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Online decision making: Feedback types

The sequence of events in an online decision problem
Let us define the set of actions as A = {1, 2, . . . , K}, and the sequence of cost vectors ct (typically bounded).
At each round t = 1, . . . , T , where T is the time horizon,

▶ A learner selects an xt ∈ ∆(A) (i.e., a distribution over the actions).

▶ The learner plays an action at ∈ A ∼ xt.

▶ An adversary selects a cost vector ct = (ct,1, . . . , ct,K).

▶ The learner suffers the cost ft(at) = ct,at .

Types of feedback (from best to worst)
◦ Full information: The learner observes the (whole) cost vector ct.

◦ Exact and/or inexact cost information: The learner observes a noisy version of the (whole) cost vector ct.

◦ Bandit information: The learner observes only the cost at time t: ft(at) = ct,at .
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This lecture: Online decision processes with bandit feedback

Objectives: ◦ Establish appropriate algorithmic solution methods to online decision problems.

◦ Examine how regret minimization is influenced by the learner’s limited feedback.

◦ Establish lower-bounds and the optimality of the respective methods.
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The multi-armed bandit problem

The (MAB) formulation
Let us define the set of actions as A = {1, 2, . . . , K}, and the sequence of cost vectors ct (typically bounded).
At each round t = 1, . . . , T , where T is the time horizon,

▶ A learner selects an xt ∈ ∆(A) (i.e., a distribution over the actions).

▶ The learner plays an action at ∈ A ∼ xt.

▶ An adversary selects a cost vector ct = (ct,1, . . . , ct,K).

▶ The learner suffers a cost ft(at) = ct,at .

Remark: ◦ Note that ft(at) = ct,at is the learner’s only feedback.
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Expert advice vs Multi-armed bandit (MAB)

◦ In the MAB setting, the learner does not have access to the cost vector ct at time t!

Expert advice problem
Set of actions A = {1, 2, . . . , K}, sequence of cost
vectors ct. At each round t = 1, . . . , T , where T is
the time horizon,

▶ A learner selects an xt ∈ ∆(A).

▶ The learner plays an action at ∈ A ∼ xt.

▶ An adversary selects a ct = (ct,1, . . . , ct,K).

▶ The learner suffers a cost ⟨ct, xt⟩ and receives
the whole cost vector ct.

(MAB)
Set of actions A = {1, 2, . . . , K}, sequence of cost
vectors ct. At each round t = 1, . . . , T , where T is
the time horizon,

▶ A learner selects an xt ∈ ∆(A).

▶ The learner plays an action at ∈ A ∼ xt.

▶ An adversary selects a ct = (ct,1, . . . , ct,K).

▶ The learner suffers a cost ft(at) = ct,at and this
is their only feedback.

Remarks: ◦ Expert advice problem <> first-order optimization
◦ Multi-armed bandit problem <> (stochastic) zero-th order optimization
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Towards building a solution method for MAB

Step I: Construct an appropriate stochastic oracle
We define an appropriate unbiased estimator for the cost vector ct for every round t = 1, . . . , T .

Step II: Construct an appropriate algorithmic template
Given the specific stochastic oracle, we define an appropriate recursive update, which will guarantee low regret.
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Constructing an oracle

◦ Intuition: Mimicking SGD, we ideally need an estimator with the following statistical assumptions:

Assumption (Unbiasedness)
For all a ∈ A and t = 1, . . . T , we would need the following

E[ĉt] = ct.

Assumption (Bounded second moment)
For all t = 1, . . . T , we would need the following

E[∥ĉt∥2
∞] ≤ σ2
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The estimator

◦ Main goal: We want from a “single-action” feedback to estimate the whole cost vector!

Importance weighted estimators (IWE)
Given a cost vector ct and a probability distribution xt ∈ ∆(A), we define the importance weighted distribution
of ĉt = (ĉt,a)a∈A as follows:

ĉt,a =
1a

xt
a

ct,a :=


ct,a

xt
a

if a is drawn (a = a′);

0 otherwise (a , a′);
(IWE)

where 1a is the indicator function for the action a as defined above.
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Statistical properties of IWE: Part I

◦ A Natural question: Are unbiasedness / bounded second moment satisfied by IWE?

Unbiasedness
The IWE is an unbiased estimator of the cost vector ct. In particular, for all a ∈ A, it holds that

E[ĉt,a] = ct,a.

Proof
For all a ∈ A, it holds that

E[ĉt,a] =
∑
a′∈A

xt
a′

1a

xt
a

ct,a = xt
a

1
xt

a

ct,a = ct,a,

and hence the result follows.

Remark: ◦ The analogy with the zero-th order optimization is clear.
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Statistical properties of IWE: Part II

◦ After establishing the unbiasedness, we now seek to upper-bound the second moment.

Lemma (Second moment bound)
The second moment of IWE is of order O(1/xt

a). In particular, for all a ∈ A, it holds that

E[∥ĉt,a∥2
∞] =

c2
t,a

xt
a

.

Remark: ◦ IWE does not have bounded second-order moment since it “explodes” when xa → 0.

Exercise: ◦ Show that the above holds.
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The mirror descent (MD) template

◦ We present the key-elements of the MD template here.

Building blocks of MD
▶ Set a regularization function h, typically assumed to be K- strongly convex. That is,

h(x) ≥ h(y) + ⟨∇h(y), y − x⟩ +
µ

2
∥x − y∥2, ∀x, y ∈ X .

▶ Define the so-called mirror map as follows:

Q(v) = arg min
x∈X

{⟨v, x⟩ + h(x)},

where X denotes the feasible domain.
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Projected vs mirrored updates

Projected Gradient Descent (PGD)
Set step-size policy γt, sequence of vectors vt generated
by the respective oracle and X feasible domain.

▶ Aggregate oracle’s feedback Yt+1 = Yt − γtvt.

▶ Update:

xt+1 = arg min
x∈X

{⟨Yt+1, x⟩ + 1/2∥x∥2}

Mirror Descent (MD) Shalev-Shwartz [7]
Set step-size policy γt, sequence of vectors vt generated
by the respective oracle and X feasible domain.

▶ Aggregate oracle’s feedback Yt+1 = Yt − γtvt.

▶ Update:

xt+1 = arg min
x∈X

{⟨Yt+1, x⟩ + h(x)} = Q(Yt+1)

Remarks: ◦ Crucial difference: The choice of a generic regularizer h.
◦ Note that for different choices we obtain different algorithm.
◦ Important example, for h(x) = 1/2∥x∥2, then (PGD) and (MD) coincide.
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Overview of (MD) variants

Dual Averaging Nesterov [6]
Set step-size policy γt, sequence of vectors vt generated
by the respective oracle and X feasible domain.

▶ Aggregate oracle’s feedback Yt+1 = Yt − vt.

▶ Update:
xt+1 = Q(γt+1Yt+1)

Mirror Descent (MD) Shalev-Shwartz [7]
Set step-size policy γt, sequence of vectors vt generated
by the respective oracle and X feasible domain.

▶ Aggregate oracle’s feedback Yt+1 = Yt − γtvt.

▶ Update:
xt+1 = Q(Yt+1)

Remark: ◦ The crucial difference between (DA) and (MD) is the post vs pre- multiplication of the dual
sequence.

◦ In (DA) the dual sequence enters always with no weights and the learning rate applies after
the aggregation.

◦ In (MD) the dual sequence is weighted and then we take the aggregation.
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Energy inequality of (MD)

Fenchel coupling, Mertikopoulos, Zhou [5]
We define the so-called Fenchel coupling which serves in the sequel as the appropriate Lyapunov function:

F (x, y) = h(x) + h∗(y) − ⟨y, x⟩

with h∗(v) = supx∈X {⟨v, x⟩ − h(x)} (dubbed as Fenchel conjugate).

Energy inequality
Assume that xt are the iterates generated by the (MD) algorithm. Then, the following inequality holds:

Ft+1 ≤ Ft − γ⟨vt, xt − p⟩ +
1
2

γ2∥vt∥2
∞

or equivalently after rearranging:

⟨vt, xt − p⟩ ≤
Ft − Ft+1

γ
+

γ

2
∥vt∥2

∞
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Proof of energy inequality: Part I

In order to prove the energy inequality, we need the following technical lemmas:

Three-point identity, Antonakopoulos et al [2]
Let h be a regularization function and x = Q(y) Then, by fixing x∗ ∈ X and y, y+ ∈ X ∗, it holds that

F (x∗, y+) = F (x∗, y) + F (x, y+) + ⟨y+ − y, x − x∗⟩

Norm compatibility, Mertikopoulos, Zhou [5]
Assume that h is µ- strongly convex, i.e.,

h(x) ≥ h(y) + ⟨∇h(y), y − x⟩ +
µ

2
∥x − y∥2,

then, the following holds:
F (x, y) ≥

µ

2
∥Q(y) − x∥2.

Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 30



Proof of energy inequality: Part II

◦ We now turn our attention to the actual proof of the generic (MD) energy inequality:

Proof
We have:

⟨vt, xt − p⟩ = ⟨vt, xt+1 − p⟩ + ⟨vt, xt − xt+1⟩

=
1
γt

⟨Yt − Yt+1, xt+1 − p⟩ + ⟨vt, xt − xt+1⟩

=
1
γt

[
Ft − Ft+1 − F (xt+1, Yt)

]
+ ⟨vt, xt − xt+1⟩

≤
Ft − Ft+1

γt
+

[
F (xt+1, Yt) −

K

2
∥xt − xt+1∥2

]
+

γt

2K
∥vt∥2 ≤

Ft − Ft+1

γt
+

γt

2K
∥vt∥2

and the result follows.
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The (EXP3) algorithm

Main ingredients
(EXP3) relies on the (MD) template with
◦ the entropic regularizer h(p) =

∑
a∈A pa log pa

◦ the (IWE) as an feedback vector, ie vt = ĉt.

The EXP3 algorithm
▶ Require set of actions A, sequence of cost vectors ct ∈ [0, 1]A.
▶ Initialize y1 ∈ RA.
▶ For all t = 1, . . . , T :

◦ Set xt = Λ(yt).
◦ Play at ∈ A ∼ xt ∈ ∆(A) and receive ct,at .

◦ Set ĉt =
c

t,at

xt
at

eat .

◦ Update yt+1 = yt − γtĉt
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(EXP3) vs the Hedge algorithm

Hedge
▶ Require set of actions A, sequence of cost vectors

ct ∈ [0, 1]A

▶ Initialize y1 ∈ RA

▶ For all t = 1, . . . , T :
◦ Set xt = Λ(yt).
◦ Play xt ∈ ∆(A) and receive ct.
◦ Update yt+1 = yt − γtct

EXP3
▶ Require set of actions A, sequence of cost vectors

ct ∈ [0, 1]A

▶ Initialize y1 ∈ RA

▶ For all t = 1, . . . , T :
◦ Set xt = Λ(yt).
◦ Play at ∈ A ∼ xt ∈ ∆(A) and receive ct,at .

◦ Set ĉt =
c

t,at

xt
at

eat .

◦ Update yt+1 = yt − γtĉt

Remarks: ◦ Hedge and (EXP3) share a common algorithmic template.

◦ Crucial differences are as follows:

▶ Hedge updates the whole cost vector (or a noise version of it) ct.

▶ (EXP3) updates the (IWE) estimators.
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Regret analysis

Basic steps
▶ Consider constant step-size γ ≡ γt (depending on the horizon T ).
▶ Fix benchmark stategy p ∈ ∆(A) and define the respective Fenchel coupling:

Ft ≡ F (p, yt) =
∑
a∈A

pa log pa + log
∑
a∈A

eyt,a − ⟨yt, p⟩

A first natural approach

Use the generic (MD) energy inequality
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Tentative proof

Main components
▶ Telescope and take expectations on both sides:

E

[
T∑

t=1

⟨ĉt, xt − p⟩

]
≤

F1

γ
+

γ

2
E

[
T∑

t=1

∥ĉa,t∥2

]
▶ Apply unbiasedness and the upper for the second moment:

E[Regp(T )] ≤
F1

γ
+

γ

2
O(

1
xa,t

)

Remarks: ◦ Observe that we have a (possibly) exploding term!
◦ How can we proceed?
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A new energy inequality for (EXP3)

◦ As we observed the standard approach cannot be applied due to the irregular behaviour of the "error term".
◦ A new energy inequality is required!

Energy inequality for (EXP3)
Fix some y ∈ RA, w ∈ (−∞, 1]A and let x ∝ ey . Then, the following inequality holds:

log
∑
a∈A

eya−wa ≤ log
∑
a∈A

eya + ⟨x, w⟩ +
∑
a∈A

xaw2
a

◦ A main stepping stone is the following technical lemma:

Crucial inequality
For all x ≤ 1, the following inequality holds:

ex ≤ 1 + x + x2

Exercise: ◦ Prove that the above inequality holds.
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Energy inequality for (EXP3) (proof)

◦ We now proceed to the technical proof of the (EXP3) energy inequality:

Proof
We have:

log
∑
a∈A

eya−wa ≤ log
∑
a∈A

eya (1 + wa + w2
a) = log

∑
a∈A

eya + log

∑
a∈A eya (1 + wa + w2

a)∑
a∈A eya

≤ log
∑
a∈A

eya + log
∑
a∈A

xa(1 + wa + w2
a)

≤ log
∑
a∈A

eya +
∑
a∈A

xawa +
∑
a∈A

xaw2
a
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Regret analysis continued

Proof for regret
▶ Use energy inequality, rearrange and telescope t = 1, . . . T :

T∑
t=1

⟨ĉt, xt − p⟩ ≤
F1

γ
+ γ

T∑
t=1

∑
a∈A

xa,tĉ2
α,t

▶ Take expectations on both sides:

E

[
T∑

t=1

⟨ĉt, xt − p⟩

]
≤

F1

γ
+ γ

T∑
t=1

E

[∑
a∈A

xa,tĉ2
α,t

]
▶ To conclude, we need to deal with:

E

[∑
a∈A

xa,tĉ2
α,t

]
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Bounding the residual

◦ We now proceed by bounding the new “error” term:

Proof of the second moment bound

E

[∑
a∈A

xa,tĉ2
α,t

]
=

∑
a′∈A

xa′,t

∑
a∈A

1a′=a

x2
a,t

c2
a′,t =

∑
a∈A

x2
a,t

1
x2

a,t

c2
a,t

=
∑
a∈A

c2
a,t ≤ |A|

Hence, we have:
T∑

t=1

E

[∑
a∈A

xa,tĉ2
α,t

]
≤ |A|T
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Regret of (EXP3)

◦ Summarizing, we have the following generic regret bound:

Theorem (Regret for (EXP3))
Assume that xt are the iterates generated by (EXP3). Then, the following inequality holds:

E [Rp(T )] ≤
F1

γ
+ γ|A|T

Remark: ◦ For no-regret an appropriate (horizon-dependent) constant step-size needs to be selected!
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Step-size selection

Step-size choice
We determine the step-size:

E [Rp(T )] ≤
F1

γ
+ γ|A|T.︸             ︷︷             ︸

we minimize w.r.t. γ

Compute the minimum
In general, we want to minimize a function of the following form:

f(γ) =
a

γ
+ bγ with γ > 0.

By finding the zeros of its first derivative, f ′(γ) = − a
γ2 + b = 0 we have:

γ =

√
2F1

T
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No-regret for (EXP3)

Corollary (Guarantees of EXP3, Auer et al [4])
Assume that (EXP3) is run with a step-size γ =

√
log |A|/|A|T . Then , the following guarantee holds:

E [Rp(T )] ≤ 2
√

|A| log |A|T .

Remarks: ◦ The above bound is tight in T , Abernethy et al [1].
◦ Worse than the full info bound by a factor of

√
|A|.

◦ The regret can be improved to O(
√

|A|T ) but no lower, Audibert & Bubeck [3].
◦ The step-size requires prior knowledge on the play horizon T.
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Summary

▶ Establish the framework of online decision processes with bandit feedback.
▶ Define the appropriate oracle estimator tailored for the bandit feedback framework.
▶ Define the (EXP3) method.
▶ Define the Fenchel coupling and the appropriate energy inequalities.
▶ Establish regret guarantees for the said method.
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