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Outline

. A brief introduction to reinforcment learning.
. The difficult exploration-exploitation dilemma.

1
2
3. Borrowing from bandits to solve RL.
4. Proof of sublinear regret:

> A key lemma.
> A sequence of summation tricks to control the regret.

5. Beyond the tabular setting: the linear MDP case.
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Introduction to Reinforcement Learning

Reinforcement Learning

A control theoretic problem in which the agent tries to maximize its cumulative rewards via interaction with an
unknown environment.

o Process begins when the environment sends the agent a state, then the agent takes an action, receives a
reward and transitions to a new state. This process continues until a terminal state is reached.

o The informative rewards the environment provide may be sparse.

Example

Game of Chess: Environment sends initial board state, player can then take an action by moving his pieces, a
new state is provided by the adversary, and the terminal state is reached when one player wins.
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Reinforcement Learning: General Mathematical Model

o Environment defines a set of actions A, a set of states S, and reward function r : S x A — [0, 1].

o Environment provides state initial state 21, and at any given point h in time the agent sees state x,, takes
action ay, and receives reward 7(zy,, a) and receives subsequent state x4 1. This process terminates when
a terminal state x4 reached.

o Goal: design a policy 7 that tells us which action to take in a given state to maximize future reward.

o The value function of a policy 7, denoted V™ : S — R, where V™ (z) returns the expected future reward of
following policy 7 beginning from a given state x.

X,
X
a a, X3
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Types of Reinforcement Learning

Model-Based

Form a model of the environment and from there form a control policy based on this learned model.

Model-Free

Directly search for optimal policy, without building an underlying model.

o Typically we assume the underlying Model is a Markov Decision Process, M DP(S, A,P,r)

o P is called the transition matrix, where P : S x & x A — R, where P(z’,x,a) is the probability that we
transition to state =’ given we took action a in state x.

o Assumption: There are finitely many states S and actions A, where |S| = S and |A| = A.
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Types of Reinforcement Learning Continued

Definition (Model Free (Formal Definition))
A RL algorithm is model-free if its space complexity is sub-linear relative to the space required to store an MDP.

o Need O(S2A) space to store transition matrix
o In either case we need to collect sample of environment to either model it or estimate optimal policy.

o Algorithms that are sample efficient collect a polynomial number of samples with respect to a fixed accuracy.
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Q-Learning

o Q-learning is a trial and error based model-free approach, that aims to find the best action a to take if
presented with a state x.

o maintain Q-values, where Q : S x A — R, where Q(z,a) is an estimate of the expected sum of future
rewards if we take action a at state .

o The greedy policy associated with a given set of -values would be to select the highest quality action for a
given state.
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Motivation to Study Model Free Algorithms

o Model-Free algorithms are online and can be more expressive since not restricted by model.

o However, before this work Model-Free algorithms were hypothesized to be less sample efficient than model
based.

Question:

Do model-free algorithms need more samples to obtain a good policy?
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Formalizing the setting: Episodic MDPs

Tabular Episodic MDP

MDP(S, A, H,P,r), where S is the set of states, A is the set of actions, H is the number of steps in each
episode, P is the transition matrix Pp, : S X S X A — R, and rp, : S X A — [0,1] is the reward function.

o There are K episodes and in each episode k = 1,..., K an initial state ac]f is selected by an adversary. At
each h € [H] the agent observes a state i and takes af € A receiving reward ), (z¥, k) then transitions to
zﬁ_,'_l which is drawn from Ph(xﬁ,aﬁ). The episode ends when m’I“{H is reached.

o The policy of an agent is a collection of H functions {mj, : S — A}h,e[H]- ViT + & — R is the value function
at step h under policy m and is the expected sum of reqed under policy 7 beginning from xfb until the end of
the episode.
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Formal Problem Definition Continued

For a policy 7

H
Vi (@) =BLY  rw (@, e (@ len = a]
h/=h

QZ(Q:,G,) = 'rh(x’ CL) + []P’th+1](:E, a)

where [Pth+1](z: a) = Ex’wl?’h (z,a) [thr+l (xl)]
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Formal Problem Definition Continued

Bellman Equations

Since the state and action spaces and time horizon are finite one can show that there exists an optimal policy

7* given by the policy satisfying Vh”* (x) = sup, V" () for all z € S, h € [h]. The Bellman Equation gives a

dynamic programming formulation.

Vii(z) = QF (x, mh()) V, (z) = maxqea Q@ (2, a)
Qz (x: a) = (rh + PhV}ZT+1(x’ a)) Qh(xa a) = (rh + thh+1(w7 a))
Vi VzZES Vg, VzeES
Goal:
Agent plays K episodes, k = 1,..., K and the adversary picks a starting state z}C for each episode k£ and the

agent chooses a policy 7 before starting k-th episode. We want to minimize the expected regret:

K
Regret(K) = Z[Vf (z1)* — vk @h)).
=il
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From Regret to sample complexity

o What does it mean to achieve sublinear regret using this notion 7
Theorem
Consider an algorithm achieving sublinear regret

K

> - Ve < 0 Tie
k=1

Then for any € > 0, by applying Markov'’s inequality, a uniformly chosen policy mj, achieves, with probability at
least 2/3,
Vi(e}) - V™ (ef) < e

with T = O(1/ex ).
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Motivation Continued [2]

Algorithm Regret Time Space
UCRL2 [10] t least O(VH*S2AT
[10] at leas ~( ) O(Ts24)
i 1 3G92
Model-based Agrawal and Jia [1] at least O(VH3S2AT) O(S2AH)
UCBVI [5] 2 O(VH2SAT) -
— O(TSs24)
vUCQ [12] 2 O(VH?SAT)
Q-learning (e-greedy) [14] : H/2
(if 0 initialized) Q(min{T, A7/2})
Model-free | Delayed Q-learning [25] 3 Os, a1 (T45)
~ or O(SAH
Q-learning (UCB-H) O(VH*SAT) @) ( )
Q-learning (UCB-B) O(VH3SAT)
[ lower bound ( Q(VH?SAT) ( - ( -

Table 1: Regret comparisons for RL algorithms on episodic MDP. T' = K H is totally number of steps, H is the
number of steps per episode, S is the number of states, and A is the number of actions. For clarity, this
table is presented for 7' > poly(S, A, H), omitting low order terms.
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Difficulty with Model-Free

o Problem of exploitation versus exploration.
o When exploiting we take what we think is the best action.
o When exploring we try something new to gain more information about the environment.

o Naive-Approach: e-greedy exploration.

* a h —— guess at most profitable action
Xh

* a h — uniform random action
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e-greedy Pseudocode

Algorithm 1 e-greedy

Initialize: Q(z,a)
receive x1
for h=1,...H do
with probability (1—¢) take action aj, +— argmax,c 4 Q(p,a) and with probability € take a random
action ay,.
observe xj, 1
fi?(thyah) — Q(zp,ap) + afrp(zh, ap) + Yymaxee 4 Q(zh+t,a) — Q(zh, an)]
end for
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Hard Example for e-greedy

H/2 H/2

Figure: If initialization of Q-values is 0 expected number of rounds until first update of Q-values is Q(AH/?‘), where we suffer
H /2 regret in each of these rounds. [2]
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Help from the bandits literature

o A condensed form of the exploration-exploitation trade-off is given by the Multi-Armed Bandit problem.

Figure: Imagine a row of slot machines - How do you play without knowing which one is the “best"?
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Help from the bandits literature: Optimism in the face of uncertainty

o Maintain a high-probability confidence interval around the estimated mean of each arm.

Va€ A, P[0a(t) = 0a > ba(t)] <6

Optimism principle

Operate under the most optimistic outlook: take the upper estimate of the confidence bound.

Remark: o Instead of taking just the estimated mean, add the uncertainty bonus :

0a(t) + ba(t)
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Optimism in the face of uncertainty

1

o Am 1 Am2 Am 3 Am 4

Figure: Upper Confidence Bound

UCB [1]

A possible choice, with 6 = 1/t is to take: ba(t) = 4/ 2]\1;17@)(0 The total regret is then

O( 4/ numberOfArms x T')
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Q-learning with UCB-Hoeffding

Theorem

There exists an algorithm that achieves a total regret of at most O( VH4SAT'L) where . = log(SAT /p) with
probability 1 — p for any p € (0,1).
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Q-learning with UCB-Hoeffding Pseudocode

Algorithm 2 Q-learning with UCB-Hoeffding

Qn(z,a) « H Np(z,a) < 0 for all (z,a,h) € S x A X [H]

for episode k =1,..., K do
receive 1

end for

forh=1,...H do
Take action aj, = argmax,¢ 4 Qn(zn,a) and with probability €
observe zpy1,t < Np(xh,an) < Np(xh,an) + 1,b < c+/H3./t.
Qr(zn,an) + (1 — ar)Q(@h, an) + at[rn(Tn, an) + Vit1(Tpt1) + b

Vi (zn) < min{H, max,c 4 Qn(zr,a)}
end for

o QF, V', N} the functions Q,, Vi, N}, at the beginning of episode k.

o Let ({(7;‘;,(L¢;) be the actual state-action pair observed and chosen in step h of episode k.
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The algorithm

Q" Update

o | find myself in (z,a) at step h on episode k. | observe the next state zﬁ_H.
o | retrieve t = Nf(z,a) and add 1.
o | then update QF as follows:

Qfl“‘l(z, a)=(1- ozt)Q’fL(:c, a) + at [rh(x, a) + Vf+1(1:ﬁ+1) + bt]
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Unrolling the recursive updates

o Let us consider a fixed (,a, h).
t=0
t=1
t=2

H
H X(l — (){1) + Th(T,a)JrV;fil(zﬁLrl)*bz x Qg

H X(l = al) + (@) + Vil (@) + 0 x 01 X (1 — )+ a(@,a) + Vg (@hz) + b | x Q2

v

o We can see that an important coefficient that will appear in the summation is
t
al := {First appearance a;} x {Later discounts by (1 — ;) up to t} = a; H (1—oy)
j=it1
o Rolling out these recursive updates, we have that QZ(:E, a)=alH+ Zle al [Th (z,a) + V}fjrl(z::rl) + bi]
Remark
Qfl is a weighted sum of the past observed rewards and value functions. In fact, with the appropriate choice of

learning rate ay, it is a convex combination.
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A learning rate to smoothly forget the past

0.015
0.01

0.005

Figure: Visualization of ai for different choices of learning rate
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The path to showing sublinear regret
o The first step is to control the error in our estimate of the Q-function.
o Recall that

Q;L(:I:7 a) = Th(l‘, (1) + IE"Cﬂnext [V};l»l (anXt)}

=rp(z,a) + fo+1(x§+1) + Expene [Vf:+1(xnext)} - Vh*+1(f’5;i+1)

t
i ks ks
Qh(@,0) = adQh + > o [ra(@,a) + Viiyy (@7 1) + Bage [Vies (@nex)] = Vi (2,) ]
i=1
o Comparing to
t
i ki kq
Q]Z(:c,a) ZOégH'i‘Za% [Th(ftva)—’—vlerl(Ithl)—i_ + ]
i=1

Lemma (Gap between Q¥ and Q*)

t
* i k; k; * ki * k; *
QfF — Q5 = adH = Qi) + Y ot (V@ 1) = Vit (@i ) + (Vi @) = oo [Vity s (@ne)]) + )
i=1

IELTdil  Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 27/ 46 EPFL



The path to showing sublinear regret

o The first step is to control the error in our estimate of the Q-function.
o Recall that

Qp(z,a) = 11(2, @) + B [V 1 (Tnext)]

=i (2,a) + Vi (@ 1) + B [Viig 1 (nee)] = Viiy 1 (24 1)
t

i k; ki
Qh(w,a) = ofQ + Y o [rn(@,0) + iy (1) + B [V (o)) = Vi () ]
=1

o Comparing to

t
; ki . ks
QF(z,a) = agH-l—Za% [Th(m,a) + Vi (@) + +l,,]
i=1

Lemma (Gap between QF and Q*)

(Q’fl — Q}) = Not visiting (z,a) + Not knowing V;*, | + Not knowing the transition dynamics + Bonus terms
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Controlling the gap

o The second error is of a classic nature: what price do you pay when using samples to approximate an
expectation ? How large can the following sum be ?

t
i (Y * ki
E o (Vi1 (2l 1) = Bape [Vigq (Tnext)])
=1

Concentration of measure
Independent random variables cannot collaborate to deviate significantly from their expectation.

Remarks: o Obstacles to an immediate application of Hoeffding:

ky .
> The sequence of next states xh;l are not independent.

> The number of terms ¢ is also random.
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Azuma-Hoeffding and union bounds

o Azuma: "The sum of sub-gaussian martingale increments is sub-gaussian".
o Hoeffding: "Bounded random variables are sub-gaussian".
o How do we deal with the random number of terms ?

Union bounds
We set the failure probability to be p/(SAHK), so that we have with probability 1 — p, for all (z,a, h, 7),

-, H3log(SAHK /p
Z C“‘r(V}:+1(xﬁ+1) — Erpen [Vi:+1(wnext)}) <c W
i=1

The key here is that this bound holds uniformly for all possible values of ¢.
Remark: o From this we can easily derive the following upper bound:

H3log(SAHK/p)

(QF — Q7)(z,a) < Not visiting (z,a) + Not knowing Vil +e ;
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Establishing a lower bound

o We begin with a crucial observation:
(QZ—QZ)(JS, a) = Not visiting (z,a)+Not knowing V}*, | +Not knowing the transition dynamics+
The error on @ functions at step h is dictated by the error at the next step h + 1.

Induction from H, H — 1,--- ,1 as a central tool to prove results

The problem is at its easiest at step H. Indeed there is only a single action to take, there is no planning
involved as it is the last round. So the error at step H is easy to control.

(QI;{ — Q7)) (=, a) = Not visiting (z,a) +

Consequently Q% — Q% > 0. Which implies that V5 — V% > 0.
By taking the large enough to compensate for the possibly negative sample-expectation errors, we

can have that
Q1 — Qi1 2 0.

We proceed like so, by induction, to show that Q’fL —Qjp >0 forall h.
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The central lemma

Lemma (Lemma 4.3)

There exists an absolute constant ¢ > 0 such that for any p € (0,1), and by = ¢/ H3log(SAT/p)/t, we have
with probability at least 1 — p, simultanuously for all (z,a,h),

t
* § ik * k;
0< Qﬁ - Qh < O‘gH + at(vh+1 - Vh+1)(zh+1) + 575 (4)

=1

where t = N,If(:p, a) and B¢ =2 2221 a%bt.
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Notation

o 7y, is the policy specified by the Bellman Equation for Q-value Q;‘L

o Let k;(xf,aF) be the episode in which (z,al) was taken at step h for the " time.

Vk Pseudo-Value
k h Function
Algorithm » Qh

» V% Value Function via
h  Bellman Equation
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Proof of Theorem 4

o Let 6F = (VF — V#)(aF) and ¢F = (VF — V) (xf).
o We know by Lemma (4) that with probability 1 — p that Qh > Q}, and since
V,,i‘ = min{H, max,c 4 Qh(zh,a)} and by the Bellman Equation V;* = maxge4 Q (v, a) we obtain that
VE> v
h = "h"

Regret Bound

We obtain an upper bound for our regret,

K K K
Regret(K) = 3 (Vi = Vy™)(@h) < > (VF = vi™)(ah) =) " of (5)
k=1 k=1 k=1
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Proof of Theorem 4 Continued

Lo . K . K .
o Main idea is to bound Zk "' by the values for the next step, namely ZP?:] 1 to get a recursive

k
h+1
formula and use Equation 5 to bound the regret. Let n} = N"( aé‘])

&=V - V”’“)(wﬁ)

< (@ — QpF)(a), af)
= (@5~ Qh)(xhv W)+ (@ — QpF)(f, ap)
0 L sk e ki - D . k

< u”;,’ H + Z;(xj);‘y (Vi = Vi (2, (1)) + B+ h(Viy — v | l)](l}l ay) (6)
"

_ ) i ki k k k

= “\,,j; H+ Za;lg(ﬁhﬂ + Bn’; —Pnp1 +0h41 T
i=1

o Where the first inequality follows because by the Bellman Equation and algorithm’s choice of V}, Q. The
first part of the second inequality comes from applylng Equation (4) and the second by the Bellman

Equation. The last inequality follows if we set &) b1 =1Fn — Ph)(vh+1 Vh’+1)]( Kak).
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Proof of Theorem 4 Continued

o Now we use Equation (6) to compute Zi\:l 6;: Clearly an upper bound for

is H times the number of state action pairs. This follows because
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Proof of Theorem 4 Continued

Then the second term in Equation (6)

K

Zzamhﬂhvah Z¢h+1 Z a,“ <(+1/H)Y ok, @)

k=1 i=1 k'=1 :nk/+1 k=1
h

Where the first inequality follows because the term ¢;‘;+1 only appears in terms for k > k’ and when

zk k) = xk/,a , and the final inequality because ; ol =(14+1/H) for all i > 1.
h h % t

h
(x;f ) a;: ’) (le;v” a}f’) o (xh a, )
Appearance 1 2 . l
Index (k' +1) k' k' + 1 K+t
. K
Contribution to Sum ¢h+1a ¢h+1 ,”"
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Proof of Theorem 4 Continued

Then,

K K K K K
k k k k
D kS SAH+(U+1/H)Y o= kY 0kt Y (B &)
k=1 k=1 k=1 k=1 k=1
K K

<SAH+(1+1/H)Y o, +Z(ﬁ"ﬁ k)

k=1 k=1

(®)

k

where here we use the fact that since V* > V™% we have 6h+1 > ¢Z+1.
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Proof of Theorem 4 Continued
K

K K
D ol SSAH+(1+1/H) Y ohpa+ ) (B +60)
k=1 k=1

k=1

K K K
D <SAH+ 1+ 1/H)Y o5+ Y (B +E)
k=1 k=1 k=1

K K K
Y SSAH+ (14 1/H)Y 65D (B + k)
k=1 k=1 k=1

we obtain that

K H K
» k<o SAH2+ZZBk+£h+1
k=1

h=1 k=1
. H
since 6§+1 =0 and Zh:1(1 +1/h)h = O(H).
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Proof of Theorem 4 Continued

o Then by Lemma (4) B¢ < 4c+/H3/t and thus

N (z,a) K/SA
Zﬂ <O Z \/W =0 Z Z H3u/n | <O Z Z v H3u/n 9)
(z,0) n=1 (z,a) n=1

Where the first equality follows because we need to sum over all pairs (z,a) that appeared as (xé‘,a, ) for
some k. Then since Z(I a) N (z,a) = K this quantity is maximized when each state action pair appears
about K/SA times.

o Continuing we obtain,

K
Z Bk <O(VHPSAKL) < O(VHZSATL) (10)
h
k=1
Since Z” 7 = O(+/n) we obtain the the first inequality. Then last inequality comes from the fact that

T=KH.
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Proof of Theorem 4 Continued

Azuma Hoeffding again
We can then apply Azuma Hoeffding to get that with probability 1 — p

H K H K
DD el =1) > BB <cHVTL

h=1 k=1 h=1 k=1
via the same argument from Lemma (4).

o We conclude that Regret(K) < O(H2SA + VHASATL), observe that when T is large (> VH4SAT.) then

the second term dominates, and if T' is small (< vV H4SAT") then Ziil 5% < HK and therefore we are
bounded by the second term as well.

In summary the equation holds with probability 1 — 2p and thus if we scale the choice of p appropriately we
obtain the desired result.
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Discussion of the result

Hoeffding bonus:
Regret < O( VH4SAT.)
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Discussion of the result

Bernstein bonus:

Regret < O( VH?2SATL)

MAB vs trajectory planning
The cost of trajectory planning is a vV H factor.
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A meaningless bound for large state spaces

Unsatisfactory dependence on the number of states

How can we remove the dependence on S ?

Remark: o Often the number of states is exponentially large.
o ls it possible to have compressed representations of the Q-action-value function ?
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Linear function approximation

o Let us introduce a restricted problem class.

Linear MDPs
MDP(S, A, H,P,r) is a linear MDP with a feature map ¢ : S x A — R%, if for any h € [H], there exist d
unknown (signed) measures pp = (,ugll), e ,,u;d)) over S and an unknown vector 6, € R, such that for any
(z,a) € S x A, we have

Ph("x’a) = <¢(xza)7ﬂh(')>7 Th(zza) = <¢)(x7a)79h>' (11)
Without loss of generality, we assume ||¢(z, a)|| < 1 for all (z,a) € S x A, and max{||us(S)|, |0x]|} < V/d for
all h € [H].
Remark: o In this setting the action value function is also linear:

Qp(z,a) = (wy, ¢(z,a)),

for all h € [H] and for all policies .
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Least-Squares Value lteration - with UCB

Compile error
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A sketch of the proof

Regret Bound [3]
The total regret can be upper bounded by O(VdH3T)
o First step: Establish concentration result for

k—1
$(@,a) AL d(ah, af) Vit (@741) = PuVara (aF, ap)]

=1
requires the introduction of a restriction on the possible V' functions.

o Second step: Use recursion from H to 1 to propagate error back down.
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Conclusion

o Sublinear regret is achievable in “model-free" reinforcement learning.

o Can we devise algorithms that do not know a priori the number of episodes that will be played ?
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