> Ideally, the above equality holds with deterministic extrapolation point z*.
> The smaller the variance of zt, the better.

o Two obvious approaches:
> Increasing batchsize B. But can be too expensive. [? , Thm. 4.5]

> Reduce the stepsize . But contradicts the requirement of large enough stepsize v for the convergence in weak MVI. [?

]
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Bias-corrected Approach

o ldea: leveraging two-point oracle.

Algorithm (BC-SEG+) Stochastic algorithm for problem (??) when A =0

1: REQUIRE 2z '=2"1=20€R" a; € (0,1),7y € (|-20)+,1/LF)
2: for t =0,1,... until convergence do
3:  Sample & ~ P
4 Zt =2t —q/ﬁ (zt.£t> +(1— o) (,Etfl —zt1 +’yﬁ (zt*],ft))
Sample & ~ P
2L = gt — gy F (zt,g})
end for
: RETURN 2zt+1
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Bias-corrected Approach

o ldea: leveraging two-point oracle.

Algorithm (BC-SEG+) Stochastic algorithm for problem (??) when A =0

1: REQUIRE 2z '=2"1=20€R" a; € (0,1),7y € (|-20)+,1/LF)
2: for t =0,1,... until convergence do
3:  Sample & ~ P
4 Zt =2t —q/ﬁ (zt.£t> +(1— o) (thl —zt1 +’yﬁ‘ (zt*],ft))
Sample & ~ P
2L = gt — gy F (zt,g})
end for
: RETURN 2zt+1

o Line 4 is the key step.
o Idea: add a ‘correction’ term to reduce the variance of zt. (Similar idea in STORM algorithm [? ].)

o Correction term = Real Preceding Extrapolation Point - Imagined Stochastic Extrapolation Point with &;
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Why intuitively the algorithm works
o Approximate error of the stochastic extrapolation point.

ul =zt — (zt —~F (zt)) (29)
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Why intuitively the algorithm works

o Approximate error of the stochastic extrapolation point.

ul =zt — (zt —~F (zt)) (29)
o The error u! can be decomposed as,
ol = s = (.60 0 ) (0 <5 (52, | 0
= H(l — at)ut71 + aty (th —F (zt,&)) +(1—a)y ((th - thil) + (F (ztil,&) —F (zt,ft))) ||
(31)
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Why intuitively the algorithm works

o Approximate error of the stochastic extrapolation point.

ul =zt — (zt —~F (zt)) (29)
o The error u! can be decomposed as,

HutH = Hq/th —~F (zt,ﬁt) + (1 — o) (ut71 —yFt T 4 F (ztil,ft)) H (30)
= H(l — at)ut71 + aty (th —F (zt,&)) +(1—a)y ((th - thil) + (F (ztil,&) —F (zt,&))) ||

(31)
<1 —ap) Jur™ Y + ay |F2t — F (zt,ft) 4+ 1 —a)y (Hth — thilH + Hﬁ (ztil,ft) - F (zt,ft) H)

———
~O(oF) ~O((Lp+Lg)|zt—=t=1])
(32)

> Control the second term by a; — 0.

> Control the third term by Lipschitz property.
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Why intuitively the algorithm works

o Approximate error of the stochastic extrapolation point.

ul =zt — (zt —~F (zt)) (29)
o The error u! can be decomposed as,

HutH = Hq/th —~F (zt,ﬁt) + (1 — o) (ut71 —yFt T 4 F (ztil,ft)) H (30)
= H(l — at)ut71 + aty (th —F (zt,&)) +(1—a)y ((th - thil) + (F (ztil,&) —F (zt,&))) ||

(31)
<1 —ap) Jur™ Y + ay |F2t — F (zt,ft) 4+ 1 —a)y (Hth — thilH + Hﬁ (ztil,ft) - F (zt,ft) H)

———
~O(oF) ~O((Lp+Lg)|zt—=t=1])
(32)

> Control the second term by a; — 0.
> Control the third term by Lipschitz property.

o ||ut|| can be controlled.
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Convergence guarantee in unconstrained case

Theorem (Random Iterate Convergence)

Suppose the three assumptions on F, F', A hold. Suppose in addition that v € (l—2p]+,1/LF) and
(O‘t)te[T] C (0,1) is a diminishing sequence such that

1"‘7’2[’2F 252 272 2p
Z'yLﬁ‘\/%+(1+<1_,Y2L%’Y Ly ’YLF O‘OS1+7
Then, the following estimate holds for all z* € S*
2 T
1+ m72L2) |20 — 2*||° + Co2A2 "2
s [Jlr () 7] < L8 S

T
“Zt:o at
1 1+92L2%

— 272 _ 272 1 _ A2 272 ;
whereC—1+217(('y Lﬁ+1)+2a0),n—§1772L%'y LF+“/LF\/@““_’Y (l—fy LF)/2 and t, is

Qf

Yoot
[e%
t=0 g

chosen from {0,1,...,T} according to probability P [t, = t] =
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Convergence guarantee in unconstrained case

Theorem (Random Iterate Convergence)

Suppose the three assumptions on F, F', A hold. Suppose in addition that v € (l—2p]+,1/LF) and
(O‘t)te[T] C (0,1) is a diminishing sequence such that

1+72L§: 2p
2yL g /oo + (1+ (1_211272[,% ,YQL% ag <14 —
PRI, ¥
Then, the following estimate holds for all z* € S*
2
NTE (1 + n'yQLZF) Hzo —z*|| + CU%WQZZ;O af
B[l (=)]7] < .
B i Ot
where C' =1+ 2 (( 2L2+1)+2a) :l1+72L§ 212 + L = 2(1— 2Lg)/2andt is
i\ L 0),n 217,\/2[1%7 F "/L[:‘\/%“u ol Y LE *
at

Yoot
[e%
t=0 g

o Set az = 0O (1/ \/f) O(log T/ \/T) convergence rate for E[best ||Fz*||?] can be achieved.

chosen from {0,1,...,T} according to probability P [t, = t] =
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Proof

o Introduce the potential function,

e el W] Gl Y )

distance to zerT'

where the first term is used in the deterministic case.
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Proof

o Introduce the potential function,

e el W] Gl Y )

distance to zerT'

where the first term is used in the deterministic case.

o Goal: show that E[Us] < E[Us—1] — Q(E[c||F(2)||?]) — positive coefficient - E[|| F(2?)|2] + small error
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Proof

o Introduce the potential function,

Hzt —2*

2 a2 a2
el IR Bt I (33)
distance to zerT'

where the first term is used in the deterministic case.

o Goal: show that E[Us] < E[Us—1] — Q(E[c||F(2)||?]) — positive coefficient - E[|| F(2?)|2] + small error

o ldea: Reduce everything into some terms in the potential function, ||Fzt|| (what we want to bound),
Fz*(which is Eg, [I"(z* JE)] = Egt[z =z D.
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Proof

o Introduce the potential function,

U = Hzt —2F

2 a2 a2
el IR Bt I (33)
distance to zerT'

where the first term is used in the deterministic case.
o Goal: show that E[Us] < E[Us—1] — Q(E[c||F(2)||?]) — positive coefficient - E[|| F(2?)|2] + small error
o ldea: Reduce everything into some terms in the potential function, ||Fzt|| (what we want to bound), or

Fz!(which is Bg, [F(2*, &)] _Egt[z L2t

Fenchel-Young Inequality
Va,b € R™ and e > 0, we have,

2(a,b) < ellall® + 216l (34)
lla+0lI* < (1 +e)llall® + (1 + )bl (35)

IGLEHEEI]  Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 40/ 53



Proof

o Introduce the potential function,

U = Hzt —2F

AP e (33)
distance to zerT

where the first term is used in the deterministic case.

o Goal: show that E[Us] < E[Us—1] — Q(E[c||F(2)||?]) — positive coefficient - E[|| F(2?)|2] + small error

o ldea: Reduce everything into some terms in the potential function, ||Fzt|| (what we want to bound), or
Fz!(which is Bg, [F(2*,&)] = Eg, [Z L2t

Fenchel-Young Inequality

Va,b € R™ and e > 0, we have,

2(a,b) < ellal|* + L||p]|? (34)
lla+bl> < (1 +e)llall® + (1+ 1)p||? (35)

Proof.
(1+e)llall® + (1 + D)]Ipl12 — [la + bl|> = ellal|? + 2|6]|2 — 2(a,b) = || Vea — ﬁbll2 > 0. o
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Proof

o By (??), we can derive
[ =llvF (1) =2F () + @ = a0y (9F (&) = (7)) [P+ @ = e [Jur |+

(36)

21— o) <zt1 — 2714 AF (ztil) Y (F (zt) - F (zt.£t>) +(1—-—at)y (ﬁ' (ztil,£t> - F (zt71)>

Conditioned on F; (generated by random variables up to zt), has expectation of zero.

(37)
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Proof

o Conditioned on F; (generated by random variables up to z%)

B [la]*1 7] (38)
=22 ([ =) (F (1) = B (6) + F (&) = F (1)) o (F () =  (+16)) || 1 7]

(39)

+ (10— an)? [[ut | (40)
Fenchel-Young 9 2 ~ A 2

< [ 20— 0 e [P () - B () 1 7] ()

+2a2~%E |:HF (zt) -F (zt,ft) H2 \ ]'—ti| (42)

Lipszhitz (1—at)2|‘“’t71||2+2(1—0¢t)2“/2L?:ﬂHzt_ZFlHZ-‘rQO&?”/QU% (43)

Bounded variance
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Proof (Cont.)

o By the step zt*! = 2t — ayyF (3, &), we have

ettt = = 2 2 (B (28 ) bR [P RN

IGEHEEI]  Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 43/ 53



Proof (Cont.)

o By the step zt*! = 2t — ayyF (3, &), we have

et = = ot 2 2 (B (2,6 5 2) it (510

o Conditioned on F generated by random variables up to z?,
B (P (,8) ' ~=7) 1 7]

nbiased 2 (51) P (1)) 4y (F (2) 2 — o o (1)) = (F () 2 — =)
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Proof (Cont.)

o By the step 2t = 2t — ayyF (3, &), we have
= =P = ot = 7 = 20 (B (24.8) = = 2%) 4 ad? || (28 |
o Conditioned on F; generated by random variables up to zt,
E [<7'yF (Et,f_t) 2t — z*> | ft]

" (P ) () (P (). () 2 (). )

Fenchel-Young 1 B ~ 1
T (1P ) 7F<Z/>>| 51 EI =517 EIF)
e T md R GOl e A COT &
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Proof (Cont.)

o By the step 2t = 2t — ayyF (3, &), we have

= == [F = [l = 2 = 20 (7 (24,8) 2* = =) +a? || (24,8 |
o Conditioned on F; generated by random variables up to zt,
8 [(rf (.6) =~ =) | 7

2 (1 (1) 8 () 0 (8 ()52 p (1)) - (P () 2 )

FencheI—Young 1 B ~

T Gl E) - -3 I EI -5 1EE)
PR )P4 [l - () -0 e )P

e ﬁ“”HW+51ﬂ%HV@M—fWﬁMF

FencheI-Young

o O e T OO o e OOl
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Proof (Cont.)

o By the step 2t = 2t — ayyF (3, &), we have

= == [F = [l = 2 = 20 (7 (24,8) 2* = =) +a? || (24,8 |
o Conditioned on F; generated by random variables up to zt,
8 [(rf (.6) =~ =) | 7

2 (1 (1) 8 () 0 (8 ()52 p (1)) - (P () 2 )

e (GllE ) - F ()P - 1 EIE - 5 1E 1)
$ L @)+ [l o (I =0 ()
o e e () - B )
TR I T G + o e )
- (e ) e T e ) (20
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Proof (Cont.)

s[I1F ()1 7] =5 [s |17 (6) ~ ren e re P17 1R]TET e () ok
(52)
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Proof (Cont.)

[e]
sl (a1 7] =2 5 [I1F (6) - P s el 7] 17]TET () ek
Bounded variance
(52)
o The bound on the term ||F'(z%,£;)||2 can further imply,
E[[l2"4 = 282 | Ft] = ofB[IIF(Z, €12 | Fi] < afv?E[IFZ)? | Fe| + ofy?er  (53)
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Proof (Cont.)

[e]
sl (a1 7] =2 5 [I1F (6) - P s el 7] 17]TET () ek
Bounded variance
(52)
o The bound on the term ||F'(z%,£;)||2 can further imply,
E[[l2"4 = 282 | Ft] = ofB[IIF(Z, €12 | Fi] < afv?E[IFZ)? | Fe| + ofy?er  (53)

o Combining the above bounds yields,

E[llz"F! = 2*)1? + A [uf||® + By 251 = 2F1* | ]

1
<l — 2% + (At+1 Fa( LA+ ))E[HutHQ | Fil - el ()P

Xt
+ [ @ (12(ee = 1) = 29p) + a2y? +Bir1ady? | BIIFGE)I2 | Fil + (1 + Bisa)air?oh.  (54)

t
X2
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Proof (Cont.)

o Further using the bound on ||ut||2.

E MutH2 | ]:t} <(1- at)2 Hutil H2 +2(1-— oct)2 szf%Hzt — 2t HQ + 204?720% (55)
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Proof (Cont.)

o Further using the bound on ||uf||2.

E MutH2 | ]:t} <(1—ay)? Hutil H2 +2(1 — at)? 'YZL%Hzt — 2t HQ + 2024202, (55)

o We have,

Eli1 | Fe] =t < — aepl| PG+ (XT(1 = 00)® = Ag) [lu =2

. B _ _
+29°L% <Xf(l —a)? - wz2> 28 = 2572 + (X5 + Brvrafy®) BIIF(E)| | Fi]
YL
+ (Bey10f + af +2X}a?) 20} (56)
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Proof (Cont.)

o Further using the bound on ||uf||2.

E MutH2 | ]:t} <(1—ay)? Hutil H2 +2(1 — at)? 'YZL%Hzt — 2t HQ + 2024202, (55)

o We have,

EUy1 | Fi) —Us <

- Oét/,l/”F(Zt)HQ + (X{(l — at)Q — At) Hutle2

. By _
+ 29212 <Xg<1m>zw> = = =712 4+ (X4 + Bur1a?+?) E[IF ()2 | F)
YL
+ (Bt+1at + oct + 2Xlo¢t) 720%.

Having established (?7), set A; =
that

(56)

A, By = QAVQL%, and £; = ¢ to obtain by the law of total expectation

ElUs41] — B[] < — aupiBl|F(2")]°] + (X1 (1 — a)® — A) E[fJu'~1||?]
+2920% (XT(1— ae)® = A)E[llz" — 272 + (X5 + 249*L%07) B[|F (Z")]|?]
+ (249212 +1+2X}) afyo. (57)
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Proof (Cont.)

o By carefully choosing the constant A and &, we can enforce the following negative coefficients,
Xi(l—a)®? = A<0 and Xj+24y'L%a7 <O.
Recall that,

Xi=oar (VLEA+b)+ 1)+ 4, Xi=ar (Ve —1) =207+ 7?).

Pick A = % ((b + 1)y2L2 + %) and € = yLp \/ap, the negative requirements are satisfied.
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Proof (Cont.)

o By carefully choosing the constant A and &, we can enforce the following negative coefficients,
Xi(l—a)®? = A<0 and Xj+24y'L%a7 <O.
Recall that,
Xi=oar (VLEA+b)+ 1)+ 4, Xi=ar (Ve —1) =207+ 7?).

Pick A = % ((b + 1)y2L2 + l) and € = yLp \/ap, the negative requirements are satisfied.

€
o Thus we can derive the recursion,

ElUy 1] — E[U] < — aqpB[|| F(z")||°] + Caiy’or.
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Proof (Cont.)

o By carefully choosing the constant A and &, we can enforce the following negative coefficients,
Xi(l—a)®? = A<0 and Xj+24y'L%a7 <O.
Recall that,
Xi=oar (VLEA+b)+ 1)+ 4, Xi=ar (Ve —1) =207+ 7?).

Pick A = % ((b + 1)y2L2 + l) and € = yLp \/ap, the negative requirements are satisfied.

€
o Thus we can derive the recursion,

ElUy 1] — E[U] < — aqpB[|| F(z")||°] + Caiy’or.

o Telescoping the above inequality completes the proof.
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Almost Sure Convergence

o Random iterate convergence is weak.

> Hard to check and report the result, since evaluating the deterministic F' is expensive.
> The result can be volatile.
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Almost Sure Convergence

o Random iterate convergence is weak.

> Hard to check and report the result, since evaluating the deterministic F' is expensive.
> The result can be volatile.

o Almost sure convergence is more desirable.

> No variance to be taken care of.
> Can just report the final solution after running long enough.
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Almost Sure Convergence

o Random iterate convergence is weak.

> Hard to check and report the result, since evaluating the deterministic F' is expensive.
> The result can be volatile.

o Almost sure convergence is more desirable.

> No variance to be taken care of.
> Can just report the final solution after running long enough.

Theorem (Almost Sure Convergence)

Suppose that the three assumptions on F, F', A hold. Suppose vy e (|-2p|+,YLFr), ot = tJlr

—— for any positive
natural number r and

T

142 L2
(VL + Dot 42 (JTQ“/ALL%L%%H + WLI:«) (at41+1) a1 <1+ %. (58)

Then, the sequence (2%)pen generated by the Alg. 77 converges almost surely to some 2* € zer T.

IETil  Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 47/ 53 EPFL



Almost Sure Convergence

o Random iterate convergence is weak.

> Hard to check and report the result, since evaluating the deterministic F' is expensive.
> The result can be volatile.

o Almost sure convergence is more desirable.

> No variance to be taken care of.
> Can just report the final solution after running long enough.

Theorem (Almost Sure Convergence)
Suppose that the three assumptions on F, F', A hold. Suppose vy e (|-2p|+,YLFr), ot = i for any positive
natural number r and

+~v“L
("/L + l)at + 2 (772; 472 L?;_‘Oéthl —+ ’YLF) (at+1 + 1) a4 <14 % (58)

Then, the sequence (2%)pen generated by the Alg. 77 converges almost surely to some 2* € zer T.

Remark:

> Step size oy = t+T

= 6( ), diminishes faster than ©( \[)

> Loses (’3(%) random iterate convergence rate, but obtain almost sure convergence.

=S
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Constrained case

o Using the prox/resolvent to give the BC-PSEG+ algorithm,

Algorithm (BC-PSEG+) Stochastic algorithm for constrained problem.

1: REQUIRE 27! =20 ¢ R, A~ €R", oy € (0,1), v € (|~2p]+,1/LF)
2: for t =0,1,... until convergence do
3:  Sample § ~ P
b W= (=BG E) + (- an (B = (PG 6))
zt = (id+74) " 1h
Sample & ~ P
=2t —ay (Bt — 2+ yF (&)
end for
. Return zt+1

© ® N o o
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Constrained case

o Using the prox/resolvent to give the BC-PSEG+ algorithm,

Algorithm (BC-PSEG+) Stochastic algorithm for constrained problem.

1: REQUIRE 27! =20 ¢ R, A~ €R", oy € (0,1), v € (|~2p]+,1/LF)
2: for t =0,1,... until convergence do
3:  Sample § ~ P
b W= (=BG E) + (- an (B = (PG 6))
zt = (id+74) " 1h
Sample & ~ P
=2t —ay (Bt — 2+ yF (&)
end for
. Return zt+1

© ® N o o

o Key idea: apply similar bias-corrected technique to the extrapolation point before the resolvent.
o Properties:
> Converges to zerT.
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Nonlinear preconditioned primal dual extragradient (NP-PDEG)

min max  f(z) + ¢(z,y) — 9(y). (59)
TER™ yERT

where ¢(z,y) := E¢[@(z, y,6)].
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Nonlinear preconditioned primal dual extragradient (NP-PDEG)

min max  f(z) + ¢(z,y) — 9(y). (59)
TER™ yERT

where ¢(z,y) := E¢[@(z, y,6)].

Algorithm Nonlinearly preconditioned primal dual extragradient (NP-PDEG)

1: REQUIRE 271 = 20 = (29,4%) with 20,271,271, 271 ¢ R?, 4%,y 1 €R", 0 €[0,00), T1 =0, T2 = 0
2: for t =0,1,... until convergence do
3 gl =at— I‘lvz@(zt,&) +(1- at)(it_l —ztl 4 Flvz¢(zf—1,y*—1,gt)), & ~P

4 = prox ( )

s gt =yl + F2V (0t 6) + (1 —an) (9871 =yt~ =TV p(at Lyt =1,€))), & ~ P
6 yl= prox ( )

7: & ~ P

8 ot =2t +ay (20— 2 —T1Vap(2,&)), vt =yt +as (78 — 98 + T2V 4(3, &)
9: end for

10: Return zf+1 = (gt+1 4t+1)
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Nonlinear preconditioned primal dual extragradient (NP-PDEG)

min max  f(z) + ¢(z,y) — 9(y). (59)
TER™ yERT

where ¢(z,y) := E¢[@(z, y,6)].

Algorithm Nonlinearly preconditioned primal dual extragradient (NP-PDEG)

1: REQUIRE 271 = 20 = (29,4%) with 20,271,271, 271 ¢ R?, 4%,y 1 €R", 0 €[0,00), T1 =0, T2 = 0
2: for t =0,1,... until convergence do
3 gl =at— I‘lvz@(zt,&) +(1- at)(it_l —ztl 4 Flvz¢(zf—1,y*—1,gt)), & ~P

4 = prox ( )

s gt =yl + F2V (0t 6) + (1 —an) (9871 =yt~ =TV p(at Lyt =1,€))), & ~ P
6 yl= prox ( )

7: .ft ~ P

8 ot =2t +ay (20— 2 —T1Vap(2,&)), vt =yt +as (78 — 98 + T2V 4(3, &)
9: end for

10: Return zf+1 = (gt+1 4t+1)

o Alternatively sampling relaxes the Lipschitz assumption.

Vap(z') = Vap(2)|| < Lallz’ = 2[l,  [Vye(z') = Vye(a',y)ll < Lylly’ -yl
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Experiment 1

Example (Unconstrained quadratic game [? , Ex. 5])

Consider,

where a € Ry and b € R.

b
min max ¢(z,y) := avy + -z
z€R yeR

b
2_ 0 g
2 2y7

— ~

Z——\\
/ff/f//’??\ﬁ\\ \ W

-15  -10 -05 00 05 1.0 1.5

Figure: Unstable dynamics!
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Experiment 2

Example (Constrained minimax [? , Ex. 4])

Consider

min  max ¢(x,y) := zy + Y(x) — Y(y), GlobalForsaken
|z[<4/3 |y|<4/3 ) @) 2 ( )

'S

2

where ¥(z) = 2% — 2 4 2.

0.1+

81072 |

6-1072

IELTdil  Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 51/ 53 EPFL



Experiment 2

Example (Constrained minimax [? , Ex. 4])

Consider
Jmin | max d(x,y) = zy + () — Y(y),
where ¢ (z) = % — % + %
wf 4
\
o §f¢/
05 \ /
\v
RN
~ 00 \\\
S\
05 i:s,\\‘ /4
\\ N
1.0 \ \
AN = /N
IR NN S 7))
=S I

-15  -1.0 -05 00 05 1.0 15

Figure: Limit cycles.
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Experimental Results

2|

[

10-3 4 —*— SF-EG+

J | m #— SF-PEG+
SEG ! 4 051 PSEG
—+— BC-SEG+ * —+— BC-PSEG+
10" 10 10° 10t 10° 10 102 10° 10t 10°
Tteration k

Iteration k

Figure: Comparison of methods in the unconstrained setting and the constrained setting.
Remark: > SEG diverges (As expected, since the dynamics is unstable.) and PSEG cycles;

> Both oblivious extensions (SF-EG+) and (SF-PEG+) only converge to a neighborhood.
»> Only BC-SEG+ and BC-PSEG+ converges properly, with probability 1 as established;
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