Online Learning in Games

DRAFT

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 7: Sample complexity of Q learning: upper bounds through the lens of episodic MDPs

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-735 (Spring 2024)

License Information for Online Learning in Games Slides

- ▶ This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - ▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
 - ► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes unless they get the licensor's permission.
- ► Share Alike
 - ► The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- ▶ Full Text of the License

Acknowledgements

These slides were originally prepared by Leello Dadi and Marina Drygala.

Outline

- 1. A brief introduction to reinforcment learning.
- 2. The difficult exploration-exploitation dilemma.
- 3. Borrowing from bandits to solve RL.
- 4. Proof of sublinear regret:
 - A key lemma.
 - A sequence of summation tricks to control the regret.
- 5. Beyond the tabular setting: the linear MDP case.

Introduction to Reinforcement Learning

Reinforcement Learning

A control theoretic problem in which the agent tries to maximize its cumulative rewards via interaction with an unknown environment.

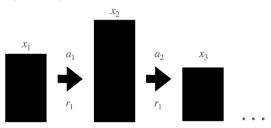
- Process begins when the environment sends the agent a state, then the agent takes an action, receives a reward and transitions to a new state. This process continues until a terminal state is reached.
- o The informative rewards the environment provide may be sparse.

Example

Game of Chess: Environment sends initial board state, player can then take an action by moving his pieces, a new state is provided by the adversary, and the terminal state is reached when one player wins.

Reinforcement Learning: General Mathematical Model

- \circ Environment defines a set of actions \mathcal{A} , a set of states \mathcal{S} , and reward function $r: \mathcal{S} \times \mathcal{A} \to [0,1]$.
- Environment provides state initial state x_1 , and at any given point h in time the agent sees state x_h , takes action a_h , and receives reward $r(x_h, a_h)$ and receives subsequent state x_{h+1} . This process terminates when a terminal state x_{H+1} reached.
- o Goal: design a policy π that tells us which action to take in a given state to maximize future reward.
- The value function of a policy π , denoted $V^{\pi}: \mathcal{S} \to \mathbb{R}$, where $V^{\pi}(x)$ returns the expected future reward of following policy π beginning from a given state x.



Types of Reinforcement Learning

Model-Based

Form a model of the environment and from there form a control policy based on this learned model.

Model-Free

Directly search for optimal policy, without building an underlying model.

- o Typically we assume the underlying Model is a Markov Decision Process, $MDP(S, A, \mathbb{P}, r)$
- \circ \mathbb{P} is called the transition matrix, where $\mathbb{P}: \mathcal{S} \times \mathcal{S} \times \mathcal{A} \to \mathbb{R}$, where $\mathbb{P}(x', x, a)$ is the probability that we transition to state x' given we took action a in state x.
- \circ Assumption: There are finitely many states $\mathcal S$ and actions $\mathcal A$, where $|\mathcal S|=S$ and $|\mathcal A|=A$.

Types of Reinforcement Learning Continued

Definition (Model Free (Formal Definition))

A RL algorithm is model-free if its space complexity is sub-linear relative to the space required to store an MDP.

- Need $O(S^2A)$ space to store transition matrix
- o In either case we need to collect sample of environment to either model it or estimate optimal policy.
- o Algorithms that are sample efficient collect a polynomial number of samples with respect to a fixed accuracy.

Q-Learning

- \circ Q-learning is a trial and error based model-free approach, that aims to find the best action a to take if presented with a state x.
- o maintain Q-values, where $Q: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$, where Q(x,a) is an estimate of the expected sum of future rewards if we take action a at state x.
- The greedy policy associated with a given set of Q-values would be to select the highest quality action for a given state.

Motivation to Study Model Free Algorithms

- o Model-Free algorithms are online and can be more expressive since not restricted by model.
- However, before this work Model-Free algorithms were hypothesized to be less sample efficient than model based.

Question:

Do model-free algorithms need more samples to obtain a good policy?

Formalizing the setting: Episodic MDPs

Tabular Episodic MDP

 $MDP(\mathcal{S},\mathcal{A},H,\mathbb{P},r)$, where \mathcal{S} is the set of states, \mathcal{A} is the set of actions, \underline{H} is the number of steps in each episode, \mathbb{P} is the *transition matrix* $\mathbb{P}_h: \mathcal{S} \times \mathcal{S} \times \mathcal{A} \to \mathbb{R}$, and $r_h: \mathcal{S} \times \mathcal{A} \to [0,1]$ is the reward function.

- \circ There are K episodes and in each episode $k=1,\ldots,K$ an initial state x_1^k is selected by an adversary. At each $h\in[H]$ the agent observes a state x_h^k and takes $a_h^k\in\mathcal{A}$ receiving reward $r_h(x_h^k,a_h^k)$ then transitions to x_{h+1}^k which is drawn from $\mathbb{P}_h(x_h^k,a_h^k)$. The episode ends when x_{H+1}^k is reached.
- The policy of an agent is a collection of H functions $\{\pi_h: \mathcal{S} \to \mathcal{A}\}_{h \in [H]}$. $V_h^\pi: \mathcal{S} \to \mathbb{R}$ is the value function at step h under policy π and is the expected sum of reqed under policy π beginning from x_h^k until the end of the episode.

Formal Problem Definition Continued

For a policy π

$$V_h^{\pi}(x) = \mathbb{E}\left[\sum_{h'=h}^{H} r_{h'}(x_{h'}, \pi_{h'}(x_{h'}) | x_h = x\right]$$
 (1)

$$Q_h^{\pi}(x,a) = r_h(x,a) + [\mathbb{P}_h V_{h+1}](x,a)$$
(2)

where
$$[\mathbb{P}_h V_{h+1}](x,a) = \mathbb{E}_{x' \sim \mathbb{P}_h(x,a)}[V_{h+1}^\pi(x')]$$

Formal Problem Definition Continued

Bellman Equations

Since the state and action spaces and time horizon are finite one can show that there exists an optimal policy π^\star given by the policy satisfying $V_h^{\pi^\star}(x) = \sup_{\pi} V_h^{\pi}(x)$ for all $x \in \mathcal{S}, h \in [h]$. The Bellman Equation gives a dynamic programming formulation.

$$\begin{cases} V_h^\pi(x) = Q_h^\pi(x, \pi_h(x)) \\ Q_h^\pi(x, a) = (r_h + \mathbb{P}_h V_{h+1}^\pi(x, a)) \\ V_{H+1}^\pi \quad \forall x \in \mathcal{S} \end{cases} \begin{cases} V_h(x) = \max_{a \in \mathcal{A}} Q_h(x, a) \\ Q_h(x, a) = (r_h + \mathbb{P}_h V_{h+1}(x, a)) \\ V_{H+1} \quad \forall x \in \mathcal{S} \end{cases}$$

Goal:

Agent plays K episodes, $k=1,\ldots,K$ and the adversary picks a starting state x_k^1 for each episode k and the agent chooses a policy π_k before starting k-th episode. We want to minimize the expected regret:

$$Regret(K) = \sum_{k=1}^{K} [V_1^{\star}(x_1)^k - V_1^{\pi_k}(x_1^k)].$$
 (3)

From Regret to sample complexity

o What does it mean to achieve sublinear regret using this notion ?

Theorem

Consider an algorithm achieving sublinear regret

$$\sum_{k=1}^{K} [V_1^{\star}(x_1^k) - V_1^{\pi_k}(x_1^k)] \le C \cdot T^{1-\alpha}$$

Then for any $\epsilon > 0$, by applying Markov's inequality, a uniformly chosen policy π_k achieves, with probability at least 2/3,

$$V_1^{\star}(x_1^k) - V_1^{\pi_k}(x_1^k) \le \epsilon$$

with $T = O(1/\epsilon^{\frac{1}{\alpha}})$.

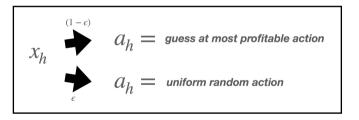
Motivation Continued [2]

	Algorithm	Regret	Time	Space
Model-based	UCRL2 [10] 1	at least $\tilde{\mathcal{O}}(\sqrt{H^4S^2AT})$	$\Omega(TS^2A)$	$\mathcal{O}(S^2AH)$
	Agrawal and Jia $[1]$ 1	at least $\tilde{\mathcal{O}}(\sqrt{H^3S^2AT})$		
	UCBVI $[5]$ ²	$ ilde{\mathcal{O}}(\sqrt{H^2SAT})$	$ ilde{\mathcal{O}}(TS^2A)$	
	$vUCQ~[12]^{-2}$	$ ilde{\mathcal{O}}(\sqrt{H^2SAT})$		
Model-free	Q-learning (ε -greedy) [14] (if 0 initialized)	$\Omega(\min\{T,A^{H/2}\})$	$\mathcal{O}(T)$	$\mathcal{O}(SAH)$
	Delayed Q-learning [25] ³	$ ilde{\mathcal{O}}_{S,A,H}(T^{4/5})$		
	Q-learning (UCB-H)	$ ilde{\mathcal{O}}(\sqrt{H^4SAT})$		
	Q-learning (UCB-B)	$ ilde{\mathcal{O}}(\sqrt{H^3SAT})$		
	lower bound	$\Omega(\sqrt{H^2SAT})$	-	-

Table 1: Regret comparisons for RL algorithms on episodic MDP. T = KH is totally number of steps, H is the number of steps per episode, S is the number of states, and A is the number of actions. For clarity, this table is presented for $T \ge \text{poly}(S, A, H)$, omitting low order terms.

Difficulty with Model-Free

- Problem of exploitation versus exploration.
- When exploiting we take what we think is the best action.
- o When exploring we try something new to gain more information about the environment.
- o Naive-Approach: ϵ -greedy exploration.



ϵ -greedy Pseudocode

Algorithm 1 ϵ -greedy

```
Initialize: Q(x,a) receive x_1 for h=1,\ldots H do  \text{with probability } (1-\epsilon) \text{ take action } a_h \leftarrow \arg\max_{a\in\mathcal{A}} Q(x_h,a) \text{ and with probability } \epsilon \text{ take a random action } a_h. \\ \text{observe } x_{h+1} \\ Q(x_h,a_h) \leftarrow Q(x_h,a_h) + \alpha[r_h(x_h,a_h) + \gamma \max_{a\in\mathcal{A}} Q(x_{h+t},a) - Q(x_h,a_h)] \\ \text{end for }
```

Hard Example for ϵ -greedy

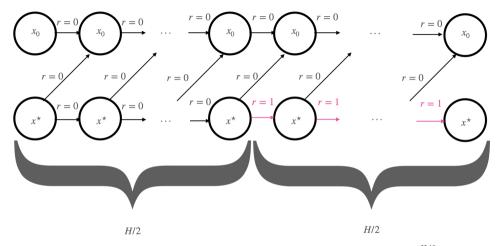


Figure: If initialization of Q-values is 0 expected number of rounds until first update of Q-values is $\Omega(A^{H/2})$, where we suffer H/2 regret in each of these rounds. [2]

Help from the bandits literature

o A condensed form of the exploration-exploitation trade-off is given by the Multi-Armed Bandit problem.

Figure: Imagine a row of slot machines - How do you play without knowing which one is the "best"?

Help from the bandits literature: Optimism in the face of uncertainty

o Maintain a high-probability confidence interval around the estimated mean of each arm.

$$\forall a \in A, \quad \mathbb{P}\left[|\hat{\theta}_a(t) - \theta_a| \ge b_a(t)\right] \le \delta$$

Optimism principle

Operate under the most optimistic outlook: take the upper estimate of the confidence bound.

Remark:

o Instead of taking just the estimated mean, add the uncertainty bonus :

$$\hat{\theta}_a(t) + b_a(t)$$

Optimism in the face of uncertainty

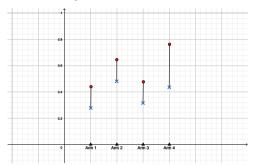


Figure: Upper Confidence Bound

UCB [1]

A possible choice, with $\delta=1/t$ is to take: $b_a(t)=\sqrt{\frac{\ln(t)}{2N_{\pi,a}(t)}}$. The total regret is then

$$O(\sqrt{\mathsf{numberOfArms} \times T})$$

Q-learning with UCB-Hoeffding

Theorem

There exists an algorithm that achieves a total regret of at most $O(\sqrt{H^4SAT\iota})$ where $\iota = \log(SAT/p)$ with probability 1-p for any $p \in (0,1)$.

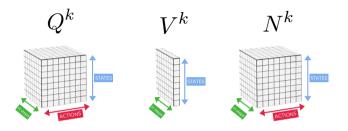
Q-learning with UCB-Hoeffding Pseudocode

Algorithm 2 Q-learning with UCB-Hoeffding

```
\begin{split} Q_h(x,a) &\leftarrow H \; N_h(x,a) \leftarrow 0 \; \text{for all} \; (x,a,h) \in \mathcal{S} \times \mathcal{A} \times [H] \\ \text{for episode} \; k=1,\ldots,K \; \text{do} \\ \text{receive} \; x_1 \\ \text{end for} \\ \text{for} \; h=1,\ldots H \; \text{do} \\ \text{Take action} \; a_h &= \arg\max_{a \in \mathcal{A}} Q_h(x_h,a) \; \text{and with probability} \; \epsilon \\ \text{observe} \; x_{h+1}, t \leftarrow N_h(x_h,a_h) \leftarrow N_h(x_h,a_h) + 1, b_t \leftarrow c \sqrt{H^3\iota/t}. \\ Q_h(x_h,a_h) \leftarrow (1-\alpha_t)Q(x_h,a_h) + \alpha_t[r_h(x_h,a_h) + V_{h+1}(x_{h+1}) + b_t] \\ V_h(x_h) \leftarrow \min\{H, \max_{a \in \mathcal{A}} Q_h(x_h,a)\} \\ \text{end for} \end{split}
```

- $\circ Q_h^k, V_h^h, N_h^k$ the functions Q_h, V_h, N_h at the beginning of episode k.
- \circ Let (x_h^k, a_h^k) be the actual state-action pair observed and chosen in step h of episode k.

The algorithm



Q^k Update

- \circ I find myself in (x,a) at step h on episode k. I observe the next state x_{h+1}^k .
- \circ I retrieve $t = N_h^k(x, a)$ and add 1.
- \circ I then update Q^k as follows:

$$Q_h^{k+1}(x,a) = (1 - \alpha_t)Q_h^k(x,a) + \alpha_t \left[r_h(x,a) + V_{h+1}^k(x_{h+1}^k) + b_t \right]$$

Unrolling the recursive updates

 \circ Let us consider a fixed (x, a, h).

o We can see that an important coefficient that will appear in the summation is

$$\alpha_t^i := \{ \text{First appearance } \alpha_i \} \times \{ \text{Later discounts by } (1 - \alpha_j) \text{ up to } t \} = \alpha_i \prod_{i=i+1}^t (1 - \alpha_j)$$

 $\circ \text{ Rolling out these recursive updates, we have that } Q^k_h(x,a) = \alpha^0_t H + \sum_{i=1}^t \alpha^i_t \left[r_h(x,a) + V^{k_i}_{h+1}(x^{k_i}_{h+1}) + b_i \right]$

Remark

 Q_h^k is a **weighted sum** of the past observed rewards and value functions. In fact, with the appropriate choice of learning rate α_t , it is a convex combination.

A learning rate to smoothly forget the past

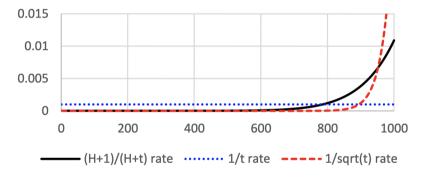


Figure: Visualization of α_t^i for different choices of learning rate

The path to showing sublinear regret

- o The first step is to control the error in our estimate of the Q-function.
- Recall that

$$\begin{split} Q_h^{\star}(x,a) &= r_h(x,a) + \mathbb{E}_{x_{\text{next}}}[V_{h+1}^{\star}(x_{\text{next}})] \\ &= r_h(x,a) + V_{h+1}^{\star}(x_{h+1}^k) + \mathbb{E}_{x_{\text{next}}}[V_{h+1}^{\star}(x_{\text{next}})] - V_{h+1}^{\star}(x_{h+1}^k) \\ Q_h^{\star}(x,a) &= \alpha_t^0 Q_h^{\star} + \sum_{i=1}^t \alpha_t^i \left[r_h(x,a) + V_{h+1}^{\star}(x_{h+1}^{k_i}) + \mathbb{E}_{x_{\text{next}}}[V_{h+1}^{\star}(x_{\text{next}})] - V_{h+1}^{\star}(x_{h+1}^{k_i}) \right] \end{split}$$

o Comparing to

$$Q_h^k(x,a) = \alpha_t^0 H + \sum_{i=1}^t \alpha_t^i \left[r_h(x,a) + V_{h+1}^{k_i}(x_{h+1}^{k_i}) + b_i \right] + b_i$$

Lemma (Gap between Q^k and Q^*)

$$Q_h^k - Q_h^\star = \alpha_t^0(H - Q_h^\star) + \sum_{i=1}^t \alpha_t^i \left((V_{h+1}^{k_i}(x_{h+1}^{k_i}) - V_{h+1}^\star(x_{h+1}^{k_i})) + (V_{h+1}^\star(x_{h+1}^{k_i}) - \mathbb{E}_{x_{\mathsf{next}}}[V_{h+1}^\star(x_{\mathsf{next}})]) + b_t \right)$$

The path to showing sublinear regret

- o The first step is to control the error in our estimate of the Q-function.
- o Recall that

$$\begin{split} Q_h^{\star}(x,a) &= r_h(x,a) + \mathbb{E}_{x_{\text{next}}}[V_{h+1}^{\star}(x_{\text{next}})] \\ &= r_h(x,a) + V_{h+1}^{\star}(x_{h+1}^{k}) + \mathbb{E}_{x_{\text{next}}}[V_{h+1}^{\star}(x_{\text{next}})] - V_{h+1}^{\star}(x_{h+1}^{k}) \\ Q_h^{\star}(x,a) &= \alpha_t^0 Q_h^{\star} + \sum_{i=1}^t \alpha_t^i \left[r_h(x,a) + V_{h+1}^{\star}(x_{h+1}^{k_i}) + \mathbb{E}_{x_{\text{next}}}[V_{h+1}^{\star}(x_{\text{next}})] - V_{h+1}^{\star}(x_{h+1}^{k_i}) \right] \end{split}$$

o Comparing to

$$Q_h^k(x,a) = \alpha_t^0 H + \sum_{i=1}^t \alpha_t^i \left[r_h(x,a) + V_{h+1}^{k_i}(x_{h+1}^{k_i}) + b_i \right] + b_i$$

Lemma (Gap between Q^k and Q^*)

 $(Q_h^k - Q_h^\star) = \textit{Not visiting } (x, a) + \textit{Not knowing } V_{h+1}^\star + \textit{Not knowing the transition dynamics} + \textit{Bonus terms}$

Controlling the gap

• The second error is of a classic nature: what price do you pay when using samples to approximate an expectation ? How large can the following sum be ?

$$\sum_{i=1}^{t} \alpha_t^i(V_{h+1}^{\star}(x_{h+1}^{k_i}) - \mathbb{E}_{x_{\text{next}}}[V_{h+1}^{\star}(x_{\text{next}})])$$

Concentration of measure

Independent random variables cannot collaborate to deviate significantly from their expectation.

Remarks:

- o Obstacles to an immediate application of Hoeffding:
 - ▶ The sequence of next states $x_{h+1}^{k_i}$ are not independent.
 - The number of terms t is also random.

Azuma-Hoeffding and union bounds

- o Azuma: "The sum of sub-gaussian martingale increments is sub-gaussian".
- o Hoeffding: "Bounded random variables are sub-gaussian".
- o How do we deal with the random number of terms ?

Union bounds

We set the failure probability to be p/(SAHK), so that we have with probability 1-p, for all (x,a,h,τ) ,

$$\left| \sum_{i=1}^{\tau} \alpha_{\tau}^{i}(V_{h+1}^{\star}(x_{h+1}^{k}) - \mathbb{E}_{x_{\mathsf{next}}}[V_{h+1}^{\star}(x_{\mathsf{next}})]) \right| \leq c \sqrt{\frac{H^{3} \log(SAHK/p)}{\tau}}.$$

The key here is that this bound holds uniformly for all possible values of t.

Remark:

o From this we can easily derive the following upper bound:

$$(Q_h^k - Q_h^\star)(x,a) \leq \text{Not visiting } (x,a) + \text{Not knowing } V_{h+1}^\star + c \sqrt{\frac{H^3 \log(SAHK/p)}{t}}$$

Establishing a lower bound

• We begin with a crucial observation:

$$(Q_h^k - Q_h^\star)(x,a) = \text{Not visiting } (x,a) + \text{Not knowing } V_{h+1}^\star + \text{Not knowing the transition dynamics} + \text{Bonus terms}$$

The error on Q functions at step h is dictated by the error at the next step h+1.

Induction from $H, H-1, \cdots, 1$ as a central tool to prove results

The problem is at its easiest at step H. Indeed there is only a single action to take, there is no planning involved as it is the last round. So the error at step H is easy to control.

$$(Q_H^k - Q_H^\star)(x, a) = \text{Not visiting } (x, a) + \text{Bonus terms}$$

Consequently $Q_H^k - Q_H^\star \geq 0$. Which implies that $V_H^k - V_H^\star \geq 0$.

By taking the bonus terms large enough to compensate for the possibly negative sample-expectation errors, we can have that

$$Q_{H-1}^k - Q_{H-1}^* \ge 0.$$

We proceed like so, by induction, to show that $Q_h^k - Q_h^{\star} \geq 0$ for all h.

The central lemma

Lemma (Lemma 4.3)

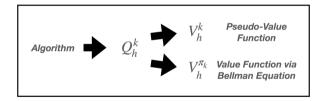
There exists an absolute constant c>0 such that for any $p\in(0,1)$, and $b_t=c\sqrt{H^3\log(SAT/p)/t}$, we have with probability at least 1-p, simultanuously for all (x,a,h),

$$0 \le Q_h^k - Q_h^* \le \alpha_t^0 H + \sum_{i=1}^t \alpha_t^i (V_{h+1}^{k_i} - V_{h+1}^*) (x_{h+1}^{k_i}) + \beta_t$$
(4)

where $t = N_h^k(x, a)$ and $\beta_t := 2 \sum_{i=1}^t \alpha_t^i b_t$.

Notation

- $\circ \pi_k$ is the policy specified by the Bellman Equation for Q-value Q_h^k .
- \circ Let $k_i(x_h^k, a_h^k)$ be the episode in which (x_h^k, a_h^k) was taken at step h for the i^{th} time.



Proof of Theorem 4

- $\circ \text{ Let } \delta_h^k = (V_h^k V_h^{\pi_k})(x_h^k) \text{ and } \phi_h^k = (V_h^k V_h^\star)(x_h^k).$
- $\text{o We know by Lemma (4) that with probability } 1-p \text{ that } Q_h^k \geq Q_h^\star \text{ and since } \\ V_h^k = \min\{H, \max_{a \in \mathcal{A}} Q_h^k(x_h, a)\} \text{ and by the Bellman Equation } V_h^\star = \max_{a \in \mathcal{A}} Q_h^\star(x, a) \text{ we obtain that } V_h^k \geq V_h^\star.$

Regret Bound

We obtain an upper bound for our regret,

$$Regret(K) = \sum_{k=1}^{K} (V_1^{\star} - V_1^{\pi_k})(x_1^k) \le \sum_{k=1}^{K} (V_1^k - V_1^{\pi_k})(x_1^k) = \sum_{k=1}^{K} \delta_1^k$$
 (5)

Proof of Theorem 4 Continued

• Main idea is to bound $\sum_{k=1}^K \delta_h^k$ by the values for the next step, namely $\sum_{k=1}^K \delta_{h+1}^k$ to get a recursive formula and use Equation 5 to bound the regret. Let $n_h^k = N_h^k(x_h^k, a_h^k)$

$$\begin{split} \delta_{h}^{k} &= (V_{h}^{k} - V_{h}^{\pi_{k}})(x_{h}^{k}) \\ &\leq (Q_{h}^{k} - Q_{h}^{\pi_{k}})(x_{h}^{k}, a_{h}^{k}) \\ &= (Q_{h}^{k} - Q_{h}^{\star})(x_{h}^{k}, a_{h}^{k}) + (Q_{h}^{\star} - Q_{h}^{\pi_{k}})(x_{h}^{k}, a_{h}^{k}) \\ &\leq \alpha_{n_{h}^{k}}^{0} H + \sum_{i=1}^{t} \alpha_{n_{h}^{k}}^{i} (V_{h+1}^{k_{i}} - V_{h+1}^{\star}(x_{h+1}^{k_{i}})) + \beta_{t} + [\mathbb{P}_{h}(V_{h+1}^{\star} - V_{h+1}^{\pi_{k}})](x_{h}^{k}, a_{h}^{k}) \\ &= \alpha_{n_{h}^{k}}^{0} H + \sum_{i=1}^{n_{h}^{k}} \alpha_{n_{h}^{k}}^{i} \phi_{h+1}^{k_{i+1}} + \beta_{n_{h}^{k}} - \phi_{h+1}^{k} + \delta_{h+1}^{k} + \xi_{h+1}^{k} \end{split}$$

$$(6)$$

o Where the first inequality follows because by the Bellman Equation and algorithm's choice of V_h, Q_h . The first part of the second inequality comes from applying Equation (4) and the second by the Bellman Equation. The last inequality follows if we set $\xi_{h+1}^k = [(\mathbb{P}_h - \hat{\mathbb{P}}_h)(V_{h+1}^* - V_{h+1}^{*h})](x_h^k, a_h^k)$.

0

Proof of Theorem 4 Continued

• Now we use Equation (6) to compute $\sum_{k=1}^{K} \delta_h^k$. Clearly an upper bound for

$$\sum_{k=1}^{K} \alpha_{n_h^k}^0 H$$

is H times the number of state action pairs. This follows because $\alpha_t^0 = \begin{cases} 1 & t=0 \\ 0 & \text{otherwise} \end{cases}$.

Then the second term in Equation (6)

$$\sum_{k=1}^{K} \sum_{i=1}^{n_h^k} \alpha_{n_h^k}^i \phi_{h+1}^{k_i(x_h^k, a_h^k)} \le \sum_{k'=1}^{K} \phi_{h+1}^{k'} \sum_{t=n_h^{k'}+1}^{\infty} \alpha_t^{n_h^{k'}} \le (1+1/H) \sum_{k=1}^{K} \phi_{h+1}^k$$
 (7)

Where the first inequality follows because the term $\phi_{h+1}^{k'}$ only appears in terms for k>k' and when $(x_h^k,a_h^k)=(x_h^{k'},a_h^{k'})$, and the final inequality because $\sum_{t=i}^\infty \alpha_t^i=(1+1/H)$ for all $i\geq 1$.

	$(x_h^{k'}, a_h^{k'})$	$(x_h^{k'}, a_h^{k'})$	 $(x_h^{k'}, a_h^{k'})$
Appearance	1	2	 i
Index (k'+	t) k'	k' + 1	k' + t
Contribution to Sum		$\phi_{h+1}^{k'}\alpha_1^{n_h^{k'}}$	 $\phi_{h+1}^{k'}\alpha_t^{n_h^{k'}}$

Then,

$$\sum_{k=1}^{K} \delta_{h}^{k} \leq SAH + (1+1/H) \sum_{k=1}^{K} \phi_{h+1}^{k} - \sum_{k=1}^{K} \phi_{h+1}^{k} + \sum_{k=1}^{K} \delta_{h+1}^{k} + \sum_{k=1}^{K} (\beta_{n_{h}^{k}} + \xi_{n_{h}^{k}})$$

$$\leq SAH + (1+1/H) \sum_{k=1}^{K} \delta_{h+1}^{k} + \sum_{k=1}^{K} (\beta_{n_{h}^{k}} + \xi_{n_{h}^{k}})$$
(8)

where here we use the fact that since $V^{\star} \geq V^{\pi_k}$ we have $\delta_{h+1}^k \geq \phi_{h+1}^k$.

$$\sum_{k=1}^{K} \delta_{H}^{k} \leq SAH + (1+1/H) \sum_{k=1}^{K} \delta_{H+1}^{k} + \sum_{k=1}^{K} (\beta_{n_{H}^{k}} + \xi_{n_{H}^{k}})$$
...
$$\sum_{k=1}^{K} \delta_{2}^{k} \leq SAH + (1+1/H) \sum_{k=1}^{K} \delta_{3}^{k} + \sum_{k=1}^{K} (\beta_{n_{2}^{k}} + \xi_{n_{2}^{k}})$$

$$\sum_{k=1}^{K} \delta_{1}^{k} \leq SAH + (1+1/H) \sum_{k=1}^{K} \delta_{2}^{k} + \sum_{k=1}^{K} (\beta_{n_{1}^{k}} + \xi_{n_{1}^{k}})$$

we obtain that

$$\sum_{k=1}^{K} \delta_1^k \leq O\left(SAH^2 + \sum_{h=1}^{H} \sum_{k=1}^{K} (\beta_{n_h^k} + \xi_{h+1}^k)\right)$$

since $\delta_{H+1}^K = 0$ and $\sum_{h=1}^H (1+1/h)^h = O(H)$.

• Then by Lemma (4) $\beta_t \leq 4c \sqrt{H^3 \iota/t}$ and thus

$$\sum_{k=1}^{K} \beta_{n_h^k} \le O\left(\sum_{k=1}^{K} \sqrt{H^3 \iota / n_h^k}\right) = O\left(\sum_{(x,a)} \sum_{n=1}^{N_h^K(x,a)} \sqrt{H^3 \iota / n}\right) \le O\left(\sum_{(x,a)} \sum_{n=1}^{K/SA} \sqrt{H^3 \iota / n}\right)$$
(9)

Where the first equality follows because we need to sum over all pairs (x,a) that appeared as (x_h^k,a_h^k) for some k. Then since $\sum_{(x,a)} N_h^K(x,a) = K$ this quantity is maximized when each state action pair appears about K/SA times.

o Continuing we obtain,

$$\sum_{k=1}^{K} \beta_{n_h^k} \le O(\sqrt{H^3 SAK\iota}) \le O(\sqrt{H^2 SAT\iota}) \tag{10}$$

Since $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} = O(\sqrt{n})$ we obtain the the first inequality. Then last inequality comes from the fact that T = KH.

Azuma Hoeffding again

We can then apply Azuma Hoeffding to get that with probability 1-p

$$|\sum_{h=1}^{H}\sum_{k=1}^{K}\xi_{h+1}^{k}| = |\sum_{h=1}^{H}\sum_{k=1}^{K}(\mathbb{P}_{h} - \hat{\mathbb{P}}_{h}^{k})| \le cH\sqrt{T\iota}$$

via the same argument from Lemma (4).

• We conclude that $\operatorname{Regret}(K) \leq O(H^2SA + \sqrt{H^4SAT\iota})$, observe that when T is large ($\geq \sqrt{H^4SAT\iota}$) then the second term dominates, and if T is small ($\leq \sqrt{H^4SAT\iota}$) then $\sum_{k=1}^K \delta_1^k \leq HK$ and therefore we are bounded by the second term as well.

In summary the equation holds with probability 1-2p and thus if we scale the choice of p appropriately we obtain the desired result.

Discussion of the result

Hoeffding bonus:

$$\mathsf{Regret} \leq O(\sqrt{H^4SAT\iota})$$

Discussion of the result

Bernstein bonus:

$$\mathsf{Regret} \leq O(\sqrt{\textcolor{red}{H^2}SAT\iota})$$

MAB vs trajectory planning

The cost of trajectory planning is a \sqrt{H} factor.

A meaningless bound for large state spaces

Unsatisfactory dependence on the number of states

How can we remove the dependence on S ?

Remark:

- o Often the number of states is exponentially large.
- o Is it possible to have compressed representations of the Q-action-value function ?

Linear function approximation

Let us introduce a restricted problem class.

Linear MDPs

 $\mathrm{MDP}(S,A,H,\mathbb{P},r)$ is a *linear MDP* with a feature map $\phi:S\times A\to\mathbb{R}^d$, if for any $h\in[H]$, there exist d unknown (signed) measures $\mu_h=(\mu_h^{(1)},\ldots,\mu_h^{(d)})$ over S and an unknown vector $\theta_h\in\mathbb{R}^d$, such that for any $(x,a)\in S\times A$, we have

$$\mathbb{P}_h(\cdot|x,a) = \langle \phi(x,a), \mu_h(\cdot) \rangle, \qquad r_h(x,a) = \langle \phi(x,a), \theta_h \rangle. \tag{11}$$

Without loss of generality, we assume $\|\phi(x,a)\| \leq 1$ for all $(x,a) \in S \times A$, and $\max\{\|\mu_h(S)\|, \|\theta_h\|\} \leq \sqrt{d}$ for all $h \in [H]$.

Remark:

o In this setting the action value function is also linear:

$$Q_h^{\pi}(x, a) = \langle w_h^{\pi}, \phi(x, a) \rangle,$$

for all $h \in [H]$ and for all policies π .

Least-Squares Value Iteration - with UCB

Compile error

A sketch of the proof

Regret Bound [3]

The total regret can be upper bounded by $O(\sqrt{dH^3T})$

o First step: Establish concentration result for

$$\phi(x,a)^{\top} \Lambda_h^{-1} \sum_{\tau=1}^{k-1} \phi(x_h^{\tau}, a_h^{\tau}) [V_{h+1}(x_{h+1}^{\tau}) - \mathbb{P}_h V_{h+1}(x_h^{\tau}, a_h^{\tau})]$$

requires the introduction of a restriction on the possible V functions.

 \circ Second step: Use recursion from H to 1 to propagate error back down.

Conclusion

- o Sublinear regret is achievable in "model-free" reinforcement learning.
- o Can we devise algorithms that do not know a priori the number of episodes that will be played ?

References |

[1] Peter Auer.

Using confidence bounds for exploitation-exploration trade-offs. *Journal of Machine Learning Research*, 3(Nov):397–422, 2002. (Cited on page 21.)

- [2] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably efficient? Advances in neural information processing systems, 31, 2018. (Cited on pages 15 and 18.)
- [3] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement learning with linear function approximation. In Conference on Learning Theory, pages 2137–2143. PMLR, 2020. (Cited on page 47.)