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Online Learning in Continuous Games

At each round t = 1,2,..., each player i € A/

- Plays an action :B% c Xl

- Suffers loss £¢(x;) and receives (first order) feedback g¢ ~ V; £%(xy) &
> Each player i has a convex closed action set X% and a loss function Mt
2 xtx . xxN SR e

2
Ty || 9t

> Joint action of all players x = (2%);cn = (2%, x7%)

> ((-,x~ %) is convex and V; £*(x¢) is Lipschitz continuous
gtl 23
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Online Learning in Continuous Games

At each round t = 1,2,..., each player i € N/
- Plays an action :B% c Xl
- Suffers loss £¢(x;) and receives (first order) feedback g¢ ~ V; £%(xy)

e
> Each player i has a convex closed action set X'* and a loss function PI‘)2
o xtx. . xxN SR aver
> Joint action of all players x = (z%);enr = (2%, x77) wfl 9%

> ((-,x~ %) is convex and V; £*(x¢) is Lipschitz continuous %
9; :c3
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Online Learning in Continuous Games

At each round t = 1,2,..., each player i € A/

- Plays an action :B% c Xl

- Suffers loss £¢(x;) and receives (first order) feedback g¢ ~ V; £%(xy) &
> Each player i has a convex closed action set X% and a loss function Mt
2 xtx . xxN SR e

2
Ty || 9t

> Joint action of all players x = (2%);cn = (2%, x7%)

> (-, x?) is convex and V; £%(x;) is Lipschitz continuous

> Players can be adversarial or optimizing their own benefit ) R
€T

Player 1 Player 3
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Nash equilibrium and Regret

> Nash equilibrium x4: for all i € A" and all z# € X%, £i(zi,x; %) < £i(z?, x5 %)
> Hard to compute in general
> Players only know the game via gradient feedback

> Individual regret of player i:

T

i (piy — R R N Y S
Reg?(P') = prinea;(i Z(Z(mt,xt ) — £ (p*, x5 ))

t=1 cost of not playing p’i in round ¢

No regret if Regh(P?) = o(T)

> Nash equilibrium leads to no regret but the converse is more delicate
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Optimistic Gradient

o Standard Gradient Descent Ascent can diverge in bilinear problems.
o We solved the issue with Extragradient but this requires twice the number of oracle calls.
o An alternative is Optimistic gradient (OG) [x; = Xt+%]

X X —mV,

Xt+1 = Xt — m+1\7t+%

1 = 1
t+s3 -3’

o OG does not require an intermedite oracle calls.

o It performs the extrapolation step using past gradients.
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Problems

> Fast convergence of sequence of play is mostly proved for suitably tuned learning rates
Adaptive Learning in Continuous Games: Optimal Regret Bounds and Convergence to Nash Equilibrium [?]

> Nearly constant regret is possible under only perfect feedback if all players play some prescribed algorithm
No-Regret Learning in Games with Noisy Feedback: Faster Rates and Adaptivity via Learning Rate
Separation [?]
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Optimistic Mirror Descent (OptMD)

OptMD class of algorithms has been shown to enjoy optimal regret minimization guarantees.

. . Di(z, X} )
X{ = argmin(g}_,2) + —————1

i n;
reX ,t v (OptMD)
i . D (z, X})
X1 = argmin(g;_q,z) + ————
2 zEX? Tt

Regularizer h? : X* — R i.e., a continuous, strongly convex function

Bregman divergence: D(p,x) = h'(p) — h'(z) — (Vhi(z),p —x) p € X% 2 € dom Oh’

Widely used instances of OptMD:

> Past extra-gradient (PEG): h*(x) = I 2”2

> Optimistic multiplicative weights update (OMWU): h?(z) = Zzi:l z1, log T
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Limitation of OptMD

Example: Two-player planar bilinear zero-sum game ¢! (x) = —£2(x) = 2122 where X1 = X2 = [—4, 8]
> Failure with large stepsize
ST~ 8-
— last — last
5 - average |  |[[F——=2N_ - average
P NN NN
aoy N\ 44 N\
v
0 A t
0
7 !
-1
7/
NN N
24— ; : - -44! : j
2 1 0 1 2 o g z
(a) nt = 0.5 (b) ne = 0.7

Figure: The trajectories of play
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Limitation of OptMD

Example: Two-player planar bilinear zero-sum game ¢! (x) = —£2(x) = 2122 where X1 = X2 = [—4, 8]
> Decreasing stepsize n; = % — slow convergence and slow regret minimization
e S
34 — last N 34 — ast
o LT T N average /S L average
=" N 21 ; XN
1 Voo 1 P (S
04 t 0 . T |
-1 /
1 \ _1_\ \ N /7 /
/
=29, 1\ 20 N N~ - . o/
/
-3\ Y NN -~/
. —_ o 7 /
-2 : 3§
(a) m¢ %

(b) Adaptive [?]
Figure: The trajectories of play

IELTil  Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 43 EPFL



Limitation of OptMD
Problem: Mirror descent type methods with adaptive learning rates may lead to superlinear regret

Assume that player 1 has a linear loss and simplex- 30
constrained action set.

—— Ada-MWU
>Xl:AI:{(wl,wg)ERi,wl—l—wQ:l} ‘

Ada-OMWU
> Feedback sequence: [:el, ..., —e1, [:eg, .. 763] gZO
NE 273 €
> Adaptive (Optimistic) Multiplicative Weight Update
0 ~

0 20 40 60 80

100
Time horizon T
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Limitation of OptMD

Cause: New information enters MD with a decreasing weight

Solution: Enter each feedback with equal weight (e.g. Dual averaging or stabilization technique)

x5 5

75 94 e ns5
291 n3g 493 591 msg 593
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Limitation of OptMD

Cause: New information enters MD with a decreasing weight

Solution: Enter each feedback with equal weight (e.g. Dual averaging or stabilization technique)

Assume that player 1 has a linear loss and simplex-

R . 30
constrained action set.

> Xl=A1={(w1,w2)€R2+,w1+w2:1} 2

> Feedback sequence: [:el, ..., —e1, [:eg, e —63] %’)
[T/3] [27/3] x 10

> Adaptive (Optimistic) Multiplicative Weight Update
with Dual Averaging

0
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Ada-MWU-DA
Ada-OMWU-DA

Time horizon T
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Optimistic Dual Averaging (OptDA)

In contrast to OptMD, OptDA aggregates all feedback received with the same weight.

Each player selects an action x”; = Xti+

t—1
Y/ =-n E s
s=1

t—1

) . hi(x ;
X{ = arg min E (g, ) + # =Q(Y})
zEXT o—1 M
) . Di(z, X}
Xi_ | = argmin{gi_y,z) + 22X
+§ rEX un

Regularizer h': 1-strongly convex and C'!

Mirror map: Qi(y) = argmax, ¢ yi (y,z) — hi(ac)
Bregman divergence: )
D*(p,x) = h'(p) — h'(z) — (Vh'(z),p — )
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, after taking a “conservatively optimistic” step forward.

e Play z; = XH—l and receive feedback g¢
2

e Accumulate gradient and compute

Xit1, Xt+%

Y1 =0
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1 __ 7 7
Yy =-—mn E s
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t—1

; ; h'(x)
X; = argmin (gt x) + ——=
rgmin ) _(s.

— = QYY)
My
s=1
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Optimistic Dual Averaging (OptDA)

In contrast to OptMD, OptDA aggregates all feedback received with the same weight.

Each player selects an action x”; = Xti+

t—1
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) . Di(z, X!
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, after taking a “conservatively optimistic” step forward.
3

e Play z; = XH—l and receive feedback g¢
2

e Accumulate gradient and compute

Xit1, Xt+%
Yy =0
AY
AY
N\ —g1
AY
\
v )
\
\
1
1
1
Vh Q |
1
1
|
Y
Y
¥ Xi=az
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Optimistic Dual Averaging (OptDA)

In contrast to OptMD, OptDA aggregates all feedback received with the same weight.
Each player selects an action z} = X:+7

, after taking a “conservatively optimistic” step forward.

e Play z; = XH—% and receive feedback g¢
) =t e Accumulate gradient and compute
T 0 i
Yy =—mn E 9s X1, Xyy 3
s=1
t—1 . _
i : § : i h*(x) i ne
Xt = arg rmn <gs’ 'T> + - = Q(Yt ) A\
TEXY T Tt v a2
s=1 Y N2

. . \

i . ; D*(z, X7}) y \ \
XtZJrl = argmin(g;_1,z) + — | \
2 zeXi Mt | \
Vh Q ". \
i 1
Regularizer h': 1-strongly convex and C* H )

. . |
Mirror map: Q" (y) = argmax_ ¢ ,i(y, z) — h'(z) . Y v,'
g X =z 7
Bregman divergence: ) ! ! Xo

D' (p,) = h*(p) — hi(x) = (VA (2),p — )
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Optimistic Dual Averaging (OptDA)

In contrast to OptMD, OptDA aggregates all feedback received with the same weight.
Each player selects an action z} = X:+

, after taking a “conservatively optimistic” step forward.

e Play z; = XH—l and receive feedback g¢
2
) =t e Accumulate gradient and compute
(2 7 7
Yy =—mn E 9s X1, Xyy 3
s=1
t—1 . _
Xi— . i h'(z) i nze
t = arg m}n <gs’ {E> + = Q(}/t ) A\ ,‘ <7291
TEXT s—1 un \ ol Y2 ” Ve
sS= 2 2
. . \ Iy ‘\ 2
; : D*(z, X}) y \ I \
. t |
XZJrl = argmin(g;_;,z) + ———= \ '. \\\ |
P e m} Voo \
vh @ \\ "1 !
. 1 \ |
Regularizer h': 1-strongly convex and C* i s E |
. . 1 I
Mirror map: Q*(y) = argmax, c yi(y,z) — h' () X ¥ \\i ¥
X =z ¥ ‘
Bregman divergence: ) ! ! Xo X% =22
D*(p,z) = h*(p) — h*(z) — (Vh'(z),p — =)
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Optimistic Dual Averaging (OptDA)

In contrast to OptMD, OptDA aggregates all feedback received with the same weight.
Each player selects an action z; = X/, after taking a "conservatively optimistic" step forward.

2

e Play z; = XH—l and receive feedback g¢
2

i =

Xiv1, X

i e Accumulate gradient and compute
7 7
—M E s t+%
s=1

t—1

) . hi(z i
Xi = argmin > (of,2) + 8~ gy
zeX? o—1 ¢

) . Di(z, X!
Xt1+l :argmin(ngl,@—s—i( - )
2 rEX un \

Regularizer h': 1-strongly convex and C'!
Mirror map: Qi(y) = argmax, ¢ yi (y,z) — hi(ac)

Bregman divergence: )
D*(p,x) = h'(p) — h'(z) — (Vh'(z),p — )
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Optimistic Dual Averaging (OptDA)

In contrast to OptMD, OptDA aggregates all feedback received with the same weight.
Each player selects an action z; = X/, after taking a "conservatively optimistic" step forward.

e Play z; = XH—l and receive feedback g¢
2

) =t e Accumulate gradient and compute
(2 7 7
Yy =—mn E 9s X1, Xyy 3
s=1
t—1 hl )
Xj=argmin (gl x) + ) = Q(V)
zEXT Mt
s=1
; ; Di(z, X}
X1,y = argmin(gf_y,x) + Do) \
2 zEX un \ ' | ' !
1
Y P T T O
i 1
Regularizer h': 1-strongly convex and C* H ! \\ ; !
. . | I I
Mirror map: Q*(y) = arg max i (y,z) — h*(z Y ] X ¥
P Q" (y) gmax, ¢ yi (Y, ) (z) Y oxite y S
Bregman divergence: X2 X3 2

Di(p,z) = h'(p) — h'(z) — (Vh'(z),p — )
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Energy inequality

Lemma
Suppose that player i runs OptDA (or DS-OptMD). For any p* € X%, we have

Nt (o) SN () = (g XLy —9') + (s = 3) o ()
P

linearized regret

+ i_gi o oxt o — X! 7)\iDi(Xi X )7)\iDi(Xi ,Xi)
9t — 9t—1 t+1 t+1 t t+1 A1 t 410

gradient variation

distance between successive iterates

where (%):cn and ¢ are non-negative, and \i = 1/n!.
wi’ is a convergence measure (Bregman divergence or Fenchel coupling)
o Lo )
> pi(pt) > 1|17 — pil?

> Reciprocity condition: X} — p! then ti(p®) — 0
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Energy inequality

Lemma
Suppose that player i runs OptDA (or DS-OptMD). For any p* € X%, we have

N (') < Nk () - (b X[,y —r') +
A <<]1’ - gifl-,XZJr Xt)+1> /\;Di (X;+1=X;+%> — \iD* ( t’;%,X/f)

where (%)t and ¢ are non-negative, and A\ = 1/n?.

Sum the energy inequality from ¢t = 1 to T gives

T T 4i*.(l‘]f, z ‘ T .
Z<gt’ 7pi>§ +sz>\lsl
= t=2

t=1

X! - X"
‘ t+3 t—3 ()
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Adaptive learning rate

Rearranging, we get

Sl el & r
_ 1 7 7 L)y* - i
E <9t, t+1 >§/\T+1<P (p)+ E \ E t+1 Xt,% @) (1)
t=1 t=1 i t=2
Take the adaptive learning rate
; 1
ni = (Adapt)

\/T" + 300 [k -6

> 7% > 0 can be chosen freely by the player

> 772 is computed solely based on local information available to each player
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Theoretical guarantees for general convex games

Let player i play OptDA or DS-OptMD with (Adapt):
> No-regret

Theorem

If P* C X% is bounded and G = supy ||g||, the regret incurred by the player is bounded as
Regh-(PY) = O(GVT + G?)

i 2
T A i i . .
Drop — >, _, —5+ ‘X;L% - XZ,% . in (1) gives
T T ||gz —gi | 2
. . . . . . t t—1 i),
S {ahxiyy =0 ) SNt () + )
=1 t=1 i

> Consistent

If X% is compact and the action profile x;’

of all other players converges to some limit profile x;f, the
trajectory of chosen actions of player i converges to the best response set arg min; c yi £zt x30).
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Variational Stability

Definition (Variationally stable games)

Let V = (V1£',..., V™). A continuous convex game is variationally stable if the set X, of Nash equilibria
of the game is nonempty and
N
(V(x),x — x4) = Z(viei(x, 2t —21)) > 0 for all x € X, x, € X, )

=1

The game is strictly variationally stable if (2) holds as a strict inequality whenever x ¢ X.

Especially, a game is variationally stable if V is monotone. E.g.
e Convex-concave zero-sum games
e Zero-sum polymatrix games
e Cournot oligopolies

o Kelly auctions
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Theoretical guarantees for variationally stable games

If all players use OptDA or DS-OptMD with (Adapt) in a variationally stable game:
> Constant individual regret For all 7 € N and every bounded comparator set P? C X%, the individual regret
of player 4 is bounded as Reg’-(P*) = O(1).
> Convergence to Nash equilibrium The induced trajectory of play converges to a Nash equilibrium provided
that either of the following is satisfied:

a The game is strictly variationally stable. )
b The game is variationally stable and h* is (sub)differentiable on all X*.
c The players of a two-player finite zero-sum game follow stabilized OMWU.
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Theoretical guarantees for variationally stable games: Proof sketch

> Show that )\i convergences to a finite constant when t — +o0.

Under a suitable divergence metric, establish the quasi-Fejér monotonicity of the iterates with respect to
any Nash equilibrium x,.

> Derive that ||Xt+% — X¢|| = 0 and ||X; — XF%H — 0 as t — +oo.

For general (a and b): Prove that every cluster point of the sequence of play is a NE and conclude.
For OWMU (c): Prove that the sequence of play has at most one cluster point and subsequently this
cluster point must be a NE.
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lllustrative experiments

———— 1.0
—— player iy
e
< 04 15 player i
= 5 player i3
s 03 2
S Z 10
L02 s
5 2
E 01 0.5
0.0 00 0.0
0 1000 2000 3000 4000 5000 0 2000 4000 6000 8000 10000 0 100 200 300 400 500
# Iterations # Iterations # Iterations
800 0 — player1
- - - —— player2
o o o
£ £ S —— player 3
e §600 g -0
E — Jewz S0 3
3 — player 3 3
=1 H s
5 kst kst
£ £ 200 £
m
-150
0 0 —
0 1000 2000 3000 4000 5000 0 2000 4000 6000 8000 10000 0 100 200 300 400 500
# lterations # Iterations # lterations

Figure: lllustrative experiments: The realized actions (top, each line representing a coordinate of z’;) and the individual regret
(bottom) of a subset of players in a finite two-player zero-sum game (left), a resource allocation auction (middle), and a
three-player matching-pennies game (right). All the players use either adaptive OptDA or adaptive DS-OptMD as their learning
strategies. We observe convergence of the realized actions and the regrets in the first two examples.
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Summary

A family of algorithms that are
> Adaptive: do not require any prior tuning or knowledge of the game.
> No-regret: achieve O(+/T) individual regret against arbitrary opponents.
> Consistent: converge to the best response against convergent opponents.

> Convergent: if employed by all players in a monotone/variationally stable game, the induced sequence of
play converges to Nash equilibrium.
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Noisy feedback

> Individual regret of player i:

T

Regi(P') = max > (Cahx ) =00 %)
hax,
t=1

. . cost of not playing p’i in round ¢

No regret if Reg’.(P*) = o(T)

Nearly constant regret is possible under perfect feedback if all players play some prescribed algorithm like
0G.

> Stochastic oracle E[g}] = V; £/(x;)
> Noise: gy = V; £'(x¢) + &,
> E; [62] = 0 (Unbiased)
> B [1€112] < 0% + 0%, 1V:8 (x0)|* (Additive + Multiplicative Noise)
where £§ is zero-mean and has finite variance.

> We also use the notation {\/t = [gtl, . ,g{V]T and V; = [Vlfl(xt), ey VNZN(zt)}T

> Also we use Vi(x) = V£ (z).

IGLEHEEI]  Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 24/ 43



Constant Regret under Noisy Feedback

Question: OG and others algorithms achieve constant regret in a broad family of games under perfect feedback.
Can we achieve the same with noisy feedback?

Answer: Yes if the noise is multiplicative but not with OG !. We need scale separation!
E.g., OG+ [Xt = Xt+%, mt S ’Yt]

X Xt— Yt V Xt+1:Xt— Ur Vt+

[N

t+% = t,%,

Additional assumption: The game is variationally stable (include monotone games and especially zero-sum
polymatrix games). Consider the decision space X’ and the solution set X* (assumed non empty)

Vx € X,Vx* € X* (V(x),x —x*) >0
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lllustrating Example: Failure of Existing Algorithm

> Draw L1(x) = 30¢ or L2(x) = —0¢ with equal
probability so

=02 = (L1 4+ L2)/2=109¢

> Stochastic estimate E[Vt-&-%] = V(Xt-&-%)
= (3¢t+%’_39t+%) with prob. 1/2
e (—bpy1,0,, 1) with prob. 1/2
2 2

> Let's compute the variance
N 1 — 2
E, {VH_;} _1 [ (:;Q;t+l/2 - §t+1/2)2]
2 2 ( t+1/2 t+1/2)

+ } { (—¢t+1/2 - ¢t+1/2)2:|
2 (—9t+1/2 - 9t+1/2)2

o[ Gl -l Sy

> We are in the multiplicative noise case.
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lllustrating Example: Scale Separation

> Draw L1(x) = 30¢ or La(x) = —0¢ with equal

/ -—

probability so 15]
=~ = (L1 + L2)/2 o] 7 \

> OG+[xt:xt+%] J
— _ ¥ 0.5 \

Xt+% =X Ve Vt,% /

Xep1 =Xe—mVyyy oof

With ¢ > n¢
> This makes the noise an order smaller than the -0.54, \

negative shift in the analysis

~
Ve

-1.0

\ \ N ~ 0G, m=0.1/\?
“1s —e— OG+ y;=0.1n:=0.01

—
-15 -1.0 -0.5 0.0 0.5 1.0 15
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Guarantees for OG +

Theorem
Assume all players plays according to OG+ with non-increasing learning rate sequence «y; and n: such that

. 1 1 1
Yt = min ,
3L+/2N(1 +‘712v1) 2L(4N + 1)012\4 t1/4/logt
and
1
N =

T 2014 o2 )tt/2logt
Then, E [Regl,(¥1)] = O(V/T)

o The above result is not improvable when both o 4,07 > 0.
o The players’ regret is worst then the constant regret achieved under perfect feedback.

o What happens if only o3y > 07

IGEHELI]  Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 28/ 43



Guarantees for OG +

Theorem

Assume all players plays according to OG+ in a variationally stable game with purely multiplicative noise
(04 = 0) with constant learning rate sequence ¢ and n: such that

1 1
¢ = min : y
3L\/2N(1+02,) 2L(AN + 1oy,
and
_ Tt
"1+ o2,)

Then, E [Regh (¥1)] = O(1)

o The same regret bound as in the perfect feedback case is achieved.
o Perfect fedback is not necessary to obtain constant regret in variationally stable games.

o However, we need to shift from OG to OG+ to obtain constant regret.
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A limiting caveat

> The above guarantees for OG+ requires all the players to adopt the same learning rates sequence. That is,
in the individual players’ updates

XZ+1/2 =X - ’Ytngl/z

XZ+1 = XZ - 77th+1/2

the learning rates ¢, 1+ do not depend on the player index i.

> A sad consequence is that the regret guarantees no longer holds if some players plays according to other
algorithms or just OG+ with different learning rates.

> A second drawback is that we can not prove guarantees for OG+ in the fully adversarial case.
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OG + is very fragile

> The latest gradients are weighted less because the learning rate is decreasing.
> This makes the bound vacuous in the adversarial case in unbounded domain with varying step size [?].

> In the case of games where all players update their strategy with OG +. We can still prove that

N N

i .t |2 i _ a2
max B E[H& zif|?2] < z;nxl zi|[2 + O (log T)
1= 1=

therefore it is possible to deploy a time varying learning rate.
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The solution is OptDA+

> The solution is to replace the primal update step with its dual counterpart.

th+1/2 =Xi - ’YEVtZ—l/z

t

iy i E :“i

i1 = X1 — i Vs+1/2
s=1

> The above updates are dubbed OptDA+.

> The crucial point is that in the update steps all the feedbacks are post-multiplied by the same learning rate
M1

> Each player can now adopt different learning rates !
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Formal guarantees for OptDA+

Theorem
Assume all players plays according to OptDA+ with non-increasing learning rate sequence ¢ and m; such that

i 1 1 1
v¢ < — min

2L /2N (1 + (7]2”)7 (4N +1)02,

and 'yZ =0 (t*1/4) and

i Ve

< "t
=50 +02,)
and i = ©(t=1/2). Then, E [RegiT(Xi)} = O(VT)

o Notice that now players can pick different learning rates.
o We improve over the regret bound achieved by OG + by log T".

o The improvement is possible because OptDA + does not need a bound on max;¢[7) E [HXtL — xi”ﬂ
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OptDA+ and multiplicative noise

Theorem
Assume each player i € [N] plays according to OptDA+ with constant sequences 'yti and ng such that

R 1 1
7 < — min : .
2L V2N +02,) (4N + 1oy,
and .
P ——
N > 2(1 _"_o_%/[)

Then, if the feedback satisfies oo = 0, it holds that E [Regir(é\fi)] =0(1)
o In the pure multiplicative noise case the gain is less evident because also OG+ avoids logarithmic terms under
the multiplicative noise setting.

o The reason is that the step size is constant so the problematic term

N T ; ; .
Zi:l Zt:l (77% -t ) |X§ — zi]|? = 0 trivially.

7
M1
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Adversarial setting regret bound for OptDA+

o We have proven that OptDA+ is more robust than OG+

o That is, regret bounds hold even if players select different learning rates.

o It turns out that OptDA+ enjoys regret guarantees even in the fully adversarial case.

Theorem

Suppose each player implements OptDA+ with 'yf = O(tq*1/2) and ni =0 (til/z) for some q € [0,1/4]. If
the perfect feedback is bounded then, E [Regir(Xi)} = O(TY/2+9)

> We notice that the free parameter g allows to interpolate between the optimal regret guarantees in the
adversarial or game play setting.

> g = 1/4 is the optimal setting in the game play case.
> q = 0 ensures the best regret bound in the fully adversarial case.
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Proof technique

The proofs for OG+ and OptDA+ are based on the following inequality

- - - D L T A TS Y
2B [<V1(Xt+1/2)’XZ+1/2> - pl] S B [ n; - M1 - M1 - 777 i =l
X1y = X pl?

)

- F 7V (Xig1/2) = VHI(Xi—1/2)

2m;

N
+ O +0D2UE I + 20lgil1 + () LIEEy o2
j=1
o The red term telescopes.
o The blue term requires a different treatment for OptDA+ and OG+.

oIn OG+ ug = Xti therefore the double dependence on i and t of these term forces to choose same learning
rate across players.

o In OptDA+ uf‘ = X{ therefore the double dependence on t issue is solved.

o The brown term is bounded by smoothness. At this point the oracle models and the step sizes choices gives
the result.
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Remaining Problems

> Problem 1: Adaptivity to bypass the need for knowing constants and to cope with adversarial opponents ?

> Problem 2: Last-iterate convergence to Nash Equilibrium ?
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lllustrating Example: Adaptivity

> OptDA+ [y} > ni]

0G, ne=0.1Nt
~ e OG+y;=0.1n=0.01
—+— AdaOptDA+

—

1.5
t
i _ oy i i iy i E : i
41 = Xi— v 91 Xipa =X1 =M 9s 10
s=1
. 0.5
> AdaOptDA+ uses learning rate
; 1
i 0.0
Tt = l—q
2
(1+ "2 lgi )
-0.5
i 1
e =
VIS (e ixe - X)L,
N
-15
-5 -1.0
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Guarantees for AdaOptDA+

o Using AdaOptDA+ we can prove similar results without knowing the smoothness of the gradient Lipschitz
constant L.

o Same applies to the number of players taking part in the game N.

o The price is to pay is the additional assumption that Vi € [N],Vz? € X% |[Vi(z?)|| < G and ||€}|| < & almost
surely.

Theorem
Let consider the adversarial case and run AdaOptDA+. Then, it holds that E [RegiF(Xi)] = O(T'/?t9)

Theorem

Let consider the game play setting where all players update their strategies according to AdaOptDA+-, then we
have that ) )
E [Regh(X)] = O(CY9TY/?) if o4 >0.

E [Regh(X")] = O(exp (1/29)) if o4 =0.
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Benefit of adaptivity and tradeoff of ¢

AdaOptDA+ achieves simultaneously the optimal regret bounds with the exact same step sizes.
This means that we do not even need to know whether o4 = 0 or not when we run the algorithm.

In stark contrast, OptDA+ stepsizes change in the different regimes (additive vs multiplicative noise).

vV v vy

The g plays an interesting roles. In the adversarial case we have
E [Regh(X)] = O(T'/2+9)

hence it is minimized for ¢ = 0 for which we have the optimal E [RegiT(Xi)] = O(T/?),
In the game play setting, we have

E [Regh(X))] = O(CY9TY/?) if o4 > 0.

E [RegiF(Xi)] = O(exp(1/2q)) if oa=0.

Hence, g does not affect the dependence on T but it improves the constants. So we should select g as large
as allowed, i.e. ¢ =1/4.
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Convergence to Nash equilibrium

Theorem

Consider c 4 = 0 then AdaOptDA+, OptDA+ and OG+ with aforementioned learning rates produces a
sequence X /o such that it converges to a Nash equilibrium almost surely.

o The key for such prove is to establish the stabilization property Zf:1||V(Xt+1/2)||2 < oo with probability 1.
o Almost sure convergence can be derived also for o4 > 0 but only for OG+.

o For OptDA+ and AdaOptDA+ one can prove that the crucial quantity EtT:lHV(Xt_H/g)HQ grows at a rate
determined by q.

Theorem
Let OptDA+ and AdaOptDA+ run with the aforementioned step sizes satisfies Z;T:I ||V(Xt_‘_1/2)||2 < Tl-q,

o For large ¢q, we get more stable trajectory this is consistent with the better regret guarantees achieved for ¢ set
as large as allowed ¢ = 1/4.
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Summary of Results

Adversarial All players run the same algorithm
Bounded feedback Additive noise Multiplicative noise
Regret Regret Convergence Regret Convergence
0G X X X X X
OG+ X Vitlogt v cst v
OptDA+ Vit N - cst v
AdaOptDA+ Vit Vit - cst v/
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