Online Learning in Games

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 1: Introduction to online learning

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-735 (Spring 2024)

License Information for Online Learning in Games Slides

- ▶ This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - ▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
 - ► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes unless they get the licensor's permission.
- ▶ Share Alike
 - ► The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- ► Full Text of the License

Logistics

Credits 4

Lectures Thursday 9:15-12:00 (CM011)

Practical hours Thursday 9:15-12:00 starting 11th of April (CM011)

Prerequisites Previous coursework in calculus, linear algebra, and probability is required. Familiarity with optimization is useful.

Grading Preparation & presentation of a lecture given in week 14, 3-7th of June (cf., course book). Participation is mandatory during this week – please make sure you are available!

Moodle https://go.epfl.ch/OLIG.

Course book https://edu.epfl.ch/coursebook/en/online-learning-in-games-EE-735

LIONS Stratis Skoulakis, Kimon Antonakopoulos, Thomas Pethick

Acknowledgements

These slides would not have been possible without the help of Kimon Antonakopoulos, Thomas Pethick and Stratis Skoulakis

Outline of this lecture

Offline minimization recap Online optimization

What is the setting?

How do we measure performance?

Important special cases

The expert problem

Online path selection

Spam filtering

Portfolio management I

Algorithms

The Hedge algorithm

Online gradient descent

Follow the regularized leader

Lower bounds

Online to offline

Online to batch conversion

Solving zero-sum games

(Offline) Convex optimization

Convex optimization

Given a convex and differentiable function $f:\mathcal{X}\mapsto\mathbb{R}$, we are interested in the following optimization problem

$$\min_{x \in \mathcal{X}} f(x),$$

where f is proper, closed, and twice-continuous differentiable without loss of generality.

Iterative methods (re-described in our convention)

For each round t = 1, ..., T, given the fixed (offline) optimization objective

- An algorithm selects an $x^t \in \mathcal{X}$.
- ► The algorithm receives feedback:
 - $ightharpoonup f(x^t)$ Zero-order access;
 - $ightharpoonup
 abla f(x^t)$ First-order access;
 - $ightharpoonup
 abla^2 f(x^t)$ Second-order access;
- ▶ The algorithm gets evaluated on how small $f(x^T)$ is.

Examples:

- \circ Gradient descent, i.e., $x^{t+1} = x^t \gamma \nabla f(x^t)$, is a first-order method (γ is the step-size).
- \circ Newton's method, i.e., $x^{t+1} = x^t \nabla^2 f(x^t)^{-1} \nabla f(x^t)$, is a second-order method.

Online convex optimization (OCO)

- \circ Proposed by Zinkevic et al. [27], OCO studies the twist when the **objective function** f changes over time.
 - Applications: (offline) convex optimization, online decision making, machine learning...

Online convex optimization (Zinkevic et al. [27])

At each round t = 1, ..., T, where T is the time horizon,

- ightharpoonup A learner selects an $x^t \in \mathcal{X}$.
- ▶ An adversary selects a function $f_t \in \mathcal{F} : \mathcal{X} \mapsto \mathbb{R}$.
- ▶ The learner suffers cost $f_t(x^t)$ and receives feedback $\nabla_t := \nabla f_t(x^t)$.

Remarks: \circ The *learner* should select $x^t \in \mathcal{X}$ solely based on $\nabla_1, \dots, \nabla_{t-1}$ to minimize its overall cost:

Learner's cost
$$:= \sum_{t=1}^{T} f_t(x^t)$$
.

- \circ The adversary should not be all powerful, and hence, is restricted to a class of functions \mathcal{F} .
- Since the adversary selects $f_t(\cdot)$ after the learner's selection $x^t \in \mathcal{X}$, competing the best time-changing sequence, $\sum_{t=1}^T \left(f_t(x^t) \min_{x \in \mathcal{X}} f_t(x) \right)$, is impossible even with a restriction!

How do we measure how well we are doing?

 \circ We compare ourselves with the **best fixed strategy**: $x \in \mathcal{X}$.

Definition (Regret)

Given a sequence of functions f_1, \dots, f_T , the regret $\mathcal{R}(T)$ of the sequence (x^1, \dots, x^T) is defined as

$$\mathcal{R}(T) := \sum_{t=1}^{T} f_t(x^t) - \min_{x \in \mathcal{X}} \sum_{t=1}^{T} f_t(x). \tag{1}$$

Remarks:

- o The concept of regret first appears in Hanan et. al [13].
- o Other works contributing in the formalization are Blackwell et al. [7] and Vovk et al. [26].
- o The notion of regret is a natural extension of optimality in (offline) convex optimization.

Online vs offline convex optimization

Goal of (online) convex optimization

Given a sequence of convex functions f_1, \ldots, f_T , select a sequence $x^1, \ldots, x^T \in \mathcal{X}$ (where $x^t \in \mathcal{X}$ is solely decided by $x^0, \nabla_1, \ldots, \nabla_{t-1}$) with regret $\mathcal{R}(T) = o(T)$.

Remarks:

 \circ If the regret of the sequence $x^1,\ldots,x^T\in\mathcal{X}$ equals $\mathcal{R}(T)=o(T)$ then

$$\frac{1}{T} \left(\sum_{t=1}^{T} f_t(x^t) - \min_{x \in \mathcal{X}} \sum_{t=1}^{T} f_t(x) \right) \le \frac{\mathcal{R}(T)}{T} = \frac{o(T)}{T} \to 0.$$

 \circ The time-averaged cost of x^1, \dots, x^T approaches the cost of best fixed action $x^* \in \mathcal{X}!$

Online-to-offline conversion (Convex)

▶ Let $\mathcal{R}(T)$ be the regret of sequence $x^1,\ldots,x^T\in\mathcal{X}$ for the **constant** sequence of functions $f_1,\ldots,f_T=f$. Then, by the convexity of f, we have

$$f\left(\frac{1}{T}\sum_{t=1}^T x_T\right) - \min_{x \in \mathcal{X}} f(x) \leq \frac{1}{T} \left(\sum_{t=1}^T f(x_t) - \min_{x \in \mathcal{X}} \sum_{t=1}^T f(x)\right) \leq \frac{\mathcal{R}(T)}{T}.$$

If $\mathcal{R}(T) = o(T)$, then $\lim_{t \to \infty} \mathcal{R}(T)/T = 0$.

Online convex optimization

Online learning algorithm (Hazan el al. [14])

An online learning algorithm $\mathcal A$ for an online convex optimization setting (with a feasibility set $\mathcal X$) outputs $x^t \in \mathcal X$ solely based on $(x^0, \nabla_1, \dots, \nabla_{t-1})$, that is $x^t := \mathcal A\left(x^0, \nabla_1, \dots, \nabla_{t-1}\right)$. Recall that $\nabla_t = \nabla_t f_t(x^t)$.

No-regret

An online learning algorithm \mathcal{A} is called **no-regret** iff for any sequence of functions $f_1, \ldots, f_T, \mathcal{R}_{\mathcal{A}}(T) = o(T)$.

Brief history of no-regret algorithms:

- \circ Hanan et. [13]: first no-regret algorithm with regret $\mathcal{O}\left(\sqrt{nT}\right)$ for $\mathcal{X}=\Delta_n$ and $f_t(x):=\langle c^t,x\rangle$.
- o Littlestone et al. [19]: first $\mathcal{O}(\sqrt{T\log n})$ -regret for $\mathcal{X}=\Delta_n$, $f_t(x):=\langle c^t,x\rangle$ and $c^t\in\{0,1\}^n$.
- \circ Freund et al. [11]: The Hedge algorithm achieves $\mathcal{O}(\sqrt{T\log n})$ regret for $\mathcal{X}=\Delta_n,\ f_t(x):=\langle c^t,x\rangle$.
- o Zinkevic et al. [27]: first $\mathcal{O}(\sqrt{T})$ -regret for general convex set \mathcal{X} and convex functions f_t .
- o Abernethy et al. [3]: Follow the Regularized Leader algorithm for general convex sets and functions.

The expert problem

Online decision making

A learner needs to decide over n possible actions with unknown and changing rewards over T rounds.

The expert problem (Littlestone et al. [19])

At each round $t = 1, \ldots, T$:

- A learner selects a prob. distribution $x^t \sim \{1, \dots, n\}$ over the n possible actions.
- An adversary selects a cost c_i^t for each action $i \in \{1, \ldots, n\}$.
- ▶ The learner suffers a(n) (expected) cost $f_t(x^t) := \langle c^t, x^t \rangle$ and receives c^t as feedback ($c^t = \nabla f_t(x^t)$).

Remarks:

- Special case of OCO with linear functions $f_t(x^t) := \langle c^t, x^t \rangle$ and $\mathcal{X} = \Delta_n$.
- \circ Suppose the learner selects $x^t \in \Delta_n$ according to a no-regret algorithm.
- o Then its time-averaged cost is at most the time-averaged cost of best fixed action:

$$\frac{1}{T} \sum_{t=1}^{T} \langle c^t, x^t \rangle \le \frac{1}{T} \min_{i \in [n]} \sum_{t=1}^{T} c_i^t + \underbrace{\frac{o(T)}{T}}_{\text{goes to 0}} !$$

Application of the expert problem: Online path selection (Awerbuch et al. [5])

Example (Going to Work)

- ightharpoonup Every day $t \in \{1, \dots, T\}$, we go from home to work (and vice versa).
- ▶ There are multiple routes the travel time of which depends on unpredictable (weather, congestion) factors.
- ► How do we select our route every day?

Reduction to the expert problem

- ▶ Consider the expert problem by enumerating each possible route as a different action.
- lterate $t \in \{1, \ldots, T\}$:
 - Randomly select a route with probability distribution $x^t \in \Delta_n$.
 - lacktriangle Observe c_i^t as the *travel time* of the *i*-th route at day t observed after selection. Form a vector c^t .
 - ▶ Update $x^{t+1} \leftarrow \mathcal{A}(c^1, \dots, c^t)$ where \mathcal{A} is a no-regret algorithm for the expert problem.
- If A is a no-regret algorithm for the expert problem, then the overall travel (over the T days) is approximately the travel of the best fixed route!

Old school spam filtering

Spam Filtering

Classify an e-mail as spam or no-spam.

Online spam filtering with linear filters (Hazan et al. [14])

- ightharpoonup A dictionary $Dict[\cdot]$ of length d containing all possible words.
- An arrived email is encoded as a $\{0,1\}$ -vector $m_t \in \{0,1\}^d$ of length d depending on the contained words.
- lacktriangle We select $x^t \in [-1,1]^d$ and classify the email according to the linear filter $\hat{b}_t := \mathrm{sign}(m_t^{ op} x^t)$

Decision at round
$$t:=\left\{ egin{array}{ll} {\sf Spam} & {\sf if}\ \hat{eta}_t=-1 \\ {\sf Inbox} & {\sf if}\ \hat{eta}_t=1 \end{array} \right.$$

▶ The true label $b_t \in \{-1,1\}$ is revealed and we incur loss $(\hat{b}_t - b_t)^2$

Remarks:

- \circ A no-regret algorithm select x^t with $\mathcal{X} = [-1,1]^d$ and $f_t(x) := \left(\beta_t \operatorname{sign}(\alpha^\top x)\right)^2$.
- o Then we can obtain comparable classification accuracy with the best fixed linear filter!

Old school spam filtering

Spam Filtering

Classify an e-mail as spam or no-spam.

Online spam filtering with linear filters (Hazan et al. [14])

- ▶ A dictionary $Dict[\cdot]$ of length d containing all possible words.
- \blacktriangleright An arrived email is encoded as a $\{0,1\}$ -vector $m_t \in \{0,1\}^d$ of length d depending on the contained words.
- lacktriangle We select $x^t \in [-1,1]^d$ and classify the email according to the linear filter $\hat{b}_t := \mathrm{sign}(m_t^ op x^t)$

Decision at round
$$t:=\left\{ egin{array}{ll} {\sf Spam} & {\sf if}\ \hat{eta}_t=-1 \\ {\sf Inbox} & {\sf if}\ \hat{eta}_t=1 \end{array} \right.$$

▶ The true label $b_t \in \{-1,1\}$ is revealed and we incur loss $(\hat{b}_t - b_t)^2$

Remarks:

- \circ If a no-regret algorithm select x^t with $\mathcal{X} = [-1,1]^d$ and $f_t(x) := \left(\beta_t \operatorname{sign}(\alpha^\top x)\right)^2$.
- o Then we can obtain comparable classification accuracy with the best fixed linear filter!
- o Unfortunately, the problem is not OCO so this proposition serves only as motivation.

Portfolio management

Portfolio Management

- ightharpoonup We start with a total capital of C_0 dollars.
- ▶ Each day $t \in \{1, ..., T\}$, we want to invest our capital in n possible assets so as to maximize our profit.
- ▶ The return $r_i^t > 0$ of asset i is the price ratio of asset i at the beginning and at the end of day t.
- ightharpoonup The choice of not investing can be encoded with a special asset 0 with $r_0^t=1$.

Universal portfolio problem (Cover et al. [10], Kalai et al. [15], Tsai et al. [24])

- At the beginning of each day $t \in \{1, \dots, T\}$: the decision maker splits its current capital over the n possible assets according to the distribution $x_t \in \Delta_n$.
- lacktriangle At the end of each day $t \in \{1, \dots, T\}$: the decision maker's capital becomes $C_{t+1} := C_t \cdot \langle r_t, x^t \rangle$.
- ightharpoonup The decision maker learns the return vector $r^t \in \mathbb{R}^n_+$ and updates $x^{t+1} \in \Delta_n$ so as to minimize

$$\max_{x \in \Delta_n} \sum_{t=1}^{T} \log (\langle r_t, x \rangle) - \sum_{t=1}^{T} \log (\langle r_t, x_t \rangle).$$

The constant rebalancing portfolio problem

Portfolio management II

Connection with online convex optimization (OCO)

Universal portfolio problem fits into the OCO setting with $\mathcal{X} = \Delta_n$ and $f_t(x) := -\log(\langle r_t, x \rangle)$.

Example

Consider initial capital $C_0=1$, assets A,B with return sequence $(r_A^1=100,r_B^1=1)$, $(r_A^2=0.01,r_B^2=1.5)$.

- ▶ Investing always in *A* produces 1.
- \blacktriangleright Investing always in B produces 1.5.
- ▶ Splitting the capital at each round equally between A, B ($x^1 = x^2 = (0.5, 0.5)$) produces ≈ 36.4 .
- ▶ Best fixed splitting uses $x = \left(\frac{14701}{29502}, \frac{14801}{29502}\right)$, resulting in $\simeq 36.41$.

Remarks:

- o In the universal portfolio problem, the best fixed investment strategy is not necessarily "pure."
- o The universal portfolio problem is related to quantum tomography [25].
- \circ No regret algorithms exist that leverage the self-concordance of f_t 's [25].

Recall: The expert problem

The expert problem (Littlestone et al. [19])

At each round t = 1, ..., T, we have

- ightharpoonup A learner selects a probability distribution $x^t \in \Delta_n$ over n possible actions.
- ▶ An adversary selects a cost $c_i^t \in [-1, 1]$ for each action $i \in \{1, ..., n\}$.
- ▶ The learner suffers an expected cost $\langle c^t, x^t \rangle$ and receives $c^t \in [-1, 1]^n$ as feedback.

Remark:

• The expert problem is a special case of OCO with $\mathcal{X} = \Delta_n$ and $f_t(x) := \langle c^t, x \rangle$.

The Hedge algorithm

The Hedge algorithm (Freund et al. [11])

- ▶ Initialize expert weights $w^1 \leftarrow (1, \dots, 1)$
- For each round $t = 1, \ldots, T$
 - ▶ The learner selects a probability distribution $x^t \in \Delta_n$ as follows,

$$x_i^t = \frac{w_i^t}{\sum_{j=1}^n w_j^t} \text{ for each action } i \in \{1, \dots, n\}.$$

- ▶ The adversary selects a cost $c_i^t \in [-1, 1]$ for each action $i \in \{1, ..., n\}$.
- ▶ The *learner* suffers expected $\langle c^t, x^t \rangle$ and receives $c^t \in [-1, 1]^n$ as feedback.
- ► The *learner* updates the weights as follows,

$$w_i^{t+1} := w_i^t e^{-\gamma c_i^t}$$

where $\gamma>0$ is the learning rate.

Remark:

- Hedge is closely connected with two methods:
 - the dual averaging method with entropic regularization of Nesterov et al. [20]
 - ▶ the entropic mirror descent Beck and Teboulle [6]
- o These methods coincide when the objective is linear and the constraint is the simplex.

The Hedge algorithm

Remark:

 \circ The Hedge algorithm admits regret $\mathcal{R}_{Hedge}(T) = \mathcal{O}\left(\sqrt{T\log n}\right)$.

Theorem (Freund et al. [11])

The Hedge algorithm with the step-size $\gamma := \sqrt{\log n/T}$ admits regret $\mathcal{R}_{\mathrm{Hedge}}(T) = \mathcal{O}\left(\sqrt{T\log n}\right)$. More precisely, for any cost-vector sequence $c^1,\ldots,c^T\in[-1,1]^n$, it holds that

$$\sum_{t=1}^{T} \langle c^t, x^t \rangle \le \min_{x \in \Delta_n} \sum_{t=1}^{T} \langle c^t, x \rangle + \mathcal{O}\left(\sqrt{T \log n}\right).$$

The Hedge algorithm: Proof I

Proof.

Let $\Phi(t) = \sum_{i=1}^{n} w_i^t$ meaning that $\Phi(1) = n$. Then, it follows that

$$\begin{split} \Phi(t+1) &= \sum_{i=1}^{n} w_{i}^{t+1} = \sum_{i=1}^{n} w_{i}^{t} e^{-\gamma c_{i}^{t}} \\ &= \Phi(t) \sum_{i=1}^{n} x_{i}^{t} e^{-\gamma c_{i}^{t}} \\ &\leq \Phi(t) \sum_{i=1}^{n} x_{i}^{t} \left(1 - \gamma c_{i}^{t} x_{i}^{t} + \gamma^{2} (c_{i}^{t})^{2} x_{i}^{t}\right) & (e^{-x} \leq 1 - x + x^{2}) \\ &= \Phi(t) \left(1 - \gamma \langle c^{t}, x^{t} \rangle + \gamma^{2} \langle c^{2t}, x^{t} \rangle\right) & c^{2t} = \left((c_{1}^{t})^{2}, \dots, (c_{n}^{t})^{2}\right) \\ &\leq \Phi(t) e^{-\gamma \langle c^{t}, x^{t} \rangle + \gamma^{2} \langle c^{2t}, x^{t} \rangle} & (1 - x \leq e^{-x}) \\ &\leq \Phi(1) e^{-\gamma} \sum_{t=1}^{T} \langle c^{t}, x^{t} \rangle + \gamma^{2} T & (c^{2t}, x^{t}) \\ &\leq n e^{-\gamma} \sum_{t=1}^{T} \langle c^{t}, x^{t} \rangle + \gamma^{2} T & (c^{2t} \in [0, 1]^{n}) \end{split}$$

The Hedge algorithm: Proof II

Proof (Cont.)

Let $i^\star \in \{1,\dots,n\}$ be the optimal fixed action, $i^\star := \operatorname{argmin}_{i \in \{1,\dots,n\}} \sum_{t=1}^T c_i^t$. Then,

$$e^{-\gamma \sum_{t=1}^{T} c_{i\star}^{t}} = w_{i\star}^{T+1} \le \sum_{i=1}^{n} w_{i}^{T+1} = \Phi(T+1) \le n e^{-\gamma \sum_{t=1}^{T} \langle c^{t}, x^{t} \rangle + \gamma^{2} T}$$

As a result,

$$\sum_{t=1}^T \langle c^t, x^t \rangle \leq \min_{i \in \{1, \dots, n\}} \sum_{t=1}^T c_i^t + \frac{\log n}{\gamma} + \gamma T.$$

The proof is concluded by selecting $\gamma := \sqrt{\log n/T}$.

Remarks:

- o The step-size can be chosen in an iteration dependent way.
- See the entropic mirror descent derivation in [6].

Online projected gradient descent

Remarks:

- \circ Hedge provides no-regret guarantees for the OCO setting with $\mathcal{X} = \Delta_n$ and $f_t(x) := \langle c^t, x \rangle$.
- \circ Online projected gradient descent provides no-regret guarantees for projectable convex sets $\mathcal{X}.$

Online projected gradient descent (Zinkevic et al. [27])

- ightharpoonup At each round $t=1,\ldots,T$
 - ▶ The *learner* selects an $x^t \in \mathcal{X}$.
 - ▶ The adversary selects a convex function $f_t \in \mathcal{F} : \mathcal{X} \mapsto \mathbb{R}$.
 - ▶ The *learner* suffers cost $f_t(x^t)$ and receives $\nabla_t := \nabla f_t(x^t)$ as feedback
 - ${\color{red} \blacktriangleright}$ The learner updates $x^{t+1} \in \mathcal{X}$ as follows,

$$x^{t+1} \leftarrow \Pi_{\mathcal{X}} \left(x^t - \gamma \nabla_t \right) \quad \text{(Online GD)}$$

where $\gamma > 0$ is the learning rate.

Online gradient descent: A basic proof - I

Theorem (Zinkevic et al. [27])

For any sequence of convex differentiable functions f_1,\ldots,f_T satisfying $\max_{x\in\mathcal{X}}\|\nabla f_t(x)\|\leq G$ (i.e., \mathcal{F}), online projected gradient descent with step-size $\gamma=|\mathcal{X}|/G\sqrt{T}$, admits $\mathcal{O}\left(\sqrt{G|\mathcal{X}|T}\right)$ regret. More precisely,

$$\sum_{t=1}^{T} f_t(x^t) \le \min_{x^* \in \mathcal{X}} \sum_{t=1}^{T} f_t(x^*) + \mathcal{O}(G|\mathcal{X}|\sqrt{T}).$$

Proof.

$$\begin{split} \|x^{t+1} - x^\star\|^2 &= \|\Pi_{\mathcal{X}} \left(x^t - \gamma \nabla_t\right) - x^\star\|^2 \\ &\leq \|x^t - \gamma \nabla_t - x^\star\|^2 \quad \text{(non-expansiveness of convex projections)} \\ &= \|x^t - x^\star\|^2 - 2\gamma \nabla_t^\top (x^t - x^\star) + \gamma^2 \|\nabla_t\|^2 \end{split}$$

Thus,

$$\nabla_t^{\top}(x^t - x^*) \le \frac{\|x^t - x^*\|^2 - \|x^{t+1} - x^*\|^2}{2\gamma} + \frac{\gamma}{2} \|\nabla_t\|^2$$

Online gradient descent: A basic proof - II

Proof (Cont.)

As a result,

$$\sum_{t=1}^{T} f_t(x_t) - f_t(x^*) \leq \sum_{t=1}^{T} \nabla_t^{\top} (x^t - x^*)
\leq \sum_{t=1}^{T} \frac{\|x^t - x^*\|^2 - \|x^{t+1} - x^*\|^2}{2\gamma} + \frac{\gamma}{2} \sum_{t=1}^{T} \|\nabla_t\|^2
\leq \frac{\|x^1 - x^*\|^2}{2\gamma} + \frac{\gamma}{2} \sum_{t=1}^{T} \|\nabla_t\|^2
\leq \frac{|\mathcal{X}|^2}{2\gamma} + \frac{\gamma G^2 T}{2}
= |\mathcal{X}| G \sqrt{T} \quad \text{for} \quad \gamma := |\mathcal{X}| / G \sqrt{T}.$$

Let's take a breather

Algorithm ${\cal A}$	Regret \mathcal{R}	Function class ${\cal F}$	Feasibility set ${\mathcal X}$
Hedge	$\mathcal{O}\left(\sqrt{\log nT}\right)$	Linear functions	n -dimensional simplex Δ_n
Online gradient descent (OGD)	$\mathcal{O}\left(G \mathcal{X} \sqrt{T}\right)$	$G ext{-Lipschitz}$	General convex set ${\mathcal X}$

Remarks:

- o Hedge and OGD look like ad-hoc approaches transferring algorithms from the offline setting
- o In the sequel, we build up a more structural approach specifically for the online setting
 - ► The follow the regularized leader (FTRL) class of algorithms [3, 23, 17]

A first (naive) attempt

- How to pick the next $x^t \in \mathcal{X}$ given $f_1, ..., f_t$?
- o A naive first attempt: Follow the leader (FTL) Kalai et al. [16], which picks the best strategy so far.

$$x^{t} = \underset{x \in \mathcal{X}}{\arg\min} \sum_{\tau=1}^{t-1} f_{\tau}(x)$$
 (FTL)

A first (naive) attempt

- How to pick the next $x^t \in \mathcal{X}$ given $f_1, ..., f_t$?
- o A naive first attempt: Follow the leader (FTL) Kalai et al. [16], which picks the best strategy so far:

$$x^{t} = \underset{x \in \mathcal{X}}{\operatorname{arg\,min}} \sum_{\tau=1}^{t-1} f_{\tau}(x) \tag{FTL}$$

o Unfortunately a simple adversarial strategy exists.

Example (Adversarial strategy against FTL (Shalev-Shwartz [22, Ex. 2.2]))

Consider $\mathcal{X} = \{-1,1\}$ and the environment picking

t	1	2	3	4	
$f_t(x)$	$\frac{1}{2}x$	-x	x	-x	
$\sum_{\tau=1}^{t-1} f_{\tau}(x)$	-	$\frac{1}{2}x$	$-\frac{1}{2}x$	$\frac{1}{2}x$	• • •

Remark:

- \circ (FTL) picks smallest $x^t = -1$ when minimizer of $f_t(\cdot)$ is largest x (and vice versa).
- o So (FTL) achieves maximal regret $f_{t+1}(x^{t+1})$.
- o Can we do better?

What if we could cheat?

- \circ Be the leader (BTL): Imagine we could cheat and use x^{t+1} at time t while incurring the cost.
- o Now, we incur $f_t(x^{t+1})$ instead of $f_t(x^t)$ in the regret analysis.

Lemma (Regret of BTL)

Let BTL generate the sequence (x^1, \dots, x^{T+1}) according to FTL but play x^{t+1} at time t. Then, BTL admits non-positive regret:

$$\mathcal{R}_{BTL}(T) := \sum_{t=1}^{T} f_t(x^{t+1}) - \min_{x \in \mathcal{X}} \sum_{t=1}^{T} f_t(x) \le 0.$$

Proof.

$$\mathcal{R}_{\mathrm{BTL}}(T) = \sum_{t=1}^{T} f_{t}(x^{t+1}) - \min_{x} \sum_{t=1}^{T} f_{t}(x) \qquad (2a)$$

$$= \sum_{t=1}^{T} f_{t}(x^{t+1}) - \sum_{t=1}^{T} f_{t}(x^{T+1}) \qquad (by \ def \ of \ x^{t}) \qquad (2b)$$

$$= \sum_{t=1}^{T-1} f_{t}(x^{t+1}) - \sum_{t=1}^{T-1} f_{t}(x^{T+1}) \qquad (last \ terms \ are \ equal) \qquad (2c)$$

$$\leq \sum_{t=1}^{T-1} f_{t}(x^{t+1}) - \sum_{t=1}^{T-1} f_{t}(x^{t}) \qquad (since \ x^{T} \ is \ the \ actual \ minimum) \qquad (2d)$$

$$\leq f_{1}(x^{2}) - f_{1}(x^{3}) \qquad (recurse \ until \ T - i = 1 \ in \ (2c)) \qquad (2e)$$

$$\leq 0 \qquad (since \ f_{1}(x^{2}) \ is \ the \ minimum.) \qquad (2f)$$

Implications of BLT's non-positive regret

 $\circ~$ BTL's non-positive regret provides an interesting insight for FTL:

Insight

The regret of the sequence (x^1, \dots, x^T) , as generated by (FTL), is no worse than

$$\mathcal{R}_{\text{FTL}}(T) = \sum_{t=1}^{T} f_t(x^t) - \min_{x \in \mathcal{X}} \sum_{t=1}^{T} f_t(x) \le \sum_{t=1}^{T} (f_t(x^t) - f_t(x^{t+1})).$$
 (3)

Remarks:

- ∘ Follows from $\mathcal{R}_{FTL}(T) 0 \le \mathcal{R}_{FTL}(T) \mathcal{R}_{BTL}(T)$ which is immediate from BTL.
- \circ Consequently, $\mathcal{R}_{\mathrm{FTL}}(T)$ is no worse than the difference between $f_t(x^t)$ and $f_t(x^{t+1})$

Observations:

- \circ Intuitively, we just need to ensure x^t does not change too much.
- We should regularize/stabilize!

Follow the regularized leader (FTRL)

Follow the regularized leader (Abernethy et al. [4])

- For each round $t = 1, \ldots, T$
 - ▶ The *learner* selects $x^t \in \mathcal{X}$ using

$$x^{t} = \underset{x \in \mathcal{X}}{\operatorname{arg \, min}} \sum_{\tau=1}^{t-1} f_{\tau}(x) + \frac{1}{\gamma} h(x)$$
 (FTRL)

where $\gamma>0$ will be (!) the learning rate and $h:\mathcal{X}\to\mathbb{R}$ is a strongly-convex regularizer in some norm $\|\cdot\|$.

- ▶ The adversary selects a function $f_t(\cdot)$ where $f_t: \mathcal{X} \mapsto \mathbb{R}$.
- ▶ The learner suffers $f_t(x^t)$ and gets access to $f(\cdot)$.

Remarks:

- \circ We modified the selection of x^t .
- o The regularizer ensures iterates do not move too much and forces uniqueness of solution.

Historical notes:

- o Regularization was studied in online learning by Grove et al. [12] and Kivinen et al. [18]
- o Follow the leader (FTL) was coined by the influencial paper Kalai et al. [16]
- o FTRL Introduced in Shalev-Shwartz [21] and Abernethy et al. [4] almost simultaneously.

Stability due to regularization

Lemma (Stability)

The sequence (x^1, \dots, x^T) generated by FTRL satisfies

$$f_t(x^t) - f_t(x^{t+1}) \le \gamma \|\nabla f_t(x^t)\|_*^2,$$
 (4)

where $\|\cdot\|_*$ is the dual norm of $\|\cdot\|$ defined as $\|x\|_* = \sup_{\|y\| < 1} \langle x, y \rangle$.

Proof.

Let us define the function we minimizes in the decision selection

$$F_t(x) = \sum_{\tau=1}^t f_{\tau}(x) + \frac{1}{\gamma}h(x).$$
 (5)

By strong convexity of h and convexity of f_{τ} we have that

$$F_{t-1}(x^t) - F_{t-1}(x^{t+1}) \le \langle \nabla F_{t-1}(x^t), x^t - x^{t+1} \rangle - \frac{1}{2\gamma} \|x^t - x^{t+1}\|^2 \quad \text{for any } x^t, x^{t+1} \in \mathcal{X}. \tag{6}$$

This will ultimately let us bound $f_t(x^t) - f_t(x^{t+1})$. (cont.)

Stability

Proof (Cont.)

FTRL defines $x^t = \arg\min_x F_{t-1}(x)$ so $F_{t-1}(x^t)$ is the optimum and first order characterization becomes

$$\langle \nabla F_{t-1}(x^t), x^t - x^{t+1} \rangle \le 0. \tag{7}$$

So a weaker bound of (6) is

$$F_{t-1}(x^t) - F_{t-1}(x^{t+1}) \le -\frac{1}{2\gamma} \|x^t - x^{t+1}\|^2 \quad \text{and} \quad F_t(x^{t+1}) - F_t(x^t) \le -\frac{1}{2\gamma} \|x^t - x^{t+1}\|^2.$$
(8)

The second line simply applies the same reasoning. We can now sum the two lines and expand the definition of F_i . All terms will cancel out except the last term in $F_t(x^{t+1})$ and $F_t(x^t)$ so we get

$$f_t(x^{t+1}) - f_t(x^t) \le -\frac{1}{y} \|x^t - x^{t+1}\|^2 \iff \|x^t - x^{t+1}\|^2 \le \gamma (f_t(x^t) - f_t(x^{t+1})). \tag{9}$$

(cont.)

lions@epf

¹First order characterization of convexity says $f(y) - f(x) \le \nabla f(y)^\top (y-x)$. So when f(y) is minimum we have $\nabla f(y)^\top (y-x) \ge 0$.

Stability

Proof (Cont.)

Now we have the tools to bound the change.²

$$f_t(x^t) - f_t(x^{t+1}) \le \langle \nabla f_t(x^t), x^t - x^{t+1} \rangle$$
 (Convexity)

$$\le \|\nabla f_t(x^t)\|_* \|x^t - x^{t+1}\|$$
 (Hölder's ineq.)

$$\le \|\nabla f_t(x^t)\|_* \sqrt{\gamma} \sqrt{f_t(x^t) - f_t(x^{t+1})}$$
 from (9)

Solving for $f_t(x^t) - f_t(x^{t+1})$, we get

$$f_t(x^t) - f_t(x^{t+1}) \le \gamma \|\nabla_t f(x^t)\|_*^2.$$
 (11)

²Hölder's inequality: $\langle x, y \rangle \leq ||x|| ||y||_*$.

Regret of FTRL

o Equipped with stability and the BTL lemma we almost directly obtain the regret bound for FTRL.

Theorem (Regret of FTRL ([21, 4]))

The sequence (x^1,\ldots,x^T) generated by (FTRL) satisfies

$$\mathcal{R}_{\text{FTRL}}(T) \le \frac{R_h}{\gamma} + \gamma \sum_{t=1}^{T} \|\nabla f_t(x^t)\|_*^2, \tag{12}$$

where $R_h := \max_x h(x) - \min_x h(x)$.

Remark:

o The particular presentation of the proof below is due to Luo [1].

Proof.

By defining $f_0(x)=\frac{1}{2}h(x)$ we can write the regularized selection as

$$x^{t} = \arg\min_{x \in \mathcal{X}} \sum_{\tau=1}^{t-1} f_{\tau}(x) + \frac{1}{\gamma} h(x) = \arg\min_{x \in \mathcal{X}} \sum_{\tau=0}^{t-1} f_{\tau}(x).$$
 (13)

(cont.)

Regret of FTRL

Proof (Cont.)

First note that by the BTL lemma we have³

$$\sum_{t=0}^{T} f_t(x^*) \ge \sum_{t=0}^{T} f_t(x^{t+1}), \tag{14}$$

EPFL

where $x^* = \arg\min_{x \in \mathcal{X}} \sum_{t=1}^T f_t(x)$ is the best fixed decision. Now we can bound the FTRL regret as follows⁴

$$\mathcal{R}_{T}^{\text{FTRL}} = \sum_{t=1}^{T} f_{t}(x^{t}) - \sum_{t=1}^{T} f_{t}(x^{\star})$$

$$= \sum_{t=1}^{T} f_{t}(x^{t}) - \sum_{t=1}^{t} f_{t}(x^{\star}) + f_{0}(x^{\star})$$

$$\leq \sum_{t=1}^{T} f_{t}(x^{t}) - \sum_{t=0}^{T} f_{t}(x^{t+1}) + f_{0}(x^{\star}) \qquad \text{(using BTL lemma)}$$

$$\leq \gamma \sum_{t=1}^{T} \|\nabla_{t} f(x^{t})\|_{*}^{2} + f_{0}(x^{\star}) - f_{0}(x^{1}) \qquad \text{(using stability)}$$

$$\leq \gamma \sum_{t=1}^{T} \|\nabla_{t} f(x^{t})\|_{*}^{2} + \frac{1}{\gamma} (\max_{x \in \mathcal{X}} h(x) - \min_{x \in \mathcal{X}} h(x)).$$
(15)

³Note that we additionally use $f_0(x^*) \geq f_0(x^1)$ since BTL only applies to t = 1, ..., T.

 $^{^4}$ We want to use stability so we need to move from x^* to x^{t+1} . We do this by getting it on a form for which we can apply the BTL lemma.

Regret of FTRL

Corollary

Further, if $f_t(x)$ is G-Lipschitz and we choose a learning rate of $\gamma=\sqrt{\frac{R_h}{TG^2}}$, then we have

$$\mathcal{R}_{\mathrm{FTRL}}(T) = \mathcal{O}(G\sqrt{TR_h}).$$
 (16)

Remark:

- o G-Lipschitz assumption ensures that the gradient is bounded: $\|\nabla f_t(x^t)\|_* \leq G$.
- $\circ~$ The "optimal" γ is found by simply optimizing the regret bound which is of the form

$$\underset{x}{\arg\min}\{ax + \frac{b}{x}\} = \sqrt{\frac{b}{a}}.$$
 (17)

o FTRL has sublinear regret.

Linear losses are sufficient for OCO in general

 \circ Under convexity it suffices to have access to gradient through $\langle \nabla f_t(x^t), \cdot \rangle$ instead of the whole function $f_t(\cdot)$:

$$\mathcal{R}_{\text{FTRL}}(T) = \max_{x \in \mathcal{X}} \sum_{t=1}^{T} f_t(x^t) - f_t(x) \le \max_{x \in \mathcal{X}} \sum_{t=1}^{T} \langle \nabla f_t(x^t), x^t - x \rangle \text{ by convexity.}$$
 (18)

 \circ Indeed, the regret for $f_t(x)$ is bounded by the regret for another problem based on $f'_t(x) = \langle \nabla f_t(x^t), x \rangle$.

FTRL with only gradients

- For each round $t = 1, \ldots, T$
 - ▶ The *learner* selects $x_t \in \mathcal{X}$ using

$$x^{t+1} = \underset{x \in \mathcal{X}}{\operatorname{arg \, min}} \left\langle \sum_{\tau=1}^{t} \nabla f_{\tau}(x^{\tau}), x \right\rangle + \frac{1}{\gamma} h(x) \tag{FTRL on gradients}$$

where $\gamma>0$ is the learning rate and $h:\mathcal{X}\to\mathbb{R}$ is a strongly-convex regularizer in some norm $\|\cdot\|$.

- ▶ The adversary selects a $f_t(\cdot)$.
- ▶ The learner suffers $f_t(x^t)$ and observes $\nabla f_t(x^t)$.

Remark:

- o FTRL with linear losses is closely connected to two offline algorithms:
 - equivalent to the *dual averaging method* of Nesterov et al. [20]
 - coincides with the entropic mirror descent Beck and Teboulle [6] under simplex constraints

Summary of no-regret algorithms

Algorithm ${\cal A}$	Regret $\mathcal R$	Function class ${\cal F}$	Feasibility set \mathcal{X}
Hedge	$\mathcal{O}\left(\sqrt{\log nT}\right)$	Linear functions	n -dimensional simplex Δ_n
Online gradient descent (OGD)	$\mathcal{O}\left(G \mathcal{X} \sqrt{T}\right)$	$G\operatorname{\!-}\!\operatorname{Lipschitz}$	General convex set ${\mathcal X}$
Follow the regularized leader (FTRL)	$\mathcal{O}\left(GR_h\sqrt{T}\right)$	$G ext{-Lipschitz}$	General convex set ${\mathcal X}$

Remarks:

- o By all general convex sets, we mean all projectable general convex sets. Why?
- o All algorithms that we saw so far admit $\mathcal{O}(\sqrt{T})$ regret. Can we do better?

Lower bounds

Answer:

o Unfortunately no!

Theorem (Lower bound (Abernethy et al. [2, Lm. 8]))

Let $\mathcal{X} = \mathbb{B}(0,1)$ (n-dimensional unit ball centered at $(0,\dots,0)$). Then any online learning algorithm \mathcal{A} admits regret greater than \sqrt{T} .

Proof

At each round t, the adversary selects c^t such that the following hold:

- $\langle c^t, x_t, \rangle = 0,$
- $\langle c^t, \sum_{s=1}^{t-1} c_s \rangle = 0,$
- $||c^t|| = 1.$

By the construction $\sum_{t=1}^T \langle c^t, x_t, \rangle = 0$. Consider $x^\star = -\sum_{t=1}^T c^t / \|\sum_{t=1}^T c^t\|$, then it holds that

$$\sum_{t=1}^{T} \langle c^t, x^{\star} \rangle = -\| \sum_{t=1}^{T} c^t \|.$$

(cont.)

Lower bounds

Proof (Cont.)

Let us try to find how big $\|\sum_{t=1}^{T} c^t\|$ can be

$$\|\sum_{s=1}^{t} c_s\|^2 = \|\sum_{s=1}^{t-1} c_s + c^t\|^2$$

$$= \|\sum_{s=1}^{t-1} c_s\|^2 + 2\langle c^t, \sum_{s=1}^{t-1} c_s \rangle + \|c^t\|^2$$

$$= \|\sum_{s=1}^{t-1} c_s\|^2 + 1$$

Thus $\|\sum_{t=1}^{T} c^t\| = \sqrt{T}$. As a result,

$$\sum_{t=1}^{T} c^t (x_t - x^\star) = -\sqrt{T}.$$

A tighter lower bound for the expert problem

- \circ For the expert problem (simplex constraints) we can characterize dependency on action cardinality n.
- o We will show that our upper bound can at best be improved by a constant factor.

Theorem (Cesa-Bianchi et al. [9, Thm. 3.7]))

For any online learning algorithm $\mathcal A$ for the expert problem $\mathcal X=\Delta_n$, the regret satisfies the following

$$\mathcal{R}_{\mathcal{A}}(T) \ge \frac{\sqrt{T \ln n}}{\sqrt{2}}.$$
 (19)

Remarks:

- o A deterministic construction might be difficult to find.
- o Trick instead uses that any probabilistic construction will lower bound the supremum

$$\sup_{z \in \mathcal{Z}} f(z) \ge \mathbb{E}_z[f(z)]. \tag{20}$$

o The proof presentation in the sequel is from Haipeng Luo CSCI 699 lecture notes.

A tighter lower bound for the expert problem

Proof.

Specifically, if we let P be uniform over $\{0,1\}$, then the following holds

$$\max_{c^{1},...,c^{T}} \mathcal{R}_{\mathcal{A}}(T) \geq \mathbb{E}_{c^{1},...,c^{T} \stackrel{\text{iid}}{\sim} p} [\mathcal{R}_{\mathcal{A}}(T)]$$

$$= \sum_{t=1}^{T} \mathbb{E}_{c^{1},...,c^{t-1}} \mathbb{E}_{c^{t}} [\langle p^{t}, c^{t} \rangle \mid c^{t-1},...,c^{1}] - \mathbb{E}_{c^{1},...,c^{T}} [\min_{i \in [N]} \sum_{t=1}^{T} c_{i}^{t}]$$

$$= \sum_{t=1}^{T} \mathbb{E}_{c^{1},...,c^{t-1}} \langle p^{t}, \mathbb{E}_{c^{t}} [c^{t} \mid c^{t-1},...,c^{1}] \rangle - \mathbb{E}_{c^{1},...,c^{T}} [\min_{i \in [N]} \sum_{t=1}^{T} c_{i}^{t}]$$

$$= T/2 - \mathbb{E}_{c^{1},...,c^{T}} [\min_{i \in [N]} \sum_{t=1}^{T} c_{i}^{t}]$$

$$= \mathbb{E}_{c^{1},...,c^{T}} [\max_{i \in [N]} \sum_{t=1}^{T} (\frac{1}{2} - c_{i}^{t})]$$

$$= \frac{1}{2} \mathbb{E}_{u^{1},...,u^{T}} [\max_{i \in [N]} \sum_{t=1}^{T} u_{i}^{t}],$$
(21)

where u^t are Rademacher random variables. It is then not difficult to show the following (see e.g. [9, Lemma A.11 and A.12] and [9, Thm 3.7])

$$\lim_{T \to \infty} \lim_{N \to \infty} \mathbb{E}_{u^1, \dots, u^T} \left[\max_{i \in [N]} \sum_{t=1}^T u_i^t \right] = \sqrt{2T \ln n}. \tag{22}$$

Application of online learning: Obtaining statistical guarantees

- o A no-regret algorithm enjoys statistical guarantees in the offline setting.
- Suppose we want to minimize the true risk under some distribution P:

$$\min_{x \in \mathcal{X}} \mathbb{E}_{z \sim \mathsf{P}}[\ell(x, z)]. \tag{23}$$

Meta-algorithm (Online to batch conversion)

- ▶ Run the online learning algorithm on $f_t(x) = \ell(x, z_t)$ for t = 1...T where $z_t \sim P$.
- ▶ Use the average over all actions as the prediction, i.e., $\hat{x}^T = \frac{1}{T} \sum_{t=1}^T x_t$.

Remark:

 \circ Notice that each data point z_t is only seen once.

Application of online learning: Obtaining statistical guarantees

Theorem (Online to batch conversion (Cesa-Bianchi et al. [8]))

If the loss $x \to \mathbb{B}_{z \sim P}\ell(x,z)$ is convex then the true risk can be bounded with probability at least $1-\delta$ as follows

$$\mathbb{E}_{z \sim P}[\ell(\hat{x}^T, z)] \le \mathbb{E}_{z \sim P}[\ell(x^*, z)] + \frac{\mathcal{R}_{\mathcal{A}}(T)}{T} + 2\sqrt{\frac{2\ln(2/\delta)}{T}},\tag{24}$$

where $\mathcal{R}_{\mathcal{A}}(T)$ is the regret of the online learning algorithm \mathcal{A} after T rounds.

Proof.

The claim follows directly from application of Jensen's inequality and Azuma's inequality.

o What convergence rate can we achieve with online learning for classic iid. statistical learning problems?

Answer:

- o For FTRL the regret bound is $\mathcal{R}_T = \mathcal{O}(G\sqrt{DT})$ when $f_t(x)$ is G-Lipschitz.
- So the convergence rate becomes $\mathcal{O}(\frac{1}{\sqrt{T}})$.

Application of online learning: Approximate Nash equilibrium in zero-sum

o Consider the following problem

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} f(x, y), \tag{25}$$

where $f(\cdot, y)$ is convex and $f(x, \cdot)$ is concave for all x, y.

 \circ Assume we run two no-regret algorithms, i.e., for any x and y,

$$\mathcal{R}_{y}(T) \leq \sum_{i=1}^{T} f(x^{t}, y) - \sum_{i=1}^{T} f(x^{t}, y^{t}),
\mathcal{R}_{x}(T) \leq \sum_{i=1}^{T} f(x^{t}, y^{t}) - \sum_{i=1}^{T} f(x, y^{t}).$$
(26)

Theorem (Approximate Nash equilibrium)

Assume $f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ is convex-concave. Consider the sequence $\{(x^t, y^t)\}_{t=1}^T$ generated by two no-regret algorithm executed in tandem. Then $\hat{x}^T = \frac{1}{T} \sum_{t=1}^T x^t$ and $\bar{y}^T = \frac{1}{T} \sum_{t=1}^T y^t$ satisfies,

$$f(\hat{x}^T, y) - \varepsilon_T \le f(x^*, y^*) \le f(x, \bar{y}^T) + \varepsilon_T, \tag{27}$$

where $\varepsilon_T := \frac{1}{T}(\mathcal{R}_{\mathbf{v}}(T) + \mathcal{R}_{\mathbf{x}}(T))$ and (x^{\star}, y^{\star}) is a Nash equilibrium.

Remark:

 \circ Consequently, the *average* iterate of a no-regret algorithm converges as $\varepsilon_T = \mathcal{O}(1/\sqrt{T})$.

Application of online learning: Approximate Nash equilibrium in zero-sum

Proof.

Using the no-regret property,

$$f(\hat{x}^{T}, y) \leq \frac{1}{T} \sum_{i=1}^{T} f(x^{t}, y) \leq \max_{y} \frac{1}{T} \sum_{i=1}^{T} f(x^{t}, y) \leq \frac{1}{T} \sum_{i=1}^{T} f(x^{t}, y^{t}) + \frac{1}{T} \mathcal{R}_{y}(T)$$

$$f(x, \bar{y}^{T}) \geq \frac{1}{T} \sum_{i=1}^{T} f(x, y^{t}) \geq \min_{x} \frac{1}{T} \sum_{i=1}^{T} f(x, y^{t}) \geq \frac{1}{T} \sum_{i=1}^{T} f(x^{t}, y^{t}) - \frac{1}{T} \mathcal{R}_{x}(T),$$
(28)

Subtracting the two equations,

$$f(\hat{x}^T, y) - f(x, \bar{y}^T) \le \frac{1}{T} (\mathcal{R}_y(T) + \mathcal{R}_x(T)) =: \varepsilon_T.$$
(29)

We wish to relate to the Nash equilibrium (x^\star, y^\star) , defines as $f(x^\star, y) \le f(x^\star, y^\star) \le f(x, y^\star)$ for all x, y. First by picking $x = x^\star$ in (29) and second by property of a Nash equilibrium we get,

$$f(\hat{x}^T, y) - \varepsilon_T \le f(x, \bar{y}^T) = f(x^*, \bar{y}^T) \le f(x^*, y^*). \tag{30}$$

A similar argument applies to the y-player and we conclude that (\bar{x},\bar{y}) is an ε_T -approximate Nash equilibrium, i.e.,

$$f(\hat{x}^T, y) - \varepsilon_T \le f(x^*, y^*) \le f(x, \bar{y}^T) + \varepsilon_T. \tag{31}$$

Wrap-up

- \circ We have seen that $\mathcal{O}(\sqrt{T})$ is both an upper and lower bound on the regret.
- \circ In the offline setting this gives a $\mathcal{O}(1/\sqrt{T})$ rate for convex-concave minimax problems.
- \circ Next week will see how we can improve this to $\mathcal{O}(1/T)$ in the offline setting!
- o See you next week!

References |

- CSCI 699: Introduction to Online Learning, 2019.
 (Cited on page 34.)
- [2] Jacob Abernethy, Peter L Bartlett, Alexander Rakhlin, and Ambuj Tewari. Optimal strategies and minimax lower bounds for online convex games. 2008.

(Cited on page 39.)

- [3] Jacob D. Abernethy, Elad Hazan, and Alexander Rakhlin.
 Competing in the dark: An efficient algorithm for bandit linear optimization.
 In Rocco A. Servedio and Tong Zhang, editors, 21st Annual Conference on Learning Theory COLT 2008, pages 263–274. Omnipress, 2008.
 - (Cited on pages 10 and 25.)
- [4] Jacob D Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient algorithm for bandit linear optimization. 2009.

(Cited on pages 30 and 34.)

References II

[5] Baruch Awerbuch and Robert D. Kleinberg.

Adaptive routing with end-to-end feedback: distributed learning and geometric approaches.

In László Babai, editor, *Proceedings of the 36th Annual ACM Symposium on Theory of Computing*, pages 45–53. ACM, 2004.

(Cited on page 12.)

[6] Amir Beck and Marc Teboulle.

Mirror descent and nonlinear projected subgradient methods for convex optimization.

Operations Research Letters, 31(3):167–175, 2003.

(Cited on pages 18, 21, and 37.)

[7] David Blackwell.

An analog of the minimax theorem for vector payoffs.

Pacific Journal of Mathematics, 6:1-8, 1956.

(Cited on page 8.)

[8] Nicoló Cesa-Bianchi, Alex Conconi, and Claudio Gentile.

On the generalization ability of on-line learning algorithms.

Advances in neural information processing systems, 14, 2001.

(Cited on page 44.)

References III

 [9] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university press, 2006.

[10] Thomas M. Cover.

Universal portfolios.

(Cited on pages 41 and 42.)

Mathematical Finance, 1(1):1–29, 1991.

(Cited on page 15.)

[11] Yoav Freund and Robert E. Schapire.

A decision-theoretic generalization of on-line learning and an application to boosting.

```
J. Comput. Syst. Sci., 55(1):119–139, 1997. (Cited on pages 10, 18, and 19.)
```

[12] Adam J Grove, Nick Littlestone, and Dale Schuurmans.

General convergence results for linear discriminant updates.

```
Machine Learning, 43:173-210, 2001.
```

(Cited on page 30.)

References IV

[13] James Hannan.

4. Approximation to Bayes risk in repeated play, pages 97-140.

Princeton University Press, Princeton.

(Cited on pages 8 and 10.)

[14] Elad Hazan.

Introduction to online convex optimization.

CoRR, abs/1909.05207, 2019.

(Cited on pages 10, 13, and 14.)

[15] A. Kalai and S. Vempala.

Efficient algorithms for universal portfolios.

In Proceedings 41st Annual Symposium on Foundations of Computer Science, 2000. (Cited on page 15.)

[16] Adam Kalai and Santosh Vempala.

Efficient algorithms for online decision problems.

Journal of Computer and System Sciences, 71(3):291-307, 2005.

(Cited on pages 26, 27, and 30.)

References V

[17] Adam Kalai and Santosh S. Vempala.

Efficient algorithms for online decision problems.

In Bernhard Schölkopf and Manfred K. Warmuth, editors, *Computational Learning Theory and Kernel Machines, 16th Annual Conference on Computational Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003, Proceedings, volume 2777 of Lecture Notes in Computer Science, pages 26–40.* Springer, 2003. (Cited on page 25.)

[18] Jyrki Kivinen and Manfred KK Warmuth.

Relative loss bounds for multidimensional regression problems.

Advances in neural information processing systems, 10, 1997.

(Cited on page 30.)

[19] N. Littlestone and M.K. Warmuth.

The weighted majority algorithm.

In 30th Annual Symposium on Foundations of Computer Science, 1989.

(Cited on pages 10, 11, and 17.)

[20] Yurii Nesterov.

Primal-dual subgradient methods for convex problems.

Mathematical programming, 120(1):221-259, 2009.

(Cited on pages 18 and 37.)

References VI

[21] Shai Shalev-Shwartz.

Online learning: Theory, algorithms, and applications.

Hebrew University, 2007.

(Cited on pages 30 and 34.)

[22] Shai Shalev-Shwartz et al.

Online learning and online convex optimization.

Foundations and Trends® in Machine Learning, 4(2):107–194, 2012.

(Cited on pages 26 and 27.)

[23] Shai Shalev-Shwartz and Yoram Singer.

A primal-dual perspective of online learning algorithms.

Mach. Learn., 69(2-3):115-142, 2007.

(Cited on page 25.)

[24] Chung-En Tsai, Hao-Chung Cheng, and Yen-Huan Li.

Online self-concordant and relatively smooth minimization, with applications to online portfolio selection and learning quantum states.

CoRR, abs/2210.00997, 2022.

(Cited on page 15.)

References VII

[25] Chung-En Tsai, Hao-Chung Cheng, and Yen-Huan Li.

Online self-concordant and relatively smooth minimization, with applications to online portfolio selection and learning quantum states.

arXiv preprint arXiv:2210.00997, 2022. (Cited on page 16.)

[26] Volodimir G. Vovk.

Aggregating strategies.

In Proceedings of the Third Annual Workshop on Computational Learning Theory, page 371–386, San Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.

(Cited on page 8.)

[27] Martin Zinkevich.

Online convex programming and generalized infinitesimal gradient ascent.

In Tom Fawcett and Nina Mishra, editors, *Machine Learning, Proceedings of the Twentieth International Conference (ICML 2003*, pages 928–936. AAAI Press, 2003.

(Cited on pages 7, 10, 22, and 23.)