Online Learning in Games

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 4: Online learning with bandit feedback

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-735 (Spring 2024)

License Information for Online Learning in Games Slides

- ▶ This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - ▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
 - ► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes unless they get the licensor's permission.
- ▶ Share Alike
 - ► The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- ► Full Text of the License

Outline of this lecture

Refresher

Online Decision Making under different feedback.

Problem setup

The method

The bandit oracle construction

The (MD) family of algorithms

The (EXP3) algorithm

Analysis of (EXP3)

A generic approach

A template inequality of (EXP3)

No-regret of (EXP3)

Online decision making: Feedback types

The sequence of events in an online decision problem

Let us define the set of actions as $A = \{1, 2, ..., K\}$, and the sequence of cost vectors c_t (typically bounded). At each round t = 1, ..., T, where T is the time horizon,

- lacktriangledown A learner selects an $x^t \in \Delta(\mathcal{A})$ (i.e., a distribution over the actions).
- ▶ The learner plays an action $a^t \in \mathcal{A} \sim x^t$.
- An adversary selects a cost vector $c_t = (c_{t,1}, \dots, c_{t,K})$.
- ▶ The learner suffers the cost $f_t(a^t) = c_{t,a^t}$.

Types of feedback (from best to worst)

- \circ Full information: The learner observes the (whole) cost vector c_t .
- \circ Exact and/or inexact cost information: The learner observes a noisy version of the (whole) cost vector c_t .
- o Bandit information: The learner observes only the cost at time t: $f_t(a^t) = c_{t,a^t}$.

This lecture: Online decision processes with bandit feedback

Objectives:

- o Establish appropriate algorithmic solution methods to online decision problems.
- o Examine how regret minimization is influenced by the learner's limited feedback.
- o Establish lower-bounds and the optimality of the respective methods.

The multi-armed bandit problem

The (MAB) formulation

Let us define the set of actions as $A = \{1, 2, \dots, K\}$, and the sequence of cost vectors c_t (typically bounded).

At each round t = 1, ..., T, where T is the time horizon,

- ightharpoonup A learner selects an $x^t \in \Delta(\mathcal{A})$ (i.e., a distribution over the actions).
- ▶ The learner plays an action $a^t \in \mathcal{A} \sim x^t$.
- An adversary selects a cost vector $c_t = (c_{t,1}, \dots, c_{t,K})$.
- ▶ The learner suffers a cost $f_t(a^t) = c_{t,a^t}$.

Remark: \circ Note that $f_t(a^t) = c_{t,a^t}$ is the learner's only feedback.

Expert advice vs Multi-armed bandit (MAB)

o In the MAB setting, the learner does not have access to the cost vector c_t at time t!

Expert advice problem

Set of actions $\mathcal{A} = \{1, 2, \dots, K\}$, sequence of cost vectors c_t . At each round $t = 1, \dots, T$, where T is the time horizon.

- A learner selects an $x^t \in \Delta(\mathcal{A})$.
- ▶ The learner plays an action $a^t \in \mathcal{A} \sim x^t$.
- An adversary selects a $c_t = (c_{t,1}, \dots, c_{t,K})$.
- ▶ The learner suffers a cost $\langle c_t, x^t \rangle$ and receives the whole cost vector c_t .

(MAB)

Set of actions $\mathcal{A} = \{1, 2, \dots, K\}$, sequence of cost vectors c_t . At each round $t = 1, \dots, T$, where T is the time horizon,

- ▶ A learner selects an $x^t \in \Delta(\mathcal{A})$.
- ▶ The learner plays an action $a^t \in \mathcal{A} \sim x^t$.
- An adversary selects a $c_t = (c_{t,1}, \ldots, c_{t,K})$.
- ▶ The learner suffers a cost $f_t(a^t) = c_{t,a^t}$ and this is their *only* feedback.

Remarks:

- Expert advice problem <> first-order optimization
- Multi-armed bandit problem <> (stochastic) zero-th order optimization

Towards building a solution method for MAB

Step I: Construct an appropriate stochastic oracle

We define an appropriate unbiased estimator for the cost vector c_t for every round $t=1,\ldots,T$.

Step II: Construct an appropriate algorithmic template

Given the specific stochastic oracle, we define an appropriate recursive update, which will guarantee low regret.

Constructing an oracle

o Intuition: Mimicking SGD, we ideally need an estimator with the following statistical assumptions:

Assumption (Unbiasedness)

For all $a \in \mathcal{A}$ and $t = 1, \dots T$, we would need the following

$$\mathbb{E}[\hat{c}_t] = c_t.$$

Assumption (Bounded second moment)

For all t = 1, ... T, we would need the following

$$\mathbb{E}[\|\hat{c}_t\|_{\infty}^2] \le \sigma^2$$

The estimator

o Main goal: We want from a "single-action" feedback to estimate the whole cost vector!

Importance weighted estimators (IWE)

Given a cost vector c_t and a probability distribution $x^t \in \Delta(\mathcal{A})$, we define the importance weighted distribution of $\hat{c}_t = (\hat{c}_{t,a})_{a \in \mathcal{A}}$ as follows:

$$\hat{c}_{t,a} = \frac{\mathbf{1}_a}{x_a^t} c_{t,a} := \begin{cases} \frac{c_{t,a}}{x_a^t} & \text{if } a \text{ is drawn } (a=a'); \\ \\ 0 & \text{otherwise } (a \neq a'); \end{cases} \tag{IWE}$$

where $\mathbf{1}_a$ is the indicator function for the action a as defined above.

Statistical properties of IWE: Part I

o A Natural question: Are unbiasedness / bounded second moment satisfied by IWE?

Unbiasedness

The IWE is an unbiased estimator of the cost vector c_t . In particular, for all $a \in \mathcal{A}$, it holds that

$$\mathbb{E}[\hat{c}_{t,a}] = c_{t,a}.$$

Proof

For all $a \in \mathcal{A}$, it holds that

$$\mathbb{E}[\hat{c}_{t,a}] = \sum_{a' \in A} x_{a'}^t \frac{\mathbf{1}_a}{x_a^t} c_{t,a} = x_a^t \frac{1}{x_a^t} c_{t,a} = c_{t,a},$$

and hence the result follows.

Remark:

o The analogy with the zero-th order optimization is clear.

Statistical properties of IWE: Part II

o After establishing the unbiasedness, we now seek to upper-bound the second moment.

Lemma (Second moment bound)

The second moment of IWE is of order $\mathcal{O}(1/x_a^t)$. In particular, for all $a \in \mathcal{A}$, it holds that

$$\mathbb{E}[\|\hat{c}_{t,a}\|_{\infty}^{2}] = \frac{c_{t,a}^{2}}{x_{a}^{t}}.$$

Remark:

 \circ IWE does not have bounded second-order moment since it "explodes" when $x_a \to 0$.

Exercise:

Show that the above holds.

The mirror descent (MD) template

 \circ We present the key-elements of the MD template here.

Building blocks of MD

ightharpoonup Set a regularization function h, typically assumed to be K- strongly convex. That is,

$$h(x) \ge h(y) + \langle \nabla h(y), y - x \rangle + \frac{\mu}{2} ||x - y||^2, \forall x, y \in \mathcal{X}.$$

▶ Define the so-called mirror map as follows:

$$Q(v) = \underset{x \in \mathcal{X}}{\arg\min} \{ \langle v, x \rangle + h(x) \},\$$

where \mathcal{X} denotes the feasible domain.

Projected vs mirrored updates

Projected Gradient Descent (PGD)

Set step-size policy γ_t , sequence of vectors v_t generated by the respective oracle and $\mathcal X$ feasible domain.

- Aggregate oracle's feedback $Y_{t+1} = Y_t \gamma_t v_t$.
- Update:

$$x^{t+1} = \arg\min_{x \in \mathcal{X}} \{ \langle Y_{t+1}, x \rangle + 1/2 ||x||^2 \}$$

Mirror Descent (MD) Shalev-Shwartz [7]

Set step-size policy γ_t , sequence of vectors v_t generated by the respective oracle and $\mathcal X$ feasible domain.

- Aggregate oracle's feedback $Y_{t+1} = Y_t \gamma_t v_t$.
- ► Update:

$$x^{t+1} = \underset{x \in \mathcal{X}}{\operatorname{arg\,min}} \{ \langle Y_{t+1}, x \rangle + h(x) \} = \mathcal{Q}(Y_{t+1})$$

Remarks:

- \circ Crucial difference: The choice of a generic regularizer h.
- o Note that for different choices we obtain different algorithm.
- o Important example, for $h(x) = 1/2||x||^2$, then (PGD) and (MD) coincide.

Overview of (MD) variants

Dual Averaging Nesterov [6]

Set step-size policy γ_t , sequence of vectors v_t generated by the respective oracle and $\mathcal X$ feasible domain.

- Aggregate oracle's feedback $Y_{t+1} = Y_t v_t$.
- Update:

$$x^{t+1} = \mathcal{Q}(\gamma_{t+1}Y_{t+1})$$

Mirror Descent (MD) Shalev-Shwartz [7]

Set step-size policy γ_t , sequence of vectors v_t generated by the respective oracle and $\mathcal X$ feasible domain.

- Aggregate oracle's feedback $Y_{t+1} = Y_t \gamma_t v_t$.
- Update:

$$x^{t+1} = \mathcal{Q}(Y_{t+1})$$

Remark:

- The crucial difference between (DA) and (MD) is the post vs pre- multiplication of the dual sequence.
- In (DA) the dual sequence enters always with no weights and the learning rate applies after the aggregation.
- o In (MD) the dual sequence is weighted and then we take the aggregation.

Energy inequality of (MD)

Fenchel coupling, Mertikopoulos, Zhou [5]

We define the so-called Fenchel coupling which serves in the sequel as the appropriate Lyapunov function:

$$F(x,y) = h(x) + h^*(y) - \langle y, x \rangle$$

with $h^*(v) = \sup_{x \in \mathcal{X}} \{\langle v, x \rangle - h(x)\}$ (dubbed as Fenchel conjugate).

Energy inequality

Assume that x^t are the iterates generated by the (MD) algorithm. Then, the following inequality holds:

$$F_{t+1} \le F_t - \gamma \langle v_t, x^t - p \rangle + \frac{1}{2} \gamma^2 ||v_t||_{\infty}^2$$

or equivalently after rearranging:

$$\langle v_t, x^t - p \rangle \le \frac{F_t - F_{t+1}}{\gamma} + \frac{\gamma}{2} ||v_t||_{\infty}^2$$

Proof of energy inequality: Part I

In order to prove the energy inequality, we need the following technical lemmas:

Three-point identity, Antonakopoulos et al [2]

Let h be a regularization function and $x=\mathcal{Q}(y)$ Then, by fixing $x^*\in\mathcal{X}$ and $y,y^+\in\mathcal{X}^*$, it holds that

$$F(x^*, y^+) = F(x^*, y) + F(x, y^+) + \langle y^+ - y, x - x^* \rangle$$

Norm compatibility, Mertikopoulos, Zhou [5]

Assume that h is μ - strongly convex, i.e.,

$$h(x) \ge h(y) + \langle \nabla h(y), y - x \rangle + \frac{\mu}{2} ||x - y||^2,$$

then, the following holds:

$$F(x,y) \ge \frac{\mu}{2} \|\mathcal{Q}(y) - x\|^2.$$

Proof of energy inequality: Part II

• We now turn our attention to the actual proof of the generic (MD) energy inequality:

Proof

We have:

$$\begin{split} \langle v_t, x^t - p \rangle &= \langle v_t, x^{t+1} - p \rangle + \langle v_t, x^t - x^{t+1} \rangle \\ &= \frac{1}{\gamma_t} \langle Y_t - Y_{t+1}, x^{t+1} - p \rangle + \langle v_t, x^t - x^{t+1} \rangle \\ &= \frac{1}{\gamma_t} \left[F_t - F_{t+1} - F(x^{t+1}, Y_t) \right] + \langle v_t, x^t - x^{t+1} \rangle \\ &\leq \frac{F_t - F_{t+1}}{\gamma_t} + \left[F(x^{t+1}, Y_t) - \frac{K}{2} \|x^t - x^{t+1}\|^2 \right] + \frac{\gamma_t}{2K} \|v_t\|^2 \quad \leq \frac{F_t - F_{t+1}}{\gamma_t} + \frac{\gamma_t}{2K} \|v_t\|^2 \end{split}$$

and the result follows.

The (EXP3) algorithm

Main ingredients

(EXP3) relies on the (MD) template with

- \circ the entropic regularizer $h(p) = \sum_{a \in \mathcal{A}} p_a \log p_a$
- \circ the (IWE) as an feedback vector, ie $v_t = \hat{c}_t$.

The EXP3 algorithm

- Require set of actions \mathcal{A} , sequence of cost vectors $c_t \in [0,1]^{\mathcal{A}}$.
- Initialize $y_1 \in \mathbb{R}^{\mathcal{A}}$.
- For all $t = 1, \ldots, T$:
 - $\circ \ \mathsf{Set} \ x^t = \Lambda(y_t).$
 - $\circ \ \ \mathsf{Play} \ a_t \in \mathcal{A} \sim x^t \in \Delta(\mathcal{A}) \ \mathsf{and} \ \mathsf{receive} \ c_{t,a^t}.$
 - $\circ \ \operatorname{Set} \ \hat{c}_t = \frac{{}^c{}_{t,a}{}^t}{{}^x{}^t{}_{a}{}^t} e_{a_t}.$
 - \circ Update $y_{t+1} = y_t \gamma_t \hat{c}_t$

(EXP3) vs the Hedge algorithm

Hedge

- ▶ Require set of actions A, sequence of cost vectors $c_t \in [0, 1]^A$
- ▶ Initialize $y_1 \in \mathbb{R}^{\mathcal{A}}$
- For all $t = 1, \ldots, T$:
 - \circ Set $x^t = \Lambda(y_t)$.
 - \circ Play $x^t \in \Delta(\mathcal{A})$ and receive c_t .
 - $\circ \ \ \mathsf{Update} \ y_{t+1} = y_t \gamma_t c_t$

EXP3

- ▶ Require set of actions \mathcal{A} , sequence of cost vectors $c_t \in [0,1]^{\mathcal{A}}$
- ▶ Initialize $y_1 \in \mathbb{R}^{\mathcal{A}}$
- For all $t = 1, \ldots, T$:
 - $\circ \; \mathsf{Set} \; x^t = \Lambda(y_t).$
 - $\circ \ \ \mathsf{Play} \ a_t \in \mathcal{A} \sim x^t \in \Delta(\mathcal{A}) \ \mathsf{and} \ \mathsf{receive} \ c_{t,a^t}.$
 - $\circ \ \mathsf{Set} \ \hat{c}_t = \frac{c_{t,a^t}}{x_{at}^t} e_{a_t}.$
 - \circ Update $y_{t+1} = y_t \gamma_t \hat{c}_t$

Remarks:

- Hedge and (EXP3) share a common algorithmic template.
- o Crucial differences are as follows:
 - lacktriangle Hedge updates the whole cost vector (or a noise version of it) $c_t.$
 - (EXP3) updates the (IWE) estimators.

Regret analysis

Basic steps

- Consider constant step-size $\gamma \equiv \gamma_t$ (depending on the horizon T).
- Fix benchmark stategy $p \in \Delta(A)$ and define the respective Fenchel coupling:

$$F_t \equiv F(p, y_t) = \sum_{a \in \mathcal{A}} p_a \log p_a + \log \sum_{a \in \mathcal{A}} e^{y_{t,a}} - \langle y_t, p \rangle$$

A first natural approach

Use the generic (MD) energy inequality

Tentative proof

Main components

► Telescope and take expectations on both sides:

$$\mathbb{E}\left[\sum_{t=1}^{T} \langle \hat{c}_t, x^t - p \rangle\right] \leq \frac{F_1}{\gamma} + \frac{\gamma}{2} \mathbb{E}\left[\sum_{t=1}^{T} \|\hat{c}_{a,t}\|^2\right]$$

Apply unbiasedness and the upper for the second moment:

$$\mathbb{E}[Reg_p(T)] \le \frac{F_1}{\gamma} + \frac{\gamma}{2} \mathcal{O}(\frac{1}{x_{a,t}})$$

Remarks:

- o Observe that we have a (possibly) exploding term!
- o How can we proceed?

A new energy inequality for (EXP3)

- As we observed the standard approach cannot be applied due to the irregular behaviour of the "error term".
- o A new energy inequality is required!

Energy inequality for (EXP3)

Fix some $y \in \mathbb{R}^{\mathcal{A}}, w \in (-\infty, 1]^{\mathcal{A}}$ and let $x \propto e^y$. Then, the following inequality holds:

$$\log \sum_{a \in \mathcal{A}} e^{y_a - w_a} \le \log \sum_{a \in \mathcal{A}} e^{y_a} + \langle x, w \rangle + \sum_{a \in \mathcal{A}} x_a w_a^2$$

o A main stepping stone is the following technical lemma:

Crucial inequality

For all $x \leq 1$, the following inequality holds:

$$e^x \le 1 + x + x^2$$

Exercise: • Prove that the above inequality holds.

Energy inequality for (EXP3) (proof)

 \circ We now proceed to the technical proof of the (EXP3) energy inequality:

Proof

We have:

$$\log \sum_{a \in \mathcal{A}} e^{y_a - w_a} \le \log \sum_{a \in \mathcal{A}} e^{y_a} (1 + w_a + w_a^2) = \log \sum_{a \in \mathcal{A}} e^{y_a} + \log \frac{\sum_{a \in \mathcal{A}} e^{y_a} (1 + w_a + w_a^2)}{\sum_{a \in \mathcal{A}} e^{y_a}}$$

$$\le \log \sum_{a \in \mathcal{A}} e^{y_a} + \log \sum_{a \in \mathcal{A}} x_a (1 + w_a + w_a^2)$$

$$\le \log \sum_{a \in \mathcal{A}} e^{y_a} + \sum_{a \in \mathcal{A}} x_a w_a + \sum_{a \in \mathcal{A}} x_a w_a^2$$

Regret analysis continued

Proof for regret

• Use energy inequality, rearrange and telescope t = 1, ... T:

$$\sum_{t=1}^{T} \langle \hat{c}_t, x_t - p \rangle \le \frac{F_1}{\gamma} + \gamma \sum_{t=1}^{T} \sum_{a \in \mathcal{A}} x_{a,t} \hat{c}_{\alpha,t}^2$$

► Take expectations on both sides:

$$\mathbb{E}\left[\sum_{t=1}^{T} \langle \hat{c}_t, x_t - p \rangle\right] \leq \frac{F_1}{\gamma} + \gamma \sum_{t=1}^{T} \mathbb{E}\left[\sum_{a \in \mathcal{A}} x_{a,t} \hat{c}_{\alpha,t}^2\right]$$

► To conclude, we need to deal with:

$$\mathbb{E}\left[\sum_{a\in\mathcal{A}}x_{a,t}\hat{c}_{\alpha,t}^2\right]$$

Bounding the residual

• We now proceed by bounding the new "error" term:

Proof of the second moment bound

$$\mathbb{E}\left[\sum_{a \in \mathcal{A}} x_{a,t} \hat{c}_{\alpha,t}^{2}\right] = \sum_{a' \in \mathcal{A}} x_{a',t} \sum_{a \in \mathcal{A}} \frac{\mathbf{1}_{a'=a}}{x_{a,t}^{2}} c_{a',t}^{2} = \sum_{a \in \mathcal{A}} x_{a,t}^{2} \frac{1}{x_{a,t}^{2}} c_{a,t}^{2}$$
$$= \sum_{a \in \mathcal{A}} c_{a,t}^{2} \le |\mathcal{A}|$$

Hence, we have:

$$\sum_{t=1}^{T} \mathbb{E} \left[\sum_{a \in \mathcal{A}} x_{a,t} \hat{c}_{\alpha,t}^{2} \right] \leq |\mathcal{A}| T$$

Regret of (EXP3)

o Summarizing, we have the following generic regret bound:

Theorem (Regret for (EXP3))

Assume that x^t are the iterates generated by (EXP3). Then, the following inequality holds:

$$\mathbb{E}\left[\mathcal{R}_p(T)\right] \le \frac{F_1}{\gamma} + \gamma |\mathcal{A}|T$$

Remark:

o For no-regret an appropriate (horizon-dependent) constant step-size needs to be selected!

Step-size selection

Step-size choice

We determine the step-size:

$$\mathbb{E}\left[\mathcal{R}_p(T)\right] \leq \underbrace{\frac{F_1}{\gamma} + \gamma |\mathcal{A}| T.}_{\text{we minimize w.r.t. } \gamma}$$

Compute the minimum

In general, we want to minimize a function of the following form:

$$f(\gamma) = \frac{a}{\gamma} + b \gamma \ \ \text{with} \ \ \gamma > 0.$$

By finding the zeros of its first derivative, $f'(\gamma) = -\frac{a}{\gamma^2} + b = 0$ we have:

$$\gamma = \sqrt{\frac{2F_1}{T}}$$

No-regret for (EXP3)

Corollary (Guarantees of EXP3, Auer et al [4])

Assume that (EXP3) is run with a step-size $\gamma = \sqrt{\log |\mathcal{A}|/|\mathcal{A}|T}$. Then , the following guarantee holds:

$$\mathbb{E}\left[\mathcal{R}_p(T)\right] \le 2\sqrt{|\mathcal{A}|\log|\mathcal{A}|T}.$$

Remarks:

- The above bound is tight in T, Abernethy et al [1].
- $\circ\,$ Worse than the full info bound by a factor of $\,\sqrt{|\mathcal{A}|}.$
- The regret can be improved to $\mathcal{O}(\sqrt{|\mathcal{A}|T})$ but no lower, Audibert & Bubeck [3].
- o The step-size requires prior knowledge on the play horizon T.

Summary

- Establish the framework of online decision processes with bandit feedback.
- Define the appropriate oracle estimator tailored for the bandit feedback framework.
- ▶ Define the (EXP3) method.
- ▶ Define the Fenchel coupling and the appropriate energy inequalities.
- Establish regret guarantees for the said method.

References |

- Jacob D. Abernethy, Peter L. Bartlett, Alexander Rakhlin, and Ambuj Tewari.
 Optimal stragies and minimax lower bounds for online convex games.
 In Rocco A. Servedio and Tong Zhang, editors, 21st Annual Conference on Learning Theory COLT 2008, Helsinki, Finland, July 9-12, 2008, pages 415–424. Omnipress, 2008.
 (Cited on page 29.)
- [2] Kimon Antonakopoulos, E. Veronica Belmega, and Panayotis Mertikopoulos. Online and stochastic optimization beyond lipschitz continuity: A riemannian approach. In *International Conference on Learning Representations*, 2020. (Cited on page 17.)
- Jean-Yves Audibert, Sébastien Bubeck, and Gábor Lugosi. Regret in online combinatorial optimization, 2013.
 (Cited on page 29.)
- [4] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. Gambling in a rigged casino: The adversarial multi-armed bandit problem. Levine's Working Paper Archive 462. David K. Levine. December 2010.

(Cited on page 29.)

References II

[5] Panayotis Mertikopoulos and Zhengyuan Zhou.

Learning in games with continuous action spaces and unknown payoff functions. *Mathematical Programming, Series A*, 173(1-2):465–507, 2019.

(Cited on pages 16 and 17.)

[6] Yurii Nesterov.

Primal-dual subgradient methods for convex problems.

Mathematical programming, 120(1):221-259, 2009.

(Cited on page 15.)

[7] Shai Shalev-Shwartz.

Online learning and online convex optimization.

Foundations and Trends® in Machine Learning, 4(2):107–194, 2012.

(Cited on pages 14 and 15.)