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Introduction

Goals of today
1. Interval regret

◦ Weakly adaptive algorithm
◦ Strongly adaptive algorithm

2. Dynamic regret
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A motivating example

Definition (Classic Regret)

RT =
∑
t∈T

ft(wt) − min
w∈Ω

∑
t∈T

ft(w).

▶ Is the loss of the best fixed point necessarily a good benchmark?

Example (Expert problem with two experts)
Consider two expert, where the loss of expert 1 and expert 2 is given by:

l1(1) = . . . = l T
2

= (1) = 0 and l T
2 +1(1) = . . . = lT (1) = 1

l1(2) = . . . = l T
2

= (2) = 1 and l T
2 +1(2) = . . . = lT (2) = 0

◦ Both experts have loss T/2.
◦ Even if the regret to the best fixed expert is 0, the loss of the algorithm is bounded by T/2.
◦ In a non-stationary environment, classic regret is not the right objective to minimize.
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Interval regret

Definition (Interval regret)

RI :=
∑
t∈I

ft(wt) − min
w∈Ω

∑
t∈I

ft(w), where I = [s, e] ⊆ [T ].

▶ An algorithm A with interval regret RI = O(
√

|T |) simultaneously ∀I ⊆ [T ] is called a weakly adaptive
algorithm.

Goal: Design an algorithm with interval regret RI(
√

|T |).
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A motivating example: Follow-up

Recall the example: “expert problem with two experts”.
▶ In the two expert problem, a weakly adaptive algorithm achieves

R[1, T
2 ] = O(

√
T ) and R[ T

2 +1,T ] = O(
√

T )

▶ ⇒ The loss of a weakly adaptive algorithm is bounded by O(
√

T ) since:

T∑
t=1

lt(it) ≤ min
i∈{1,2}

T/2∑
t=1

lt(i)︸                  ︷︷                  ︸
=0

+O(
√

T ) + min
i∈{1,2}

T∑
t=T/2

lt(i)︸                     ︷︷                     ︸
=0

+O(
√

T )
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A weakly adaptive algorithm in the OCO setting: Online gradient descent(OGD)

Assumption
▶ The set Ω ⊆ Rd is convex with bounded diameter, i.e., ∀y, w ∈ Ω ∥w − y∥ ≤ D.
▶ The function ft : Ω → R is convex with bounded gradient norm, i.e., ∥∆ft(x)∥ ≤ G ∀x ∈ Ω.

Algorithm 1 Online gradient descent algorithm

Require: Step size ηt := D
G

√
t
.

for t = 1, . . . , T do
Play wt and observe cost ft(wt).
Update and project:

yt+1 = wt − ηt∇ft(wt)
wt+1 = ΠΩ(yt+1)

end for
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A weakly adaptive algorithm in the OCO setting: Online gradient descent(OGD) I

Theorem
The interval regret of OGD algorithm (Algorithm 1) for any interval I ⊆ [T ] is bounded by:

RI = O(
√

T ).

Proof
For I := [s, e] ⊆ [T ], we define

w∗
I := arg min

w∈Ω

∑
t∈I

ft(w)

Recall the projected gradient decent update step:

yt+1 = wt − ηt∇ft(wt)
wt+1 = ΠΩ(yt+1).
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A weakly adaptive algorithm in the OCO setting: Online gradient descent(OGD) II

Proof
Then, since the projection operator on a convex set Ω is contractive the following holds:

∥wt+1 − w∗
I ∥2 ≤ ∥yt+1 − w∗

I ∥2 = ∥wt − w∗
I ∥2 + η2

t ∥∇ft(wt)∥2 − 2ηt(∇ft(wt))⊤(wt − w∗
I ).

Thus,

2(∇ft(wt))T (wt − w∗
I ) ≤

∥wt − w∗
I ∥2 − ∥wt+1 − w∗

I ∥2

ηt
+ ηtG2 (by assumption ∥∇ft(wt)∥ ≤ G) (1)
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A weakly adaptive algorithm in the OCO setting: Online gradient descent(OGD) III

Proof
Summing the inequality across the rounds we get:

2
(∑

t∈I

ft(wt) − ft(w∗
I )
)

≤ 2
∑
t∈I

(∇ft(wt))⊤(wt − w∗
I ) (by convexity of ft)

=
∑
t∈I

∥wt − w∗
I ∥2 − ∥wt+1 − w∗

I ∥2

ηt
+ G2ηt (by equation (1))

=
∑
t∈I

∥wt − w∗
I∥2(

1
ηt

−
1

ηt−1
) + G2

∑
t∈I

ηt

≤ D2
∑
t∈I

(
1
ηt

−
1

ηt−1
) + G2

∑
t∈I

ηt (by ∥x − y∥ ≤ D for all x, y ∈ Ω)

=
D2

ηe
+ G2

∑
t∈I

ηt (define
1

ηs−1
≥ 0)
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A weakly adaptive algorithm in the OCO setting: Online gradient descent(OGD) IV

Proof
By the construction of step sizes ηt = D

G
√

t
, we have

2
(∑

t∈I

ft(wt) − ft(w∗
I )
)

≤
D2

ηe
+ G2

∑
t∈I

ηt

=DG
√

e + DG

e∑
t=s

1
√

t

≤DG
√

e + 2DG
√

e

(
By

e∑
t=s

1
√

t
≤ 2

√
e

)
≤3DG

√
T
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Interval regret: A strongly adaptive algorithm in the OCO setting

Theorem
The interval regret of OGD algorithm (Algorithm 1) for any interval I ⊆ [T ] is bounded by:

RI = O(
√

T ).

▶ ⇒ The guarantee of OGD is meaningless for intervals of length o(
√

T ).
▶ An algorithm A with interval regret RI = O(

√
|I|) simultaneously ∀I ⊆ [T ] is called a strongly adaptive

algorithm.

Goal: Design an algorithm with interval regret RI(
√

|I|).
▶ Any algorithm with (low) regret can be turned into a strongly adaptive algorithm using sleeping experts [?].
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Detour: Sleeping Experts

The sleeping expert problem
At round t = 1, . . . , T :

1. Environment decides which of the N experts are awake (at(i) = 1) and which are asleep (at(i) = 0).
2. at is revealed to learner who chooses a distribution pt ∈ ∆(N) such that pt(i) = 0 if at(i) = 0.
3. Environment reveals loss for awake experts lt(i) with at(i) = 1

Remark: ▶ The regular expert problem is a special case with at(i) = 1 for all t and i.
▶ We use the notation lt ∈ [0, 1]N , although coordinates of asleep experts are not define.

Definition (Sleeping expert regret)
The regret against a sleeping expert is defined as:

RT (i) =
∑

t:at(i)=1

(⟨pt, lt⟩ − lt(i)).

Goal: Design a sleeping expert algorithm by reducing the sleeping expert problem to the regular expert problem.
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Detour: Reducing the sleeping expert problem to regular expert problem

Design of a sleeping expert algorithm:

Suppose we are given an expert algorithm E with prediction p̂t on round t.
1. Set the prediction pt for the sleeping expert problem to pt(i) ∝ at(i)p̂t(i).
2. ▶ For the awake experts (at(i) = 1) the loss lt(i) is set to be the same in the sleeping and the regular expert problem.

▶ For the asleep experts (at(i) = 0) set the loss lt(i) = x such that the loss of E for a round is the same as the loss
of the sleeping expert algorithm, i.e., set x such that the following equality holds:∑

i:at(i)=1

p̂t(i)lt(i) +
( ∑

i:at(i)=0

p̂t(i)
)

x =
∑

i:at(i)=1

pt(i)lt(i)

⇔x =
∑

i:at(i)=1

pt(i)lt(i).

▶ ⇒ The “fake” loss of asleep experts is exactly the loss loss of the sleeping expert algorithm.
▶ We overload the notation lt to denote the loss vector of the sleeping and the regular expert problem, where

lt(i) =
∑

i:at(i)=1
pt(i)lt(i) = ⟨pt, lt⟩ if at(i) = 0.
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Detour: Reducing the sleeping expert problem to regular expert problem

Algorithm 2 Reducing from sleeping expert to regular expert

Require: Regular expert algorithm E.
for t = 1, . . . , T do

Let p̂t be the prediction of E on round t.
Observe at from the environment.
Play pt such that pt(i) ∝ at(i)p̂t(i).
Observe lt(i) for i such that at(i) = 1.
Set lt(i) = ⟨pt, lt⟩ for i such that at(i) = 0.
Pass lt to E.

end for

By the reduction, we have:

RT (i) =
∑

t:at(i)=1

(⟨pt, lt⟩ − lt(i)) =
T∑

t=1

(⟨pt, lt⟩ − lt(i)) =
T∑

t=1

(⟨p̂t, lt⟩ − lt(i)).

▶ ⇒ This is the regret against expert i in a regular expert problem.
▶ If E (e.g. Hedge) has regret bound O(

√
T log N), then the sleeping expert regret RT (i) = O(

√
T log N).

▶ Ideally, we want a sleeping expert algorithm with bound O(
√

|t : at(i) = 1| log N).
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Strongly adaptive algorithms via sleeping experts in the OCO setting

Suppose we are given an OCO algorithm A with regular regret O(
√

T ).
▶ If I = [s, e] was known, we could run A starting at round s.
▶ BUT: We want to consider all intervals I.
▶ Idea: Start a new instance of A at the beginning of every round and combine predictions from different

instances to obtain final prediction.

⇒ This can be captured by the sleeping expert problem:
▶ Each instance of A is an expert.
▶ The instance that starts at round t (denoted by At) is asleep for the first t − 1 rounds and awake for the

rest of the game.
▶ The final prediction at round t is the convex combination of the predictions from A1, . . . , At according to

the distribution decided by a slepping expert algorithm.
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Strongly adaptive algorithms via sleeping experts in the OCO setting

Algorithm 3 Strongly adaptive algorithm via sleeping experts

Require: A OCO algorithm A, a sleeping expert algorithm S.
for t = 1, . . . , T do

Start a new instance of A, called At.
Obtain predictions from A1, . . . , At−1, denoted by w1

t , . . . , wt
t.

Pass at to S, where at(i) = 1 for i ≤ t and at(i) = 0 for i > t.
Obtain distribution pt from S.
Predict wt =

∑t

i=1 pt(i)wi
t.

Observe loss function ft, suffer loss ft(wt).
Pass ft to A1, . . . , At.
Pass lSt to S, where lSt (i) = ft(wi

t) for i ≤ t.
end for
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Strongly adaptive algorithm via sleeping experts in the OCO setting

Theorem
The interval regret of Algorithm 3 for any interval I ⊆ [T ] is bounded by:

RI = O
(√

|I| log(T )
)

+ O
(√

|I|
)

.

Proof.
For any w ∈ Ω and interval I = [s, e] it follows:

RI =
∑
t∈I

(ft(wt)) − ft(w)) ≤
∑
t∈I

( t∑
i=1

pt(i)ft(wi
t) − ft(w)

)
(Jensen’s inequality)

=
∑
t∈I

(⟨pt, lSt ⟩ − lSt (s)) +
∑
t∈I

(ft(ws
t ) − ft(w))

= Re(s) + O(
√

|I|) (by the guarantee of As)

= O(
√

|I| log(T ) + O(
√

|I|). (by the guarantee of S)

□
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Strongly adaptive algorithm via sleeping experts in the expert setting

Definition (Interval regret in the expert setting)

RI =
∑
t∈I

⟨wt, lt⟩ − min
i∈[N ]

lt(i),

where N is the number of experts.

Modify Algorithm 3 such that:
◦ We are given an expert algorithm E as input, e.g. Hedge, with regular regret O(

√
T log(N)).

◦ Replace ft with lt ∈ [0, 1]N

◦ Set wi
t ∈ ∆(N) for i ≤ t.

Theorem
The interval regret of Algorithm 3 for any interval I ⊆ [T ] for the expert setting is bounded by:

RI = O
(√

|I| log(T N)
)

.
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Proof.

RI =
∑
t∈I

⟨wt, lt⟩ − lt(i) =
∑
t∈I

t∑
i=1

⟨lt, pt(i)wi
t⟩ − lt(i)

=
∑
t∈I

(⟨lSt , wt⟩ − lSt (s)) +
∑
t∈I

lt(s) − lt(i)

= Re(s) + O(
√

|I| ln N) (by the guarantee of Es)

= O(
√

|I| ln T + O(
√

|I| ln N). (by the guarantee of S)

≤ O(
√

|I| ln NT ) (by
√

x + √
y ≤

√
x + y)

□
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Computational efficiency of the strongly adaptive Algorithm 3

▶ The runtime of Algorithm 3 is O(t) per iteration ⇒ Not efficient!

Goal
Improve run time to O(log(t)) without sacrificing the regret guarantee.

Approach [?]: Modify Algorithm 3 such that:
▶ Let At live for 2d(t) rounds, where d(t) is the number of 2’s in t’s prime factorization.
▶ In other words, d(t) is the largest integer such that t = b(t) ∗ 2d(t) for some (odd) integer b(t).

t: 1 2 3 4 5 6 7 8 9 10
b(t) ∗ 2d(t): 1 ∗ 20 1 ∗ 21 3 ∗ 20 1 ∗ 22 5 ∗ 20 3 ∗ 21 7 ∗ 20 1 ∗ 23 9 ∗ 20 5 ∗ 21

d(t): 0 1 0 2 0 1 0 3 0 1

Note that:
▶ At any round t and integer d there is at most one expert with life time 2d.
▶ At round t the longest lifetime of any awake expert is bounded by 2⌊log2(t)⌋.
▶ Thus, at any round t the total number of awake experts is at most ⌊log2(t)⌋ + 1.

⇒ The runtime of the Algorithm 3 reduces to O(log(t)) per iteration.
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Computational efficiency of the strongly adaptive Algorithm 3 I

Theorem
The interval regret of Algorithm 3 with runtime O(log(t)) per iteration is bounded by:

RI = O
(√

|I| log(T )
)

.

Proof
Divide the interval I = [s, e] into several disjoint and consecutive subintervals. Let Im = [sm, em] for
m = 1, . . . , M be these subintervals, where s1 = s, sm = em−1 + 1 for 1 < m ≤ M , em = sm + 2d(sm) − 1 for
1 < m ≤ M and eM = e. Clearly for each Im (m < M) there is an instance Asm that is run solely this
interval. Furthermore,

sm+1 = em + 1 = sm + 2d(sm) = (b(sm) + 1)2d(sm) =
b(sm) + 1

2
2d(sm)+1,

where b(sm)+1
2 has to be an integer since b(sm) is odd. This implies d(sm) + 1 ≤ d(sm+1) since by

construction sm+1 = b(sm+1)2d(sm+1). This in turn implies 2|Im| ≤ |Im+1|.
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Computational efficiency of the strongly adaptive Algorithm 3 II

Proof

RI =
∑
t∈I

(ft(wt)) − ft(w)) ≤
∑
t∈I

( t∑
i=1

pt(i)ft(wi
t) − ft(w)

)
(Jensen’s inequality)

=
M∑

m=1

∑
t∈Im

(⟨pt, lt⟩ − lt(sm)) +
M∑

m=1

∑
t∈Im

(ft(wsm
t ) − ft(w))

=
M∑

m=1

Rem (sm) +
M∑

m=1

O(
√

|Im|) =
M∑

m=1

O(
√

|Im| log(T )) (by the guarantee of A and S)

≤
∞∑

m=1

O(
√

2−m|I0| log(T )) = O(
√

|I| log(T )). (using 2|Im| ≤ |Im+1|)
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Dynamic regret

Definition (Dynamic regret)

RT (u1, . . . , uT ) =
∑
t∈[T ]

ft(wt) −
∑
t∈[T ]

ft(ut).

Remark: How does dynamic regret relate to interval regret?
◦ Suppose

∑T

t=2 1{ut , ut−1} = S − 1.
◦ Define Ii := {[si, ei] ⊆ [T ] | ∀t ∈ [si, ei], ut remains unchanged}, then [T ] := ∪S

i=1Ii.

⇒ RT (u1, . . . , uT ) =
S∑

i=1

∑
t∈Ii

(ft(wt) − ft(ut)) =
S∑

i=1

RIi
.
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Bounding dynamic regret using interval regret bounds

Assume we have a strongly adaptive algorithm with regret O(
√

|I| ln T ) for any interval I, we have

RT (u1, . . . , uT ) =
S∑

i=1

RIi
= O

(
S∑

i=1

√
|Ii| ln T

)

Cauchy−Schwarz
≤ O


√√√√S

S∑
i=1

|Ii| ln T


= O

(√
ST ln T

)
.

Therefore, such regret bound is called switching regret bound and is sublinear in T as long as S is sublinear in T .
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Bounding dynamic regret in the OCO setting using online gradient descent(OGD)

Definition (Path length)
Let P(u1, . . . , uT ) be the path length of the comparison sequence defined as:

P(u1, . . . , uT ) =
T −1∑
t=1

∥ut − ut+1∥ + 1.

Theorem
The dynamic regret of online gradient descent (Algorithm 1) with step size η ≈

√
P(u1,...,uT )

T is bounded by:

RT (u1, . . . , uT ) = O
(√

T P(u1, . . . , uT )
)

.

Remark: ◦ For a fixed comparator ut = x∗, the path length is 1.
◦ ⇒ This theorem recovers the O(

√
T ) standard regret bound.
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Bounding dynamic regret in the OCO setting using online gradient descent(OGD) I

Proof
Recall the projected gradient decent update step:

yt+1 = xt − η∇ft(xt)
xt+1 = ΠΩ(yt+1).

Then, since the projection operator on a convex set Ω is contractive the following holds:

∥xt+1 − ut∥2 ≤ ∥yt+1 − ut∥2 = ∥xt − ut∥2 + η2∥∇ft(xt)∥2 − 2η(∇ft(xt))⊤(xt − ut).

Thus,

2(∇ft(xt))T (xt − ut) ≤
∥xt − ut∥2 − ∥xt+1 − ut∥2

η
+ ηG2 (by assumption ∥∇ft(xt)∥ ≤ G) (2)
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Bounding dynamic regret in the OCO setting using online gradient descent(OGD) II

Proof
Summing the inequality across the rounds we get:

2
( T∑

t=1

ft(xt) − ft(ut)
)

≤ 2
T∑

t=1

(∇ft(xt))⊤(xt − ut) (by convexity of ft)

=
T∑

t=1

∥xt − ut∥2 − ∥xt+1 − ut∥2

η
+ ηG2T (by equation (2))

=
1
η

T∑
t=1

(
∥xt∥2 − ∥xt+1∥2 + 2uT

t (xt+1 − xt)
)

+ ηG2T

≤
2
η

(
D2 +

T∑
t=1

uT
t (xt+1 − xt)

)
+ ηG2T (by ∥x − y∥ ≤ D for all x, y ∈ Ω)
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Bounding dynamic regret in the OCO setting using online gradient descent(OGD) III

Proof
Rearranging the terms in the last inequality, we have

2
( T∑

t=1

ft(xt) − ft(ut)
)

≤
2
η

(
D2 +

T∑
t=2

xT
t (ut−1 − ut) + uT

T xT +1 − uT
1 x1

)
+ ηG2T

≤
2
η

(
3D2 +

T∑
t=2

D∥ut−1 − ut∥

)
+ ηG2T (By boundness of the Ω)

≤
6D2

η

(
1 +

T∑
t=2

∥ut−1 − ut∥

)
+ ηG2T =

6D2

η
P(u1, . . . , uT ) + ηG2T (Set the diameter D ≥ 1)

= O
(√

T P(u1, . . . , uT )
)

(Set η =

√
6D2P(u1, . . . , uT )

G2T
)
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Variation of the loss functions

Example (Expert problem with two experts)
Consider two expert, where the loss of expert 1 and expert 2 is given by:

lt is an odd number(1) = 0.5 +
1
t

and lt is an even number(1) = 0.5,

lt is an odd number(2) = 0.5 and lt is an even number(2) = 0.5 +
1
t

.

◦ Choose the competitor ut as the best decision w∗
t := arg minw∈Ω ft(w).

◦ In this case, we have S = T since

ut is an odd number = Expert 2,

ut is an even number = Expert 1.

◦ The variation of the loss functions is defined as

VT :=
T∑

t=2

max
w∈Ω

|ft(w) − ft−1(w)| .

In this case, VT =
∑T

t=1
1
t

= O(ln T ).
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Bound the dynamic regret by the variation of the loss functions

Theorem ([?])
A strongly adaptive algorithm with RI = O(

√
|I| ln T ) for any interval I ensures

RT (w∗
1 , . . . , w∗

T ) = O(T
2
3 (VT ln T )

1
3 ),

where w∗
t := arg minw∈Ω ft(w).

◦ Combining this regret bound with switching regret bound, we have

RT (w∗
1 , . . . , w∗

T ) = min
{

O
(√

ST ln T
)

, O(T
2
3 (VT ln T )

1
3 )
}

◦ Back to the two experts problem, we have sublinear regret bound computed as

RT (w∗
1 , . . . , w∗

T ) = min
{

O
(

T
√

ln T
)

, O(T
2
3 (ln T )

2
3 )
}

.
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Proof of the theorem I

Proof
Let {Ii}M

i=1 be any partition on the whole game [T ], and define the variation of interval Ii as

VIi
=

ei∑
t=si+1

max
w∈Ω

|ft(w) − ft−1(w)|.

Therefore, we bound the regret as

RT =
M∑

i=1

∑
t∈Ii

(ft(wt) − ft(w∗
t )) =

M∑
i=1

∑
t∈Ii

(
ft(wt) − ft(w∗

si
)
)

+
M∑

i=1

∑
t∈Ii

(
ft(w∗

si
) − ft(w∗

t )
)

≤
M∑

i=1

O(
√

|Ii| ln T ) +
M∑

i=1

2|Ii|VIi

Cauchy−Schwarz
≤ O


√√√√M

M∑
i=1

|Ii| ln T

+ 2 max
i

|Ii|
M∑

i=1

VIi

= O(
√

MT ln T ) + 2 max
i

|Ii|VT .
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Proof of the theorem II

Proof
Find a partition that minimize O(

√
MT ln T ) + 2 maxi |Ii|VT for a fixed M , then we choose equal distribution

such that maxi |Ii| = O( T
M

). Then

RT (w∗
1 , . . . , w∗

T ) = O(
√

MT ln T ) +
2T

M
VT

= O(T
2
3 (VT ln T )

1
3 ) (set M =

(
2

√
T VT√
ln T

) 2
3

)
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Proof of the red part

∑
t∈Ii

ft(w∗
si

) − ft(w∗
t ) ≤ 2|Ii|VIi

Proof.

ft(w∗
si

) − ft(w∗
t ) ≤ ft(w∗

si
) − fsi (w∗

si
) + fsi (w∗

t ) − ft(w∗
t ) (by optimaility of w∗

si
)

=
t∑

τ=si+1

(
fτ (w∗

si
) − fτ−1(w∗

si
)
)

+
t∑

τ=si+1

(fτ−1(w∗
t ) − fτ (w∗

t ))

≤ 2
t∑

τ=si+1

max
w∈Ω

|fτ−1(w) − fτ (w)|

≤ 2VIi
.

□
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Bound the dynamic regret for the expert problem

◦ For the expert problem setting, the dynamic regret against a competitor sequence u1, . . . , uT ∈ ∆(N) can be
written as

RT (u1, . . . , uT ) =
T∑

t=1

N∑
i=1

ut(i)rt(i),

where rt(i) = ⟨pt, lt⟩ − lt(i) is the instantaneous regret.
◦ Similarly, we define the variation of the competitors for the expert problem setting as

AT :=
T∑

t=1

N∑
i=1

[ut(i) − ut−1(i)]+

Instead of variation of the loss function as introduced before which is

VT :=
T∑

t=2

max
i∈[N ]

|lt(i) − lt−1(i)|.

◦ AT and VT are in general distinct.
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Relation between AT and VT : example of AT = Ω(T ) and VT = O(1)

Example (Expert problem with two experts)
Consider two expert, where the loss of expert 1 and expert 2 is given by:

lt is an odd number(1) = 0.5 +
1
t2 and lt is an even number(1) = 0.5,

lt is an odd number(2) = 0.5 and lt is an even number(2) = 0.5 +
1
t2 .

◦ Choose the competitor ut as the best decision

ut(1) =
{

0, t is an odd number
1, t is an even number

◦ In this case, we have AT = Ω(T ) since we change the best expert every round. But the variation of the loss
functions is

VT =
T∑

t=1

1
t2 = O(1).

◦ Variation of competitors can be large while variation of loss remains small.
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Relation between AT and VT : example of AT = O(1) and VT = Ω(T )

Example (Expert problem with two experts)
Consider two expert, where the loss of expert 1 and expert 2 is given by:

lt(1) = 0.5 and lt(2) = 0.5 + 0.1t.

◦ Choose the competitor ut as the best decision which is ut(1) = 1 for t ≥ 0.
◦ In this case, we have AT = O(1) since we never change the best expert every round. But the variation of the

loss functions is

VT =
T∑

t=1

0.1 = Ω(T ).

◦ Variation of loss can be large while variation of competitors remains small.
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Dynamic regret bound for the expert problem using AT

Theorem ([?])
For the expert problem, a strongly adaptive algorithm with RI = O(

√
|I| ln NT ) for any interval I ensures

RT (u1, . . . , uT ) = O(
√

T AT ln NT )

for any competitor sequence u1, . . . , uT ∈ ∆(N).

◦ The regret is sublinear when AT is sublinear.
◦ Combining this regret bound with former results, we have

RT (w∗
1 , . . . , w∗

T ) = min
{

O
(√

ST ln NT
)

, O
(

T
2
3 (VT ln NT )

1
3

)
, O
(√

T AT ln NT

)}
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Proof (Proof of the theorem 18)
Fix an expert i, and let αm > 0 and a partition {Im}m∈[M ] of [T ] such that ut(i) =

∑M

m=1 1{t ∈ Im}αm for
any t. Therefore,

RT (u1, . . . , uT )

=
N∑

i=1

T∑
t=1

ut(i)rt(i) =
N∑

i=1

T∑
t=1

M∑
m=1

1{t ∈ Im}αmrt(i) =
N∑

i=1

M∑
m=1

αm

T∑
t=1

1{t ∈ Im}rt(i)

=
N∑

i=1

M∑
m=1

αmRIm (i) ≤
N∑

i=1

M∑
m=1

αm

√
|Im| ln(NT )

Cauchy−Schwartz
≤

N∑
i=1

O


√√√√ M∑

i=1

αi

√√√√ M∑
i=1

αi|Im| ln(NT )


=

N∑
i=1

O


√√√√ M∑

i=1

αi

√√√√ M∑
i=1

αi

T∑
t=1

1{t ∈ Im} ln(NT )

 =
N∑

i=1

O


√√√√ M∑

i=1

αi

√√√√ T∑
t=1

ut(i) ln(NT )

 .
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Proof (Proof of the theorem 18)
If
∑M

i=1 αi =
∑T

t=1[ut(i) − ut−1(i)]+, then we can bound the dynamic regret as

RT (u1, . . . , uT ) ≤
N∑

i=1

O


√√√√ M∑

i=1

αi

√√√√ T∑
t=1

ut(i) ln(NT )


=

N∑
i=1

O


√√√√ T∑

t=1

[ut(i) − ut−1(i)]+

√√√√ T∑
t=1

ut(i) ln(NT )


Cauchy−Schwartz

≤ O


√√√√( N∑

i=1

T∑
t=1

[ut(i) − ut−1(i)]+

)(
N∑

i=1

T∑
t=1

ut(i) ln(NT )

)
= O(

√
T AT ln(NT )).
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Construction of αt(i)

Goal
Construct αt(i) such that

M∑
i=1

αi =
T∑

t=1

[ut(i) − ut−1(i)]+.

▶ Set t∗ ∈ arg mint ut and create an interval I1 with α1 = ut∗

▶ Recursively performing the same construction for the inputs u1 − ut∗ , . . . , ut∗−1 − ut∗ and
ut∗+1 − ut∗ , . . . , uT − ut∗ respectively until there are no non-zero inputs left.

Here, we denote the sum of the weights of the above construction as h(u1, . . . , uT ) and prove

h(u1, . . . , uT ) :=
T∑

t=1

[ut(i) − ut−1(i)]+.
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Proof for such construction

Proof.
Base case: T = 1 holds trivially.
For T ≥ 2: we have

h(u1, . . . , uT ) = ut∗ + h(u1 − ut∗ , . . . , ut∗−1 − ut∗ ) + h(ut∗+1 − ut∗ , . . . , uT − ut∗ )

= ut∗ + (u1 − ut∗ ) +
t∗−1∑
t=2

[ut − ut−1]+ + [ut∗+1 − ut∗ ]+ +
T∑

t=t∗+2

[ut − ut−1]+

= u1 +
t∗−1∑
t=2

[ut − ut−1]+ + [ut∗+1 − ut∗ ]+ +
T∑

t=t∗+2

[ut − ut−1]+

=
T∑

t=1

[ut − ut−1]+.

□
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