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Logistics

Credits 4
Lectures Thursday 9:15-12:00 (CMO011)
Practical hours Thursday 9:15-12:00 starting 11th of April (CM011)

Prerequisites Previous coursework in calculus, linear algebra, and probability is required.
Familiarity with optimization is useful.

Grading Preparation & presentation of a lecture given in week 14, 3-7th of June (cf., course book).
Participation is mandatory during this week — please make sure you are available!
Moodle https://go.epfl.ch/0LIG.
Course book https://edu.epfl.ch/coursebook/en/online-learning-in-games-EE-735
LIONS Stratis Skoulakis, Kimon Antonakopoulos, Thomas Pethick
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Outline of this lecture

Offline minimization recap
Online optimization

What is the setting?

How do we measure performance?
Important special cases

The expert problem

Online path selection

Spam filtering

Portfolio management |
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Algorithms
The Hedge algorithm
Online gradient descent
Follow the regularized leader
Lower bounds
Online to offline
Online to batch conversion
Solving zero-sum games
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(Offline) Convex optimization

Convex optimization

Given a convex and differentiable function f : X — R, we are interested in the following optimization problem

mina:EXf(x)’

where f is proper, closed, and twice-continuous differentiable without loss of generality.

Iterative methods (re-described in our convention)
For each round t = 1,..., T, given the fixed (offline) optimization objective
> An algorithm selects an zt € X.

> The algorithm receives feedback:

> f(a?) Zero-order access;
> Vf(x") First-order access;

> V2 f(x?) Second-order access;

> The algorithm gets evaluated on how small f(zT) is.

Examples: o Gradient descent, i.e., 2tT1 = 2t — vV f(a?), is a first-order method (v is the step-size).
o Newton's method, i.e., ztt! = 2t — V2 f(2!) =1V f(a?), is a second-order method.
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Online convex optimization (0OCO)

o Proposed by Zinkevic et al. [27], OCO studies the twist when the objective function f changes over time.

> Applications: (offline) convex optimization, online decision making, machine learning...

Online convex optimization (Zinkevic et al. [27])
At each round t = 1,...,T, where T is the time horizon,
> A learner selects an xt € X.
> An adversary selects a function f; € F : X — R.

> The learner suffers cost fi(z!) and receives feedback V; := V f;(z?).
Remarks: o The learner should select zt € X solely based on V1,...,V;_1 to minimize its overall cost:
L ' r ¢
earner's cost = Zz:l fe(at).

o The adversary should not be all powerful, and hence, is restricted to a class of functions F.

o Since the adversary selects fi(-) after the learner’ s selection xt € X, competing the best

time-changing sequence, Zz;l (ft(xt) — mingexy ft(x)), is impossible even with a restriction!
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How do we measure how well we are doing?

o We compare ourselves with the best fixed strategy: © € X.

Definition (Regret)

Given a sequence of functions f1,..., fr, the regret R(T) of the sequence (z',...,27) is defined as
r
R(T) : Z fe(z?) — mln Z fi(x). (1)
t=1

cost of the best fixed-action

Remarks: o The concept of regret first appears in Hanan et. al [13].
o Other works contributing in the formalization are Blackwell et al. [7] and Vovk et al. [26].

o The notion of regret is a natural extension of optimality in (offline) convex optimization.
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Online vs offline convex optimization

Goal of (online) convex optimization

Given a sequence of convex functions fi, ..., fr, select a sequence z!,..., 2T € X (where z* € X is solely
decided by 2°,V1,..., Vi_1) with regret R(T) = o(T).

Remarks: o If the regret of the sequence z!,..., 27 € X equals R(T) = o(T) then
R PR R(T)  o(T)
T th(x )—mHgg(th(x) <=5 0
t=1 t=1
o The time-averaged cost of z1,... xT approaches the cost of best fixed action * € X!

Online-to-offline conversion (Convex)

> Let R(T) be the regret of sequence x!,...,zT € X for the constant sequence of functions
fi,--.,fr = f. Then, by the convexity of f, we have

1 1 T
f (f Zthl a:T) — grgrélgl( flz) < = (ZZ;I f(z¢) — mingex Zthl f(:r)) < %
> If R(T) = o(T), then tlim R(T)/T = 0.
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Online convex optimization

Online learning algorithm (Hazan el al. [14])

An online learning algorithm A for an online convex optimization setting (with a feasibility set X’) outputs
xt € X solely based on (z°,V1,...,V;_1), that is zt := A (aco, Vi,..., thl). Recall that Vi = V¢ fi(a?).

No-regret

An online learning algorithm A is called no-regret iff for any sequence of functions f1,..., fr, RA(T) = o(T).

Brief history of no-regret algorithms:

o Hanan et. [13]: first no-regret algorithm with regret O (\/ﬁ) for X = A, and fi(z) := (c!, z).

o Littlestone et al. [19]: first O(/T logn)-regret for X = A, fi(z) := (c!,z) and ¢! € {0,1}".

o Freund et al. [11]: The Hedge algorithm achieves O(+/T logn) regret for X = A,,, fi(z) := (ct, z).
o Zinkevic et al. [27]: first O(V/T)-regret for general convex set X’ and convex functions f;.

o Abernethy et al. [3]: Follow the Regularized Leader algorithm for general convex sets and functions.
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The expert problem

Online decision making

A learner needs to decide over n possible actions with unknown and changing rewards over 7" rounds.

The expert problem (Littlestone et al. [19])
At each round t=1,...,T:

> A learner selects a prob. distribution z¢ ~ {1,...,n} over the n possible actions.
> An adversary selects a cost c! for each action i € {1,...,n}.

> The learner suffers a(n) (expected) cost fi(zt) := (ct,zt) and receives c! as feedback (ct = V fi(x?)).

Remarks: o Special case of OCO with linear functions fi(z?) := (c!,x!) and X = A,,.
o Suppose the learner selects zt € A,, according to a no-regret algorithm.

o Then its time-averaged cost is at most the time-averaged cost of best fixed action:

T
1 t t 1 . t ()
75 < — E L4 S !
<C,£E> z1"2[171;1] C,L

goes to 0
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Application of the expert problem: Online path selection (Awerbuch et al. [5])

Example (Going to Work)

> Every day t € {1,...,T}, we go from home to work (and vice versa).
> There are multiple routes the travel time of which depends on unpredictable (weather, congestion) factors.

> How do we select our route every day?

Reduction to the expert problem
> Consider the expert problem by enumerating each possible route as a different action.
> lterate t € {1,...,T}:

> Randomly select a route with probability distribution 2! € A,,.
> Observe c: as the travel time of the i-th route at day ¢ observed after selection. Form a vector c’.

> Update z*T1 «— A(c!, ..., ct) where A is a no-regret algorithm for the expert problem.

> If A is a no-regret algorithm for the expert problem, then the overall travel (over the T' days) is
approximately the travel of the best fixed route!
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Old school spam filtering

Spam Filtering
Classify an e-mail as spam or no-spam.

Online spam filtering with linear filters (Hazan et al. [14])

> A dictionary Dict[-] of length d containing all possible words.
> An arrived email is encoded as a {0, 1}-vector m: € {0,1}¢ of length d depending on the contained words.

> We select 2t € [—1,1]% and classify the email according to the linear filter by := sign(m; zt)

Spam  if Bt =-1

Decision at round t := { Inbox £ Bt 1

> The true label by € {—1,1} is revealed and we incur loss (l;t —bt)?

2
Remarks: o A no-regret algorithm select 2t with X = [—1,1]? and fi(z) := (ﬁt — sign(aTx)) .

o Then we can obtain comparable classification accuracy with the best fixed linear filter!
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Old school spam filtering

Spam Filtering

Classify an e-mail as spam or no-spam.

Online spam filtering with linear filters (Hazan et al. [14])

> A dictionary Dict[-] of length d containing all possible words.
> An arrived email is encoded as a {0, 1}-vector m: € {0,1}¢ of length d depending on the contained words.

> We select x* € [—1,1]? and classify the email according to the linear filter by = sign(mjxt)

Spam  if By = —1

Decision at round ¢t := { Inbox £ Bt )

> The true label by € {—1,1} is revealed and we incur loss (by — b;)2

2
Remarks: o If a no-regret algorithm select 2t with X = [~1,1]? and fi(z) := (,8,5 - sign(aToc)) .
o Then we can obtain comparable classification accuracy with the best fixed linear filter!

o Unfortunately, the problem is not OCO so this proposition serves only as motivation.
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Portfolio management
Portfolio Management

We start with a total capital of Cy dollars.
Each day t € {1,...,T}, we want to invest our capital in n possible assets so as to maximize our profit.

| 3
>
> The return rf > 0 of asset i is the price ratio of asset ¢ at the beginning and at the end of day ¢.
>

The choice of not investing can be encoded with a special asset 0 with ré = 1.

Universal portfolio problem (Cover et al. [10], Kalai et al. [15], Tsai et al. [24])

> At the beginning of each day ¢ € {1,...,T}: the decision maker splits its current capital over the n
possible assets according to the distribution z¢ € A,,.

> At the end of each day t € {1,...,T}: the decision maker's capital becomes Cyy1 := Cy - (r¢,zt).

> The decision maker learns the return vector rt € Ri and updates ztt1 € A, so as to minimize

T T
max Zlog((rt,x>) - Zlog((n,xt>).
t=1 t=1

The constant rebalancing portfolio problem
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Portfolio management ||

Connection with online convex optimization (OCO)
Universal portfolio problem fits into the OCO setting with X = A, and fi(z) := —log((r¢, ).

Example
Consider initial capital Co = 1, assets A, B with return sequence (7’114 = 100,7‘}3 =1), (7'3‘ = 0.01,7’23 = 1.5).

> Investing always in A produces 1.
> Investing always in B produces 1.5.
> Splitting the capital at each round equally between A, B (z! = 2 = (0.5,0.5)) produces ~ 36.4.

> Best fixed splitting uses z = (%égg;, ;ggg%), resulting in ~ 36.41.

Remarks: o In the universal portfolio problem, the best fixed investment strategy is not necessarily “pure.”
o The universal portfolio problem is related to quantum tomography [25].

o No regret algorithms exist that leverage the self-concordance of f;'s [25].
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Recall: The expert problem

The expert problem (Littlestone et al. [19])

At each round t =1,...,T, we have
> A learner selects a probability distribution zt € A,, over n possible actions.
> An adversary selects a cost ¢! € [—1, 1] for each action i € {1,...,n}.

> The learner suffers an expected cost (ct, z?) and receives ¢! € [—1,1]" as feedback.

Remark: o The expert problem is a special case of OCO with X = A,, and fi(z) := {(c!, z).
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The Hedge algorithm

The Hedge algorithm (Freund et al. [11])
> Initialize expert weights w! + (1,...,1)
> Foreachround t =1,...,T

> The learner selects a probability distribution z* € A,, as follows,

t
+ w

g = anlt for each action ¢ € {1,...,n}.
j=1 wj
> The adversary selects a cost ¢! € [—1, 1] for each action i € {1,...,n}.

> The learner suffers expected (c’, 2%) and receives ¢! € [—1, 1]™ as feedback.
> The learner updates the weights as follows,

et

wﬁl = w;e s

where v > 0 is the learning rate.

Remark: o Hedge is closely connected with two methods:

> the dual averaging method with entropic regularization of Nesterov et al. [20]

> the entropic mirror descent Beck and Teboulle [6]
o These methods coincide when the objective is linear and the constraint is the simplex.
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The Hedge algorithm

Remark: o The Hedge algorithm admits regret Ryedge(T) = O ( VT log n)
Theorem (Freund et al. [11])

The Hedge algorithm with the step-size v := 4/logn/T admits regret Riyedge(T) = O (\/Tlog n) More
precisely, for any cost-vector sequence c!,...,cT € [—1,1]™, it holds that

T

T
Z(Ct,l‘t> < zlglAnn Z(ct,x> + 0O (\/Tlogn) .

=il
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The Hedge algorithm: Proof |

Proof.
Let ®(¢t) = Z?:l ! meaning that ®(1) = n. Then, it follows that

n n

d(t+1) = Zwlt_ﬂ - Zwﬁe*”ci

=1 =1l

n
= ®(t) Z xﬁefwcz
i=1

n
< P(t) Z z? (1 —yeizt + 72(02)2:135)
i=1

=&(t) (1 - y(c', &t) + 73(c*, 3"))
< @(t)efﬂct,xf>+w2<c2f,mi>
< o(1)e Zj:1<ct’zt>+72 Zj:l (€,2)

_ T t ot 2
< ne ’th=1(c )+ T
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The Hedge algorithm: Proof Il

Proof (Cont.)

. . . L . T
Let i € {1,...,n} be the optimal fixed action, ¢* := argmin;c (1, . »} Et:l ct. Then,
DI T+1 En: T+1 3T (etat)tPT
e t=1 % = T < w, = ®(T+1)<ne s A
i=1
As a result,

i T .
Z(Ct,xt) < min Zcﬁ g 0 +~T.
i€{l,...,n} vy
t=1 t=1
The proof is concluded by selecting v := 4/logn/T.

Remarks: o The step-size can be chosen in an iteration dependent way.

o See the entropic mirror descent derivation in [6].
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Online projected gradient descent

Remarks: o Hedge provides no-regret guarantees for the OCO setting with X = A,, and fi(z) := (¢!, z).

o Online projected gradient descent provides no-regret guarantees for projectable convex sets X.

Online projected gradient descent (Zinkevic et al. [27])

> Ateachround t=1,...,T

The learner selects an ! € X.
The adversary selects a convex function f; € F : X — R.

The learner suffers cost f; (") and receives V; := V f;(z") as feedback

vy vy VY VY

The learner updates 't € X as follows,
' Ty (zt — 'th) (Online GD)

where v > 0 is the learning rate.
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Online gradient descent: A basic proof - |

Theorem (Zinkevic et al. [27])
For any sequence of convex differentiable functions f1,..., fr satisfying max,cx |V fi(z)|| < G (ie., F),
online projected gradient descent with step-size v = |X|/G VT, admits O ( £/ G|X |T) regret. More precisely,

T T
Y fila) < min Y i) + (G| V).
t=1

=l

Proof.
%t —2*|® = [T (2f ~ Vi) —a*|?
< lzt =4V —2*||?  (non-expansiveness of convex projections)
= |lz® = 2*|? = 29V (=" — 2*) + 2| Ve)?
Thus, , . ,
Vi@t - o) < 1= ;Jyl’w LA
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Online gradient descent: A basic proof - 1l

Proof (Cont.)

As a result,
T T
> fila) - fila®) <D V(@ -
t=1 t=1
T T
llz® — a*||? — |la* ! —2*|® v 2
< + = v
= Z 2y 2 ZH el
= =il
HJ»‘ —z*|? !
< va I
2 2
o lEE setr
- 2 2

= |XIGVT for ~v:=|X|/GVT.
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Let’s take a breather

Algorithm A Regret R Function class F Feasibility set X
Hedge O (\/lognT) Linear functions n-dimensional simplex A,

Online gradient descent (OGD) O (G|X| \/T) G-Lipschitz General convex set X’

Remarks: o Hedge and OGD look like ad-hoc approaches transferring algorithms from the offline setting

o In the sequel, we build up a more structural approach specifically for the online setting
> The follow the regularized leader (FTRL) class of algorithms [3, 23, 17]
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A first (naive) attempt

o How to pick the next =t € X given f1,..., ft?

o A naive first attempt: Follow the leader (FTL) Kalai et al. [16], which picks the best strategy so far:

t—1
z! = argmin Z fr(z) (FTL)
T=1

reX
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A first (naive) attempt

o How to pick the next =t € X given f1,..., ft?

o A naive first attempt: Follow the leader (FTL) Kalai et al. [16], which picks the best strategy so far:

t—1
zt = arg minz fr(z) (FTL)
TEX
T=1
o Unfortunately a simple adversarial strategy exists.
Example (Adversarial strategy against FTL (Shalev-Shwartz [22, Ex. 2.2]))
t 1 2 3 4
Consider X = {—1,1} and the environment picking fi(z) %96 - x —T
Zt_l fr(x) - le | —iz | iz
r=1J7 2 2 2
Remark: o (FTL) picks smallest * = —1 when minimizer of f;(-) is largest = (and vice versa).
o So (FTL) achieves maximal regret fi1(xtt1).
o Can we do better?
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What if we could cheat?

o Be the leader (BTL): Imagine we could cheat and use ‘1! at time t while incurring the cost.

o Now, we incur fi(ztT1) instead of fi(z?) in the regret analysis.

Lemma (Regret of BTL)

Let BTL generate the sequence (x',. ..,

non-positive regret:

RprL(T) = Zz;l fe(at1)

Proof.

RerL(T) = Y, fi(ztt!) —ming 3" fe(x)
= zi Fe@t) = 30 fe(@THY)
=S ft( t+1> - Zf;ﬁ fe(aT+1)

<Y @t =1 filat

< fi(z? )—fl(I )
<0
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. T
— mingex thl fi(x) <

(by def of x?)

(last terms are equal)

(since 2T is the actual minimum)
(recurse until T'— ¢ =1 in (2¢))

(since f1(x?) is the minimum.)

at time t. Then, BTL admits

(2a)
(2b)
(2¢)
(2d)
(2¢)
(2f)



Implications of BLT’s non-positive regret

o BTL's non-positive regret provides an interesting insight for FTL:

Insight
The regret of the sequence (z!,...,27), as generated by (FTL), is no worse than

T T

Reru(T) = ) file") — min Z fil@) €Y (fula") = fi(@HD). (3)

t=1 = t=1

Remarks: o Follows from R, (T) — 0 < Rerr(T) — ReTL(T) which is immediate from BTL.
o Consequently, Rpr1,(T) is no worse than the difference between fi(z) and fi(z'*1)

Observations: o Intuitively, we just need to ensure x* does not change too much.

o We should regularize/stabilize!
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Follow the regularized leader (FTRL)

Follow the regularized leader (Abernethy et al. [4])

> Foreachroundt=1,...,T

> The learner selects z* € X using

t—1
ot = arg minz fr(@) +2h(2) (FTRL)
rEX
r=1

where v > 0 will be (!) the learning rate and h : X — R is a strongly-convex regularizer in some norm || - ||.
> The adversary selects a function fi(-) where f; : X — R.

> The learner suffers f;(z") and gets access to f(-).

Remarks: o We modified the selection of t.

o The regularizer ensures iterates do not move too much and forces uniqueness of solution.

Historical notes: o Regularization was studied in online learning by Grove et al. [12] and Kivinen et al. [18]
o Follow the leader (FTL) was coined by the influencial paper Kalai et al. [16]
o FTRL Introduced in Shalev-Shwartz [21] and Abernethy et al. [4] almost simultaneously.
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Stability due to regularization

Lemma (Stability)

The sequence (z',...,xT) generated by FTRL satisfies
fe(@®) = fe(@™*h) <AV ()2, (4)
where || - ||« is the dual norm of || - || defined as ||z« = sup,|j<1{z;y)-
Proof.
Let us define the function we minimizes in the decision selection
t
Fi(z) =Y fr(@) + 1n(a). 5)
T=1
By strong convexity of h and convexity of f- we have that
Fi_1(z%) — Fi_1 (2t < (VE_1(2?),2® — 2t T1) — %Hzt — T2 for any 2tz € x. (6)
This will ultimately let us bound fi(x?t) — fi(«**1). (cont.) o
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Stability

Proof (Cont.
FTRL defines z* = arg min_ Fy_1(z) so Ft,l(act) is the optimum and first order characterization! becomes
(VF;_1(xh),zt — 'ty <o. (7)
So a weaker bound of (6) is
Ft_l(xt) — Ft_l(a:H'l) < 7%\\:1? — :pt+1H2 and
(8)
Fi(z™) — FRe(a') £ —55 lle® — 2*1|%.

The second line simply applies the same reasoning. We can now sum the two lines and expand the definition of
F;. All terms will cancel out except the last term in Fi(zt1) and Fi(x?) so we get

fr@™h) = fi(@®) < =g lla’ = 2P e 2t = 2T < (fi(ah) - filaH). )

(cont.)

IFirst order characterization of convexity says f(y) — f(z) < Vf(y) | (y — x). So when f(y) is minimum we have V f(y) " (y — ) > 0.
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Stability

Proof (Cont.)

Now we have the tools to bound the change.?

fe(@') = fe(@th) < (Vfe(ah),a" — 1) (Convexity)
< IV fe (@) ||t — 2| (Hélder's ineq.) (10)
<V Fe(@D) ||« /7 A/ fr(xt) — fe(zttl)  from (9)

Solving for fi(x?) — fi(xtt1l), we get

fr(@®) = fe (@) < |V ()2 (11)

2H8lder's inequality: (z, y) < [|z||||y]l«.
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Regret of FTRL

o Equipped with stability and the BTL lemma we almost directly obtain the regret bound for FTRL.

Theorem (Regret of FTRL ([21, 4]))
The sequence (x',...,xT) generated by (FTRL) satisfies

Rerre(T) < 2 +WZHVft 912, (12)
t=1

where Ry, := maxg h(z) — ming h(z).

Remark: o The particular presentation of the proof below is due to Luo [1].

Proof.

By defining fo(x) = %h(z) we can write the regularized selection as

zt = arg mlnz fr(z) + h(x) = arg mmz fr(z (13)

TeX TeEX

(cont.) o
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Regret of FTRL

Proof (Cont.)

First note that by the BTL lemma we have3
T T

Do fr(@*) 2 D0, felatth), (14)
where z* = argmin . Zle fi(z) is the best fixed decision. Now we can bound the FTRL regret as follows*

T T

RI;"TRL = Zt:l fe(@") = Zz:l fe(@*)
T t
=2 fule") =20, fe(@) + fole?)

< ZtT:1 fe(2h) — ZtT:o fe(@) + fo(a*) (using BTL lemma) -
S VZtT:l Ve f(@)F + fo(z*) — fo(zt) (using stability)
<Y IVef @2 + 5 (max h(z) — min h(z)).

Ry,

3Note that we additionally use fo(z*) > fo(zl) since BTL only appliesto t = 1, ..., T.
4We want to use stability so we need to move from x* to ztt!

. We do this by getting it on a form for which we can apply the BTL lemma.
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Regret of FTRL

Corollary
Further, if fi(x) is G-Lipschitz and we choose a learning rate of v = qf?’c"z , then we have

ReTrL(T) = O( TRp,). (16)
Remark: o G-Lipschitz assumption ensures that the gradient is bounded: ||V f¢(zt)||« < G.

o The “optimal” « is found by simply optimizing the regret bound which is of the form

argmin{ax + g} = \/g (17)
x

o FTRL has sublinear regret.
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Linear losses are sufficient for OCO in general
o Under convexity it suffices to have access to gradient through (V f;(z?),-) instead of the whole function fi(-):
Rerru(T) = = max Zt L — fi(z) < maxgex Zz (Vfe(a"), 2" —x) by convexity. (18)
o Indeed, the regret for f;(x) is bounded by the regret for another problem based on f/(z) = (V fi(x?), z).
FTRL with only gradients
> Foreachround t =1,...,T

> The learner selects x; € X using

z't! = arg min (Zizl Vi (™), z) + %h(z) (FTRL on gradients)
TEX

where v > 0 is the learning rate and h : X — R is a strongly-convex regularizer in some norm || - ||.
> The adversary selects a f4(-).
> The learner suffers fi(x') and observes V fi(z*).

Remark: o FTRL with linear losses is closely connected to two offline algorithms:
> equivalent to the dual averaging method of Nesterov et al. [20]
> coincides with the entropic mirror descent Beck and Teboulle [6] under simplex constraints
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Summary of no-regret algorithms

Algorithm A Regret R Function class F Feasibility set X
Hedge O (x/lognT) Linear functions n-dimensional simplex A,
Online gradient descent (OGD) O (G|X| \/T) G-Lipschitz General convex set X’
Follow the regularized leader (FTRL) O (GR;L \/T) G-Lipschitz General convex set X
Remarks: o By all general convex sets, we mean all projectable general convex sets. Why?

o All algorithms that we saw so far admit O(+/T) regret. Can we do better?
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Lower bounds

Answer: o Unfortunately no!
Theorem (Lower bound (Abernethy et al. [2, Lm. 8]))
Let X = B(0,1) (n-dimensional unit ball centered at (0, ...,0). Then any online learning algorithm A admits

regret greater than VT.

Proof

At each round t, the adversary selects ct such that the following hold:
L <ct7xt7> =0,
t t—1 _
> <C 725:1 Cs) =0,
> |l = 1.

. 7T . F 77
By the construction Zt:1<ct7 xt,) = 0. Consider z* = — Zt:l | Zt:l @

T T
D @)y == el
t=1

t=1

, then it holds that

(cont.)
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Lower bounds

Proof (Cont.)
Let us try to find how big || Ethl ct|| can be

t t—1
1Y el =1 es+etiI?
s=1 s=1
t—1 t—1
=1 el 2t D> es) Het |
s=1

s=1
~—————
0
=1l

=) el?+1
s=1

Thus || 23:1 ct|| = VT. As a result,
7
3w~ ) = VT

t=1
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A tighter lower bound for the expert problem

o For the expert problem (simplex constraints) we can characterize dependency on action cardinality n.
o We will show that our upper bound can at best be improved by a constant factor.

Theorem (Cesa-Bianchi et al. [9, Thm. 3.7]))

For any online learning algorithm A for the expert problem X = A,,, the regret satisfies the following

VT Inn
RA(T) > ——. 19
A(T) 2 " (19)
Remarks: o A deterministic construction might be difficult to find.
o Trick instead uses that any probabilistic construction will lower bound the supremum
sup f(2) > Ez[f(2)]. (20)

z2€Z

o The proof presentation in the sequel is from Haipeng Luo CSCI 699 lecture notes.
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A tighter lower bound for the expert problem

Proof.
Specifically, if we let P be uniform over {0, 1}, then the following holds
ax Ra(T)>E ia [Ra(T
e AT ZE | g [Ra(D)]
37 g E to oty | b1 1_g ; T ¢
_Zt::[ cl,...,ct—1 Ct[(p ¢ e poonn@ ] cl,...,cT[mlniE[N] thl G
T _ . T

= 1Ba,  c—1(p"Bulct | ..., — E.1 . o7 [mingpni Et:l ct]
_ : Tt
—T/Q—Eclp‘_’CT[il'él[lI{]l] Et:l & (21)

where u! are Rademacher random variables. It is then not difficult to show the following (see e.g. [9, Lemma
A.11 and A.12] and [9, Thm 3.7])

T
lim lim E ma 5 ul] = V2T Inn. 22
T N wl,. . uT [16[1\)7(] =1 1] ( )
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Application of online learning: Obtaining statistical guarantees

o A no-regret algorithm enjoys statistical guarantees in the offline setting.
o Suppose we want to minimize the true risk under some distribution P:

min B, p[€(, )] (23)

Meta-algorithm (Online to batch conversion)

> Run the online learning algorithm on fi(z) = £(z, z¢) for t = 1...T where z; ~ P.

. . . . T
> Use the average over all actions as the prediction, i.e., 27 = % Et:l Tt.

Remark: o Notice that each data point z; is only seen once.
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Application of online learning: Obtaining statistical guarantees

Theorem (Online to batch conversion (Cesa-Bianchi et al. [8]))

If the loss x — E,..pl(x, z) is convex then the true risk can be bounded with probability at least 1 — ¢ as follows

RA(T) 21n(2/6)
2 = (24)

E.pll(2T,2)] < E.p[l (z*,2)] +

where R 4(T) is the regret of the online learning algorithm A after T' rounds.

Proof.

The claim follows directly from application of Jensen's inequality and Azuma's inequality. m}

o What convergence rate can we achieve with online learning for classic iid. statistical learning problems?

Answer: o For FTRL the regret bound is R = O(G v DT) when fi(x) is G-Lipschitz.

o So the convergence rate becomes O(%)
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Application of online learning: Approximate Nash equilibrium in zero-sum

o Consider the following problem
min max f(z,y), (25)
TzeX yeY

where f(-,y) is convex and f(z,-) is concave for all z,y.
o Assume we run two no-regret algorithms, i.e., for any x and y,
v(T) < ZT (zt,y) — Z;’T:l f(zt, yt), (26)
DV CHUED DR CHDE

Theorem (Approximate Nash equilibrium)
Assume f: X x Y — R is convex-concave. Consider the sequence {(xt,yt) tT:1 generated by two no-regret
algorithm executed in tandem. Then T = % ZZ;I zt and g1 = % ZZ;I yt satisfies,

f@T,y) —er < f(a*,y*") < f(x,97) +er, (27)
where e = %(Ry (T) + Rx(T)) and (z*,y*) is a Nash equilibrium.
Remark: o Consequently, the average iterate of a no-regret algorithm converges as e = O(1/ \/T)
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Application of online learning: Approximate Nash equilibrium in zero-sum

Proof.

Using the no-regret property,

FET W) < 2 S fety) < maxy 2 YT faty) < ZL f(at,yt) + ARy (T)

(28)
1
F@g™) 2 2300 feyt) 2 ming 7350, f@yt) 2 4 30, fat ) = $Rx(T),
Subtracting the two equations,
1
F@",y) = f=,9") < 7 (Ry(T) + Rx(T)) =: e (29)

We wish to relate to the Nash equilibrium (z*,y*), defines as f(z*,y) < f(z*,y*) < f(z,y*) for all z,y. First
by picking z = z* in (29) and second by property of a Nash equilibrium we get,

F@T,y) —er < fx,37) = f2*,57) < fl@*,y"). (30)
A similar argument applies to the y-player and we conclude that (z,y) is an ep-approximate Nash equilibrium,
i.e.,
F@T,y) —er < fla*,y*) < f(2,57) +er. (31)
m]
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Wrap-up

o We have seen that O(V/T) is both an upper and lower bound on the regret.

o In the offline setting this gives a O(1/+/T) rate for convex-concave minimax problems.
o Next week will see how we can improve this to O(1/T) in the offline setting!

o See you next week!
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