Online Learning in Games

DRAFT

Prof Volkan Cevher volkan.cevher@epfl.ch

Lecture 9: Online learning in games with adaptivity and stochastic feedback

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-735 (Spring 2024)

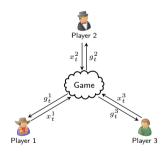
License Information for Online Learning in Games Slides

- ▶ This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - ▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
 - ► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes unless they get the licensor's permission.
- ▶ Share Alike
 - ► The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- ► Full Text of the License

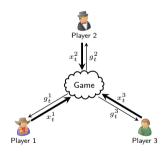
Acknowledgements

These slides were originally prepared by Wanyun Xie and Luca Viano.

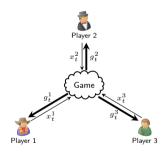
- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives (first order) feedback $g^i_t pprox
 abla_i \ell^i(\mathbf{x}_t)$
- ▶ Each player i has a convex closed action set \mathcal{X}^i and a loss function $\ell^i \colon \mathcal{X}^1 \times \ldots \times \mathcal{X}^N \to \mathbb{R}$
- \blacktriangleright Joint action of all players $\mathbf{x}=(x^i)_{i\in\mathcal{N}}=(x^i,\mathbf{x}^{-i})$
- lacksquare $\ell^i(\cdot,\mathbf{x}^{-i})$ is convex and $abla_i\,\ell^i(\mathbf{x}_t)$ is Lipschitz continuous



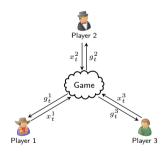
- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives (first order) feedback $g^i_t pprox
 abla_i \ell^i(\mathbf{x}_t)$
- ▶ Each player i has a convex closed action set \mathcal{X}^i and a loss function $\ell^i \colon \mathcal{X}^1 \times \ldots \times \mathcal{X}^N \to \mathbb{R}$
- ▶ Joint action of all players $\mathbf{x} = (x^i)_{i \in \mathcal{N}} = (x^i, \mathbf{x}^{-i})$
- lacksquare $\ell^i(\cdot,\mathbf{x}^{-i})$ is convex and $abla_i\,\ell^i(\mathbf{x}_t)$ is Lipschitz continuous



- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives (first order) feedback $g^i_t pprox
 abla_i \ell^i(\mathbf{x}_t)$
- ▶ Each player i has a convex closed action set \mathcal{X}^i and a loss function $\ell^i \colon \mathcal{X}^1 \times \ldots \times \mathcal{X}^N \to \mathbb{R}$
- ▶ Joint action of all players $\mathbf{x} = (x^i)_{i \in \mathcal{N}} = (x^i, \mathbf{x}^{-i})$
- lacksquare $\ell^i(\cdot,\mathbf{x}^{-i})$ is convex and $abla_i\,\ell^i(\mathbf{x}_t)$ is Lipschitz continuous



- Plays an action $x_t^i \in \mathcal{X}^i$
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives (first order) feedback $g^i_t pprox
 abla_i \ell^i(\mathbf{x}_t)$
- ▶ Each player i has a convex closed action set \mathcal{X}^i and a loss function $\ell^i \colon \mathcal{X}^1 \times \ldots \times \mathcal{X}^N \to \mathbb{R}$
- ▶ Joint action of all players $\mathbf{x} = (x^i)_{i \in \mathcal{N}} = (x^i, \mathbf{x}^{-i})$
- lacksquare $\ell^i(\cdot,\mathbf{x}^{-i})$ is convex and $abla_i\,\ell^i(\mathbf{x}_t)$ is Lipschitz continuous
- Players can be adversarial or optimizing their own benefit



Nash equilibrium and Regret

- Nash equilibrium \mathbf{x}_{\star} : for all $i \in \mathcal{N}$ and all $x^i \in \mathcal{X}^i$, $\ell^i(x_{\star}^i, \mathbf{x}_{\star}^{-i}) \leq \ell^i(x^i, \mathbf{x}_{\star}^{-i})$
 - Hard to compute in general
 - Players only know the game via gradient feedback
- ► Individual regret of player *i*:

$$\operatorname{Reg}_T^i(\mathcal{P}^i) = \max_{p^i \in \mathcal{P}^i} \sum_{t=1}^T \Big(\underbrace{\ell^i(x_t^i, \mathbf{x}_t^{-i}) - \ell^i(p^i, \mathbf{x}_t^{-i})}_{\text{cost of not playing } p^i \text{ in round } t}\Big).$$
 No regret if $\operatorname{Reg}_T^i(\mathcal{P}^i) = o(T)$

Nash equilibrium leads to no regret but the converse is more delicate

Optimistic Gradient

- o Standard Gradient Descent Ascent can diverge in bilinear problems.
- o We solved the issue with Extragradient but this requires twice the number of oracle calls.
- \circ An alternative is Optimistic gradient (OG) [$\mathbf{x}_t = \mathbf{X}_{t+\frac{1}{\alpha}}]$

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \eta_t \hat{\mathbf{V}}_{t-\frac{1}{2}}, \quad \mathbf{X}_{t+1} = \mathbf{X}_t - \eta_{t+1} \hat{\mathbf{V}}_{t+\frac{1}{2}}$$

- o OG does not require an intermedite oracle calls.
- o It performs the extrapolation step using past gradients.

Problems

► Fast convergence of sequence of play is mostly proved for suitably tuned learning rates
Adaptive Learning in Continuous Games: Optimal Regret Bounds and Convergence to Nash Equilibrium [?]

Nearly constant regret is possible under only perfect feedback if all players play some prescribed algorithm No-Regret Learning in Games with Noisy Feedback: Faster Rates and Adaptivity via Learning Rate Separation [?]

Optimistic Mirror Descent (OptMD)

OptMD class of algorithms has been shown to enjoy optimal regret minimization guarantees.

$$\begin{split} X_t^i &= \underset{x \in \mathcal{X}^i}{\arg\min} \langle g_{t-1}^i, x \rangle + \frac{D^i(x, X_{t-1}^i)}{\eta_t^i} \\ X_{t+\frac{1}{2}}^i &= \underset{x \in \mathcal{X}^i}{\arg\min} \langle g_{t-1}^i, x \rangle + \frac{D^i(x, X_t^i)}{\eta_t^i} \end{split} \tag{OptMD} \end{split}$$

Regularizer $h^i:\mathcal{X}^i \to \mathbb{R}$ i.e., a continuous, strongly convex function

 $\text{Bregman divergence: } D^i(p,x) = h^i(p) - h^i(x) - \langle \nabla h^i(x), p-x \rangle \quad p \in \mathcal{X}^i, x \in \text{dom } \partial h^i$

Widely used instances of OptMD:

- Past extra-gradient (PEG): $h^i(x) = \frac{\|x\|_2^2}{2}$
- Optimistic multiplicative weights update (OMWU): $h^i(x) = \sum_{k=1}^{d_i} x_k \log x_k$

Example: Two-player planar bilinear zero-sum game $\ell^1(\mathbf{x}) = -\ell^2(\mathbf{x}) = x^1x^2$ where $\mathcal{X}^1 = \mathcal{X}^2 = [-4, 8]$

► Failure with large stepsize

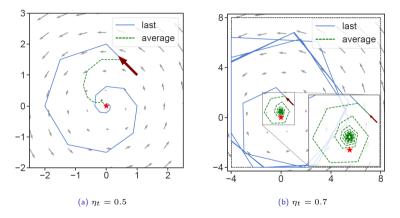


Figure: The trajectories of play

Example: Two-player planar bilinear zero-sum game $\ell^1(\mathbf{x}) = -\ell^2(\mathbf{x}) = x^1x^2$ where $\mathcal{X}^1 = \mathcal{X}^2 = [-4, 8]$

• Decreasing stepsize $\eta_t = \frac{1}{\sqrt{t}} \rightarrow$ slow convergence and slow regret minimization

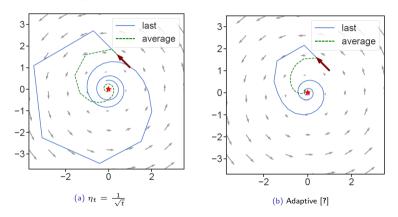


Figure: The trajectories of play

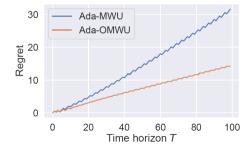
Problem: Mirror descent type methods with adaptive learning rates may lead to superlinear regret

Assume that player 1 has a linear loss and simplex-constrained action set.

$$\mathcal{X}^1 = \Delta^1 = \{(w_1, w_2) \in \mathbb{R}^2_+, w_1 + w_2 = 1\}$$

Feedback sequence:
$$[-e_1,\ldots,-e_1,\underbrace{[-e_2,\ldots,-e_2]}_{\text{[2T/3]}}]$$

► Adaptive (Optimistic) Multiplicative Weight Update



Cause: New information enters MD with a decreasing weight

Solution: Enter each feedback with equal weight (e.g. Dual averaging or stabilization technique)

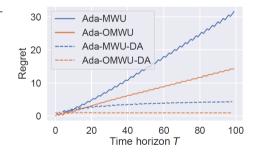
Cause: New information enters MD with a decreasing weight

Solution: Enter each feedback with equal weight (e.g. Dual averaging or stabilization technique)

Assume that player 1 has a linear loss and simplex-constrained action set.

$$\mathcal{X}^1 = \Delta^1 = \{(w_1, w_2) \in \mathbb{R}^2_+, w_1 + w_2 = 1\}$$

- Feedback sequence: $[-e_1, \dots, -e_1, [-e_2, \dots, -e_2]]$
- Adaptive (Optimistic) Multiplicative Weight Update with Dual Averaging



In contrast to OptMD, OptDA aggregates all feedback received with the same weight. Each player selects an action $x_t^i=X_{t+\frac{1}{2}}^i$ after taking a "conservatively optimistic" step forward.

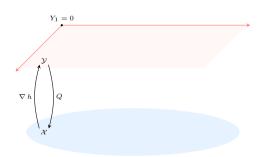
$$\begin{split} Y_t^i &= -\eta_t^i \sum_{s=1}^{t-1} g_s^i \\ X_t^i &= \operatorname*{arg\,min}_{x \in \mathcal{X}^i} \sum_{s=1}^{t-1} \langle g_s^i, x \rangle + \frac{h^i(x)}{\eta_t^i} = Q(Y_t^i) \\ X_{t+\frac{1}{2}}^i &= \operatorname*{arg\,min}_{x \in \mathcal{X}^i} \langle g_{t-1}^i, x \rangle + \frac{D^i(x, X_t^i)}{\eta_t^i} \end{split}$$

Regularizer h^i : 1-strongly convex and C^1 Mirror map: $Q^i(y) = \arg\max_{x \in \mathcal{X}^i} \langle y, x \rangle - h^i(x)$

Bregman divergence:

$$D^{i}(p,x) = h^{i}(p) - h^{i}(x) - \langle \nabla h^{i}(x), p - x \rangle$$

- ullet Play $x_t = X_{t+\frac{1}{2}}$ and receive feedback g_t
- Accumulate gradient and compute X_{t+1} , $X_{t+\frac{3}{2}}$

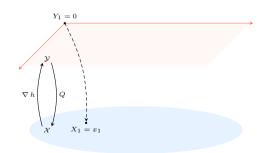


In contrast to OptMD, OptDA aggregates all feedback received with the same weight. Each player selects an action $x_t^i=X_{t+\frac{1}{2}}^i$ after taking a "conservatively optimistic" step forward.

$$\begin{split} Y_t^i &= -\eta_t^i \sum_{s=1}^{t-1} g_s^i \\ X_t^i &= \operatorname*{arg\,min}_{x \in \mathcal{X}^i} \sum_{s=1}^{t-1} \langle g_s^i, x \rangle + \frac{h^i(x)}{\eta_t^i} = Q(Y_t^i) \\ X_{t+\frac{1}{2}}^i &= \operatorname*{arg\,min}_{x \in \mathcal{X}^i} \langle g_{t-1}^i, x \rangle + \frac{D^i(x, X_t^i)}{\eta_t^i} \end{split}$$

$$D^{i}(p,x) = h^{i}(p) - h^{i}(x) - \langle \nabla h^{i}(x), p - x \rangle$$

- Play $x_t = X_{t+\frac{1}{2}}$ and receive feedback g_t
- Accumulate gradient and compute X_{t+1} , $X_{t+\frac{3}{2}}$

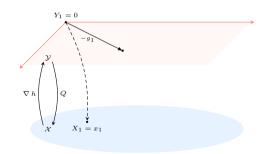


In contrast to OptMD, OptDA aggregates all feedback received with the same weight. Each player selects an action $x_t^i=X_{t+\frac{1}{2}}^i$ after taking a "conservatively optimistic" step forward.

$$\begin{split} Y_t^i &= -\eta_t^i \sum_{s=1}^{t-1} g_s^i \\ X_t^i &= \operatorname*{arg\,min}_{x \in \mathcal{X}^i} \sum_{s=1}^{t-1} \langle g_s^i, x \rangle + \frac{h^i(x)}{\eta_t^i} = Q(Y_t^i) \\ X_{t+\frac{1}{2}}^i &= \operatorname*{arg\,min}_{x \in \mathcal{X}^i} \langle g_{t-1}^i, x \rangle + \frac{D^i(x, X_t^i)}{\eta_t^i} \end{split}$$

$$D^{i}(p,x) = h^{i}(p) - h^{i}(x) - \langle \nabla h^{i}(x), p - x \rangle$$

- Play $x_t = X_{t+\frac{1}{2}}$ and receive feedback g_t
- \bullet Accumulate gradient and compute X_{t+1} , $X_{t+\frac{3}{2}}$

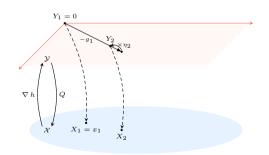


In contrast to OptMD, OptDA aggregates all feedback received with the same weight. Each player selects an action $x_t^i=X_{t+\frac{1}{2}}^i$ after taking a "conservatively optimistic" step forward.

$$\begin{split} Y_t^i &= -\eta_t^i \sum_{s=1}^{t-1} g_s^i \\ X_t^i &= \operatorname*{arg\,min}_{x \in \mathcal{X}^i} \sum_{s=1}^{t-1} \langle g_s^i, x \rangle + \frac{h^i(x)}{\eta_t^i} = Q(Y_t^i) \\ X_{t+\frac{1}{2}}^i &= \operatorname*{arg\,min}_{x \in \mathcal{X}^i} \langle g_{t-1}^i, x \rangle + \frac{D^i(x, X_t^i)}{\eta_t^i} \end{split}$$

$$D^{i}(p,x) = h^{i}(p) - h^{i}(x) - \langle \nabla h^{i}(x), p - x \rangle$$

- Play $x_t = X_{t+\frac{1}{2}}$ and receive feedback g_t
- \bullet Accumulate gradient and compute X_{t+1} , $X_{t+\frac{3}{2}}$

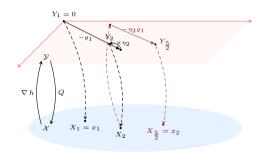


In contrast to OptMD, OptDA aggregates all feedback received with the same weight. Each player selects an action $x_t^i=X_{t+\frac{1}{2}}^i$ after taking a "conservatively optimistic" step forward.

$$\begin{split} Y_t^i &= -\eta_t^i \sum_{s=1}^{t-1} g_s^i \\ X_t^i &= \operatorname*{arg\,min}_{x \in \mathcal{X}^i} \sum_{s=1}^{t-1} \langle g_s^i, x \rangle + \frac{h^i(x)}{\eta_t^i} = Q(Y_t^i) \\ X_{t+\frac{1}{2}}^i &= \operatorname*{arg\,min}_{x \in \mathcal{X}^i} \langle g_{t-1}^i, x \rangle + \frac{D^i(x, X_t^i)}{\eta_t^i} \end{split}$$

$$D^{i}(p,x) = h^{i}(p) - h^{i}(x) - \langle \nabla h^{i}(x), p - x \rangle$$

- Play $x_t = X_{t+\frac{1}{2}}$ and receive feedback g_t
- Accumulate gradient and compute X_{t+1} , $X_{t+\frac{3}{2}}$

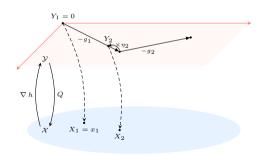


In contrast to OptMD, OptDA aggregates all feedback received with the same weight. Each player selects an action $x_t^i=X_{t+\frac{1}{2}}^i$ after taking a "conservatively optimistic" step forward.

$$\begin{split} Y_t^i &= -\eta_t^i \sum_{s=1}^{t-1} g_s^i \\ X_t^i &= \operatorname*{arg\,min}_{x \in \mathcal{X}^i} \sum_{s=1}^{t-1} \langle g_s^i, x \rangle + \frac{h^i(x)}{\eta_t^i} = Q(Y_t^i) \\ X_{t+\frac{1}{2}}^i &= \operatorname*{arg\,min}_{x \in \mathcal{X}^i} \langle g_{t-1}^i, x \rangle + \frac{D^i(x, X_t^i)}{\eta_t^i} \end{split}$$

$$D^{i}(p,x) = h^{i}(p) - h^{i}(x) - \langle \nabla h^{i}(x), p - x \rangle$$

- Play $x_t = X_{t+\frac{1}{2}}$ and receive feedback g_t
- Accumulate gradient and compute X_{t+1} , $X_{t+\frac{3}{2}}$

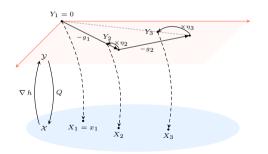


In contrast to OptMD, OptDA aggregates all feedback received with the same weight. Each player selects an action $x_t^i=X_{t+\frac{1}{2}}^i$ after taking a "conservatively optimistic" step forward.

$$\begin{split} Y_t^i &= -\eta_t^i \sum_{s=1}^{t-1} g_s^i \\ X_t^i &= \operatorname*{arg\,min}_{x \in \mathcal{X}^i} \sum_{s=1}^{t-1} \langle g_s^i, x \rangle + \frac{h^i(x)}{\eta_t^i} = Q(Y_t^i) \\ X_{t+\frac{1}{2}}^i &= \operatorname*{arg\,min}_{x \in \mathcal{X}^i} \langle g_{t-1}^i, x \rangle + \frac{D^i(x, X_t^i)}{\eta_t^i} \end{split}$$

$$D^{i}(p,x) = h^{i}(p) - h^{i}(x) - \langle \nabla h^{i}(x), p - x \rangle$$

- Play $x_t = X_{t+\frac{1}{2}}$ and receive feedback g_t
- \bullet Accumulate gradient and compute X_{t+1} , $X_{t+\frac{3}{2}}$



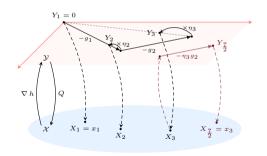
In contrast to OptMD, OptDA aggregates all feedback received with the same weight. Each player selects an action $x_t^i=X_{t+\frac{1}{2}}^i$ after taking a "conservatively optimistic" step forward.

$$\begin{split} Y_t^i &= -\eta_t^i \sum_{s=1}^{t-1} g_s^i \\ X_t^i &= \operatorname*{arg\,min}_{x \in \mathcal{X}^i} \sum_{s=1}^{t-1} \langle g_s^i, x \rangle + \frac{h^i(x)}{\eta_t^i} = Q(Y_t^i) \\ X_{t+\frac{1}{2}}^i &= \operatorname*{arg\,min}_{x \in \mathcal{X}^i} \langle g_{t-1}^i, x \rangle + \frac{D^i(x, X_t^i)}{\eta_t^i} \end{split}$$

Regularizer $h^i\colon \text{1-strongly convex and }C^1$ Mirror map: $Q^i(y) = \arg\max_{x\in\mathcal{X}^i}\langle y,x\rangle - h^i(x)$

Bregman divergence:
$$D^{i}(p,x) = h^{i}(p) - h^{i}(x) - \langle \nabla h^{i}(x), p - x \rangle$$

- Play $x_t = X_{t+\frac{1}{2}}$ and receive feedback g_t
- \bullet Accumulate gradient and compute X_{t+1} , $X_{t+\frac{3}{2}}$



Energy inequality

Lemma

Suppose that player i runs OptDA (or DS-OptMD). For any $p^i \in \mathcal{X}^i$, we have

$$\begin{split} \lambda_{t+1}^{i} \psi_{t+1}^{i} \left(p^{i} \right) & \leq \lambda_{t}^{i} \psi_{t}^{i} \left(p^{i} \right) - \underbrace{\left\langle g_{t}^{i}, X_{t+\frac{1}{2}}^{i} - p^{i} \right\rangle}_{\text{linearized regret}} + \left(\lambda_{t+1}^{i} - \lambda_{t}^{i} \right) \varphi^{i} \left(p^{i} \right) \\ & + \left\langle \underbrace{g_{t}^{i} - g_{t-1}^{i}}_{\text{gradient variation}}, X_{t+\frac{1}{2}}^{i} - X_{t+1}^{i} \right\rangle - \underbrace{\lambda_{t}^{i} D^{i} \left(X_{t+1}^{i}, X_{t+\frac{1}{2}}^{i} \right) - \lambda_{t}^{i} D^{i} \left(X_{t+\frac{1}{2}}^{i}, X_{t}^{i} \right)}_{\text{distance between successive iterates} \end{split}$$

where $(\psi_{+}^{i})_{t\in\mathbb{N}}$ and φ are non-negative, and $\lambda_{+}^{i}=1/\eta_{+}^{i}$.

ψ_{\star}^{i} is a convergence measure (Bregman divergence or Fenchel coupling)

- $\psi_t^i(p^i) \geq \frac{1}{2} ||X_t^i p_t^i||^2$
- Reciprocity condition: $X_{\star}^{i} \to p_{\star}^{i}$ then $\psi_{\star}^{i}(p^{i}) \to 0$

Energy inequality

Lemma

Suppose that player i runs OptDA (or DS-OptMD). For any $p^i \in \mathcal{X}^i$, we have

$$\begin{split} \lambda_{t+1}^{i} \psi_{t+1}^{i} \left(p^{i} \right) & \leq \lambda_{t}^{i} \psi_{t}^{i} \left(p^{i} \right) - \left\langle g_{t}^{i}, X_{t+\frac{1}{2}}^{i} - p^{i} \right\rangle + \left(\lambda_{t+1}^{i} - \lambda_{t}^{i} \right) \varphi^{i} \left(p^{i} \right) \\ & + \left\langle g_{t}^{i} - g_{t-1}^{i}, X_{t+\frac{1}{2}}^{i} - X_{t+1}^{i} \right\rangle - \lambda_{t}^{i} D^{i} \left(X_{t+1}^{i}, X_{t+\frac{1}{2}}^{i} \right) - \lambda_{t}^{i} D^{i} \left(X_{t+\frac{1}{2}}^{i}, X_{t}^{i} \right) \end{split}$$

where $(\psi_t^i)_{t\in\mathbb{N}}$ and φ are non-negative, and $\lambda_t^i=1/\eta_t^i$.

Sum the energy inequality from t=1 to T gives

$$\sum_{t=1}^{T} \left\langle g_{t}^{i}, X_{t+\frac{1}{2}}^{i} - p^{i} \right\rangle \leq \frac{\lambda_{T+1}^{i} \varphi^{i} \left(p^{i} \right)}{\lambda_{t}^{i}} + \sum_{t=1}^{T} \frac{\left\| g_{t}^{i} - g_{t-1}^{i} \right\|_{(i),*}^{2}}{\lambda_{t}^{i}} - \sum_{t=2}^{T} \frac{\lambda_{t-1}^{i}}{8} \left\| X_{t+\frac{1}{2}}^{i} - X_{t-\frac{1}{2}}^{i} \right\|_{(i)}^{2}$$

Adaptive learning rate

Rearranging, we get

$$\sum_{t=1}^{T} \left\langle g_{t}^{i}, X_{t+\frac{1}{2}}^{i} - p^{i} \right\rangle \leq \lambda_{T+1}^{i} \varphi^{i} \left(p^{i} \right) + \sum_{t=1}^{T} \frac{\left\| g_{t}^{i} - g_{t-1}^{i} \right\|_{(i),*}^{2}}{\lambda_{t}^{i}} - \sum_{t=2}^{T} \frac{\lambda_{t-1}^{i}}{8} \left\| X_{t+\frac{1}{2}}^{i} - X_{t-\frac{1}{2}}^{i} \right\|_{(i)}^{2} \tag{1}$$

Take the adaptive learning rate

$$\eta_t^i = \frac{1}{\sqrt{\tau^i + \sum_{s=1}^{t-1} \left\| g_t^i - g_{t-1}^i \right\|_{(i),*}^2}}$$
(Adapt)

- $ightharpoonup au^i > 0$ can be chosen freely by the player
- $ightharpoonup \eta_t^i$ is computed solely based on local information available to each player

Theoretical guarantees for general convex games

Let player i play OptDA or DS-OptMD with (Adapt):

No-regret

Theorem

If $\mathcal{P}^i \subseteq \mathcal{X}^i$ is bounded and $G = \sup_t \|g^i_t\|$, the regret incurred by the player is bounded as $\mathrm{Reg}_T^i(\mathcal{P}^i) = \mathcal{O}(G\sqrt{T} + G^2)$

$$\mathsf{Drop} - \sum\nolimits_{t = 2}^T {\frac{{\lambda _{t - 1}^i }}{8}\left\| {X_{t + \frac{1}{2}}^i - X_{t - \frac{1}{2}}^i } \right\|_{(i)}^2 } \; \mathsf{in} \; \mathsf{(1)} \; \mathsf{gives}$$

$$\sum_{t=1}^{T} \left\langle g_t^i, X_{t+\frac{1}{2}}^i - p^i \right\rangle \leq \lambda_{T+1}^i \varphi^i \left(p^i \right) + \sum_{t=1}^{T} \frac{\left\| g_t^i - g_{t-1}^i \right\|_{(i),*}^2}{\lambda_t^i}$$

Consistent

If \mathcal{X}^i is compact and the action profile x_t^{-i} of all other players converges to some limit profile x_∞^{-i} , the trajectory of chosen actions of player i converges to the best response set $\arg\min_{x^i\in\mathcal{X}^i}\ell^i(x^i,\mathbf{x}_\infty^{-i})$.

Variational Stability

Definition (Variationally stable games)

Let $\mathbf{V} = (\nabla_1 \ell^1, \dots, \nabla_M \ell^M)$. A continuous convex game is variationally stable if the set \mathcal{X}_{\star} of Nash equilibria of the game is nonempty and

$$\langle \mathbf{V}(\mathbf{x}), \mathbf{x} - \mathbf{x}_{\star} \rangle = \sum_{i=1}^{N} \langle \nabla_{i} \ell^{i}(\mathbf{x}, x^{i} - x_{\star}^{i}) \rangle \ge 0 \text{ for all } \mathbf{x} \in \mathcal{X}, \mathbf{x}_{\star} \in \mathcal{X}_{\star}.$$
 (2)

The game is strictly variationally stable if (2) holds as a strict inequality whenever $x \notin \mathcal{X}_{\star}$.

Especially, a game is variationally stable if V is monotone. E.g.

- Convex-concave zero-sum games
- Zero-sum polymatrix games
- Cournot oligopolies
- Kelly auctions

Theoretical guarantees for variationally stable games

If all players use OptDA or $\mathsf{DS}\text{-}\mathsf{OptMD}$ with (Adapt) in a variationally stable game:

- ▶ Constant individual regret For all $i \in \mathcal{N}$ and every bounded comparator set $\mathcal{P}^i \subseteq \mathcal{X}^i$, the individual regret of player i is bounded as $\operatorname{Reg}_T^i(\mathcal{P}^i) = \mathcal{O}(1)$.
- Convergence to Nash equilibrium The induced trajectory of play converges to a Nash equilibrium provided that either of the following is satisfied:
 - a The game is strictly variationally stable.
 - b The game is variationally stable and h^i is (sub)differentiable on all \mathcal{X}^i .
 - c The players of a two-player finite zero-sum game follow stabilized OMWU.

Theoretical guarantees for variationally stable games: Proof sketch

- Show that λ_t^i convergences to a finite constant when $t \to +\infty$.
- Under a suitable divergence metric, establish the quasi-Fejér monotonicity of the iterates with respect to any Nash equilibrium x_{*}.
- $\blacktriangleright \text{ Derive that } \|\mathbf{X}_{t+\frac{1}{2}} \mathbf{X}_t\| \to 0 \text{ and } \|\mathbf{X}_t \mathbf{X}_{t-\frac{1}{2}}\| \to 0 \text{ as } t \to +\infty.$
- For general (a and b): Prove that every cluster point of the sequence of play is a NE and conclude. For OWMU (c): Prove that the sequence of play has at most one cluster point and subsequently this cluster point must be a NE.

Illustrative experiments

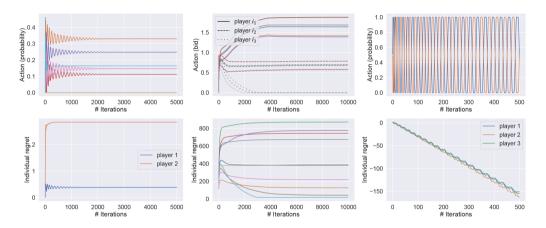


Figure: Illustrative experiments: The realized actions (top, each line representing a coordinate of x_t^i) and the individual regret (bottom) of a subset of players in a finite two-player zero-sum game (left), a resource allocation auction (middle), and a three-player matching-pennies game (right). All the players use either adaptive OptDA or adaptive DS-OptMD as their learning strategies. We observe convergence of the realized actions and the regrets in the first two examples.

Summary

A family of algorithms that are

- Adaptive: do not require any prior tuning or knowledge of the game.
- ▶ No-regret: achieve $\mathcal{O}(\sqrt{T})$ individual regret against arbitrary opponents.
- ▶ Consistent: converge to the best response against convergent opponents.
- Convergent: if employed by all players in a monotone/variationally stable game, the induced sequence of play converges to Nash equilibrium.

Noisy feedback

▶ Individual regret of player *i*:

$$\operatorname{Reg}_T^i(\mathcal{P}^i) = \max_{p^i \in \mathcal{P}^i} \ \sum_{t=1}^T \Big(\underbrace{\ell^i(x_t^i, \mathbf{x}_t^{-i}) - \ell^i(p^i, \mathbf{x}_t^{-i})}_{\text{cost of not playing } p^i \text{ in round } t}\Big).$$

No regret if $\operatorname{Reg}_T^i(\mathcal{P}^i) = o(T)$

Nearly constant regret is possible under perfect feedback if all players play some prescribed algorithm like OG.

- Stochastic oracle $\mathbb{E}[g_t^i] = \nabla_i \, \ell^i(\mathbf{x}_t)$
 - Noise: $g_t^i = \nabla_i \, \ell^i(\mathbf{x}_t) + \xi_t^i$
 - $ightharpoonup \mathbb{E}_t \left[\xi_t^i \right] = 0$ (Unbiased)
 - $\mathbb{E}_t \left[\|\xi_t^i\|^2 \right] \leq \sigma_A^2 + \sigma_M^2 \|\nabla_i \ell^i(\mathbf{x}_t)\|^2 \text{ (Additive + Multiplicative Noise)}$

where ξ_{+}^{i} is zero-mean and has finite variance.

- $lackbox{lack}$ We also use the notation $\widehat{\mathbf{V}}_t = \left[g_t^1,\dots,g_t^N
 ight]^T$ and $\mathbf{V}_t = \left[
 abla_1\ell^1(x_t),\dots,
 abla_N\ell^N(x_t)
 ight]^T$.
- Also we use $V^i(x) = \nabla_i \ell^i(x)$.

Constant Regret under Noisy Feedback

Question: OG and others algorithms achieve constant regret in a broad family of games under perfect feedback. Can we achieve the same with noisy feedback?

Answer: Yes if the noise is multiplicative but not with OG !. We need scale separation! E.g., OG+ $[\mathbf{x}_t = \mathbf{X}_{t+\frac{1}{2}}, \, \eta_t \leq \gamma_t]$

$$\mathbf{X}_{t+\frac{1}{2}} = \mathbf{X}_t - \boxed{\gamma_t} \hat{\mathbf{V}}_{t-\frac{1}{2}}, \quad \mathbf{X}_{t+1} = \mathbf{X}_t - \boxed{\eta_t} \hat{\mathbf{V}}_{t+\frac{1}{2}}$$

Additional assumption: The game is variationally stable (include monotone games and especially zero-sum polymatrix games). Consider the decision space \mathcal{X} and the solution set \mathcal{X}^{\star} (assumed non empty)

$$\forall \mathbf{x} \in \mathcal{X}, \forall \mathbf{x}^* \in \mathcal{X}^* \langle \mathbf{V}(\mathbf{x}), \mathbf{x} - \mathbf{x}^* \rangle \ge 0$$

Illustrating Example: Failure of Existing Algorithm

▶ Draw $\mathcal{L}_1(\mathbf{x}) = 3\theta\phi$ or $\mathcal{L}_2(\mathbf{x}) = -\theta\phi$ with equal probability so

$$\ell^1 = -\ell^2 = (\mathcal{L}_1 + \mathcal{L}_2)/2 = \theta \phi$$

 $\qquad \qquad \qquad \mathbf{S} \text{tochastic estimate } \mathbb{E}[\hat{\mathbf{V}}_{t+\frac{1}{2}}] = \mathbf{V}(\mathbf{X}_{t+\frac{1}{2}})$

$$\hat{\mathbf{V}}_{t+\frac{1}{2}} = \begin{cases} (3\phi_{t+\frac{1}{2}}, -3\theta_{t+\frac{1}{2}}) & \text{with prob. } 1/2 \\ (-\phi_{t+\frac{1}{2}}, \theta_{t+\frac{1}{2}}) & \text{with prob. } 1/2 \end{cases}$$

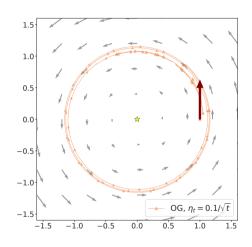
Let's compute the variance

$$\mathbb{E}_{t} \left[\hat{\mathbf{V}}_{t+\frac{1}{2}} \right] = \frac{1}{2} \begin{bmatrix} (3\phi_{t+1/2} - \phi_{t+1/2})^{2} \\ (3\theta_{t+1/2} - \theta_{t+1/2})^{2} \end{bmatrix}$$

$$+ \frac{1}{2} \begin{bmatrix} (-\phi_{t+1/2} - \phi_{t+1/2})^{2} \\ (-\theta_{t+1/2} - \theta_{t+1/2})^{2} \end{bmatrix}$$

$$= 4 \begin{bmatrix} (\phi_{t+1/2})^{2} \\ (-\theta_{t+1/2})^{2} \end{bmatrix} = 4 \begin{bmatrix} (\nabla_{\theta} \ell_{1})^{2} \\ (-\nabla_{\phi} \ell_{2})^{2} \end{bmatrix}$$

We are in the multiplicative noise case.



Illustrating Example: Scale Separation

▶ Draw $\mathcal{L}_1(\mathbf{x}) = 3\theta\phi$ or $\mathcal{L}_2(\mathbf{x}) = -\theta\phi$ with equal probability so

$$\ell^1 = -\ell^2 = (\mathcal{L}_1 + \mathcal{L}_2)/2$$

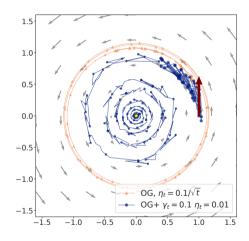
• OG+ $[\mathbf{x}_t = \mathbf{X}_{t+\frac{1}{2}}]$

$$\mathbf{X}_{t+rac{1}{2}} = \mathbf{X}_t - igg| \hat{\mathbf{V}}_{t-rac{1}{2}}$$

$$\mathbf{X}_{t+1} = \mathbf{X}_t - \eta_t \hat{\mathbf{V}}_{t+\frac{1}{2}}$$

With $\gamma_t \geq \eta_t$

This makes the noise an order smaller than the negative shift in the analysis



Guarantees for OG +

Theorem

Assume all players plays according to OG+ with non-increasing learning rate sequence γ_t and η_t such that

$$\gamma_t = \min \left\{ \frac{1}{3L\sqrt{2N(1+\sigma_M^2)}}, \frac{1}{2L(4N+1)\sigma_M^2} \right\} \frac{1}{t^{1/4}\sqrt{\log t}}$$

and

$$\eta_t = \frac{1}{2(1 + \sigma_M^2)t^{1/2} \log t}$$

Then,
$$\mathbb{E}\left[\operatorname{Reg}_T^i(\mathcal{X}^i)\right] = \widetilde{\mathcal{O}}(\sqrt{T})$$

- \circ The above result is not improvable when both $\sigma_A, \sigma_M > 0$.
- o The players' regret is worst then the constant regret achieved under perfect feedback.
- \circ What happens if only $\sigma_M > 0$?

Guarantees for OG +

Theorem

Assume all players plays according to OG+ in a variationally stable game with purely multiplicative noise $(\sigma_A=0)$ with constant learning rate sequence γ_t and η_t such that

$$\gamma_t = \min \left\{ \frac{1}{3L\sqrt{2N(1+\sigma_M^2)}}, \frac{1}{2L(4N+1)\sigma_M^2} \right\}$$

and

$$\eta_t = \frac{\gamma_t}{2(1 + \sigma_M^2)}$$

Then,
$$\mathbb{E}\left[\operatorname{Reg}_{\mathrm{T}}^{i}(\mathcal{X}^{i})\right]=\mathcal{O}(1)$$

- The same regret bound as in the perfect feedback case is achieved.
- o Perfect fedback is not necessary to obtain constant regret in variationally stable games.
- o However, we need to shift from OG to OG+ to obtain constant regret.

A limiting caveat

▶ The above guarantees for OG+ requires all the players to adopt the **same** learning rates sequence. That is, in the individual players' updates

$$X_{t+1/2}^{i} = X_{t}^{i} - \gamma_{t} g_{t-1/2}^{i}$$

$$X_{t+1}^{i} = X_{t}^{i} - \eta_{t} g_{t+1/2}^{i}$$

the learning rates γ_t , η_t do not depend on the player index i.

- ▶ A sad consequence is that the regret guarantees no longer holds if some players plays according to other algorithms or just OG+ with different learning rates.
- ▶ A second drawback is that we can not prove guarantees for OG+ in the fully adversarial case.

OG + is very fragile

- ▶ The latest gradients are weighted less because the learning rate is decreasing.
- ▶ This makes the bound vacuous in the adversarial case in unbounded domain with varying step size [?].
- ▶ In the case of games where all players update their strategy with OG +. We can still prove that

$$\max_{t \in [T]} \mathbb{E} \sqrt{\sum_{i=1}^{N} \left[\|X_t^i - x_\star^i\|^2 \right]} \le \sqrt{\sum_{i=1}^{N} \|X_1^i - x_\star^i\|^2} + \mathcal{O}\left(\log T\right)$$

therefore it is possible to deploy a time varying learning rate.

The solution is OptDA+

▶ The solution is to replace the primal update step with its dual counterpart.

$$\begin{split} X_{t+1/2}^i &= X_t^i - \gamma_t^i \hat{V}_{t-1/2}^i \\ X_{t+1}^i &= X_1^i - \eta_{t+1}^i \sum_{s=1}^t \hat{V}_{s+1/2}^i \end{split}$$

- ► The above updates are dubbed OptDA+.
- The crucial point is that in the update steps all the feedbacks are *post*-multiplied by the same learning rate η_{t+1}^i .
- ► Each player can now adopt different learning rates!

Formal guarantees for OptDA+

Theorem

Assume all players plays according to OptDA+ with non-increasing learning rate sequence γ_t and η_t such that

$$\gamma_t^i \leq \frac{1}{2L} \min \left\{ \frac{1}{\sqrt{2N(1+\sigma_M^2)}}, \frac{1}{(4N+1)\sigma_M^2} \right\}$$

and $\gamma_t^i = \mathcal{O}\left(t^{-1/4}
ight)$ and

$$\eta_t^i \le \frac{\gamma_t^i}{2(1+\sigma_M^2)}$$

and
$$\eta_t^i = \Theta(t^{-1/2})$$
. Then, $\mathbb{E}\left[\mathrm{Reg}_{\mathrm{T}}^{\mathrm{i}}(\mathcal{X}^{\mathrm{i}})\right] = \mathcal{O}(\sqrt{T})$

- o Notice that now players can pick different learning rates.
- \circ We improve over the regret bound achieved by OG + by $\log T$.
- $\circ \text{ The improvement is possible because OptDA} + \text{does not need a bound on } \max_{t \in [T]} \mathbb{E}\left[\|X_t^i x_\star^i\|^2\right].$

OptDA+ and multiplicative noise

Theorem

Assume each player $i \in [N]$ plays according to OptDA+ with constant sequences γ^i_t and η^i_t such that

$$\gamma_t^i \leq \frac{1}{2L} \min \left\{ \frac{1}{\sqrt{2N(1+\sigma_M^2)}}, \frac{1}{(4N+1)\sigma_M^2} \right\}$$

and

$$\eta_t^i \le \frac{\gamma_t^i}{2(1+\sigma_M^2)}.$$

Then, if the feedback satisfies $\sigma_A=0$, it holds that $\mathbb{E}\left[\operatorname{Reg}_{\mathbb{T}}^i(\mathcal{X}^i)\right]=\mathcal{O}(1)$

- \circ In the pure multiplicative noise case the gain is less evident because also OG+ avoids logarithmic terms under the multiplicative noise setting.
- o The reason is that the step size is constant so the problematic term

$$\sum_{i=1}^{N} \sum_{t=1}^{T} \left(\frac{1}{\eta_{\star}^{i}} - \frac{1}{\eta_{\star+1}^{i}} \right) \|X_{t}^{i} - x_{\star}^{i}\|^{2} = 0 \text{ trivially.}$$

Adversarial setting regret bound for OptDA+

- \circ We have proven that $\mathsf{OptDA} +$ is more robust than $\mathsf{OG} +$
- o That is, regret bounds hold even if players select different learning rates.
- o It turns out that OptDA+ enjoys regret guarantees even in the fully adversarial case.

Theorem

Suppose each player implements OptDA+ with $\gamma_t^i=\mathcal{O}(t^{q-1/2})$ and $\eta_t^i=\Theta\left(t^{-1/2}\right)$ for some $q\in[0,1/4].$ If the perfect feedback is bounded then, $\mathbb{E}\left[\mathrm{Reg}_{\mathrm{T}}^i(\mathcal{X}^i)\right]=\mathcal{O}(T^{1/2+q})$

- ▶ We notice that the free parameter *q* allows to interpolate between the optimal regret guarantees in the adversarial or game play setting.
 - ightharpoonup q = 1/4 is the optimal setting in the game play case.
 - ightharpoonup q = 0 ensures the best regret bound in the fully adversarial case.

Proof technique

The proofs for OG+ and OptDA+ are based on the following inequality

$$\begin{split} & 2\mathbb{E}_{t-1}\left[\left\langle V^{i}(\mathbf{X}_{t+1/2}), X^{i}_{t+1/2}\right\rangle - p^{i}\right] \leq \mathbb{E}_{t-1}\left[\frac{\|X^{i}_{t} - p^{i}\|^{2}}{\eta^{i}_{t}} - \frac{\|X^{i}_{t+1} - p^{i}\|^{2}}{\eta^{i}_{t+1}} + \left(\frac{1}{\eta^{i}_{t+1}} - \frac{1}{\eta^{i}_{t}}\right)\|u^{i}_{t} - p^{i}\|^{2} \right. \\ & - \gamma^{i}_{t}(\|V^{i}(\mathbf{X}_{t+1/2})\|^{2} + \|V^{i}(\mathbf{X}_{t-1/2})\|^{2}) + \gamma^{i}_{t}\|V^{i}(\mathbf{X}_{t+1/2}) - V^{i}(\mathbf{X}_{t-1/2})\|^{2} - \frac{\|\mathbf{X}_{t+1/2} - \mathbf{X}_{t-1/2}\|^{2}}{2\eta^{i}_{t}} \\ & + \sum_{i=1}^{N} (\gamma^{j}_{t} + \eta^{j}_{t})^{2} \|\xi^{j}_{t-1/2}\|^{2} + 2\eta^{i}_{t}\|g^{i}_{t}\|^{2} + (\gamma^{i}_{t})^{2} L \|\xi^{i}_{t-1/2}\|^{2} \right] \end{split}$$

- o The red term telescopes.
- o The blue term requires a different treatment for OptDA+ and OG+.
- \circ In OG+ $u_t^i=X_t^i$ therefore the double dependence on i and t of these term forces to choose same learning rate across players.
- \circ In OptDA+ $u_{\scriptscriptstyle t}^i = X_{\scriptscriptstyle 1}^i$ therefore the double dependence on t issue is solved.
- o The brown term is bounded by smoothness. At this point the oracle models and the step sizes choices gives the result.

Remaining Problems

- Problem 1: Adaptivity to bypass the need for knowing constants and to cope with adversarial opponents ?
- ▶ Problem 2: Last-iterate convergence to Nash Equilibrium ?

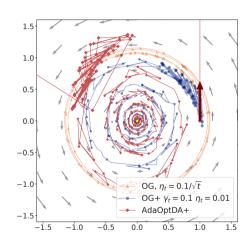
Illustrating Example: Adaptivity

ightharpoonup OptDA+ $[\gamma_t^i \geq \eta_t^i]$

$$X_{t+\frac{1}{2}}^{i} = X_{t}^{i} - \frac{\gamma_{t}^{i}}{\gamma_{t}^{i}} g_{t-1}^{i} \quad X_{t+1}^{i} = X_{1}^{i} - \eta_{t+1}^{i} \sum_{s=1}^{t} g_{s}^{i}$$

► AdaOptDA+ uses learning rate

$$\begin{split} \gamma_t^i &= \frac{1}{\left(1 + \sum_{s=1}^{t-2} \|g_s^i\|^2\right)^{\frac{1}{2} - q}} \\ \eta_t^i &= \frac{1}{\sqrt{1 + \sum_{s=1}^{t-2} \left(\|g_s^i\|^2 + \|X_s^i - X_{s+1}^i\|^2\right)}} \end{split}$$



Guarantees for AdaOptDA+

- \circ Using AdaOptDA+ we can prove similar results without knowing the smoothness of the gradient Lipschitz constant L.
- \circ Same applies to the number of players taking part in the game N.
- \circ The price is to pay is the additional assumption that $\forall i \in [N], \forall x^i \in \mathcal{X}^i \ \|V^i(x^i)\| \leq G$ and $\|\xi^i_t\| \leq \bar{\sigma}$ almost surely.

Theorem

 $\text{Let consider the adversarial case and run AdaOptDA} +. \text{ Then, it holds that } \mathbb{E}\left[\mathrm{Reg}_{\mathrm{T}}^{\mathrm{i}}(\mathcal{X}^{\mathrm{i}})\right] = \mathcal{O}(T^{1/2+q})$

Theorem

Let consider the game play setting where all players update their strategies according to AdaOptDA+, then we have that

$$\mathbb{E}\left[\operatorname{Reg}_{\mathrm{T}}^{\mathrm{i}}(\mathcal{X}^{\mathrm{i}})\right] = \mathcal{O}(C^{1/q}T^{1/2}) \quad \text{if} \quad \sigma_A > 0.$$

$$\mathbb{E}\left[\operatorname{Reg}_{\mathrm{T}}^{\mathrm{i}}(\mathcal{X}^{\mathrm{i}})\right] = \mathcal{O}(\exp\left(1/2q\right)) \quad \textit{if} \quad \sigma_{A} = 0.$$

Benefit of adaptivity and tradeoff of q

- AdaOptDA+ achieves simultaneously the optimal regret bounds with the exact same step sizes.
- lacktriangle This means that we do not even need to know whether $\sigma_A=0$ or not when we run the algorithm.
- ▶ In stark contrast, OptDA+ stepsizes change in the different regimes (additive vs multiplicative noise).
- ightharpoonup The q plays an interesting roles. In the adversarial case we have

$$\mathbb{E}\left[\operatorname{Reg}_{\mathrm{T}}^{\mathrm{i}}(\mathcal{X}^{\mathrm{i}})\right] = \mathcal{O}(T^{1/2+q})$$

hence it is minimized for q=0 for which we have the optimal $\mathbb{E}\left[\mathrm{Reg}_{\mathrm{T}}^{i}(\mathcal{X}^{i})\right]=\mathcal{O}(T^{1/2})$. In the game play setting, we have

$$\mathbb{E}\left[\operatorname{Reg}_{\mathrm{T}}^{\mathrm{i}}(\mathcal{X}^{\mathrm{i}})\right] = \mathcal{O}(C^{1/q}T^{1/2}) \quad \text{if} \quad \sigma_A > 0.$$

$$\mathbb{E}\left[\operatorname{Reg}_{\mathrm{T}}^{\mathrm{i}}(\mathcal{X}^{\mathrm{i}})\right] = \mathcal{O}(\exp\left(1/2q\right)) \quad \text{if} \quad \sigma_{A} = 0.$$

Hence, q does not affect the dependence on T but it improves the constants. So we should select q as large as allowed, i.e. q = 1/4.

Convergence to Nash equilibrium

Theorem

Consider $\sigma_A=0$ then AdaOptDA+, OptDA+ and OG+ with aforementioned learning rates produces a sequence $\mathbf{X}_{t+1/2}$ such that it converges to a Nash equilibrium almost surely.

- \circ The key for such prove is to establish the stabilization property $\sum_{t=1}^{T} \|\mathbf{V}(\mathbf{X}_{t+1/2})\|^2 < \infty$ with probability 1.
- \circ Almost sure convergence can be derived also for $\sigma_A > 0$ but only for OG+.
- \circ For OptDA+ and AdaOptDA+ one can prove that the crucial quantity $\sum_{t=1}^{T} \|\mathbf{V}(\mathbf{X}_{t+1/2})\|^2$ grows at a rate determined by q.

Theorem

 $\text{Let OptDA+ and AdaOptDA+ run with the aforementioned step sizes satisfies } \sum_{t=1}^{T} \lVert \mathbf{V}(\mathbf{X}_{t+1/2}) \rVert^2 \leq T^{1-q}.$

 \circ For large q, we get more stable trajectory this is consistent with the better regret guarantees achieved for q set as large as allowed q=1/4.

Summary of Results

	Adversarial	All players run the same algorithm			
	Bounded feedback	Additive noise		Multiplicative noise	
	Regret	Regret	Convergence	Regret	Convergence
OG	Х	×	×	X	×
OG+	×	$\sqrt{t}\log t$	✓	cst	✓
OptDA +	\sqrt{t}	\sqrt{t}	_	cst	✓
AdaOptDA+	\sqrt{t}	\sqrt{t}	-	cst	✓

References |

