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Online shortest paths

Online shortest path

We are given a directed graph G = (V, E) and a fixed pair of vertices u,v. At each round t =1, ...

> The learner selects a path pt € {0,1}F from u to v.
> An adversary selects lengths for each edge c; € [0, 1]¥ depending on p!,... pt— L.

> The learner incurs a cost of {ct,pt) and receives c; as feedback.
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Online shortest path
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Online shortest path
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Online shortest path
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Regret for online shortest paths

Regret (Online shortest path)

Let A be a (randomized) algorithm and ci,...,cr € [0,1]F a sequence of edge lengths. Then, the regret of A
is defined as

RA(T) =
i

(ce,p'y = min Y ey, p)
u-v path p

T T
=il =1l

where p? is the path that algorithm A selects in round t = 1,...,T.

Remark: > We are interested in bounding the expected regret E[R 4(T)].
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Hedge algorithm for online shortest paths

One can solve online shortest path with the Hedge Algorithm by introducing an expert for each possible path
S ={p1, .., pr}-

Hedge algorithm for online shortest paths

> Let S = {p1,...,pr} be the set of all paths from u to v and set v = /logk/T.
> Let w; =1 for all paths p € S.

> For each round t =1, ...,T":
> The learner selects z* € A(S) as follows,
t
zt = " for each path p € S.
T Yes ¥
p'es p’
> The adversary selects a cost c; € [0, n] for each path p € S.

> The learner suffers expected cost (c!, x') and receives c! as feedback.
> Update the weights as follows,

et
w;]*l = w;e 7°p  for each path p € S.
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Goal for online shortest path

> One can solve online shortest path with the Hedge Algorithm by introducing an expert for each possible
path S = {p1,...,px }
> Number of paths is exponential, k = 2¢(1)

> RHedge(T) =0 (m) =0 (W)

> Regret is polynomial but runtime is exponential!

Goal (Online shortest path)

We want to find a (randomized) algorithm A that runs both in polynomial time and has polynomial regret in
expectation, E[R 4(T)] = O (poly(n) \/T)
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Generalized setting: Online decision problems

Linear optimization oracle

A linear optimization oracle M : R — S optimizes a linear function over a (possible infinite) strategy space
S C R? in polynomial time, i.e. M computes the best strategy given a cost vector c, M(c) = argmin ¢ s(c, s).

Online decision problem

We are given a (possible infinite) strategy space S C R and a linear optimization oracle M : R* — S. At each
round t=1,...,T,

> The learner has to select a strategy s; € S.

> An adversary selects a cost vector ¢; € C C R? depending on s1,...,8:_1.

> The learner incurs a cost of (c¢, s¢) and observes the cost vector c;.

Remark: > We can model online shortest path by choosing
S = {s € {0,1}7 | s is the characteristic vector of a path from u to v}.

> The linear optimization oracle M can be implemented by the Bellman-Ford algorithm.
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Further examples: MST

Example (Minimum spanning tree)

> Given a graph G = (V, E) want to find a spanning tree minimizing the weight.

> Strategy space: S C R¥ is the discrete set S C {0, 1} ¥ representing all spanning trees of G' (each
spanning tree can be represented as a vector in {0, 1}).

> The linear optimization oracle M can be implemented via Prim’s or Kruskal’'s algorithm.

> At each timestept =1,2,..T,

> Select a spanning tree s; € S.
> Adversary selects a cost for each edge, which yields a cost vector ¢; € RE.
> At time t, the cost is (c¢, s¢) and the feedback is c;
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Further example: Bipartite matching

Example (Maximum bipartite matching)

> Given a bipartite graph G = (V, E) want to find a matching M C E maximizing the weight of the

matching ZeeM We.-

> Strategy space: S C R¥ is the discrete set S C {0, I}E representing matchings of G (each matching can
be represented as a vector in {0, 1}7).

> The linear optimization oracle M can be implemented via linear programming.

> At each time step t =1,2,...T,

> Select a matching s; € S.
> Adversary selects a weight w, for each edge. The cost vector ¢; € RF can be represented as c¢(e) = —we.
> At time ¢, the cost is (c¢, s¢) and the feedback is ¢
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Generalized setting: Online decision problems

Online decision problem

We are given a (possible infinite) strategy space S C R? and a linear optimization oracle M : R? — C. At each
roundt=1,...,T,

> The learner has to select a strategy s; € S.
> An adversary selects a cost vector ¢; € C C R? depending on s1,...,8:_1.

> The learner incurs a cost of (c¢, s¢) and observes the cost vector ct.

Regret

Let A be a (randomized) algorithm and let c1, ..., cr be a sequence of cost vectors. Then, the regret of A is
defined as

T
(ct, st) — min Z(ct, s)
sES

1 =il

M=

RA(T) =
i

where s is the output of algorithm A in round t =1,...,T.

ICLHEEI]  Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 14/ 69



Follow the leader: A simple approach that does not work

Follow the leader algorithm
For each round t =1,...,T,
> letcii—1 = Z;ll Ck.

> The learner selects the strategy M(c1:¢—1) = argmincs{c1:t—1,5), i.e. the strategy with the minimum
aggregated cost so far.

> The learner suffers cost (ct, M(c1:t—1)) and receives feedback c;.
Example
Consider S = {(1,0), (0,1)},c1 = (0.5,0) and

(0,1), if¢even
cr =
‘ (1,0), if ¢ odd.

FTL has cost at least 7" while the best fixed strategy has cost 7'/2.
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Be the leader
What if we had access to ¢; in round t?

Be the leader lemma
Choosing strategy M (c1:¢) at time t = 1,...,T has non-positive regret,

T T
E (ct, M(c1:t)) < (1.7, M(c1.7)) E (ct, s

t=1 t:l

Proof.
Assume for induction on T that M(c1:¢) < {c1.7, M(c1.7)). Then, we have for T'+ 1 that

T+1 T
Z(Cm M (ca:t) (ct, M(c1:t)) + (crt1, M(c1.741))
=1

(err, M(er.m)) + (ert1, M(cr:r41))
{cr:7y M(c1:741)) + (erg1, M(c1:741))
= (c1.7, M(c1.7))-

IAIA
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Follow the regularized leader

Follow the regularized leader
For each round t =1,...,T,

» The learner selects s; € S as follows,
. 1
st = argmin,cg(c1:t—1,5) + ;h(r)

> The adversary selects a cost vector c¢ € C.

> The learner suffers cost (ct, s¢) and receives feedback c;.

> h:S8 — R is a strongly-convex regularizer in some norm || - ||.

> ~ > 0 is the learning rate.
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Follow the perturbed leader: Additive version

Follow the perturbed leader: Additive version

Let € > 0 be the learning parameter. For each round t =1,..., T,
t—1
» —
Let c1.4-1 = 1 Ck-

> The learner samples p; ~ [0,1/€]%.
> The learner choose strategy s = M(c1.¢—1 + pt) = argmin cs(c1:t—1 + pt, 5).

> The learner suffers cost (ct, s¢) and receives feedback c;.
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Follow the perturbed leader: Multiplicative version

Multidimensional exponential distribution

Sampling a vector = € R? from an exponential distribution Exp(e) means that we sample each coordinate
independently according to the density p(z) = ee™ <.

Follow the perturbed leader: Multiplicative version

Let € > 0 be the learning parameter. For each round t =1,...,T,
t—1
> letcyg—1 = k1 Ck-

> The learner samples p; ~ Exp(€)
> The learner choose strategy s¢ = M(c1.¢—1 + pt) = argmin cs(c1:e—1 + pt, 5).

> The learner suffers cost (ct, s¢) and receives feedback c;.
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Adversary

> The adaptive adversary maximizes the algorithm’s expected regret
T

T
max E[RA(T) = max E;@hM(Cl:tfl +pt)>—§ggz<0t,8>

Cl,..sCT Cl,..sCT
t=1

ICLHEEI]  Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 20/ 69



Adversary

> The adaptive adversary maximizes the algorithm’s expected regret
T

T
max E[RA(T) = max E;@hM(Cl:tfl +pt)>—§ggz<0t,8>

Cl,..sCT Cl,..sCT
t=1

> At round t, ¢t is independent of py,

E(ct, M(c1:4—1 + pt)) = {ct, E[M (c1:¢—1 + pt)])-
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Adversary

> The adaptive adversary maximizes the algorithm’s expected regret
T

T
max E[RA(T) = max E;@hM(Cl:tfl +pt)>—§ggz<0t,8>

Cl,..sCT Cl,..sCT
t=1

> At round t, ¢t is independent of py,

E(ct, M(c1:4—1 + pt)) = {ct, E[M (c1:¢—1 + pt)])-

> The adaptive adversary maximizes
T

T
max Z(Ct,E[M(Cl:t—l +p)]) — IsIleigZ(ct, s)

Cl,..,CT
t=1 t=1

> This quantity is independent of the algorithms choices.
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Adversary

> The adaptive adversary maximizes the algorithm’s expected regret

T T
max E[RA(T)]= max (B (ct,M(cri—1+pe)) —min ¥ (ct,s)
Cl,..sCT Cl,..sCT SES
t=1 t=1
> At round t, ¢t is independent of py,
E{ct, M(c1:t—1 + pt)) = (ct, E[M (c1:t—1 + pt)])-
> The adaptive adversary maximizes
T T
max Z(Ct7E[M(Cl:t—1 +pt)]> —minZ(ct,s>
Cl,...,CT seS
t=1 t=1
> This quantity is independent of the algorithms choices.
> We can assume that the cost vectors are fixed in advance.
> We can assume that the algorithm only samples one p at the beginning,
T T
Bpronr D (0t Mctam1+p0)) = Bp (o, M{cr—1 +p)).
t=1 t=1
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Follow the perturbed leader: Additive version

Follow the perturbed leader: Additive version

Let € > 0 be the learning parameter and let p ~ [0,1/€]%. For each round t =1,...,T,
t—1
> letcrio1 = k1 Ck.

> The learner choose strategy s; := M(c1.4—1 + p) = argmingcs(c1:4—1 + P, s).

> The learner suffers cost (ct, s¢) and receives feedback c;.
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Follow the perturbed leader: Multiplicative version

Follow the perturbed leader: Multiplicative version

Let € > 0 be the learning parameter and Let p ~ Exp(¢). For each round t =1,...,T,
t—1
> letcrio1 = k1 Ck.

> The learner chooses strategy s; := M(c1:4—1 + p) = argmingcg(c1:t—1 + p, 5).

> The learner suffers cost (ct, s¢) and receives feedback cg.

IGEHEEI]  Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 22/ 69



Regret bounds: Additive guarantee

Parameters

Let D be the diameter of the strategy space, R be an upper bound on the costs and A be an upper bound on
the norm of the costs,

> ||s—s'|l1 < D forall s,s" €S
> [{c,s)| < RforallceC,seS
> |||t < AforallceC

Theorem (Kalai, Vempala [3])

Follow the perturbed leader FPL is polynomial time online learning algorithm such that for any sequence 1 of
cost vectors ci, ...,cp € C and any learning parameter € > 0,

T T
E[R T =E , — mi ,8) < eRAT + D
Repr(T] =B | Y (er,s)| —mind (e s) < /e
t=1 t=1
where sy € S is the (random) output of FPL at roundt =1,...,T when choosing p uniformly at random from

[0,1/€4.

LWe assume that this sequence is fixed in advance.
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Regret bounds: Additive guarantee

Corollary
Optimizing the bound in the previous theorem gives for e = |/ D/(RAT),

E[RrpL(T)] < 2VDRAT.
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Solving online shortest path

Goal (Online shortest path)

We want to find a (randomized) algorithm A that runs both in polynomial time and has polynomial regret in
expectation, E[R 4(T)] = O (poly(n) \/T)

> We choose S = {s € {0,1}¥ | s is the characteristic vector of a path from u to v}

»> M can be implemented by the Bellman-Ford algorithm.
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Solving online shortest path

Parameters for online shortest path

Remember that D is the diameter of the strategy space, R an upper bound on the costs and A an upper bound
on the norm of the costs,

> lls = s'lls < Ilslls +lI5ll1 < 2n= D for all 5,5 € 5
> (¢, )| < lclloo - |I8]]1 <m=Rforallce[0,1]%,s€ S
> |lc|js < m = A for all c € [0,1]F

FPL for online shortest path

Follow the perturbed leader runs in polynomial time and has expected regret

E[RppL(T)] < O (Vn2mT) < O (n?VT).
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Regret bounds: Multiplicative guarantee

Parameters

Let D be the diameter of the strategy space, R be an upper bound on the costs and A be an upper bound on
the norm of the strategies,

> ||s—=s'|l1 <D forall s,s" €S
> |{c,s)| < RforallceC,s €S
> |ls]l1 < AforallseS

Theorem (Kalai, Vempala [3])

Follow the perturbed leader F PL is polynomial time online learning algorithm such that for any fixed sequence
of cost vectors ci1, ...,cy € C and any learning parameter € > 0,

i g i
ERrppr(T) =E Z(ct,st —rsrggZ Ct, S <em1nz ct,s) +4AD(Ind + 1) /e
t=1 t=1 t=1
where s¢ € S is the (random) output of FPL at round t = 1,...,T when choosing p from an exponential

distribution Exp(e/2A).
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Regret bounds: Multiplicative guarantee

Corollary
Optimizing € in the bound of the previous theorem gives

T
E[RrpL(T)] < 4(AD(1 + Ind)) miélZ(ct, s) | +4AD(1 + Ind)

sE
t=1

for

i
e=min{ 1,2, | AD(1 +Ind)/ $1§Z<Ct’s>
t=1
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Be the perturbed leader

» Assume we still know ¢¢ in round t.
> First step: bound the error introduced by adding perturbations.

Lemma 1

Remember that D > ||s — §/||1 for all s,s’ € S. Then, for any fixed sequence of cost vectors ci,...,cr and any
perturbation vector p,

T
> et Meve +p)) < (exr, M(err)) + llpllos - D

t=1

Proof.
Pretend that at time ¢ = 1 the cost is ¢; + p. Then, by the BTL lemma,

T
(c1 +p, M(c1 + p)) Z ct, M(ci:t +p)) < (cr.7 +p, M(c1.7 +p))
t=2
<Acr.r +p, M(c1.T))
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Be the perturbed leader

Proof (Cont.).

Rearranging,

T
D e, Mert +p)) < (ev.r, M(err)) + (p, Mlev.r) — M(ex +p))
t=1
(er.r, M(c1:7)) + |Iplloo - [M(c1:7) — M(c1:1 + p)l
(Cl:TyM(CI:T» + ||pH00 > 1D,

IN N
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Follow the perturbed leader: Additive guarantee

» How much do "be the perturbed leader" and "follow the perturbed leader" differ?
> Perturbing the cost vectors creates an 'overlap’ between the two cases.

> Observe that the distributions ¢1.4+—1 + p and ¢1.+ + p are both uniform distributions over cubes.

Lemma 2
Let C1 = [0, 1/e]d and let C2 = v + C1 be the first cube shifted by a vector v. Then,

Pry~c, [z ¢ Co] < €|v]]1.

Proof.

> Take z € [0,1/€]? uniformly at random.

> If 2 ¢ v+ [0,1/€], then z; ¢ v; + [0,1/€] for some 1.

> This happens with probability at most €|v;|.

> By a union bound, we have that x ¢ v + [0, 1/¢]% with probability at most ¢|[v||;.
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Follow the perturbed leader: Additive guarantee

Lemma 3
Remember that ||c|[|1 < A for all ¢ € C and |{c,s)| < R for all c € C,s € S. Let p be drawn uniformly at random
from [0, l/e]d. Then, for all t =1,...,T and any cost vector ¢; € C,

E[(ct, M(c1:t—1 + p))] < E[(ct, M(c1:¢t + p))] + €AR.

C1=1[0,1/e]™ +c1:—1 Co=Cq +ct
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Follow the perturbed leader: Additive guarantee

Lemma 3

Remember that ||c|[|1 < A for all ¢ € C and |{c,s)| < R for all c € C,s € S. Let p be drawn uniformly at random
from [0, l/e]d. Then, for all t =1,...,T and any cost vector ¢; € C,

E[(ct, M(c1:4—1 + p))] < E[{ct, M(c1:¢ +p))] + €AR.

Proof.
Let C1 =c1.4—1 + [0, 1/6]d and Cy = ¢t + C1 = c1.¢ + [0, l/e}d. Then,

EP[<ct7 M(Cl:tfl 4 p))] = EINCl [(Ctv M(Z‘))]
=Ez~noy [(ct,M(l‘» |z eCin Cz] . PT[SL‘ eCin CQ]
(

+Ez~cy [(ct, M(x)) | x ¢ C1 NC2] - Prlz ¢ C1 N Ca)

< Bz~ l{et, M(z)) | z € Cr N Co] - Prlz € C1 N Ca2] + Rel|ct||1
=Ez~cy[(ct, M(2)) | 2 € C1 N Co] - Pr[z € C1 N C2]] + Re|ct||1
< Epnos e, M(2))] + Rellce|1

= Ep[(ct, M(c1:t + )] + Re|ee|]r-
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Follow the perturbed leader: Additive guarantee

Theorem (Kalai, Vempala [3])
Follow the perturbed leader F PL is polynomial time online learning algorithm such that for any fixed sequence
of cost vectors c1, ...,cy € C and any learning parameter € > 0,

T T
E[R T) =E , — mi ,s) < eRAT + D
Repr(MI=E | (er,s)| —min fer,s) <e /e
t=1 t=1
where sy € S is the (random) output of FPL at round t = 1,...,T when choosing p uniformly at random from
[0,1/¢€)4.
Proof.
Let c1,...,cr € C be a sequence of cost vectors and s; = M(c1:t—1 + p)]) the output of FPL at round
t =1,...,T when choosing p uniformly at random from [0,1/€]%. Then, by Lemma 3,
T T T
B |Y (etsse)| =D Bller, M(crem1+p) S ) Bller, M(cre +p))) + €ART
=1 t=1 t=1

ICEHEIE  Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 34/ 69



Follow the perturbed leader: Additive guarantee

Proof (cont.)

Let c1,...,cr € C be a sequence of cost vectors and s; = M(c1:t—1 + p)]) the output of FPL at round
t =1,...,T when choosing p uniformly at random from [0, 1/6}‘1. Then, by Lemma 3,
i T
B> etse) ZE{ ct, M(cre—1 +p))] < ) El(er, M(cre +p))] + €ART
t=1 t=1

By Lemma 1, we have that,
T
Z ct, M(c1t +p)) < (er.r, M(er.r)) + [ploo - D < (err, M(cr.r)) + D/e.
We can conclude by BTL lemma,

Z (ct,st) | < (cr.T, M(cr.T)) + D/e+ €ART.

t=1
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Follow the perturbed leader: Multiplicative guarantee

Fact
Let X1, X2, ..., X4 be independent random variables drawn from Exp(e). Then,

E [maxX¢:| < (1+Ind)/e.
i€[d]

Hence, we have that ||p|lcc < (1 4 Ind)/e.
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Follow the perturbed leader: Multiplicative guarantee
As before, the distributions ¢1.¢—1 + p and c1.: + p overlap.
Lemma 4

Remember that ||c||y < A for all ¢ € C. Let p be drawn from Exp(e€). Then, for all ¢t =1,...,T and any cost
vector ¢; € C,

E[{ct, M(c1:t—1 + p)] < (1 + 2€A) - E[{ct, M (c1:¢ +p)))-

Proof.

E[{ct, M(c1:t—1 +p))] = /(Cm M(e1:4—1 + z))dp(z)

x

_ / (et M(ere + 1)) duly + c2))

Y

= /(ct7 M (c1t + 1)) - eUly=eellhi=lwlln gy, (4
Yy

= elletllt  E[(cy, M(cr4) + pi)] < (14 2€A) - El{ct, M(c1:t + pe))]
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Follow the perturbed leader: Multiplicative guarantee

Theorem (Kalai, Vempala [3])
Follow the perturbed leader F PL is polynomial time online learning algorithm such that for any fixed sequence
of cost vectors c1, ...,cy € C and any learning parameter € > 0,

i T 7
E[R ) =E ct, S — min ct,s) < rnm ct,s) +4AD(Ind
Repr(DI=E | (er,s)| —miny {er,s) <eminy (er,s) (Ind+1)/e
t=1 t=1 t=1
where s¢ € S is the (random) output of FPL at round t = 1,...,T when choosing p from an exponential
distribution Exp(e/2A).
Proof.
Let c1,...,cr € C be a sequence of cost vectors and s; = M(c1:t—1 + p) the output of FPL at round
t=1,...,T when choosing p from an exponential distribution Exp(¢). Then, by Lemma 4,
i 7
E Z Ct, St) Z]E ct, M(c1:¢—1 +p))] < Z(l + 2€A) - E[{ct, M(c1:t) + p)]
t=1 t=1
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Follow the perturbed leader: Multiplicative guarantee

Proof (cont.)

Let c1,...,cr € C be a sequence of cost vectors and s; = M(c1:t—1 + p) the output of F'PL at round
t=1,...,T when choosing p from an exponential distribution Exp(¢). Then, by Lemma 4,
g T T
B D fet,se)| =Y Bller, M(cr—1 +p))] < Y (1 +2¢4) -Eller, M(err) +p)]
t=1 t=1 t=1

By Lemma 1, we have that,
T
Z]E[(Ct7 M(c1:¢ +p))] < (cr:1, M(c1.7)) + E[||plloc] - D < (c1:1, M(c1:7)) + D - (1 +Ind)/e.
t=1

We can conclude by BTL lemma,

g
E Z(ct,st> < (14 2¢A) ({c1.7, M(c1:7)) + D - (1 +1nd)/e) .
t=1

The theorem follows by choosing € = €¢/(2A).
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A motivating example for the multi-armed bandit version of the problem

Consider a real-life application of the online shortest path problem:

Example (Routing services)

> Every day t € {1,2,...,T} our company needs to send goods from a point u to a point v.

> There are multiple routes. The travel time of each stretch of the route depends on unpredictable (weather,
congestion) factors.

> At the end of each day, we learn the travel times of all the individual stretches of all the routes (“full
feedback").

> As we have seen, we can use the follow the perturbed leader algorithm to solve this problem.
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A motivating example for the multi-armed bandit version of the problem - part Il

Now consider a more realistic setting:
Example (Routing services)

> Every day ¢ € {1,2,...,T} our company needs to send goods from a point u to a point v.

> There are multiple routes. The travel time of each stretch of the route depends on unpredictable (weather,
congestion) factors.

> Now, we only learn the travel time of the route which we chose (“multi-armed bandit feedback"), and we
only receive the total travel time from the start vertex u to the end vertex v (“end-to-end feedback) as
feedback.

> How do we select our route every day in this setting?
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Using EXP3 for Online Path Selection with Bandit Feedback

Could try to apply Exp3 to Online shortest paths:
Exp3 algorithm for shortest paths
> Let S be the set of all paths from u to v and v = 4/log|S|/|S|T.

> Let wy,s = 1 for each path s € S.
> forallt=1,...,T:

Zs 'es s’

> Play path sy € S ~ 2t € A(S) and receive cost ¢y, s,

> Set w for each path s € S.

A Ct,s
> Set & = —tteg,
Ts

> Update wt! = wte™ 7%
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Theorem (Guarantee of EXP3, Auer et al.[1])
Assume that (EXP3) is run with a step-size v = /log|S|/|S|T. Then , the following guarantee holds:

T T

Rexps(T) =B Y (et,si)| —mind (er,s) < 21/]S[logSIT,
t=1 t=1

where sy € S is the (random) output of EXP3 at roundt =1,...,T.

> [ssue: |S| exponential in the number of edges.

> The regret Rep3 = O(+/[S|log|S|T) = O(2™/2 \/mT) is exponential in the number of edges m.
> Running time and space complexity is also exponential in the number of edges!

Goal (MAB setting)

We want an algorithm that runs both in polynomial time and space. Moreover, the regret of the algorithm
should be polynomial in the number of edges m, and sublinear in the time horizon 7.
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Linear optimization with an efficiently computable optimizer and MAB feedback

To solve problem in the previous example, let us first formalize and generalize it.

Online Decision Problem with Multi-armed Bandit (MAB) Feedback

We are given a set of strategies S C R%. At each round t =1,...,T,
> The algorithm picks a strategy st € S
> The adversary selects a cost vector ¢ € C C R4

> The algorithm incurs cost (ct, s¢), and this is the only feedback.

Oblivious adversary

We will assume that the adversary is oblivious, meaning that the cost vectors ci, ... cr are fixed in advance.

Efficiently computable optimizer

We will assume that we have access to a function M : R* — S that computes the best strategy given a cost
vector in polynomial time,
M(c) = argmin cs(c, s).
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Application: Online shortest paths revisited

How to interpret the routing example in terms of linear optimization with an efficiently computable optimizer
and MAB feedback:

Online shortest paths problem as linear optimization
> Given a directed graph G = (V, E) and a fixed pair of vertices u, v, want to find shortest path from u to v
using at most H edges.

> Strategy space S C RP: Represent each path from u to v as a vector in {0, 1} by setting value 1 on each
of its edges and value 0 on all other edges. Take S to be the discrete set representing all paths from u to v
of length at most H.

MAB feedback for online shortest path
At each timestept=1,..,T
> Pick a path s; € S.
> Adversary selects a cost for each edge, represented as a cost vector ¢; € [0, 1]%.
> The incurred cost is then (s¢, ct), i.e. the total length of the chosen path.
> The only feedback is the total length of the selected path, encoded as (s, ct).

Remark: Given a cost vector ¢ € R¥, we may compute the shortest path of length < H efficiently by
running the Bellman-Ford algorithm for H steps.
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Further examples: MST

The setting of linear optimization with an efficiently computable optimizer and MAB also captures other
important combinatorial problems:

Example (Minimum spanning tree)

> Given a graph G = (V, E) want to find a spanning tree minimizing the weight.

> Strategy space: S C R¥ is the discrete set S C {0, 1} ¥ representing all spanning trees of G' (each
spanning tree can be represented as a vector in {0,1}%).

> The linear optimization oracle M can be implemented via Prim’s or Kruskal's algorithm.

> At each time step t = 1,2,...T,

> Select a spanning tree s; € S.
> Adversary selects a cost for each edge, which yields a cost vector ¢; € RE.
> Cost and feedback at time ¢: Total cost of chosen spanning tree, encoded as (cy, s¢).
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Further example: Bipartite matching

Example (Maximum bipartite matching)

> Given a bipartite graph G = (V, E) want to find a matching M C E maximizing the weight of the

matching ZeeM We.-

> Strategy space: S C R¥ is the discrete set S C {0, I}E representing matchings of G (each matching can
be represented as a vector in {0, 1}7).

> The linear optimization oracle M can be implemented via linear programming.

> At each time step t =1,2,...T,

> Select a matching s; € S.
> Adversary selects a weight w, for each edge. The cost vector ¢; € RF can be represented as c¢(e) = —we.
> Cost and feedback at time ¢: Total weight of the matching, encoded as (c¢, s¢)-
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An efficient algorithm for MAB feedback

In the next slides, we will see an algorithm that achieves the goal against an oblivious adversary:

Theorem (Awerbuch, Kleinberg [2])

There exists a polynomial-time and space online learning algorithm A for MAB such that for any fixed sequence
c1,...,cr € R with |{c,s)| < R for all s € S,

T T

E Z(ct,st> - gréi‘r;Z(ct,s) <0 (T2/3Rd5/3)

t=1 t=1

where sy € S is the (random) output of A at round t € [T].
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MAB: Idea behind the efficient algorithm

Recall the follow the perturbed leader algorithm F'PL from the previous section:

Follow the Perturbed Leader (F'PL) (for full feedback version)

For each round t =1,...,T,

> Let c1.p—1 = 2_:11 Cp-
> Choose p; uniformly at random from the hypercube [0, 1/¢]?.

> Choose strategy s; = M(c1.¢—1 + pt) = argmin cs(c1:¢—1 + pt, S).

\4

Suffer cost (ct, s¢) and receive feedback c;.
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MAB: Idea behind the efficient algorithm

Recall the regret guarantee for the follow the perturbed leader algorithm

Parameters

Let D be the diameter of the strategy space, R be an upper bound on the costs and A be an upper bound on
the norm of the strategies,

> ||s—s|l1 < D forall s,s" €S
> [{c,s)] < RforallceC,s€S
> lc|lt L AforallceC

Theorem (Guarantee of FPL, Kalai, Vempala [3])

Let ci,...,cr € C be a sequence of cost vectors and let and s1,...,sT be the (random) sequence produced by
the follow the perturbed leader algorithm FPL. Then

T

Rrpr(T) = Z(ct,st —mlnz ct,8) < eRAT + D,

t=1
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MAB: lllustration of the efficient algorithm

t=1t=2, t=T
HNEEEEEEEEEEEEEEEEEEEEEEEEEEEEE.

> We will leverage the FPL algorithm in the MAB setting as follows:
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MAB: lllustration of the efficient algorithm

o1 o) [

> Divide timeline into ® phases of a fixed length 7.

> Each phase ¢;, i = 1,...,® will simulate one time-step in the full feedback model.
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MAB: lllustration of the efficient algorithm

Ty, T,y oy e S

& [0 dg

> Fix z1,...24 € S (to be explained later)
> In each phase: Randomly subdivide time steps into “estimation steps" and “exploitation steps".
> In estimation steps: Play the x;

> In exploitation steps: Play according the the FTL algorithm
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MAB:

lllustration of the efficient algorithm

T1, T,y ..., S
t=1¢=2, ] =T
EEOEEEDEEEEDLEEE EOEIEEDE EDEDEEES
S R ~— - S . - ~ \\.“ -
Y 7 ~ ~
@ [y e

> In estimation steps: Play the x;
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MAB: lllustration of the efficient algorithm

Ly, Tg S

t=1t=2 - : ] =T

CLIA [T -] 0 [ -1~ T ] ]

= AN — -
‘\\\// - — .‘\//,/

> In estimation steps: Play the x;
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MAB:

lllustration of the efficient algorithm

ry, Ty e s

t=1t=2, t=T

NG NN RO S EDEEEa

— - N - T S - \-\_7__ _ _
v v 7 7
@1 B2 [t
> In estimation steps: Play the x;
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MAB: lllustration of the efficient algorithm

€T, T, ..., € S

[

Update FPL as if ¢
was one time step with
cost vector ¢,

> During a phase ¢: Use the feedback from the estimation steps to create an estimated cost vector cg.

Update FPL as 1if oo
was one time step with
cost vector ¢y,

Update FPL as it
¢ was one time
step with cost vec-
tor egq

> At the end of a phase ¢: Update F'PL as if ¢ was a single time step with cost vector cg.

> In the exploitation steps: Play according to the F'PL algorithm.
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MAB: How do we select the estimation steps

Definition

A set X of vectors in R? is a basis if every element of R% can be written in a unique way as a linear combination
of elements of X.

Want to select a basis X = {z1,...,24} C S of R%.

We may assume that S is not contained in any proper linear subspace of R¢ (otherwise we may decrease d).

Therefore we know that there exists a basis X = {x1,...,24} C S of R

vV v v Yy

It is possible to find such a basis in polynomial time, assuming that we have access to a an oracle for
optimizing linear functions over S.

> Why this is useful: Consider a fixed phase ¢ and let c;; denote be the observed cost of x; in the estimation
time step of x;. If X is a basis, then there exists a unique vector ¢ such that (cy,z;) = cg; forall j.

> Can find this ¢y in polynomial time by linear interpolation.
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MAB: Formal algorithm description

Let FPL(c1,...,ct) be the distribution over S given by the F'PL algorithm after observing cost vectors ci, ...ct.

MAB algorithm

Parameters: €, 6, 7 := [%].

Select a basis X = {x1,...,74} C S of R%.

Partition T into @ := fg'\ phases ¢1, ¢2, ..., ¢ of length 7.
For each phase ¢;, i =1, ..., ®:

> Select d time steps uniformly at random (“estimation steps"), and select a random correspondence to
elements z1,...z4 of X.

> In each estimation step: Play the corresponding z;.
> In all other steps (“exploitation steps): Play s ~ FPL(cg,,....,Co; ;)

> At the end of the phase: Let cg, be the unique vector such that (cg,,x;) is the cost observed in the
estimation step of x;.
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Analysis of the algorithm: Regret of the exploitation steps for a single phase

Claim
Let FPLy be the probability distribution over S specified by the F'PL algorithm in phase ¢, and let
x4 ~ FPLy be a random sample from FPLy. Then

E[Cost of exploitation in phase ¢] < TE[(cy,z4)].

Proof.
Let ¢y := % Zten ct be the average cost in phase ¢, where Ty := {7(¢ — 1) +1,7(¢ — 1) +2,...,7¢} denotes
the set of steps in phase ¢.

Recall that ¢, is the vector such that (cg, ;) is the cost observed in estimation step of x; for j =1, ...d, and
note that

E[Cqﬁ} = E(}S)

since the adversary is oblivious and the time step at which we play x; is chosen uniformly at random. m}
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Analysis of the algorithm: Regret of the exploitation steps for a single phase continued

Proof (cont.)

Moreover, note that ¢, and x4 are independent in the oblivious adversary setting, since F'PL; depends only on
data before phase ¢. Thus,

So

lions@epfl

E[(cg, z¢)] = (E[ce], E[zg]), since cy and x4 are independent
= (Cy,E[z4]) since E[cg] = ¢y,
= E[(C¢, x4)], by linearity of expectation.

E[Cost of exploitation in phase ¢] < E[Z (g, ct)]
teTy
= 7E[(Cy, o)), by linearity of expectation
= 7E[(cg, z4)]-
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Analysis of the algorithm: Total regret of the exploitation

Parameters

Let D be the diameter of the strategy space, R be an upper bound on the costs and A be an upper bound on
the norm of the strategies,

> |[s— 8|1 <D forall s,s' €S
> [{e,s)| < RforallceC,seS
> et < AforallceC

Claim
E[Total cost from exploitation steps] < cRAT a4 minges Zt " (ct, 8).

Proof.
Let ® = % = % denote the number of phases.
Recall regret bound of F'PL: Given cost vector cy,...cg,

=]

o)
D
EFPL{Z c¢,5¢} <eRA<I>+—+Z (cg,s), forall s € S.
=1 =1
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Analysis of the algorithm: Total regret of the exploitation

Proof cont.
Thus,
o
IE%’FPL[TotaI cost of exploitation] < Z 7—II-E,C(7)J:pL[<c¢7 ze)],
¢=1

T(ERA<I>+ +Tm1nZEc¢ (ce,9)],

RA® ,
< (e + )+ rsrélgz Ct, S)

Dd .
< eRAT + e +£1’1€1§Z<ct,s>,
t=1
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Analysis of the algorithm: Putting it together

Theorem
There exists a polynomial-time and space online learning algorithm A for MAB such that for any fixed sequence
Cly---sCT ,
T T
E Z<Ct’8t> _ mi§Z<Ct, s) < T2/3R2/3A1/2 p1/341/3
sE
t=1 t=1

where s; € S C R is the (random) output of A at round t € [T], and R, D, A are parameters such that
s —s'll1 < D forall s,s' €S; |(c,s)| <R forallceC,s €S, |c|1 <A forallceC.

Proof.
The cost of the estimation steps is at most Rd® = RTd, so by the previous claim, we have
= d DTd DTd
E Z(ag,st) - 2222(0,5,5) < €RAT + Z-= + RIS = RT(cA +8) + ——
t=1 t=1
Setting e = R~1/3A~1/27-1/3D1/341/3 and § = R—1/37~1/3D1/341/3 yields the result. m]
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Analysis of the algorithm: Getting rid of the parameter dependence

> What if D and A are really large? Can we get rid of the dependence on them in the final guarantee?

> Note that A, D are defined in terms of the [1-norm. But the [1-norm implicitly depends on the choice of
basis!

Definition: {;-norm

. . d
Given a basis 71, ...x4 of R4, the l1-norm of a vector v = :
g d i=1

d
loll =" Ixil
o=l

iz is given by
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Analysis of the algorithm: Getting rid of the parameter dependence

\ 4
Y

(@ ®)
Figure: (a): A "bad" basis (b) A "well-spaced" basis

‘

> To avoid large coefficients: Change the coordinate system by choosing a “well-spaced" basis.

> Then change the cost vectors so as to preserve (c, s) for allc € C, s € S.
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How to choose a “well-spaced" basis: Barycentric spanners

Definition: Approximate barycentric spanner

Let S C R be a subset which is not contained in any lower-dimensional linear subspace of R%. A set
X ={z1,...zq} is a C-approximate barycentric spanner if every s € S can be expressed as a linear combination
of elements of X using coefficients in [-C, C].

Theorem (Awerbuch, Kleinberg [2])

Suppose that S C R? is a compact set not contained in any proper subspace. Then for any C' > 1, S has a
C'-approximate barycentric spanner.

Moreover, given an oracle for optimizing linear functions over S, for any C' > 1 we may compute a
C-approximate barycentric spanner for S in polynomial time.
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MAB: Analysis of algorithm

Theorem (Awerbuch, Kleinberg [2])
There exists a polynomial-time and space online learning algorithm A for MAB such that for any fixed sequence
c1,...,cr € R with |{c,s)| < R for all s € S,

T T

E Z(Ct,St) — quigz<ct,s> <0 (T2/3Rd)
t=1 =

where sy € S is the (random) output of A at round t € [T].

Proof

Given c € C,s € S, let ¢® := (c, s) denote the cost of a strategy S if the adversary chooses cost vector c¢. We
will transform the coordinate system so that ¢® is preserved:

> Let X := {z1,...24} C S be a 2-approximate barycentric spanner.
> Transform the coordinate system by mapping z; to Rde;.

> Transform the cost vectors ¢ € C into new cost vectors ¢ so that the cost of each strategy is preserved, i.e.
so that (¢,s) = c® for all c € C,s € S in the new coordinate system.
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MAB: Analysis of algorithm

Proof cont.
Now we have that:
> D =max, cs s — s'||1 < 4Rd? in this new coordinate system.
> The new cost vectors ¢ have no coordinate greater than 1/d.
> So A :=max¢||é]]1 <1 in the new coordinate system.
We have already seen that there exists a polynomial online learning algorithm A for MAB such that for any

fixed sequence ci1,...,cr ,

T T

E Z<Ct73t> 7mi‘lélz<ct,8>ST2/3R2/3A1/2D1/3d1/3,
sE

t=1 t=1

where D, A are parameters such that ||s — s’||1 < D for all s,s" € S and ||c||1 < A for all c € C.
Setting D = 4Rd? and A = 1 yields the result. m]

Remark: We can apply a similar argument to the FPL algorithm in the full feedback setting to remove
the dependence on A and D in the guarantee.
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