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Online Learning in Continuous Games

At each round t = 1, 2, . . ., each player i ∈ N
- Plays an action xi

t ∈ X i

- Suffers loss ℓi(xt) and receives (first order) feedback gi
t ≈ ∇i ℓ

i(xt)

▶ Each player i has a convex closed action set X i and a loss function
ℓi : X 1 × . . .× X N → R

▶ Joint action of all players x = (xi)i∈N = (xi,x−i)
▶ ℓi(·,x−i) is convex and ∇i ℓ

i(xt) is Lipschitz continuous

▶ Players can be adversarial or optimizing their own benefit
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Nash equilibrium and Regret

▶ Nash equilibrium x⋆: for all i ∈ N and all xi ∈ X i, ℓi(xi
⋆,x

−i
⋆ ) ≤ ℓi(xi,x−i

⋆ )
▶ Hard to compute in general
▶ Players only know the game via gradient feedback

▶ Individual regret of player i:

Regi
T (Pi) = max

pi∈Pi

T∑
t=1

(
ℓi(xi

t,x
−i
t ) − ℓi(pi,x−i

t )︸                                ︷︷                                ︸
cost of not playing pi in round t

)
.

No regret if Regi
T (Pi) = o(T )

▶ Nash equilibrium leads to no regret but the converse is more delicate
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Optimistic Gradient

◦ Standard Gradient Descent Ascent can diverge in bilinear problems.

◦ We solved the issue with Extragradient but this requires twice the number of oracle calls.

◦ An alternative is Optimistic gradient (OG) [ xt = Xt+ 1
2

]

Xt+ 1
2

= Xt − ηtV̂t− 1
2
, Xt+1 = Xt − ηt+1V̂t+ 1

2

◦ OG does not require an intermedite oracle calls.

◦ It performs the extrapolation step using past gradients.
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Problems

▶ Fast convergence of sequence of play is mostly proved for suitably tuned learning rates
Adaptive Learning in Continuous Games: Optimal Regret Bounds and Convergence to Nash Equilibrium [?]

▶ Nearly constant regret is possible under only perfect feedback if all players play some prescribed algorithm
No-Regret Learning in Games with Noisy Feedback: Faster Rates and Adaptivity via Learning Rate
Separation [?]
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Optimistic Mirror Descent (OptMD)

OptMD class of algorithms has been shown to enjoy optimal regret minimization guarantees.

Xi
t = arg min

x∈X i

⟨gi
t−1, x⟩ +

Di(x,Xi
t−1)

ηi
t

Xi
t+ 1

2
= arg min

x∈X i

⟨gi
t−1, x⟩ +

Di(x,Xi
t)

ηi
t

(OptMD)

Regularizer hi : X i → R i.e., a continuous, strongly convex function
Bregman divergence: Di(p, x) = hi(p) − hi(x) − ⟨∇hi(x), p− x⟩ p ∈ X i, x ∈ dom ∂hi

Widely used instances of OptMD:

▶ Past extra-gradient (PEG): hi(x) = ∥x∥2
2

2

▶ Optimistic multiplicative weights update (OMWU): hi(x) =
∑di

k=1 xk log xk

Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 43



Limitation of OptMD
Example: Two-player planar bilinear zero-sum game ℓ1(x) = −ℓ2(x) = x1x2 where X 1 = X 2 = [−4, 8]
▶ Failure with large stepsize

(a) ηt = 0.5 (b) ηt = 0.7

Figure: The trajectories of play
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Limitation of OptMD
Example: Two-player planar bilinear zero-sum game ℓ1(x) = −ℓ2(x) = x1x2 where X 1 = X 2 = [−4, 8]
▶ Decreasing stepsize ηt = 1√

t
→ slow convergence and slow regret minimization

(a) ηt = 1√
t (b) Adaptive [?]

Figure: The trajectories of play
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Limitation of OptMD

Problem: Mirror descent type methods with adaptive learning rates may lead to superlinear regret

Assume that player 1 has a linear loss and simplex-
constrained action set.
▶ X 1 = ∆1 = {(w1, w2) ∈ R2

+, w1 + w2 = 1}
▶ Feedback sequence: [−e1, . . . ,−e1︸              ︷︷              ︸

[T/3]

, [−e2, . . . ,−e2︸              ︷︷              ︸
[2T/3]

]

▶ Adaptive (Optimistic) Multiplicative Weight Update
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Limitation of OptMD

Cause: New information enters MD with a decreasing weight

Solution: Enter each feedback with equal weight (e.g. Dual averaging or stabilization technique)

x5

η2g1 η3g2 η4g3
η5g4

x5

η5g1 η5g2 η5g3
η5g4
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Limitation of OptMD

Cause: New information enters MD with a decreasing weight

Solution: Enter each feedback with equal weight (e.g. Dual averaging or stabilization technique)

Assume that player 1 has a linear loss and simplex-
constrained action set.
▶ X 1 = ∆1 = {(w1, w2) ∈ R2

+, w1 + w2 = 1}
▶ Feedback sequence: [−e1, . . . ,−e1︸              ︷︷              ︸

[T/3]

, [−e2, . . . ,−e2︸              ︷︷              ︸
[2T/3]

]

▶ Adaptive (Optimistic) Multiplicative Weight Update
with Dual Averaging
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Optimistic Dual Averaging (OptDA)

In contrast to OptMD, OptDA aggregates all feedback received with the same weight.
Each player selects an action xi

t = Xi
t+ 1

2
after taking a “conservatively optimistic” step forward.

Y i
t = −ηi

t

t−1∑
s=1

gi
s

Xi
t = arg min

x∈X i

t−1∑
s=1

⟨gi
s, x⟩ +

hi(x)
ηi

t

= Q(Y i
t )

Xi
t+ 1

2
= arg min

x∈X i

⟨gi
t−1, x⟩ +

Di(x,Xi
t)

ηi
t

Regularizer hi: 1-strongly convex and C1

Mirror map: Qi(y) = arg maxx∈X i ⟨y, x⟩ − hi(x)
Bregman divergence:
Di(p, x) = hi(p) − hi(x) − ⟨∇hi(x), p − x⟩

• Play xt = Xt+ 1
2

and receive feedback gt

• Accumulate gradient and compute
Xt+1, Xt+ 3

2

X

Y

∇ h Q

−g1

−g2
×η2

×η3

X1 = x1
X2 X3

Y1 = 0

Y2
Y3
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Energy inequality

Lemma
Suppose that player i runs OptDA (or DS-OptMD). For any pi ∈ X i, we have

λi
t+1ψ

i
t+1

(
pi

)
≤ λi

tψ
i
t

(
pi

)
−

〈
gi

t, X
i
t+ 1

2
− pi

〉
︸                    ︷︷                    ︸

linearized regret

+
(
λi

t+1 − λi
t

)
φi

(
pi

)

+

〈
gi

t − gi
t−1︸        ︷︷        ︸

gradient variation

, Xi
t+ 1

2
−Xi

t+1

〉
− λi

tD
i
(
Xi

t+1, X
i
t+ 1

2

)
− λi

tD
i
(
Xi

t+ 1
2
, Xi

t

)
︸                                                              ︷︷                                                              ︸

distance between successive iterates

where (ψi
t)t∈N and φ are non-negative, and λi

t = 1/ηi
t.

ψi
t is a convergence measure (Bregman divergence or Fenchel coupling)
▶ ψi

t(pi) ≥ 1
2 ∥Xi

t − pi
t∥2

▶ Reciprocity condition: Xi
t → pi

t then ψi
t(pi) → 0
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λi
t+1ψ

i
t+1

(
pi

)
≤ λi

tψ
i
t

(
pi

)
−

〈
gi

t, X
i
t+ 1

2
− pi

〉
+

(
λi

t+1 − λi
t

)
φi

(
pi

)
+

〈
gi

t − gi
t−1, X

i
t+ 1

2
−Xi

t+1

〉
− λi

tD
i
(
Xi

t+1, X
i
t+ 1

2

)
− λi

tD
i
(
Xi

t+ 1
2
, Xi

t

)
where (ψi

t)t∈N and φ are non-negative, and λi
t = 1/ηi

t.

Sum the energy inequality from t = 1 to T gives

T∑
t=1

〈
gi

t, X
i
t+ 1

2
− pi

〉
≤ λi

T +1φ
i
(
pi

)
+

T∑
t=1

∥∥gi
t − gi

t−1

∥∥2
(i),∗

λi
t

−
T∑

t=2

λi
t−1
8

∥∥∥Xi
t+ 1

2
−Xi

t− 1
2

∥∥∥2

(i)
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Adaptive learning rate

Rearranging, we get

T∑
t=1

〈
gi

t, X
i
t+ 1

2
− pi

〉
≤ λi

T +1φ
i
(
pi

)
+

T∑
t=1

∥∥gi
t − gi

t−1

∥∥2
(i),∗

λi
t

−
T∑

t=2

λi
t−1
8

∥∥∥Xi
t+ 1

2
−Xi

t− 1
2

∥∥∥2

(i)
(1)

Take the adaptive learning rate
ηi

t =
1√

τ i +
∑t−1

s=1

∥∥gi
t − gi

t−1

∥∥2
(i),∗

(Adapt)

▶ τ i > 0 can be chosen freely by the player
▶ ηi

t is computed solely based on local information available to each player
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Theoretical guarantees for general convex games

Let player i play OptDA or DS-OptMD with (Adapt):
▶ No-regret

Theorem
If Pi ⊆ X i is bounded and G = supt ∥gi

t∥, the regret incurred by the player is bounded as
Regi

T (Pi) = O(G
√
T +G2)

Drop −
∑T

t=2
λi

t−1
8

∥∥∥Xi
t+ 1

2
−Xi

t− 1
2

∥∥∥2

(i)
in (1) gives

T∑
t=1

〈
gi

t, X
i
t+ 1

2
− pi

〉
≤ λi

T +1φ
i
(
pi

)
+

T∑
t=1

∥∥gi
t − gi

t−1

∥∥2
(i),∗

λi
t

▶ Consistent
If X i is compact and the action profile x−i

t of all other players converges to some limit profile x−i
∞ , the

trajectory of chosen actions of player i converges to the best response set arg minxi∈X i ℓi(xi,x−i
∞ ).
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Variational Stability

Definition (Variationally stable games)
Let V = (∇1ℓ1, . . . ,∇M ℓM ). A continuous convex game is variationally stable if the set X⋆ of Nash equilibria
of the game is nonempty and

⟨V(x),x − x⋆⟩ =
N∑

i=1

⟨∇iℓ
i(x, xi − xi

⋆)⟩ ≥ 0 for all x ∈ X ,x⋆ ∈ X⋆. (2)

The game is strictly variationally stable if (2) holds as a strict inequality whenever x < X⋆.

Especially, a game is variationally stable if V is monotone. E.g.
• Convex-concave zero-sum games
• Zero-sum polymatrix games
• Cournot oligopolies
• Kelly auctions
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Theoretical guarantees for variationally stable games

If all players use OptDA or DS-OptMD with (Adapt) in a variationally stable game:
▶ Constant individual regret For all i ∈ N and every bounded comparator set Pi ⊆ X i, the individual regret

of player i is bounded as Regi
T (Pi) = O(1).

▶ Convergence to Nash equilibrium The induced trajectory of play converges to a Nash equilibrium provided
that either of the following is satisfied:

a The game is strictly variationally stable.
b The game is variationally stable and hi is (sub)differentiable on all X i.
c The players of a two-player finite zero-sum game follow stabilized OMWU.
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Theoretical guarantees for variationally stable games: Proof sketch

▶ Show that λi
t convergences to a finite constant when t → +∞.

▶ Under a suitable divergence metric, establish the quasi-Fejér monotonicity of the iterates with respect to
any Nash equilibrium x⋆.

▶ Derive that ∥Xt+ 1
2

− Xt∥ → 0 and ∥Xt − Xt− 1
2

∥ → 0 as t → +∞.

▶ For general (a and b): Prove that every cluster point of the sequence of play is a NE and conclude.
For OWMU (c): Prove that the sequence of play has at most one cluster point and subsequently this
cluster point must be a NE.
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Illustrative experiments

Figure: Illustrative experiments: The realized actions (top, each line representing a coordinate of xi
t) and the individual regret

(bottom) of a subset of players in a finite two-player zero-sum game (left), a resource allocation auction (middle), and a
three-player matching-pennies game (right). All the players use either adaptive OptDA or adaptive DS-OptMD as their learning
strategies. We observe convergence of the realized actions and the regrets in the first two examples.
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Summary

A family of algorithms that are
▶ Adaptive: do not require any prior tuning or knowledge of the game.
▶ No-regret: achieve O(

√
T ) individual regret against arbitrary opponents.

▶ Consistent: converge to the best response against convergent opponents.
▶ Convergent: if employed by all players in a monotone/variationally stable game, the induced sequence of

play converges to Nash equilibrium.
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Noisy feedback

▶ Individual regret of player i:

Regi
T (Pi) = max

pi∈Pi

T∑
t=1

(
ℓi(xi

t,x
−i
t ) − ℓi(pi,x−i

t )︸                                ︷︷                                ︸
cost of not playing pi in round t

)
.

No regret if Regi
T (Pi) = o(T )

Nearly constant regret is possible under perfect feedback if all players play some prescribed algorithm like
OG.

▶ Stochastic oracle E[gi
t] = ∇i ℓ

i(xt)
▶ Noise: gi

t = ∇i ℓi(xt) + ξi
t

▶ Et

[
ξi

t

]
= 0 (Unbiased)

▶ Et

[
∥ξi

t∥2
]

≤ σ2
A + σ2

M ∥∇iℓi(xt)∥2 (Additive + Multiplicative Noise)

where ξi
t is zero-mean and has finite variance.

▶ We also use the notation V̂t =
[
g1

t , . . . , g
N
t

]T and Vt =
[
∇1ℓ1(xt), . . . ,∇N ℓ

N (xt)
]T .

▶ Also we use V i(x) = ∇iℓ
i(x).
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Constant Regret under Noisy Feedback

Question: OG and others algorithms achieve constant regret in a broad family of games under perfect feedback.
Can we achieve the same with noisy feedback?

Answer: Yes if the noise is multiplicative but not with OG !. We need scale separation!
E.g., OG+ [ xt = Xt+ 1

2
, ηt ≤ γt]

Xt+ 1
2

= Xt − γt V̂t− 1
2
, Xt+1 = Xt − ηt V̂t+ 1

2

Additional assumption: The game is variationally stable (include monotone games and especially zero-sum
polymatrix games). Consider the decision space X and the solution set X ⋆ (assumed non empty)

∀x ∈ X ,∀x⋆ ∈ X ⋆ ⟨V(x),x − x⋆⟩ ≥ 0
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Illustrating Example: Failure of Existing Algorithm

▶ Draw L1(x) = 3θϕ or L2(x) = −θϕ with equal
probability so

ℓ1 = −ℓ2 = (L1 + L2)/2 = θϕ

▶ Stochastic estimate E[V̂t+ 1
2

] = V(Xt+ 1
2

)

V̂t+ 1
2

=
{

(3ϕt+ 1
2
,−3θt+ 1

2
) with prob. 1/2

(−ϕt+ 1
2
, θt+ 1

2
) with prob. 1/2

▶ Let’s compute the variance

Et

[
V̂t+ 1

2

]
=

1
2

[ (3ϕt+1/2 − ϕt+1/2)2

(3θt+1/2 − θt+1/2)2

]
+

1
2

[ (−ϕt+1/2 − ϕt+1/2)2

(−θt+1/2 − θt+1/2)2

]
= 4

[ (ϕt+1/2)2

(−θt+1/2)2

]
= 4

[
(∇θℓ1)2

(−∇ϕℓ2)2

]
▶ We are in the multiplicative noise case.
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Illustrating Example: Scale Separation

▶ Draw L1(x) = 3θϕ or L2(x) = −θϕ with equal
probability so

ℓ1 = −ℓ2 = (L1 + L2)/2
▶ OG+ [ xt = Xt+ 1

2
]

Xt+ 1
2

= Xt − γt V̂t− 1
2

Xt+1 = Xt − ηtV̂t+ 1
2

With γt ≥ ηt

▶ This makes the noise an order smaller than the
negative shift in the analysis
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Guarantees for OG +

Theorem
Assume all players plays according to OG+ with non-increasing learning rate sequence γt and ηt such that

γt = min

{
1

3L
√

2N(1 + σ2
M )

,
1

2L(4N + 1)σ2
M

}
1

t1/4 √
log t

and
ηt =

1
2(1 + σ2

M )t1/2 log t

Then, E
[
Regi

T(X i)
]

= Õ(
√
T )

◦ The above result is not improvable when both σA, σM > 0.

◦ The players’ regret is worst then the constant regret achieved under perfect feedback.

◦ What happens if only σM > 0?
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Guarantees for OG +

Theorem
Assume all players plays according to OG+ in a variationally stable game with purely multiplicative noise
(σA = 0) with constant learning rate sequence γt and ηt such that

γt = min

{
1

3L
√

2N(1 + σ2
M )

,
1

2L(4N + 1)σ2
M

}
and

ηt =
γt

2(1 + σ2
M )

Then, E
[
Regi

T(X i)
]

= O(1)

◦ The same regret bound as in the perfect feedback case is achieved.

◦ Perfect fedback is not necessary to obtain constant regret in variationally stable games.

◦ However, we need to shift from OG to OG+ to obtain constant regret.
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A limiting caveat

▶ The above guarantees for OG+ requires all the players to adopt the same learning rates sequence. That is,
in the individual players’ updates

Xi
t+1/2 = Xi

t − γtg
i
t−1/2

Xi
t+1 = Xi

t − ηtg
i
t+1/2

the learning rates γt, ηt do not depend on the player index i.

▶ A sad consequence is that the regret guarantees no longer holds if some players plays according to other
algorithms or just OG+ with different learning rates.

▶ A second drawback is that we can not prove guarantees for OG+ in the fully adversarial case.
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OG + is very fragile

▶ The latest gradients are weighted less because the learning rate is decreasing.
▶ This makes the bound vacuous in the adversarial case in unbounded domain with varying step size [?].
▶ In the case of games where all players update their strategy with OG +. We can still prove that

max
t∈[T ]

E

√√√√ N∑
i=1

[
∥Xi

t − xi
⋆∥2

]
≤

√√√√ N∑
i=1

∥Xi
1 − xi

⋆∥2 + O (log T )

therefore it is possible to deploy a time varying learning rate.
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The solution is OptDA+

▶ The solution is to replace the primal update step with its dual counterpart.

Xi
t+1/2 = Xi

t − γi
t V̂

i
t−1/2

Xi
t+1 = Xi

1 − ηi
t+1

t∑
s=1

V̂ i
s+1/2

▶ The above updates are dubbed OptDA+.
▶ The crucial point is that in the update steps all the feedbacks are post-multiplied by the same learning rate
ηi

t+1.
▶ Each player can now adopt different learning rates !
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Formal guarantees for OptDA+

Theorem
Assume all players plays according to OptDA+ with non-increasing learning rate sequence γt and ηt such that

γi
t ≤

1
2L

min

{
1√

2N(1 + σ2
M )

,
1

(4N + 1)σ2
M

}
and γi

t = O
(
t−1/4

)
and

ηi
t ≤

γi
t

2(1 + σ2
M )

and ηi
t = Θ(t−1/2). Then, E

[
Regi

T(X i)
]

= O(
√
T )

◦ Notice that now players can pick different learning rates.

◦ We improve over the regret bound achieved by OG + by log T .

◦ The improvement is possible because OptDA + does not need a bound on maxt∈[T ] E
[
∥Xi

t − xi
⋆∥2

]
.
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OptDA+ and multiplicative noise

Theorem
Assume each player i ∈ [N ] plays according to OptDA+ with constant sequences γi

t and ηi
t such that

γi
t ≤

1
2L

min

{
1√

2N(1 + σ2
M )

,
1

(4N + 1)σ2
M

}
and

ηi
t ≤

γi
t

2(1 + σ2
M )

.

Then, if the feedback satisfies σA = 0, it holds that E
[
Regi

T(X i)
]

= O(1)

◦ In the pure multiplicative noise case the gain is less evident because also OG+ avoids logarithmic terms under
the multiplicative noise setting.

◦ The reason is that the step size is constant so the problematic term∑N

i=1

∑T

t=1

(
1

ηi
t

− 1
ηi

t+1

)
∥Xi

t − xi
⋆∥2 = 0 trivially.
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Adversarial setting regret bound for OptDA+

◦ We have proven that OptDA+ is more robust than OG+

◦ That is, regret bounds hold even if players select different learning rates.

◦ It turns out that OptDA+ enjoys regret guarantees even in the fully adversarial case.

Theorem
Suppose each player implements OptDA+ with γi

t = O(tq−1/2) and ηi
t = Θ

(
t−1/2

)
for some q ∈ [0, 1/4]. If

the perfect feedback is bounded then, E
[
Regi

T(X i)
]

= O(T 1/2+q)

▶ We notice that the free parameter q allows to interpolate between the optimal regret guarantees in the
adversarial or game play setting.
▶ q = 1/4 is the optimal setting in the game play case.
▶ q = 0 ensures the best regret bound in the fully adversarial case.
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Proof technique
The proofs for OG+ and OptDA+ are based on the following inequality

2Et−1
[〈
V i(Xt+1/2), Xi

t+1/2

〉
− pi

]
≤ Et−1

[∥Xi
t − pi∥2

ηi
t

−
∥Xi

t+1 − pi∥2

ηi
t+1

+
(

1
ηi

t+1
−

1
ηi

t

)
∥ui

t − pi∥2

− γi
t(∥V i(Xt+1/2)∥2 + ∥V i(Xt−1/2)∥2) + γi

t∥V i(Xt+1/2) − V i(Xt−1/2)∥2 −
∥Xt+1/2 − Xt−1/2∥2

2ηi
t

+
N∑

j=1

(γj
t + ηj

t )2∥ξj
t−1/2∥2 + 2ηi

t∥gi
t∥2 + (γi

t)2L∥ξi
t−1/2∥2

]
◦ The red term telescopes.

◦ The blue term requires a different treatment for OptDA+ and OG+.

◦ In OG+ ui
t = Xi

t therefore the double dependence on i and t of these term forces to choose same learning
rate across players.

◦ In OptDA+ ui
t = Xi

1 therefore the double dependence on t issue is solved.

◦ The brown term is bounded by smoothness. At this point the oracle models and the step sizes choices gives
the result.
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Remaining Problems

▶ Problem 1: Adaptivity to bypass the need for knowing constants and to cope with adversarial opponents ?
▶ Problem 2: Last-iterate convergence to Nash Equilibrium ?
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Illustrating Example: Adaptivity

▶ OptDA+ [γi
t ≥ ηi

t]

Xi
t+ 1

2
= Xi

t − γi
t gi

t−1 Xi
t+1 = Xi

1 − ηi
t+1

t∑
s=1

gi
s

▶ AdaOptDA+ uses learning rate

γi
t =

1(
1 +

∑t−2
s=1∥gi

s∥2
) 1

2 −q

ηi
t =

1√
1 +

∑t−2
s=1

(
∥gi

s∥2 + ∥Xi
s −Xi

s+1∥2
)
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Guarantees for AdaOptDA+

◦ Using AdaOptDA+ we can prove similar results without knowing the smoothness of the gradient Lipschitz
constant L.

◦ Same applies to the number of players taking part in the game N .

◦ The price is to pay is the additional assumption that ∀i ∈ [N ], ∀xi ∈ X i ∥V i(xi)∥ ≤ G and ∥ξi
t∥ ≤ σ̄ almost

surely.

Theorem
Let consider the adversarial case and run AdaOptDA+. Then, it holds that E

[
Regi

T(X i)
]

= O(T 1/2+q)

Theorem
Let consider the game play setting where all players update their strategies according to AdaOptDA+, then we
have that

E
[
Regi

T(X i)
]

= O(C1/qT 1/2) if σA > 0.

E
[
Regi

T(X i)
]

= O(exp (1/2q)) if σA = 0.
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Benefit of adaptivity and tradeoff of q

▶ AdaOptDA+ achieves simultaneously the optimal regret bounds with the exact same step sizes.
▶ This means that we do not even need to know whether σA = 0 or not when we run the algorithm.
▶ In stark contrast, OptDA+ stepsizes change in the different regimes (additive vs multiplicative noise).
▶ The q plays an interesting roles. In the adversarial case we have

E
[
Regi

T(X i)
]

= O(T 1/2+q)

hence it is minimized for q = 0 for which we have the optimal E
[
Regi

T(X i)
]

= O(T 1/2).
In the game play setting, we have

E
[
Regi

T(X i)
]

= O(C1/qT 1/2) if σA > 0.

E
[
Regi

T(X i)
]

= O(exp (1/2q)) if σA = 0.

Hence, q does not affect the dependence on T but it improves the constants. So we should select q as large
as allowed, i.e. q = 1/4.
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Convergence to Nash equilibrium

Theorem
Consider σA = 0 then AdaOptDA+, OptDA+ and OG+ with aforementioned learning rates produces a
sequence Xt+1/2 such that it converges to a Nash equilibrium almost surely.

◦ The key for such prove is to establish the stabilization property
∑T

t=1∥V(Xt+1/2)∥2 < ∞ with probability 1.

◦ Almost sure convergence can be derived also for σA > 0 but only for OG+.

◦ For OptDA+ and AdaOptDA+ one can prove that the crucial quantity
∑T

t=1∥V(Xt+1/2)∥2 grows at a rate
determined by q.

Theorem
Let OptDA+ and AdaOptDA+ run with the aforementioned step sizes satisfies

∑T

t=1∥V(Xt+1/2)∥2 ≤ T 1−q .

◦ For large q, we get more stable trajectory this is consistent with the better regret guarantees achieved for q set
as large as allowed q = 1/4.
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Summary of Results

Adversarial All players run the same algorithm

Bounded feedback Additive noise Multiplicative noise
Regret Regret Convergence Regret Convergence

OG ✗ ✗ ✗ ✗ ✗

OG+ ✗
√
t log t ✓ cst ✓

OptDA+
√
t

√
t – cst ✓

AdaOptDA+
√
t

√
t – cst ✓
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