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Introduction

Goals of today

1. Interval regret
o Weakly adaptive algorithm

o Strongly adaptive algorithm

2. Dynamic regret
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A motivating example

Definition (Classic Regret)

Ry = folw) = min " fi(w).

teT teT

> |s the loss of the best fixed point necessarily a good benchmark?
Example (Expert problem with two experts)
Consider two expert, where the loss of expert 1 and expert 2 is given by:
hl)=...=1
h)=...=1

oS

=W=0 and Iz, ,(V)=...=lp(1)=1
=@ =1 and Iz ,,()=...=1p(2)=0

nN

o Both experts have loss T'/2.
o Even if the regret to the best fixed expert is 0, the loss of the algorithm is bounded by T'/2.
o In a non-stationary environment, classic regret is not the right objective to minimize.
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Interval regret

Definition (Interval regret)

Rr:= fow)-miny " fi(w), where I=[s,¢]C 1]

teT tel

> An algorithm A with interval regret Rz = O(/|T|) simultaneously VZ C [T7] is called a weakly adaptive
algorithm.

Goal: Design an algorithm with interval regret Rz(/|T).
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A motivating example: Follow-up

Recall the example: “expert problem with two experts”.

> In the two expert problem, a weakly adaptive algorithm achieves

R[L%]:O(ﬁ) and R ]:O(ﬁ)

T
[$+1.T

> = The loss of a weakly adaptive algorithm is bounded by O(+/T) since:

T T/2 T
> ) Sier?%g}th(i) +O(ﬁ)+i€rﬁg} > k@) +0(VT)
t=1 t=1 t=T/2

=0 -
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A weakly adaptive algorithm in the OCO setting: Online gradient descent(OGD)

Assumption

> The set Q C R? is convex with bounded diameter, i.e., Vy,w € Q |jw — y|| < D.
> The function f; : Q — R is convex with bounded gradient norm, i.e., |Afi(z)|] < G Vz € Q.

Algorithm 1 Online gradient descent algorithm

Require: Step size 1y :=
fort=1,...,7 do
Play w; and observe cost fi(w:).
Update and project:

_D_
GVt’

Yi+1 = wi — NV fe(wy)
wiy1 = Mo (ye41)

end for
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A weakly adaptive algorithm in the OCO setting: Online gradient descent(OGD) I

Theorem
The interval regret of OGD algorithm (Algorithm 1) for any interval Z C [T] is bounded by:

Rz = O(VT).

Proof
For T :=[s,e] C [T], we define

w7 := arg min w
fi=argmin Y fy(w)
teT
Recall the projected gradient decent update step:
Yer1 = we — NtV fe(we)
wit1 = Mo (ye+1)-
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A weakly adaptive algorithm in the OCO setting: Online gradient descent(OGD) II

Proof
Then, since the projection operator on a convex set § is contractive the following holds:
wetr = will? < llyesr — will? = llwe — wil® +nZ [V fe(we)|* = 2me(V fe(we)) T (we — wi).
Thus,
lwe = will* = lwesr — will?

2(V fo(we)T (wr — w}) < - + G2 (by assumption ||V f(wy)]| < G) (1)
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A weakly adaptive algorithm in the OCO setting: Online gradient descent(OGD) III

Proof
Summing the inequality across the rounds we get:
2(2 Fe(we) — ft(w})> <2 (Vfe(w)T (we — w]) (by convexity of ft)
teT teT
we — w2 — ||lw — w*||?
= Z e il lwe+s il + G%yy (by equation (1))
tez 1
* (12 1 1 2
=) llwe —wEA(= - ——)+ G e
Tt Nt—1
tez tez
1 1
DY (= ———)+G2> m (by ||z = yl| < D for all z,y € Q)
mo Me—1
teT teT
D2
== +6? Zm (define >0)
Te ez Ts—1
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A weakly adaptive algorithm in the OCO setting: Online gradient descent(OGD) IV

Proof

By the construction of step sizes n: = GL\/Z’ we have

fe(we) — fe(wy) SQQ G Nt
Ne

teT tel
= i
=DG e+ DG —
Ve Z =
=8

<DG /e +2DG /e

<3DGVT
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Interval regret: A strongly adaptive algorithm in the OCO setting

Theorem
The interval regret of OGD algorithm (Algorithm 1) for any interval Z C [T] is bounded by:

Rz = O(VT).

> = The guarantee of OGD is meaningless for intervals of length o( v/T).

> An algorithm A with interval regret Rz = O( 4/ |Z|) simultaneously VZ C [T7] is called a strongly adaptive
algorithm.

Goal: Design an algorithm with interval regret Rz (+/|Z]).

> Any algorithm with (low) regret can be turned into a strongly adaptive algorithm using sleeping experts [?].
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Detour: Sleeping Experts

The sleeping expert problem
Atround t=1,...,T":

1. Environment decides which of the N experts are awake (a¢(¢) = 1) and which are asleep (a¢ (i) = 0).
2. ay is revealed to learner who chooses a distribution p; € A(N) such that p¢(:) = 0 if a¢(¢) = 0.

3. Environment reveals loss for awake experts I¢(i) with a¢(i) =1

Remark: > The regular expert problem is a special case with a¢(i) = 1 for all ¢ and 3.

> We use the notation [; € [0, l}N, although coordinates of asleep experts are not define.

Definition (Sleeping expert regret)

The regret against a sleeping expert is defined as:

Ry (i) = ({pt, le) — 1e(d))-
tag(i)=1

Goal: Design a sleeping expert algorithm by reducing the sleeping expert problem to the regular expert problem.
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Detour: Reducing the sleeping expert problem to regular expert problem

Design of a sleeping expert algorithm:

Suppose we are given an expert algorithm £ with prediction p; on round t¢.
1. Set the prediction p; for the sleeping expert problem to p¢ (i) o< at(4)pe (7).

2. > For the awake experts (a; (i) = 1) the loss I+ () is set to be the same in the sleeping and the regular expert problem.
> For the asleep experts (a+ (i) = 0) set the loss I, (%) = x such that the loss of £ for a round is the same as the loss
of the sleeping expert algorithm, i.e., set = such that the following equality holds:

> aono+( Y w@)e= 3 nono

irag(i)=1 iray(i)=0 iray(i)=1
ST = E e (9)1: (3).
iray(i)=1

> = The “fake” loss of asleep experts is exactly the loss loss of the sleeping expert algorithm.
> We overload the notation [; to denote the loss vector of the sleeping and the regular expert problem, where

() =32, iymy PHOL(E) = (pe, L) i ar (i) = 0.
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Detour: Reducing the sleeping expert problem to regular expert problem

Algorithm 2 Reducing from sleeping expert to regular expert

Require: Regular expert algorithm £.

fort=1,...,7 do
Let p: be the prediction of £ on round t.
Observe a¢ from the environment.
Play p: such that p:(i) o< a(4)pe(7).
Observe (i) for i such that a(i) =1.
Set l¢(i) = (p¢,lt) for i such that a¢(i) = 0.
Pass l; to &.

end for

By the reduction, we have:
T

T
Rr@)= Y (pel) = @) =Y ((pe,l) = (i Z (Be.le) — (D).

t:ap(i)=1 t=1

> = This is the regret against expert ¢ in a regular expert problem.
> If £ (e.g. Hedge) has regret bound O( /T log N), then the sleeping expert regret Rr (i) = O( /T log N).

> Ideally, we want a sleeping expert algorithm with bound O( /|t : a:(i) = 1|log N).
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Strongly adaptive algorithms via sleeping experts in the OCO setting

Suppose we are given an OCO algorithm A with regular regret O(V/T).
> If T = [s, e] was known, we could run A starting at round s.
> BUT: We want to consider all intervals Z.
> ldea: Start a new instance of A at the beginning of every round and combine predictions from different
instances to obtain final prediction.

= This can be captured by the sleeping expert problem:
> Each instance of A is an expert.
> The instance that starts at round ¢ (denoted by A;) is asleep for the first ¢ — 1 rounds and awake for the
rest of the game.
> The final prediction at round ¢ is the convex combination of the predictions from A1, ..., A; according to
the distribution decided by a slepping expert algorithm.
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Strongly adaptive algorithms via sleeping experts in the OCO setting

Algorithm 3 Strongly adaptive algorithm via sleeping experts

Require: A OCO algorithm A, a sleeping expert algorithm S.
fort=1,...,7 do
Start a new instance of A, called A;.
Obtain predictions from Ai,...,A;—1, denoted by w},...,w.
Pass a¢ to S, where a¢(i) =1 for ¢ <t and a¢(i) =0
Obtain distribution p; from S.
Predict wi = ZE:I pe(i)wy .
Observe loss function f¢, suffer loss fi(wi).
Pass ft to A1,...,At.
Pass [§ to S, where [J (i) = fy(w}) for i <t.
end for
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Strongly adaptive algorithm via sleeping experts in the OCO setting

Theorem
The interval regret of Algorithm 3 for any interval Z C [T'] is bounded by:

Pz = o(/Teg(®) + 0( /)

Proof.
For any w € Q and interval Z = [s, €] it follows:
¢
Rz = Z(ft(wt)) — fe(w)) < Z (Zpt(i)ft(wi) - ft(w)) (Jensen’s inequality)
teT teT  i=1
= (e, 1) = () + 3 (Felwi) = fr(w)
tez teT

= Re(s) + O( \/ﬁ) (by the guarantee of As)
= O(+/|Z|1og(T) + O( \/ﬁ) (by the guarantee of S)
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Strongly adaptive algorithm via sleeping experts in the expert setting

Definition (Interval regret in the expert setting)

R =Y (wile) - min 1 (0),

teT

where N is the number of experts.

Modify Algorithm 3 such that:

o We are given an expert algorithm & as input, e.g. Hedge, with regular regret O( /T log(N)).
o Replace f; with I € [0,1]
o Set w! € A(N) for i < t.

Theorem
The interval regret of Algorithm 3 for any interval Z C [T for the expert setting is bounded by:

Rz = O(\/IZ|10g(TN)).
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Proof.

Rt = Z(wt,lt —1t(d ZZ I, pe(d)w]) — 1o (d)

tel teZ i=1
=) (W we) — ) + Y l(s) — 1s(d)
tel teZ
= Re(s) + O(+/|Z|In N) (by the guarantee of &)

=0(\/|Z|InT + O(+/|Z|In N). (by the guarantee of S)
< O(V/[Z|n NT) (by Vo + VY < \Jz+y)

O
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Computational efficiency of the strongly adaptive Algorithm 3

> The runtime of Algorithm 3 is O(t) per iteration = Not efficient!

Goal

Improve run time to O(log(¢)) without sacrificing the regret guarantee.

Approach [?]: Modify Algorithm 3 such that:
> Let A live for 2¢(!) rounds, where d(t) is the number of 2's in t's prime factorization.
> In other words, d(t) is the largest integer such that ¢t = b(t) * 2¢(*) for some (odd) integer b(t).

t: 1 2 3 4 5 6 7 3 9 10
b(t) * 29 | 1420 | 1427 | 3%20 | 1%22 [ 520 [ 3%20 [ 7%20 [ 1%23 [ 9x20 [ 521
d(t): 0 1 0 2 0 1 0 3 0 1
Note that:

> At any round ¢ and integer d there is at most one expert with life time 2.

> At round t the longest lifetime of any awake expert is bounded by 2l1o82(t)]

> Thus, at any round ¢ the total number of awake experts is at most |log,(¢)| + 1.
= The runtime of the Algorithm 3 reduces to O(log(t)) per iteration.
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Computational efficiency of the strongly adaptive Algorithm 3 |

Theorem
The interval regret of Algorithm 3 with runtime O(log(t)) per iteration is bounded by:

Rz = O(+/|Z]10g(T)).

Proof
Divide the interval T = [s, €] into several disjoint and consecutive subintervals. Let I, = [Sm,em] for
m =1,...,M be these subintervals, where s1 = s, S;, = em—1+1forl <m < M, ey = Sm +24(sm) — 1 for

1<m < M and ey = e. Clearly for each I, (m < M) there is an instance As,, that is run solely this
interval. Furthermore,

b 1
Smgl = em + 1 = 8m + 2%em) = (b(sm) + 1)2%sm) — (";m%gd(smwl7
where 2EmITL has to be an integer since b(sm) is odd. This implies d(sm) + 1 < d(sm+1) since by

construction sm 11 = b(Sy11)24m+1) . This in turn implies 2|Z,| < [Tm1].

IGEHEEI]  Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 23/ 43



Computational efficiency of the strongly adaptive Algorithm 3 II

Proof

Rr = () - fiw) < Y (D wfuwh) - ()

tel tel a=1

M M
=D (el —llsm) + Y (felw™) = fu(w))
m=1tELm m=1tELy,
M M
Z Rep (sm) + Y O(/|Zml) ZO( V/ Tl 10g(T))
m=1

P‘/\ﬁiﬁ ||

O(+/27™Zo|log(T)) =

O(+/|Z| log(T)).

3
Il
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Dynamic regret

Definition (Dynamic regret)

Rr(ui,...,ur) = th (we) — th Uut).

te[T] te[T]

Remark: How does dynamic regret relate to interval regret?
o Suppose Z?:z {us #up—1} =5 —1.
o Define I; := {[s;,e;] C [T] | Vt € [s, e;], ur remains unchanged}, then [T] := U, I;.

S S

= Rp(u1,...,ur) = Z Z (fe(we) — fe(ue)) = ZRIi.

i=1 teZ; i=1
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Bounding dynamic regret using interval regret bounds

Assume we have a strongly adaptive algorithm with regret O( /|Z|InT') for any interval Z, we have

S S
RT(ul,..‘,uT):ZRIi:O Z«/\LHnT
i=1 i=1
Cauchy —Schwarz
<

=0 (VSTIT).

Therefore, such regret bound is called switching regret bound and is sublinear in T" as long as S is sublinear in T'.
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Bounding dynamic regret in the OCO setting using online gradient descent(OGD)

Definition (Path length)

Let P(u1,...,ur) be the path length of the comparison sequence defined as:

T—-1
Plur,..yur) = Y fue = uea]| + 1.
t=1

Theorem
The dynamic regret of online gradient descent (Algorithm 1) with step size n ~ M is bounded by:

Rr(ui,...,ur) = (9( TP(ul,...,uT)).

Remark: o For a fixed comparator us = x*, the path length is 1.
o = This theorem recovers the O(+/T) standard regret bound.
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Bounding dynamic regret in the OCO setting using online gradient descent(OGD) |

Proof
Recall the projected gradient decent update step:

Yi+1 = ot — NV fr(xe)
zip1 = Mo (Y1)
Then, since the projection operator on a convex set ) is contractive the following holds:
et = uell® < llyerr = uell® = llwe — well® + 02|V fe(@e) I = 20(V fe(@e)) T (e — )
Thus,

llwe — wut]|® — [lwe g1 — we]?

n

2(V (o))" (@ — ue) < + nG? (by assumption ||V fi(z:)|| < G) (2)
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Bounding dynamic regret in the OCO setting using online gradient descent(OGD) Il

Proof
Summing the inequality across the rounds we get:
ar T
2( 3 fulan) — fulun)) <23 (Vi) (@1 - ) (by convexity of ;)
=1l t=1
T
a2 a2
— Z lze = uell” = lloess = well® | o (by equation (2))
t=1 K
) T
o Z (llzel® = lle41l1? + 2uf (@e41 — 3¢)) + 0G>T
t=1
) g
< p <D2 + Zu?(m,prl —z) | +nG*T (by ||z — y|| < D for all z,y € Q)
t=1
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Bounding dynamic regret in the OCO setting using online gradient descent(OGD) III

Proof

Rearranging the terms in the last inequality, we have

T
2
(th xt) — fi( Ut)) < p D? +Z%T(ut—1 —ug) +uhery — Ui x1 | +0G3T

t=2
7
< 3D? + Z Dljug—1 — ug|| | + 0G>T (By boundness of the )
t=2
6D? d 6D>2
< — 1+Z||ut_1 —ut| | +0nG*T = —P(u1,...,ur) +nG>T (Set the diameter D > 1)
n o n
6D27D(’U,1, cceyg UT)
:O( TP(ul,.A.,uT)) (Setn = ?)
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Variation of the loss functions
Example (Expert problem with two experts)

Consider two expert, where the loss of expert 1 and expert 2 is given by:

1
lt is an odd number(]-) =0.5+ ; and lt is an even nu.mber(]-) = 0.5,

1
It is an odd number(2) =0.5 and It is an even nu.mber(z) =0.5+ E

o Choose the competitor u; as the best decision w} := arg min,,cq fi(w).
o In this case, we have S = T since

Ut is an odd number — EXpert 2,

Ut is an even number — EXpert 1.

o The variation of the loss functions is defined as
T

Vp = max w) — fr—1(w)].

= max|fu(w) ~ fior(w)]
t=2

In this case, Vp = Zthl % =O(nT).
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Bound the dynamic regret by the variation of the loss functions

Theorem ([?])
A strongly adaptive algorithm with Rz = O(+/|Z|InT) for any interval Z ensures

Rr(w},...,w}) = O(T3 (Vr InT)3),
where wy := arg min,cq ft(w).

o Combining this regret bound with switching regret bound, we have
Rp(wy,...,w}) = min {O(\/STlnT) ,O(T§(VT lnT)%)}
o Back to the two experts problem, we have sublinear regret bound computed as

Rr(wt,. .., wh) = min {o (T VinT) ,O(T%(lnT)%)} .
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Proof of the theorem |

Proof

Let {Z;}M | be any partition on the whole game [T, and define the variation of interval Z; as

=

Vz, = Z ggélft(w)—ftfl(w)

t=s;+1
Therefore, we bound the regret as
M M
=33 e~ ) = 32 3 (= 3405) + 3 3 (i) 5407)
i=1 teZ; i=1 i=1 teZ;
M M Cauchy—Schwar 2 i
y — warz

Z:|InT) 2|Z; |V M Zi|InT 2 L5 Vz.
<Y o(WVImmT) + > 2(Tiva, Y TIWT | +2max|Ti| Y vz,
=il i=1 i=1 i=1

O(VMTInT) + 2max |Z;| V.
1
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Proof of the theorem Il

Proof
Find a partition that minimize O(v/MT InT) + 2 max; |Z;|Vr for a fixed M, then we choose equal distribution

such that max; |Z;| = O(%) Then

— o} (VrnT)} NEVAAY
=O(T3(VrInT)3) (setM( \/ﬁ) )
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Proof of the red part

> fws,) = fi(wp) < 20TV,

teZ;

Proof.

fe(wg,) = fe(wy) < fe(wg,) = fo; (w,) + fs; (wi) — fe(wy)  (by optimaility of wg,)

t t
= > (i) = fra@i)) + Y (Froa(wp) = fr(w?)
T=s;+1 T=s;+1

t
<2 = —JT
<2 ) max|froa(w) -~ fr(w)]
T=s;+1
< 2Vz,.
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Bound the dynamic regret for the expert problem

o For the expert problem setting, the dynamic regret against a competitor sequence ui,...,ur € A(N) can be
written as

T N
RT(IU7 N ,uT) = ZZUt(i)Tt(i)7
t=1 i=1

where 74 (i) = (pt, lt) — l¢(4) is the instantaneous regret.
o Similarly, we define the variation of the competitors for the expert problem setting as

T N
Ap = Z Z[ut(i) —ug—1(9)]+

t=1 i=1

Instead of variation of the loss function as introduced before which is
T
V=Y max [1i(i) — -1 ().
1€[N]
t=2
o Ar and Vp are in general distinct.
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Relation between A7 and Vr: example of Ar = Q(T) and Vp = O(1)

Example (Expert problem with two experts)

Consider two expert, where the loss of expert 1 and expert 2 is given by:
1
lt is an odd number(l) =0.5+ ﬁ and lt is an even number(l) = 057

1
lt is an odd number(z) =0.5 and lt is an even number(2) =0.5+ th

o Choose the competitor u; as the best decision

(1) 0, t is an odd number
u =
t 1, t is an even number

o In this case, we have Ap = Q(T') since we change the best expert every round. But the variation of the loss
functions is

T
1
Vi = Z 5 =00).
t=1

o Variation of competitors can be large while variation of loss remains small.
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Relation between A; and V;: example of Ap = O(1) and Vyp = Q(T)

Example (Expert problem with two experts)

Consider two expert, where the loss of expert 1 and expert 2 is given by:

1:(1) =05 and 1:(2) = 0.5+ 0.1¢.

o Choose the competitor u; as the best decision which is u¢(1) =1 for ¢t > 0.

o In this case, we have Ap = O(1) since we never change the best expert every round. But the variation of the
loss functions is

T
Vi = ZO.I = Q(T).
t=1

o Variation of loss can be large while variation of competitors remains small.
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Dynamic regret bound for the expert problem using A

Theorem ([?])
For the expert problem, a strongly adaptive algorithm with Rz = O( +/|Z|In NT') for any interval Z ensures

Rr(ui,...,ur) = O(\/TArInNT)

for any competitor sequence u1,...,ur € A(N).

o The regret is sublinear when Ar is sublinear.

o Combining this regret bound with former results, we have

Rp(w?,...,ws) =mind O (VST NT),0 (T35 (Ve nNT)5 ), 0 ( \/TAr In NT
1 T
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Proof (Proof of the theorem 18)

Fix an expert i, and let cum, > 0 and a partition {Zm }rmear) of [T] such that ui(i) = Zi\n/le 1{t € I, }am for
any t. Therefore,

Rr(ui,...,ur)
N T N T M

— ZZut(i)n(i) — Z Z 1{t € T Yomre (i) = Z Z am Z 1{t € T }re(4)
=1 t=1 i=1 t=1 m=1 i=1 m=1

I
M=
M=
Q

3

=
=
i~
Mz

|Zon| In(NT)

s
Il
i
Il
=
@
I
,_.
-

uMg ﬁ

Z | Tom | In(NT)

N
Cauchy—Schwartz
< E 6]
=1

MEL

N M T M T
= ZO Zal a; Z {t € T} In(NT) ZO Zai Zut(i) In(NT)
i=1 i=1 i=1 t=1 i=1 t=1
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Proof (Proof of the theorem 18)

If Zz\:ll o = Z;F:l[ut(i) — ut—1(2)]+, then we can bound the dynamic regret as

N M T
Rr(u1,...,ur) SZO Zai Zut(i)ln(NT)
i=1 i=1 t=1

N T T
=Y 0| | D @) w1 @l 4| > uei) In(NT)
=1 \ t=1 t=1
Cauchy —Schwartz W o M
< o Z [we (i) — ue—1(6)]4 Z Z ue (i) In(NT)
=i =il =1 t=1

= O(+/T Az In(NT)).
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Construction of «;(7)

Goal
Construct a(2) such that
M T
D ai= [ue) — w1 ()]s
i=1 t=1
> Set t* € argming ur and create an interval Z; with ap = ug=
> Recursively performing the same construction for the inputs uj1 — ugx, ..., U _1 — ug= and
Uk 41 — Ug*, ..., up — U= respectively until there are no non-zero inputs left.
Here, we denote the sum of the weights of the above construction as h(u1,...,ur) and prove

T
h(ui, ... ,up) = Z[ut(i) — w1 (9)]4-
t=1
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Proof for such construction

Proof.

Base case: T' = 1 holds trivially.
For T' > 2: we have

h(uly---yuT):ut*+h(ul_ut*a---vut*fl_Ut*)+h(ut*+1_Ut*y---auT_ut*)
t*—1
= upx + (u1 — ugx +Z[Ut*ut—1]++[ut* 1 — U]+ + Z ut — ug—1]+
t=t* 42
t*—1

“1+Z[Utfut 4 + [wer 41 — uer ] + Z ur — up—1]+

t=t*+2
T
= E ut*Ut 1

t=1
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