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Logistics

Credits 4

Lectures Thursday 9:15-12:00 (CM011)

Practical hours Thursday 9:15-12:00 starting 11th of April (CM011)

Prerequisites Previous coursework in calculus, linear algebra, and probability is required.
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Moodle https://go.epfl.ch/OLIG.
Course book https://edu.epfl.ch/coursebook/en/online-learning-in-games-EE-735
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Outline of this lecture

Offline minimization recap
Online optimization

What is the setting?
How do we measure performance?

Important special cases
The expert problem
Online path selection
Spam filtering
Portfolio management I

Algorithms
The Hedge algorithm
Online gradient descent
Follow the regularized leader

Lower bounds
Online to offline

Online to batch conversion
Solving zero-sum games

Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 45



(Offline) Convex optimization

Convex optimization
Given a convex and differentiable function f : X 7→ R, we are interested in the following optimization problem

minx∈X f(x),

where f is proper, closed, and twice-continuous differentiable without loss of generality.

Iterative methods (re-described in our convention)
For each round t = 1, . . . , T , given the fixed (offline) optimization objective

▶ An algorithm selects an xt ∈ X .

▶ The algorithm receives feedback:
▶ f(xt) Zero-order access;
▶ ∇f(xt) First-order access;
▶ ∇2f(xt) Second-order access;

▶ The algorithm gets evaluated on how small f(xT ) is.

Examples: ◦ Gradient descent, i.e., xt+1 = xt − γ∇f(xt), is a first-order method (γ is the step-size).
◦ Newton’s method, i.e., xt+1 = xt −∇2f(xt)−1∇f(xt), is a second-order method.
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Online convex optimization (OCO)

◦ Proposed by Zinkevic et al. [27], OCO studies the twist when the objective function f changes over time.

▶ Applications: (offline) convex optimization, online decision making, machine learning...

Online convex optimization (Zinkevic et al. [27])
At each round t = 1, . . . , T , where T is the time horizon,

▶ A learner selects an xt ∈ X .

▶ An adversary selects a function ft ∈ F : X 7→ R.

▶ The learner suffers cost ft(xt) and receives feedback ∇t := ∇ft(xt).

Remarks: ◦ The learner should select xt ∈ X solely based on ∇1, . . . ,∇t−1 to minimize its overall cost:

Learner’s cost :=
∑T

t=1 ft(xt).

◦ The adversary should not be all powerful, and hence, is restricted to a class of functions F .

◦ Since the adversary selects ft(·) after the learner’ s selection xt ∈ X , competing the best
time-changing sequence,

∑T

t=1

(
ft(xt)−minx∈X ft(x)

)
, is impossible even with a restriction!
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How do we measure how well we are doing?

◦ We compare ourselves with the best fixed strategy: x ∈ X .

Definition (Regret)
Given a sequence of functions f1, . . . , fT , the regret R(T ) of the sequence (x1, . . . , xT ) is defined as

R(T ) :=
T∑

t=1

ft(xt)− min
x∈X

T∑
t=1

ft(x)︸               ︷︷               ︸
cost of the best fixed-action

. (1)

Remarks: ◦ The concept of regret first appears in Hanan et. al [13].

◦ Other works contributing in the formalization are Blackwell et al. [7] and Vovk et al. [26].

◦ The notion of regret is a natural extension of optimality in (offline) convex optimization.
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Online vs offline convex optimization

Goal of (online) convex optimization
Given a sequence of convex functions f1, . . . , fT , select a sequence x1, . . . , xT ∈ X (where xt ∈ X is solely
decided by x0,∇1, . . . ,∇t−1) with regret R(T ) = o(T ).

Remarks: ◦ If the regret of the sequence x1, . . . , xT ∈ X equals R(T ) = o(T ) then

1
T

(
T∑

t=1

ft(xt)− min
x∈X

T∑
t=1

ft(x)

)
≤
R(T )

T
=

o(T )
T
→ 0.

◦ The time-averaged cost of x1, . . . , xT approaches the cost of best fixed action x⋆ ∈ X !

Online-to-offline conversion (Convex)
▶ Let R(T ) be the regret of sequence x1, . . . , xT ∈ X for the constant sequence of functions

f1, . . . , fT = f . Then, by the convexity of f , we have

f

( 1
T

∑T

t=1 xT

)
− min

x∈X
f(x) ≤

1
T

(∑T

t=1 f(xt)−minx∈X
∑T

t=1 f(x)
)
≤
R(T )

T
.

▶ If R(T ) = o(T ), then lim
t→∞

R(T )/T = 0.
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Online convex optimization

Online learning algorithm (Hazan el al. [14])
An online learning algorithm A for an online convex optimization setting (with a feasibility set X ) outputs
xt ∈ X solely based on (x0,∇1, . . . ,∇t−1), that is xt := A

(
x0,∇1, . . . ,∇t−1

)
. Recall that ∇t = ∇tft(xt).

No-regret
An online learning algorithm A is called no-regret iff for any sequence of functions f1, . . . , fT , RA(T ) = o(T ).

Brief history of no-regret algorithms:

◦ Hanan et. [13]: first no-regret algorithm with regret O
(√

nT
)

for X = ∆n and ft(x) := ⟨ct, x⟩.

◦ Littlestone et al. [19]: first O(
√

T log n)-regret for X = ∆n, ft(x) := ⟨ct, x⟩ and ct ∈ {0, 1}n.

◦ Freund et al. [11]: The Hedge algorithm achieves O(
√

T log n) regret for X = ∆n, ft(x) := ⟨ct, x⟩.

◦ Zinkevic et al. [27]: first O(
√

T )-regret for general convex set X and convex functions ft.

◦ Abernethy et al. [3]: Follow the Regularized Leader algorithm for general convex sets and functions.
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The expert problem

Online decision making
A learner needs to decide over n possible actions with unknown and changing rewards over T rounds.

The expert problem (Littlestone et al. [19])
At each round t = 1, . . . , T :
▶ A learner selects a prob. distribution xt ∼ {1, . . . , n} over the n possible actions.
▶ An adversary selects a cost ct

i for each action i ∈ {1, . . . , n}.
▶ The learner suffers a(n) (expected) cost ft(xt) := ⟨ct, xt⟩ and receives ct as feedback (ct = ∇ft(xt)).

Remarks: ◦ Special case of OCO with linear functions ft(xt) := ⟨ct, xt⟩ and X = ∆n.

◦ Suppose the learner selects xt ∈ ∆n according to a no-regret algorithm.

◦ Then its time-averaged cost is at most the time-averaged cost of best fixed action:

1
T

T∑
t=1

⟨ct, xt⟩ ≤
1
T

min
i∈[n]

T∑
t=1

ct
i +

o(T )
T︸ ︷︷ ︸

goes to 0

!
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Application of the expert problem: Online path selection (Awerbuch et al. [5])

Example (Going to Work)
▶ Every day t ∈ {1, . . . , T}, we go from home to work (and vice versa).
▶ There are multiple routes the travel time of which depends on unpredictable (weather, congestion) factors.
▶ How do we select our route every day?

Reduction to the expert problem
▶ Consider the expert problem by enumerating each possible route as a different action.
▶ Iterate t ∈ {1, . . . , T}:

▶ Randomly select a route with probability distribution xt ∈ ∆n.
▶ Observe ct

i as the travel time of the i-th route at day t observed after selection. Form a vector ct.
▶ Update xt+1 ← A(c1, . . . , ct) where A is a no-regret algorithm for the expert problem.

▶ If A is a no-regret algorithm for the expert problem, then the overall travel (over the T days) is
approximately the travel of the best fixed route!
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Old school spam filtering

Spam Filtering
Classify an e-mail as spam or no-spam.

Online spam filtering with linear filters (Hazan et al. [14])
▶ A dictionary Dict[·] of length d containing all possible words.
▶ An arrived email is encoded as a {0, 1}-vector mt ∈ {0, 1}d of length d depending on the contained words.
▶ We select xt ∈ [−1, 1]d and classify the email according to the linear filter b̂t := sign(m⊤

t xt)

Decision at round t :=
{

Spam if β̂t = −1
Inbox if β̂t = 1

▶ The true label bt ∈ {−1, 1} is revealed and we incur loss (b̂t − bt)2

Remarks: ◦ A no-regret algorithm select xt with X = [−1, 1]d and ft(x) :=
(

βt − sign(α⊤x)
)2.

◦ Then we can obtain comparable classification accuracy with the best fixed linear filter !
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Inbox if β̂t = 1

▶ The true label bt ∈ {−1, 1} is revealed and we incur loss (b̂t − bt)2

Remarks: ◦ If a no-regret algorithm select xt with X = [−1, 1]d and ft(x) :=
(

βt − sign(α⊤x)
)2.

◦ Then we can obtain comparable classification accuracy with the best fixed linear filter !

◦ Unfortunately, the problem is not OCO so this proposition serves only as motivation.
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Portfolio management

Portfolio Management
▶ We start with a total capital of C0 dollars.
▶ Each day t ∈ {1, . . . , T}, we want to invest our capital in n possible assets so as to maximize our profit.
▶ The return rt

i > 0 of asset i is the price ratio of asset i at the beginning and at the end of day t.
▶ The choice of not investing can be encoded with a special asset 0 with rt

0 = 1.

Universal portfolio problem (Cover et al. [10], Kalai et al. [15], Tsai et al. [24])
▶ At the beginning of each day t ∈ {1, . . . , T}: the decision maker splits its current capital over the n

possible assets according to the distribution xt ∈ ∆n.
▶ At the end of each day t ∈ {1, . . . , T}: the decision maker’s capital becomes Ct+1 := Ct · ⟨rt, xt⟩.
▶ The decision maker learns the return vector rt ∈ Rn

+ and updates xt+1 ∈ ∆n so as to minimize

max
x∈∆n

T∑
t=1

log (⟨rt, x⟩)−
T∑

t=1

log (⟨rt, xt⟩) .︸                                                            ︷︷                                                            ︸
The constant rebalancing portfolio problem
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Portfolio management II

Connection with online convex optimization (OCO)
Universal portfolio problem fits into the OCO setting with X = ∆n and ft(x) := − log(⟨rt, x⟩).

Example
Consider initial capital C0 = 1, assets A, B with return sequence (r1

A = 100, r1
B = 1), (r2

A = 0.01, r2
B = 1.5).

▶ Investing always in A produces 1.
▶ Investing always in B produces 1.5.
▶ Splitting the capital at each round equally between A, B (x1 = x2 = (0.5, 0.5)) produces ≃ 36.4.
▶ Best fixed splitting uses x =

(
14701
29502 , 14801

29502

)
, resulting in ≃ 36.41.

Remarks: ◦ In the universal portfolio problem, the best fixed investment strategy is not necessarily “pure.”

◦ The universal portfolio problem is related to quantum tomography [25].

◦ No regret algorithms exist that leverage the self-concordance of ft’s [25].
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Recall: The expert problem

The expert problem (Littlestone et al. [19])
At each round t = 1, . . . , T, we have
▶ A learner selects a probability distribution xt ∈ ∆n over n possible actions.
▶ An adversary selects a cost ct

i ∈ [−1, 1] for each action i ∈ {1, . . . , n}.
▶ The learner suffers an expected cost ⟨ct, xt⟩ and receives ct ∈ [−1, 1]n as feedback.

Remark: ◦ The expert problem is a special case of OCO with X = ∆n and ft(x) := ⟨ct, x⟩.
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The Hedge algorithm

The Hedge algorithm (Freund et al. [11])
▶ Initialize expert weights w1 ← (1, . . . , 1)
▶ For each round t = 1, . . . , T

▶ The learner selects a probability distribution xt ∈ ∆n as follows,

x
t
i =

wt
i∑n

j=1
wt

j

for each action i ∈ {1, . . . , n}.

▶ The adversary selects a cost ct
i ∈ [−1, 1] for each action i ∈ {1, . . . , n}.

▶ The learner suffers expected ⟨ct, xt⟩ and receives ct ∈ [−1, 1]n as feedback.
▶ The learner updates the weights as follows,

w
t+1
i := w

t
ie

−γct
i

where γ > 0 is the learning rate.

Remark: ◦ Hedge is closely connected with two methods:
▶ the dual averaging method with entropic regularization of Nesterov et al. [20]
▶ the entropic mirror descent Beck and Teboulle [6]

◦ These methods coincide when the objective is linear and the constraint is the simplex.
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The Hedge algorithm

Remark: ◦ The Hedge algorithm admits regret RHedge(T ) = O
(√

T log n
)

.

Theorem (Freund et al. [11])
The Hedge algorithm with the step-size γ :=

√
log n/T admits regret RHedge(T ) = O

(√
T log n

)
. More

precisely, for any cost-vector sequence c1, . . . , cT ∈ [−1, 1]n, it holds that

T∑
t=1

⟨ct, xt⟩ ≤ min
x∈∆n

T∑
t=1

⟨ct, x⟩+O
(√

T log n

)
.

Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 18/ 45



The Hedge algorithm: Proof I

Proof.
Let Φ(t) =

∑n

i=1 wt
i meaning that Φ(1) = n. Then, it follows that

Φ(t + 1) =
n∑

i=1

wt+1
i =

n∑
i=1

wt
ie−γct

i

= Φ(t)
n∑

i=1

xt
ie−γct

i

≤ Φ(t)
n∑

i=1

xt
i

(
1− γct

ixt
i + γ2(ct

i)2xt
i

)
(e−x ≤ 1− x + x2)

= Φ(t)
(

1− γ⟨ct, xt⟩+ γ2⟨c2t, xt⟩
)

c2t =
(

(ct
1)2, . . . , (ct

n)2
)

≤ Φ(t)e−γ⟨ct,xt⟩+γ2⟨c2t,xt⟩ (1− x ≤ e−x)

≤ Φ(1)e−γ
∑T

t=1
⟨ct,xt⟩+γ2

∑T

t=1
⟨c2t,xt⟩ (recursion)

≤ ne
−γ
∑T

t=1
⟨ct,xt⟩+γ2T (c2t ∈ [0, 1]n)

□
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The Hedge algorithm: Proof II

Proof (Cont.)
Let i⋆ ∈ {1, . . . , n} be the optimal fixed action, i⋆ := argmini∈{1,...,n}

∑T

t=1 ct
i. Then,

e
−γ
∑T

t=1
ct

i⋆ = wT +1
i⋆ ≤

n∑
i=1

wT +1
i = Φ(T + 1) ≤ ne

−γ
∑T

t=1
⟨ct,xt⟩+γ2T

As a result,
T∑

t=1

⟨ct, xt⟩ ≤ min
i∈{1,...,n}

T∑
t=1

ct
i +

log n

γ
+ γT.

The proof is concluded by selecting γ :=
√

log n/T .

Remarks: ◦ The step-size can be chosen in an iteration dependent way.

◦ See the entropic mirror descent derivation in [6].
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Online projected gradient descent

Remarks: ◦ Hedge provides no-regret guarantees for the OCO setting with X = ∆n and ft(x) := ⟨ct, x⟩.

◦ Online projected gradient descent provides no-regret guarantees for projectable convex sets X .

Online projected gradient descent (Zinkevic et al. [27])

▶ At each round t = 1, . . . , T

▶ The learner selects an xt ∈ X .
▶ The adversary selects a convex function ft ∈ F : X 7→ R.
▶ The learner suffers cost ft(xt) and receives ∇t := ∇ft(xt) as feedback
▶ The learner updates xt+1 ∈ X as follows,

x
t+1 ← ΠX

(
x

t − γ∇t

)
(Online GD)

where γ > 0 is the learning rate.
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Online gradient descent: A basic proof - I

Theorem (Zinkevic et al. [27])
For any sequence of convex differentiable functions f1, . . . , fT satisfying maxx∈X ∥∇ft(x)∥ ≤ G (i.e., F),
online projected gradient descent with step-size γ = |X |/G

√
T , admits O

(√
G|X |T

)
regret. More precisely,

T∑
t=1

ft(xt) ≤ min
x⋆∈X

T∑
t=1

ft(x⋆) +O(G|X |
√

T ).

Proof.

∥xt+1 − x⋆∥2 = ∥ΠX
(

xt − γ∇t

)
− x⋆∥2

≤ ∥xt − γ∇t − x⋆∥2 (non-expansiveness of convex projections)
= ∥xt − x⋆∥2 − 2γ∇⊤

t (xt − x⋆) + γ2∥∇t∥2

Thus,

∇⊤
t (xt − x⋆) ≤

∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

2γ
+

γ

2
∥∇t∥2

□
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Online gradient descent: A basic proof - II

Proof (Cont.)
As a result,

T∑
t=1

ft(xt)− ft(x⋆) ≤
T∑

t=1

∇⊤
t (xt − x⋆)

≤
T∑

t=1

∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

2γ
+

γ

2

T∑
t=1

∥∇t∥2

≤
∥x1 − x⋆∥2

2γ
+

γ

2

T∑
t=1

∥∇t∥2

≤
|X |2

2γ
+

γG2T

2
= |X |G

√
T for γ := |X |/G

√
T .
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Let’s take a breather

Algorithm A Regret R Function class F Feasibility set X

Hedge O
(√

log nT
)

Linear functions n-dimensional simplex ∆n

Online gradient descent (OGD) O
(

G|X |
√

T
)

G-Lipschitz General convex set X

Remarks: ◦ Hedge and OGD look like ad-hoc approaches transferring algorithms from the offline setting

◦ In the sequel, we build up a more structural approach specifically for the online setting
▶ The follow the regularized leader (FTRL) class of algorithms [3, 23, 17]
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A first (naive) attempt

◦ How to pick the next xt ∈ X given f1, ..., ft?

◦ A naive first attempt: Follow the leader (FTL) Kalai et al. [16], which picks the best strategy so far:

xt = arg min
x∈X

t−1∑
τ=1

fτ (x) (FTL)

◦ Unfortunately a simple adversarial strategy exists.

Example (Adversarial strategy against FTL (Shalev-Shwartz [22, Ex. 2.2]))

Consider X = {−1, 1} and the environment picking
t 1 2 3 4 · · ·

ft(x) 1
2 x −x x −x · · ·∑t−1

τ=1 fτ (x) - 1
2 x − 1

2 x 1
2 x · · ·

Remark: ◦ (FTL) picks smallest xt = −1 when minimizer of ft(·) is largest x (and vice versa).

◦ So (FTL) achieves maximal regret ft+1(xt+1).

◦ Can we do better?
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What if we could cheat?
◦ Be the leader (BTL): Imagine we could cheat and use xt+1 at time t while incurring the cost.

◦ Now, we incur ft(xt+1) instead of ft(xt) in the regret analysis.

Lemma (Regret of BTL)
Let BTL generate the sequence (x1, . . . , xT +1) according to FTL but play xt+1 at time t. Then, BTL admits
non-positive regret:

RBTL(T ) :=
∑T

t=1 ft(xt+1)−minx∈X
∑T

t=1 ft(x) ≤ 0.

Proof.

RBTL(T ) =
∑T

t=1 ft(xt+1)−minx

∑T

t=1 ft(x) (2a)

=
∑T

t=1 ft(xt+1)−
∑T

t=1 ft(xT +1) (by def of xt) (2b)

=
∑T −1

t=1 ft(xt+1)−
∑T −1

t=1 ft(xT +1) (last terms are equal) (2c)

≤
∑T −1

t=1 ft(xt+1)−
∑T −1

t=1 ft(xt) (since xT is the actual minimum) (2d)

≤ f1(x2)− f1(x3) (recurse until T − i = 1 in (2c)) (2e)

≤ 0 (since f1(x2) is the minimum.) (2f)
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Implications of BLT’s non-positive regret

◦ BTL’s non-positive regret provides an interesting insight for FTL:

Insight
The regret of the sequence (x1, . . . , xT ), as generated by (FTL), is no worse than

RFTL(T ) =
T∑

t=1

ft(xt)− min
x∈X

T∑
t=1

ft(x) ≤
T∑

t=1

(ft(xt)− ft(xt+1)). (3)

Remarks: ◦ Follows from RFTL(T )− 0 ≤ RFTL(T )−RBTL(T ) which is immediate from BTL.

◦ Consequently, RFTL(T ) is no worse than the difference between ft(xt) and ft(xt+1)

Observations: ◦ Intuitively, we just need to ensure xt does not change too much.

◦ We should regularize/stabilize!
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Follow the regularized leader (FTRL)

Follow the regularized leader (Abernethy et al. [4])

▶ For each round t = 1, . . . , T

▶ The learner selects xt ∈ X using

x
t = arg min

x∈X

t−1∑
τ=1

fτ (x) + 1
γ h(x) (FTRL)

where γ > 0 will be (!) the learning rate and h : X → R is a strongly-convex regularizer in some norm ∥ · ∥.
▶ The adversary selects a function ft(·) where ft : X 7→ R.
▶ The learner suffers ft(xt) and gets access to f(·).

Remarks: ◦ We modified the selection of xt.
◦ The regularizer ensures iterates do not move too much and forces uniqueness of solution.

Historical notes: ◦ Regularization was studied in online learning by Grove et al. [12] and Kivinen et al. [18]
◦ Follow the leader (FTL) was coined by the influencial paper Kalai et al. [16]
◦ FTRL Introduced in Shalev-Shwartz [21] and Abernethy et al. [4] almost simultaneously.
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Stability due to regularization

Lemma (Stability)
The sequence (x1, . . . , xT ) generated by FTRL satisfies

ft(xt)− ft(xt+1) ≤ γ∥∇ft(xt)∥2
∗, (4)

where ∥ · ∥∗ is the dual norm of ∥ · ∥ defined as ∥x∥∗ = sup∥y∥≤1⟨x, y⟩.

Proof.
Let us define the function we minimizes in the decision selection

Ft(x) =
t∑

τ=1

fτ (x) + 1
γ

h(x). (5)

By strong convexity of h and convexity of fτ we have that

Ft−1(xt)− Ft−1(xt+1) ≤ ⟨∇Ft−1(xt), xt − xt+1⟩ − 1
2γ
∥xt − xt+1∥2 for any xt, xt+1 ∈ X . (6)

This will ultimately let us bound ft(xt)− ft(xt+1). (cont.) □
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Stability

Proof (Cont.)
FTRL defines xt = arg minx Ft−1(x) so Ft−1(xt) is the optimum and first order characterization1 becomes

⟨∇Ft−1(xt), xt − xt+1⟩ ≤ 0. (7)

So a weaker bound of (6) is

Ft−1(xt)− Ft−1(xt+1) ≤ − 1
2γ
∥xt − xt+1∥2 and

Ft(xt+1)− Ft(xt) ≤ − 1
2γ
∥xt − xt+1∥2.

(8)

The second line simply applies the same reasoning. We can now sum the two lines and expand the definition of
Fi. All terms will cancel out except the last term in Ft(xt+1) and Ft(xt) so we get

ft(xt+1)− ft(xt) ≤ − 1
y
∥xt − xt+1∥2 ⇔ ∥xt − xt+1∥2 ≤ γ(ft(xt)− ft(xt+1)). (9)

(cont.)

1First order characterization of convexity says f(y) − f(x) ≤ ∇f(y)⊤(y − x). So when f(y) is minimum we have ∇f(y)⊤(y − x) ≥ 0.
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Stability

Proof (Cont.)
Now we have the tools to bound the change.2

ft(xt)− ft(xt+1) ≤ ⟨∇ft(xt), xt − xt+1⟩ (Convexity)

≤ ∥∇ft(xt)∥∗∥xt − xt+1∥ (Hölder’s ineq.)

≤ ∥∇ft(xt)∥∗
√

γ
√

ft(xt)− ft(xt+1) from (9)

(10)

Solving for ft(xt)− ft(xt+1), we get

ft(xt)− ft(xt+1) ≤ γ∥∇tf(xt)∥2
∗. (11)

2Hölder’s inequality: ⟨x, y⟩ ≤ ∥x∥∥y∥∗.
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Regret of FTRL
◦ Equipped with stability and the BTL lemma we almost directly obtain the regret bound for FTRL.

Theorem (Regret of FTRL ([21, 4]))
The sequence (x1, . . . , xT ) generated by (FTRL) satisfies

RFTRL(T ) ≤ Rh
γ

+ γ

T∑
t=1

∥∇ft(xt)∥2
∗, (12)

where Rh := maxx h(x)−minx h(x).

Remark: ◦ The particular presentation of the proof below is due to Luo [1].

Proof.
By defining f0(x) = 1

γ
h(x) we can write the regularized selection as

xt = arg min
x∈X

t−1∑
τ=1

fτ (x) + 1
γ

h(x) = arg min
x∈X

t−1∑
τ=0

fτ (x). (13)

(cont.) □
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Regret of FTRL

Proof (Cont.)
First note that by the BTL lemma we have3∑T

t=0 ft(x⋆) ≥
∑T

t=0 ft(xt+1), (14)

where x⋆ = arg minx∈X
∑T

t=1 ft(x) is the best fixed decision. Now we can bound the FTRL regret as follows4

RFTRL
T =

∑T

t=1 ft(xt)−
∑T

t=1 ft(x⋆)

=
∑T

t=1 ft(xt)−
∑t

t=1 ft(x⋆) + f0(x⋆)

≤
∑T

t=1 ft(xt)−
∑T

t=0 ft(xt+1) + f0(x⋆) (using BTL lemma)

≤ γ
∑T

t=1 ∥∇tf(xt)∥2
∗ + f0(x⋆)− f0(x1) (using stability)

≤ γ
∑T

t=1 ∥∇tf(xt)∥2
∗ + 1

γ
(max

x
h(x)− min

x∈X
h(x)︸                           ︷︷                           ︸

Rh

).

(15)

3Note that we additionally use f0(x⋆) ≥ f0(x1) since BTL only applies to t = 1, ..., T .
4We want to use stability so we need to move from x⋆ to xt+1. We do this by getting it on a form for which we can apply the BTL lemma.
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Regret of FTRL

Corollary

Further, if ft(x) is G-Lipschitz and we choose a learning rate of γ =
√

Rh
T G2 , then we have

RFTRL(T ) = O(G
√

T Rh). (16)

Remark: ◦ G-Lipschitz assumption ensures that the gradient is bounded: ∥∇ft(xt)∥∗ ≤ G.

◦ The “optimal” γ is found by simply optimizing the regret bound which is of the form

arg min
x

{ax + b
x
} =

√
b
a

. (17)

◦ FTRL has sublinear regret.
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Linear losses are sufficient for OCO in general
◦ Under convexity it suffices to have access to gradient through ⟨∇ft(xt), ·⟩ instead of the whole function ft(·):

RFTRL(T ) = max
x∈X

∑T

t=1 ft(xt)− ft(x) ≤ maxx∈X
∑T

t=1⟨∇ft(xt), xt − x⟩ by convexity. (18)

◦ Indeed, the regret for ft(x) is bounded by the regret for another problem based on f ′
t(x) = ⟨∇ft(xt), x⟩.

FTRL with only gradients

▶ For each round t = 1, . . . , T

▶ The learner selects xt ∈ X using

x
t+1 = arg min

x∈X
⟨
∑t

τ=1
∇fτ (xτ ), x⟩ + 1

γ h(x) (FTRL on gradients)

where γ > 0 is the learning rate and h : X → R is a strongly-convex regularizer in some norm ∥ · ∥.
▶ The adversary selects a ft(·).
▶ The learner suffers ft(xt) and observes ∇ft(xt).

Remark: ◦ FTRL with linear losses is closely connected to two offline algorithms:
▶ equivalent to the dual averaging method of Nesterov et al. [20]
▶ coincides with the entropic mirror descent Beck and Teboulle [6] under simplex constraints
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Summary of no-regret algorithms

Algorithm A Regret R Function class F Feasibility set X

Hedge O
(√

log nT
)

Linear functions n-dimensional simplex ∆n

Online gradient descent (OGD) O
(

G|X |
√

T
)

G-Lipschitz General convex set X

Follow the regularized leader (FTRL) O
(

GRh

√
T
)

G-Lipschitz General convex set X

Remarks: ◦ By all general convex sets, we mean all projectable general convex sets. Why?

◦ All algorithms that we saw so far admit O(
√

T ) regret. Can we do better?
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Lower bounds
Answer: ◦ Unfortunately no!

Theorem (Lower bound (Abernethy et al. [2, Lm. 8]))
Let X = B(0, 1) (n-dimensional unit ball centered at (0, . . . , 0). Then any online learning algorithm A admits
regret greater than

√
T .

Proof
At each round t, the adversary selects ct such that the following hold:
▶ ⟨ct, xt, ⟩ = 0,
▶ ⟨ct,

∑t−1
s=1 cs⟩ = 0,

▶ ∥ct∥ = 1.

By the construction
∑T

t=1⟨c
t, xt, ⟩ = 0. Consider x⋆ = −

∑T

t=1 ct/∥
∑T

t=1 ct∥, then it holds that

T∑
t=1

⟨ct, x⋆⟩ = −∥
T∑

t=1

ct∥.

(cont.)
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Lower bounds
Proof (Cont.)
Let us try to find how big ∥

∑T

t=1 ct∥ can be

∥
t∑

s=1

cs∥2 = ∥
t−1∑
s=1

cs + ct∥2

= ∥
t−1∑
s=1

cs∥2 + 2⟨ct,

t−1∑
s=1

cs⟩︸            ︷︷            ︸
0

+∥ct∥2

= ∥
t−1∑
s=1

cs∥2 + 1

Thus ∥
∑T

t=1 ct∥ =
√

T . As a result,
T∑

t=1

ct(xt − x⋆) = −
√

T .
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A tighter lower bound for the expert problem

◦ For the expert problem (simplex constraints) we can characterize dependency on action cardinality n.

◦ We will show that our upper bound can at best be improved by a constant factor.

Theorem (Cesa-Bianchi et al. [9, Thm. 3.7]))
For any online learning algorithm A for the expert problem X = ∆n, the regret satisfies the following

RA(T ) ≥
√

T ln n
√

2
. (19)

Remarks: ◦ A deterministic construction might be difficult to find.

◦ Trick instead uses that any probabilistic construction will lower bound the supremum

sup
z∈Z

f(z) ≥ Ez [f(z)]. (20)

◦ The proof presentation in the sequel is from Haipeng Luo CSCI 699 lecture notes.
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A tighter lower bound for the expert problem

Proof.
Specifically, if we let P be uniform over {0, 1}, then the following holds

max
c1,...,cT

RA(T ) ≥ E
c1,...,cT

iid
∼P

[RA(T )]

=
∑T

t=1 Ec1,...,ct−1Ect [⟨pt, ct⟩ | ct−1, . . . , c1]− Ec1,...,cT [mini∈[N ]
∑T

t=1 ct
i]

=
∑T

t=1 Ec1,...,ct−1 ⟨pt,Ect [ct | ct−1, . . . , c1]⟩ − Ec1,...,cT [mini∈[N ]
∑T

t=1 ct
i]

= T/2− Ec1,...,cT [ min
i∈[N ]

∑T

t=1 ct
i]

= Ec1,...,cT [ max
i∈[N ]

∑T

t=1( 1
2 − ct

i)]

=
1
2
Eu1,...,uT [ max

i∈[N ]

∑T

t=1 ut
i],

(21)

where ut are Rademacher random variables. It is then not difficult to show the following (see e.g. [9, Lemma
A.11 and A.12] and [9, Thm 3.7])

lim
T →∞

lim
N→∞

Eu1,...,uT [ max
i∈[N ]

∑T

t=1 ut
i] =

√
2T ln n. (22)

□
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Application of online learning: Obtaining statistical guarantees

◦ A no-regret algorithm enjoys statistical guarantees in the offline setting.

◦ Suppose we want to minimize the true risk under some distribution P:

min
x∈X

Ez∼P[ℓ(x, z)]. (23)

Meta-algorithm (Online to batch conversion)
▶ Run the online learning algorithm on ft(x) = ℓ(x, zt) for t = 1...T where zt ∼ P.
▶ Use the average over all actions as the prediction, i.e., x̂T = 1

T

∑T

t=1 xt.

Remark: ◦ Notice that each data point zt is only seen once.
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Application of online learning: Obtaining statistical guarantees

Theorem (Online to batch conversion (Cesa-Bianchi et al. [8]))
If the loss x→ Ez∼Pℓ(x, z) is convex then the true risk can be bounded with probability at least 1− δ as follows

Ez∼P[ℓ(x̂T , z)] ≤ Ez∼P[ℓ (x⋆, z)] +
RA(T )

T
+ 2

√
2 ln(2/δ)

T
, (24)

where RA(T ) is the regret of the online learning algorithm A after T rounds.

Proof.
The claim follows directly from application of Jensen’s inequality and Azuma’s inequality. □

◦ What convergence rate can we achieve with online learning for classic iid. statistical learning problems?

Answer: ◦ For FTRL the regret bound is RT = O(G
√

DT ) when ft(x) is G-Lipschitz.

◦ So the convergence rate becomes O( 1√
T

).
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Application of online learning: Approximate Nash equilibrium in zero-sum
◦ Consider the following problem

min
x∈X

max
y∈Y

f(x, y), (25)

where f(·, y) is convex and f(x, ·) is concave for all x, y.

◦ Assume we run two no-regret algorithms, i.e., for any x and y,

Ry(T ) ≤
∑T

i=1 f(xt, y)−
∑T

i=1 f(xt, yt),

Rx(T ) ≤
∑T

i=1 f(xt, yt)−
∑T

i=1 f(x, yt).
(26)

Theorem (Approximate Nash equilibrium)
Assume f : X × Y → R is convex-concave. Consider the sequence {(xt, yt)}T

t=1 generated by two no-regret
algorithm executed in tandem. Then x̂T = 1

T

∑T

t=1 xt and ȳT = 1
T

∑T

t=1 yt satisfies,

f(x̂T , y)− εT ≤ f(x⋆, y⋆) ≤ f(x, ȳT ) + εT , (27)

where εT := 1
T

(Ry(T ) +Rx(T )) and (x⋆, y⋆) is a Nash equilibrium.

Remark: ◦ Consequently, the average iterate of a no-regret algorithm converges as εT = O(1/
√

T ).
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Application of online learning: Approximate Nash equilibrium in zero-sum

Proof.
Using the no-regret property,

f(x̂T , y) ≤
1
T

∑T

i=1 f(xt, y) ≤ maxy
1
T

∑T

i=1 f(xt, y) ≤ 1
T

∑T

i=1 f(xt, yt) + 1
T
Ry(T )

f(x, ȳT ) ≥
1
T

∑T

i=1 f(x, yt) ≥ minx
1
T

∑T

i=1 f(x, yt) ≥ 1
T

∑T

i=1 f(xt, yt)− 1
T
Rx(T ),

(28)

Subtracting the two equations,

f(x̂T , y)− f(x, ȳT ) ≤
1
T

(Ry(T ) +Rx(T )) =: εT . (29)

We wish to relate to the Nash equilibrium (x⋆, y⋆), defines as f(x⋆, y) ≤ f(x⋆, y⋆) ≤ f(x, y⋆) for all x, y. First
by picking x = x⋆ in (29) and second by property of a Nash equilibrium we get,

f(x̂T , y)− εT ≤ f(x, ȳT ) = f(x⋆, ȳT ) ≤ f(x⋆, y⋆). (30)

A similar argument applies to the y-player and we conclude that (x̄, ȳ) is an εT -approximate Nash equilibrium,
i.e.,

f(x̂T , y)− εT ≤ f(x⋆, y⋆) ≤ f(x, ȳT ) + εT . (31)

□
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Wrap-up

◦ We have seen that O(
√

T ) is both an upper and lower bound on the regret.

◦ In the offline setting this gives a O(1/
√

T ) rate for convex-concave minimax problems.

◦ Next week will see how we can improve this to O(1/T ) in the offline setting!

◦ See you next week!
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