Online Learning in Games

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture by Thomas Pethick

Lecture 3: A practitioner's guide to monotone operators (Part II)

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-735 (Spring 2024)

License Information for Online Learning in Games Slides

- ▶ This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - ▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
 - ► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes unless they get the licensor's permission.
- ▶ Share Alike
 - ► The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- ► Full Text of the License

Outline of this lecture

Recap

The descent inequality

Comparing last iterate and average iterate

Last iterate

Gradient descent ascent

Extragradient

Linear convergence

Contraction and gradient descent ascent Error bound and extragradient

Perspectives on extragradient methods

Projection onto a separating hyperplane
As an approximation to the proximal point method
Single-call variant

Single-call variant: Modifying FBF

Overview of methods Connection to optimism

Overview of today

- Last week,
 - we have derived best iterate and average iterate results;
 - we have arrived at the extragradient (EG) type updates via our analysis.
- o This week,
 - we will obtain $||Fz^T||^2 = \mathcal{O}(1/T)$ last iterate convergence rates for monotone and Lipschitz operators;
 - we will show that *linear* convergence is possible in particular cases.
- o For the EG type methods, we will also answer the following questions:
 - ► How would we more intuitively motivate the scheme?
 - ► Can we avoid querying an extra gradient?

Summary of FBF: The descent inequality

• Let $H := id - \gamma F$ and recall the update:

$$\bar{z}^t = (\mathrm{id} + \gamma A)^{-1} H z^t,
z^{t+1} = z^t - \alpha (H z^t - H \bar{z}^t).$$
(FBF)

- o The descent inequality is all you need!
- o The three convergence results for FBF are a consequence of the following inequality:

Descent inequality of FBF

Let F be monotone and L-Lipschitz and A maximally monotone. Then the sequence generated by FBF satisfies

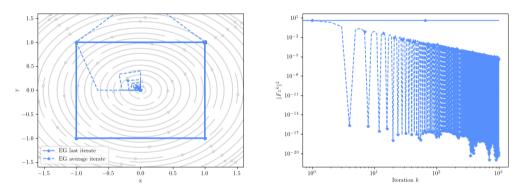
$$\|z^{t+1}-z^\star\|^2 \leq \|z^t-z^\star\|^2 \underbrace{-\alpha(1-\alpha)\|H\bar{z}^t-Hz^t\|^2}_{\text{best } \|F\bar{z}^t\|^2} \underbrace{-2\alpha\langle Hz^t-H\bar{z}^t,\bar{z}^t-z^\star\rangle}_{\text{gap for average:} \langle Fz^\star,\bar{z}^T-z^\star\rangle} \underbrace{-\alpha(1-\gamma^2L^2)\|\bar{z}^t-z^t\|^2}_{\text{best } \|Fz^t\|^2}.$$

Exercise: • Convince yourself that we can arrive at the above inequality.

Remarks: • When we telescope, we were not using the remaining "good" terms so far.

We will make use of these "good" terms today.

A (subtle) difference between last iterate and average iterate



Observations:

- \circ If $\gamma = 1/L$ exactly, the last iterate will actually cycle!
 - Notice that we need $\gamma < 1/L$ strictly even for the best iterate convergence of $||Fz^t||$.
- \circ The average iterate still converges (through the gap since $\gamma=1/L$ is allowed).

Last iterate of GDA under cocoercivity

Let us first recall GDA:

$$z^{t+1} = z^t - \gamma F z^t \tag{GDA}$$

 \circ It suffices to show that $||Fz^t||^2$ is monotonically decreasing, i.e.,

$$||Fz^{t+1}||^2 \le ||Fz^t||^2. \tag{1}$$

o It turns out that this is directly implied by cocoercivity!

Theorem (Last iterate of (GDA))

Suppose $F: \mathbb{R}^d \to \mathbb{R}^d$ is β -cocoercive. Consider the sequence $(z^t)_{t \in \mathbb{N}}$ generated by (GDA) with $\gamma < 2\beta$. Then, for all $z^* \in \operatorname{zer} F$, the following holds

$$||Fz^T||^2 \le \frac{||z^0 - z^*||^2}{\gamma(2\beta - \gamma)T}.$$
 (2)

Last iterate of GDA under cocoercivity

Proof.

Cocoercivity applied at \boldsymbol{z}^t and \boldsymbol{z}^{t+1} yields the following

$$\beta \|Fz^{t+1} - Fz^{t}\|^{2} \leq \langle Fz^{t+1} - Fz^{t}, z^{t+1} - z^{t} \rangle$$

$$= -\gamma \langle Fz^{t+1} - Fz^{t}, Fz^{t} \rangle$$

$$= -\frac{\gamma}{2} \|Fz^{t} - Fz^{t+1} + Fz^{t}\|^{2} - \frac{\gamma}{2} \|Fz^{t}\|^{2} + \frac{\gamma}{2} \|Fz^{t+1} - Fz^{t}\|^{2}$$

$$= -\frac{\gamma}{2} \|Fz^{t+1}\|^{2} + \frac{\gamma}{2} \|Fz^{t}\|^{2} + \frac{\gamma}{2} \|Fz^{t+1} - Fz^{t}\|^{2}$$

$$= -\frac{\gamma}{2} \|Fz^{t+1}\|^{2} + \frac{\gamma}{2} \|Fz^{t}\|^{2} + \frac{\gamma}{2} \|Fz^{t+1} - Fz^{t}\|^{2}$$
(3)

where the first equality follows from the update rule of (GDA). If we assume $\gamma \leq 2\beta$ then the above inequality reduces to

$$||Fz^{t+1}||^2 \le ||Fz^t||^2,\tag{4}$$

and we have shown monotonicity. We can use this to show

$$||Fz^T||^2 \le \frac{1}{T} \sum_{t=1}^{T-1} ||Fz^t||^2, \tag{5}$$

which we can subsequently upper bound using the argument for the best iterate. This completes the proof.

Last iterate convergence rate for extragradient

• Recall the extragradient (EG) algorithm:

$$\begin{split} \bar{z}^t &= z^t - \gamma F z^t, \\ z^{t+1} &= z^t - \gamma F \bar{z}^t. \end{split} \tag{EG}$$

o Similarly to GDA, the EG iterates satisfy the following:

$$||Fz^{t+1}||^2 \le ||Fz^t||^2. \tag{6}$$

Theorem (Last z-iterate of (EG))

Suppose $F: \mathbb{R}^d \to \mathbb{R}^d$ is L-Lipschitz and monotone. Consider the sequence $(z^t)_{t \in \mathbb{N}}$ generated by EG with $\gamma < 1/L$. Then, for all $z^* \in \operatorname{zer} F$, the following holds

$$||Fz^T||^2 \le \frac{||z^0 - z^*||^2}{\gamma^2 (1 - \gamma^2 L^2)(T - 1)}.$$
(7)

Remarks:

- o In contrast, the gap of the last iterate has a $\mathcal{O}(1/\sqrt{T})$ rate with a matching lower bound [7].
- o This is easily attained by converting (7) using Cauchy-Schwarz inequality [2, Lm. 2].

Last iterate convergence rate for extragradient

Proof.

Monotonicity, Lipschitz and the update rule give us,

$$0 \le \langle Fz^t - Fz^{t+1}, z^t - z^{t+1} \rangle = \langle Fz^t - Fz^{t+1}, \gamma F\bar{z}^t \rangle \tag{8}$$

$$||Fz^{t+1} - F\bar{z}^t||^2 \le L^2 ||z^{t+1} - \bar{z}^t||^2 = L^2 \gamma^2 ||Fz^t - F\bar{z}^t||^2$$
(9)

Adding (8) and (9) with $\frac{2}{\gamma}$ and 1 respectively and rewriting the inner product,

$$||F\bar{z}^{t} - Fz^{t+1}||^{2} \le ||Fz^{t}||^{2} + ||F\bar{z}^{t}||^{2} - ||F\bar{z}^{t} - Fz^{t}||^{2} - ||Fz^{t+1}||^{2} - ||F\bar{z}^{t}||^{2} + ||F\bar{z}^{t} - Fz^{t+1}||^{2} + L^{2}\gamma^{2}||F\bar{z}^{t} - Fz^{t}||^{2}$$

$$(10)$$

Observing that terms cancels,

$$0 \le \|Fz^t\|^2 - \|Fz^{t+1}\|^2 + (L^2\gamma^2 - 1)\|F\bar{z}^t - Fz^t\|^2 \tag{11}$$

We conclude that $||Fz^t||^2$ is monotonically decreasing for (EG) as well, which completes the proof.

Contraction: fixed point iterations

- \circ So far, the fastest rate we have seen is the $\mathcal{O}(1/T)$ -rate. When can we improve significantly on this?
- $\circ~$ Let us redefine (GDA) through an operator $S:\mathbb{R}^d\to\mathbb{R}^d$ as follows

$$z^{t+1} = Sz^t$$
 where $S := id - \gamma F$.

• We can ask when the algorithm no longer "moves" the iterates:

Fixed point

Find $z \in \operatorname{fix} S$ where

$$fix S := \{ z \mid z = Sz \}.$$

Remark:

- o By construction it is equivalent to finding a zero of F, i.e., $\operatorname{zer} F = \operatorname{fix} S$.
- \circ We will instead ask what we need of S to converge geometrically.

Contraction: getting linear convergence

Definition (Contraction)

The operator $S: \mathbb{R}^d \to \mathbb{R}^d$ is an contraction if S is ℓ -Lipschitz with $\ell < 1$.

Remark: \circ When γF is strongly monotone and 1-Lipschitz then $S:=\operatorname{id}-\gamma F$ is a contraction.

Theorem

Suppose $S:\mathbb{R}^d \to \mathbb{R}^d$ is an contraction and $z^\star \in \operatorname{fix} S$. Then, the iterates generated by $z^{t+1} = S(z^t)$ satisfies

$$||z^T - z^*||^2 \le \ell^{2T} ||z^0 - z^*||^2.$$
 (12)

Proof.

The rate is an immediate consequence of the definition:

$$||z^T - z^{\star}||^2 = ||Sz^{T-1} - Sz^{\star}||^2 \le \ell^2 ||z^{T-1} - z^{\star}||^2 = \ell^4 ||Sz^{T-1} - Sz^{\star}||^2 \le \dots \le \ell^{2T} ||z^0 - z^{\star}||^2.$$
 (13)

Error bound condition: generalizing the linear convergence result

- o Using EG we can expand the class for which we have this geometric convergence result.
- o Let us return to the descent inequality in the proof of EG:

$$||z^{t+1} - z^{\star}||^{2} \le ||z^{t} - z^{\star}||^{2} - \alpha(1 - \gamma^{2}L^{2})||z^{t} - \bar{z}^{t}||^{2}$$

$$= ||z^{t} - z^{\star}||^{2} - \alpha\gamma^{2}(1 - \gamma^{2}L^{2})||Fz^{t}||^{2}$$
(14)

- $\circ\,$ To apply a similar recursive argument as for GDA under contraction:
 - We only need to convert $||Fz^t||^2$ to $||z^t z^*||^2$.

Definition (Error bound)

The operator $F:\mathbb{R}^d o \mathbb{R}^d$ satisfies, for all $z\in \mathbb{R}^d$ and some $z^\star\in \operatorname{zer} F$, with $\tau>0$

$$||Fz|| \ge \tau ||z - z^{\star}||. \tag{15}$$

Remarks:

- o This class includes both strongly monotone and affine operators (i.e. the bilinear game).
- o (local) error bound, Polyak-Lojasiewicz, and growth conditions can be all equivalent [17].

Error bound condition: convergence of EG

Theorem

Suppose $F: \mathbb{R}^d \to \mathbb{R}^d$ is L-Lipschitz and monotone and satisfies the error bound condition. Consider the sequence $(z^t)_{t \in \mathbb{N}}$ generated by EG with $\gamma < 1/L$. Then, for all $z^* \in \operatorname{zer} F$, it holds that

$$||z^{T} - z^{\star}||^{2} \le (1 - \tau^{2} \gamma^{2} (1 - \gamma^{2} L^{2}))^{2T} ||z^{0} - z^{\star}||^{2}.$$
(16)

Remarks:

- See Tseng [20] for a generalization to constraint settings when the set is a polyhedral.
- The error bound condition was first proposed in Luo et al. [11].
- o For other sufficient conditions for linear convergence (in minimization) see Karimi et al. [8].

Error bound condition: proof

Proof.

We continue from the descent inequality of EG for a monotone and Lipschitz operator F as follows:

$$||z^{t+1} - z^{\star}||^{2} \le ||z^{t} - z^{\star}||^{2} - (1 - \gamma^{2}L^{2})||z^{t} - \bar{z}^{t}||^{2}$$

$$= ||z^{t} - z^{\star}||^{2} - \gamma^{2}(1 - \gamma^{2}L^{2})||Fz^{t}||^{2}$$

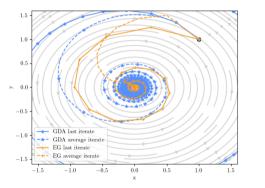
$$\le (1 - \tau^{2}\gamma^{2}(1 - \gamma^{2}L^{2}))||z^{t} - z^{\star}||^{2},$$
(17)

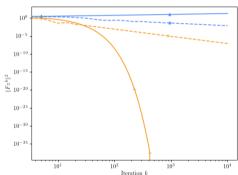
given that $\gamma^2(1-\gamma^2L^2)\geq 0$ and where the error bound condition is used in the last inequality.

Error bound condition: seeing it in action

o Consider the bilinear game:

 $\min_{x\in\mathbb{R}}\max_{y\in\mathbb{R}}xy$





Observation:

• We have linear convergence for EG!

Different perspectives on extragradient

- o We arrived at EG through the analysis last week.
- o Is there a more intuitive motivation?
- Two powerful ideas:
 - Each step of EG is a projection onto a particular hyperplane.
 - ▶ EG can be seen as approximating to the proximal point method.

GDA as a fixed point iteration

- o The update of FBF can be cast as an iterative projection onto a set containing the solution set.
- We will now build up to this view.

Krasnosel'skii-Mann (KM) iteration

Let $S: \mathbb{R}^d \to \mathbb{R}^d$ be an operator and $\lambda > 0$. The KM iteration is given by

$$z^{t+1} = (1 - \lambda)z^t + \lambda Sz^t \tag{KM}$$

Remarks:

- \circ GDA can be seen as an instance of Krasnosel'skii-Mann (KM) iteration with $S=\mathrm{id}-\gamma F.$
- \circ We were able to show convergence when γF was $\frac{1}{2}$ -cocoercive.
- \circ What is the equivalent condition expressed in terms of S instead?

GDA convergence for cocoercive F through KM

Definition (Nonexpansiveness)

An operator $S:\mathbb{R}^n \to \mathbb{R}^d$ is said to be nonexpansive if the following holds

$$||Sz - Sz'|| \le ||z - z'|| \quad \forall z, z' \in \mathbb{R}^d.$$

$$\tag{18}$$

Remark:

- \circ The operator $S=\operatorname{id}-\gamma F$ is nonexpansive iff γF is $\frac{1}{2}\text{-cocoercive}.$
- o With this definition we can reprove the convergence of GDA.

Theorem (Best iterate of KM)

Assume $S: \mathbb{R}^d \to \mathbb{R}^d$ is nonexpansive. Consider the sequence $(z^t)_{t \in \mathbb{N}}$ generated by (KM) with $\lambda \in (0,1)$. Then, for all $z^\star \in \operatorname{fix} S$, the following holds

$$\min_{t \in \{0, \dots, T-1\}} \|Sz^t - z^t\|^2 \le \frac{\|z^0 - z^\star\|^2}{\lambda(1-\lambda)T}.$$
 (19)

GDA convergence for cocoercive F through KM

Proof.

We proceed as usual with a one-step analysis:

$$||z^{t+1} - z^{\star}||^{2} = (1 - \lambda)||z^{t} - z^{\star}||^{2} + \lambda||Sz^{t} - z^{\star}||^{2} - \lambda(1 - \lambda)||Sz^{t} - z^{t}||^{2}$$

$$= (1 - \lambda)||z^{t} - z^{\star}||^{2} + \lambda||Sz^{t} - Sz^{\star}||^{2} - \lambda(1 - \lambda)||Sz^{t} - z^{t}||^{2}$$

$$\leq (1 - \lambda)||z^{t} - z^{\star}||^{2} + \lambda||z^{t} - z^{\star}||^{2} - \lambda(1 - \lambda)||Sz^{t} - z^{t}||^{2}$$

$$= ||z^{t} - z^{\star}||^{2} - \lambda(1 - \lambda)||Sz^{t} - z^{t}||^{2},$$
(20)

where we have used nonexpansiveness of S and that $Sz^\star=z^\star.$ Telescoping completes the proof.

KM of firmly nonexpansive operator

 \circ We can improve when S is $\emph{\it firmly}$ nonexpansive.

Definition (Firmly nonexpansive)

An operator $S:\mathbb{R}^d \to \mathbb{R}^d$ is said to be firmly nonexpansive if

$$||Sz - Sz'||^2 + ||(\mathrm{id} - S)z - (\mathrm{id} - S)z'||^2 \le ||z - z'||^2 \quad \forall z, z' \in \mathbb{R}^d.$$
 (21)

Remark:

- \circ If S is firmly nonexpansive so is $\operatorname{id}-S$ and both are 1-cocoercive.
- A projection is firmly nonexpansive when the set is convex (This will be crucial!).

Theorem (Best iterate of KM)

Suppose $S: \mathbb{R}^d \to \mathbb{R}^d$ is firmly nonexpansive. Consider the sequence $(z^t)_{t \in \mathbb{N}}$ generated by KM with $\lambda \in (0,2)$. Then, for all $z^\star \in \operatorname{fix} S$, it holds that

$$\min_{t \in \{0, \dots, T-1\}} \|Sz^t - z^t\|^2 \le \frac{\|z^0 - z^\star\|^2}{\lambda(2 - \lambda)T}.$$
 (22)

Remarks:

- o This implies convergence of GDA by taking $S = \operatorname{id} \eta F$ when ηF is 1-cocoercive.
- $\circ\,$ We can now crucially take $\lambda\in(0,2)$ instead of only $\lambda\in(0,1).$

KM of firmly nonexpansive operator

Proof.

The steps are the same as for the nonexpansive case, except we have an additional (good) term,

$$||z^{t+1} - z^{\star}||^{2} = (1 - \lambda)||z^{t} - z^{\star}||^{2} + \lambda||Sz^{t} - z^{\star}||^{2} - \lambda(1 - \lambda)||Sz^{t} - z^{t}||^{2}$$

$$= (1 - \lambda)||z^{t} - z^{\star}||^{2} + \lambda||Sz^{t} - Sz^{\star}||^{2} - \lambda(1 - \lambda)||Sz^{t} - z^{t}||^{2}$$

$$\leq (1 - \lambda)||z^{t} - z^{\star}||^{2} + \lambda||z^{t} - z^{\star}||^{2} - \lambda||Sz^{t} - z^{t}||^{2} - \lambda(1 - \lambda)||Sz^{t} - z^{t}||^{2}$$

$$= ||z^{t} - z^{\star}||^{2} - \lambda(2 - \lambda)||Sz^{t} - z^{t}||^{2}.$$
(23)

We have used firmly nonexpansiveness of S and that $Sz^\star=z^\star$. Notice that we can now crucially take $\lambda\in(0,2)$ instead of only $\lambda\in(0,1)$. Telescoping completes the proof.

Hyperplane projection: capturing extragradient and forward-backward-forward (FBF)

 \circ Recall that we wish to find $z^\star \in \mathbb{R}^d$ such that

$$z^* \in \operatorname{zer}(F+A). \tag{24}$$

- o We will now use convergence of KM to reprove convergence of EG/FBF.
- o It turns out that FBF can be seen as running KM on an iterative projection:

Projected interpretation of EG/FBF

Let $H := id - \gamma F$. Consider the sequence generated by

$$z^{t+1} = (1 - \lambda) z^t + \lambda \mathbf{\Pi}_{\mathcal{D}(z^t)}(z^t)$$
(25)

which projects onto the half-space $\mathcal{D}(z):=\{w\mid \langle Hz-H\bar{z},\bar{z}-w\rangle\geq 0\}$ with $\bar{z}:=(\mathrm{id}+\gamma A)^{-1}Hz$.

Remark:

- The proof (and construction) has two key components:
 - irst show that when a solution is found we will stay at the solution
 - and otherwise we will make progress towards the solution set.
- Then we only need to show equivalence with EG/FBF.

Hyperplane projection: proof step I

Proof.

Step 1. The set $\mathcal{D}(z)$ is constructed to contain the solution set defined as

$$\mathcal{S}^{\star} = \{ z^{\star} \mid \langle Fz + Az, z - z^{\star} \rangle \ge 0 \ \forall z, z^{\star} \}.$$

Let us verify this claim. From the definition of \bar{z} we have

$$\frac{1}{\gamma} (Hz - H\bar{z}) \in A\bar{z} + F\bar{z}. \tag{26}$$

So by monotonicity of A + F,

$$\frac{1}{\gamma}\langle Hz - H\bar{z}, \bar{z} - z^{\star} \rangle \ge 0. \tag{27}$$

This confirms that $\mathcal{S}^\star \subseteq \mathcal{D}(z)$. Thus, any solution $z^\star \in \mathcal{S}^\star$ is a fixed point of the projection $\Pi_{\mathcal{D}(z)}$, i.e. $z^\star \in \operatorname{fix} \Pi_{\mathcal{D}(z)}$ for any $z \in \mathbb{R}^n$.

Hyperplane projection: proof step II

Proof (Cont.)

Step 2. To find the closed form solution for the projection we invoke the lemma below, concerning general hyperplane projections, with $a=H\bar{z}-Hz$ and $b=-\langle Hz-H\bar{z},\bar{z}\rangle$. By simple substitution, we have

$$\Pi_{\mathcal{D}(z^t)}(z^t) = z^t + \alpha_t (H\bar{z}^t - Hz^t), \quad \text{with} \quad \alpha_t = \frac{\langle H\bar{z}^t - Hz^t, \bar{z}^t - z^t \rangle}{\|H\bar{z}^t - Hz^t\|^2}. \tag{28}$$

This recovers FBF (modulo the adaptive parameter choice).

o We have used the following lemma.

Lemma

The projection $\Pi_{\mathcal{D}}(x) := \arg\min_{z \in \mathcal{D}} \frac{1}{2} \|z - x\|^2$ onto the set $\mathcal{D} = \{z \mid \langle a, z \rangle \geq b\}$ is given for $x \notin \mathcal{D}$ as,

$$\Pi_{\mathcal{D}}(x) = x - \frac{\langle a, x \rangle - b}{\|a\|^2} a. \tag{29}$$

Hyperplane projection: proof step III

Proof (Cont.)

Step 3. We finally need to argue that we always improve (if we are not at a solution). Notice that (25) is an instance of KM with $S = \Pi_{\mathcal{D}(z^t)}$. By using that S is firmly nonexpansive we get

$$\min_{t \in \{0, \dots, T-1\}} \|Sz^t - z^t\|^2 \le \frac{\|z^0 - z^\star\|^2}{\lambda(2 - \lambda)T},\tag{30}$$

where $z^\star \in \mathcal{S}^\star$ due to step 1. Convergence follows by noting that

$$||Sz^t - z^t||^2 = \alpha_t^2 ||H\bar{z}^t - Hz^t||^2$$
(31)

and that α_t is bounded away from zero by $\alpha_t \geq \frac{1}{2}$ due to cocoercivity of H.

Hyperplane projection

o The scheme:

$$\bar{z}^t = (\mathrm{id} + \gamma A)^{-1} H z^t
z^{t+1} = z^t + \lambda \alpha_t (H \bar{z}^t - H z^t), \quad \text{with} \quad \alpha_t = \frac{\langle H \bar{z}^t - H z^t, \bar{z}^t - z^t \rangle}{\|H \bar{z}^t - H z^t\|^2}.$$
(32)

with $\lambda \in (0,2)$.

Theorem (Best \bar{z} -iterate of (25))

Assume $F: \mathbb{R}^d \to \mathbb{R}^d$ is L-Lipschitz and monotone and $A: \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is maximally monotone. Consider the sequence $(z^t)_{t \in \mathbb{N}}$ generated by (32) with $\gamma \leq 1/L$ and $\lambda \in (0,2)$. Then for $z^\star \in \operatorname{zer}(F+A)$,

$$\min_{t \in \{0, \dots, T-1\}} \|Hz^t - H\bar{z}^t\|^2 \le \frac{4\|z^0 - z^\star\|^2}{\lambda(2-\lambda)T}.$$
 (33)

Remark:

- o The stepsize is adaptive (but we can infer the constant stepsize result)
- Hyperplane projections are powerful due to their generality (see [10, 6, 15] for extension).
- The idea dates back to at least Solodov & Tseng [18] and Solodov & Svaiter [19].

Another perspective: arriving at EG through proximal point

- \circ For simplicity we will consider the unconstrained case where $F:\mathbb{R}^d\to\mathbb{R}^d$ (single-valued) and $A\equiv 0$.
- o Consider the (implicit) proximal point method (PP)

$$z^{t+1} = z^t - \gamma F(z^{t+1}). \tag{PP}$$

o We immediately have descent

$$||z^{t+1} - z^{\star}||^{2} = ||z^{t} - z^{\star}||^{2} - ||z^{t+1} - z^{t}||^{2} - 2\gamma \langle F(z^{t+1}), z^{t+1} - z^{\star} \rangle$$

$$= ||z^{t} - z^{\star}||^{2} - \gamma^{2} ||Fz^{t+1}||^{2} - 2\gamma \langle F(z^{t+1}), z^{t+1} - z^{\star} \rangle$$
(34)

o However, PP is an implicit scheme. Can we approximate it?

The proximal point method as a resolvent

o The proximal point update is an instance of the resolvent.

Definition (The resolvent)

Given an operator $A: \mathbb{R}^d \rightrightarrows \mathbb{R}^d$, we define the associated resolvent:

$$J_A = (id + A)^{-1}. (35)$$

Remarks:

- \circ If A is maximally monotone then J_A is firmly nonexpansive.
- By taking $S = J_A$ in KM:
 - ightharpoonup PP convergence through the KM theorem when A is maximally monotone ($\lambda=1$ is allowed).
- o The resolvent might not be known in closed form: Let us approximate it!

Extragradient as approximating the resolvent

o One step of the resolvent requires us to find

$$z' = (\mathrm{id} + \gamma F)^{-1} z \quad \Leftrightarrow \quad z' = z - \gamma F z'.$$

o In other word, we seek to find

$$w^* \in \operatorname{fix} C_z \quad \text{where} \quad C_z \colon w \mapsto z - \gamma F w.$$
 (36)

o Apply C_z repeatedly: A fast geometric rate is immediate by establishing that C_z is a contraction.

Lemma

If γF is a contraction then the sequence $(w^k)_{k\in\mathbb{N}}$ generated by repeatedly applying C_z converges geometrically.

Proof.

The operator $C_z: \mathbb{R}^d \to \mathbb{R}^d$ as defined in (36) is contractive when γF is a contractive. That is,

$$||C_z(x) - C_z(y)|| = ||\gamma Fx - \gamma Fy|| < ||x - y||.$$
(37)

Thus, the contraction argument applies, which completes the proof.

Extragradient as approximating the resolvent

 \circ Let $C_z(w) := z - \gamma Fw$ and define k inner iterations as:

$$C^k(z) := \underbrace{C_z \circ \cdots \circ C_z}_{k \text{ times}}(z).$$

The outer iterations are then given as:

$$z^{t+1} = (1 - \lambda)z^t + \lambda C^k(z^t).$$

Example

Consider the resolvent $J_{\gamma F} := (\operatorname{id} + \gamma F)^{-1}$ where F is monotone and L-Lipschitz F:

- With stepsize $\gamma < 1/L$ the operator γF is a contraction.
- \blacktriangleright The inner loop (approximate $J_{\gamma F}$) has linear rate, so we only need $\log T$ number of inner steps.

Remarks:

- o To shave off the logarithmic factor in the complexity we want constant inner iterations.
- \circ This motivates EG, since $(S \circ S)(z^t)$ and $\lambda = 1$ exactly corresponds to one step of (EG).
- o Original motivation behind MirrorProx Nemirovski [14] (a generalization of extragradient).
- o The above argument is made precise in Cevher et al. [3].

How to use the left-over "good" term: Single-call variant

- \circ The method FBF we have derived so far requires two operator evaluations of F.
- o Can we construct a method that only uses a single call per iteration?
- o There is hope since there is an unused "good" term $(\|z^t \bar{z}^t\|^2)$ as long as the stepsize $\gamma < 1/L$.
- o Let us alter the forward operator:

$$H_z(\bar{z}) = z - \gamma F \bar{z}.$$

 $\circ\,$ We can now modify FBF to reuse the $\it past$ operator evaluation $F\bar{z}^{t-1}$:

$$ar{z}^t = (\mathrm{id} + \gamma A)^{-1} H_{z^t}(\ ar{z}^{t-1}\)$$
 (PFBF) $z^{t+1} = z^t - \alpha (H_{z^t}(\ ar{z}^{t-1}\) - Har{z}^t).$

Single-call variant

o The proof for the single-call variant only requires one additional triangle inequality and Lipschitzness.

Theorem (Gap for average iterate of PFBF)

Suppose $A:\mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is maximally monotone and $F:\mathbb{R}^d \to \mathbb{R}^d$ is L-Lipschitz and monotone. Consider the sequence $(z^t)_{t\in\mathbb{N}}$ generated by PFBF with $\gamma\leq \frac{1}{2L}$ and $\alpha=1$. Then, for all $z^\star\in\operatorname{zer}(A+F)$ and any compact neighborhood $\mathcal{C}\subseteq\mathbb{R}^d$ of z^\star , it holds that

$$\operatorname{Gap}_{\mathcal{C}}(\hat{z}^T) \le \frac{\|z^0 - z^*\|^2}{2\gamma T}.$$

where
$$\hat{z}^T = \frac{1}{T} \sum_{t=0}^{T-1} \bar{z}^t$$
.

Remarks:

- The maximal stepsize is half of FBF (a worse rate by a constant factor 2)
- o However, PFBF only uses half the operator evaluations per iteration

Single-call variant

Proof.

We can arrive at almost the same descent inequality as for FBF:

$$\begin{split} &\|z^{t+1} - z^{\star}\|^{2} \\ &= \|z^{t} - z^{\star}\|^{2} + \|H_{z^{t}}(\bar{z}^{t-1}) - H\bar{z}^{t}\|^{2} - 2\langle H_{z^{t}}(\bar{z}^{t-1}) - H\bar{z}^{t}, z^{t} - z^{\star}\rangle \\ &= \|z^{t} - z^{\star}\|^{2} + \|H_{z^{t}}(\bar{z}^{t-1}) - H\bar{z}^{t}\|^{2} - 2\langle H_{z^{t}}(\bar{z}^{t-1}) - H\bar{z}^{t}, z^{t} - \bar{z}^{t}\rangle - 2\langle H_{z^{t}}(\bar{z}^{t-1}) - H\bar{z}^{t}, \bar{z}^{t} - z^{\star}\rangle \\ &= \|z^{t} - z^{\star}\|^{2} + \|H_{z^{t}}(\bar{z}^{t-1}) - H\bar{z}^{t} - z^{t} + \bar{z}^{t}\|^{2} - 2\langle H_{z^{t}}(\bar{z}^{t-1}) - H\bar{z}^{t}, \bar{z}^{t} - z^{\star}\rangle \\ &= \|z^{t} - z^{\star}\|^{2} - \|z^{t} - \bar{z}^{t}\|^{2} + \gamma^{2}\|F\bar{z}^{t-1} - F\bar{z}^{t}\|^{2} - 2\langle H_{z^{t}}(\bar{z}^{t-1}) - H\bar{z}^{t}, \bar{z}^{t} - z^{\star}\rangle \\ &\leq \|z^{t} - z^{\star}\|^{2} - \|z^{t} - \bar{z}^{t}\|^{2} + \gamma^{2}L^{2}\|\bar{z}^{t-1} - \bar{z}^{t}\|^{2} - 2\langle H_{z^{t}}(\bar{z}^{t-1}) - H\bar{z}^{t}, \bar{z}^{t} - z^{\star}\rangle \end{split} \tag{38}$$

However, the third ("bad") term does not match the second ("good") term. Using triangle inequality,

$$\frac{1}{2} \|\bar{z}^{t-1} - \bar{z}^t\|^2 \le \|\bar{z}^{t-1} - z^t\|^2 + \|\bar{z}^t - z^t\|^2 = \gamma^2 \|F\bar{z}^{t-2} - F\bar{z}^{t-1}\|^2 + \|\bar{z}^t - z^t\|^2 \\
\le \gamma^2 L^2 \|\bar{z}^{t-2} - \bar{z}^{t-1}\|^2 + \|\bar{z}^t - z^t\|^2$$
(39)

where the equality follows from the update rule and the last inequality follows from Lipschitz.

Single-call variant

Proof (Cont.)

Adding (39) to (38) and rearranging,

$$\begin{split} \|z^{t+1} - z^{\star}\|^2 + (\frac{1}{2} - \gamma^2 L^2) \|\bar{z}^{t-1} - \bar{z}^t\|^2 &\leq \|z^t - z^{\star}\|^2 + \gamma^2 L^2 \|\bar{z}^{t-2} - \bar{z}^{t-1}\|^2 \\ &- 2 \langle H_{z^t}(\bar{z}^{t-1}) - H\bar{z}^t, \bar{z}^t - z^{\star} \rangle. \end{split}$$

It will clearly no longer suffice to simply telescope $\|z^{t+1} - z^{\star}\|^2$.

Instead we now rely on the following potential function

$$\mathcal{U}_{t+1} = \|z^{t+1} - z^{\star}\|^2 + C_{t+1}\|\bar{z}^{t-1} - \bar{z}^t\|^2$$

For \mathcal{U}_{t+1} to telescope we need $(\frac{1}{2} - \gamma^2 L^2) \ge \gamma^2 L^2$, which is identical to requiring $\gamma \le \frac{1}{2L}$. Telescoping, picking $\bar{z}^{-1} = \bar{z}^0$, applying monotonicity of S = F + A,

$$\langle v, \hat{z}^T - z^* \rangle \le \frac{\|z^0 - z^*\|^2}{2\gamma T}. \quad \forall v \in S\hat{z}^T.$$

Converting into the restricted gap function through the gap lemma finishes the proof.

Overview of methods

Table: Overview of splitting methods for the maximally monotone inclusion $0 \in Az + Fz$ where only F is Lipschitz.

	1 forward call	2 forward calls
1 backward call	PFBF [5, 13, 1], Reflected-forward-backward (RFB) [12, 4]	FBF [21]
2 backward calls	Popov's method [16]	EG [9]

Historical notes:

PFBF was studied under many names:

- o Optimistic gradient descent ascent [5]
- Forward-reflected-backward [13]
- Forward-backward-forward-past [1]

Connection to optimistic methods in online learning

Simplifying the update:

$$\bar{z}^{t} = (\mathrm{id} + \gamma A)^{-1} (z^{t} - \gamma F \bar{z}^{t-1})
z^{t+1} = \bar{z}^{t} - \gamma (F \bar{z}^{t} - F \bar{z}^{t-1})$$
(PFBF)

Condensing into one update:

$$\bar{z}^t = (\operatorname{id} + \gamma A)^{-1} (\bar{z}^t - 2\gamma F \bar{z}^{t-1} + \gamma F \bar{z}^{t-2})$$
(PFBF)

- o We have derived what is essentially known as optimism in online learning (albeit with fixed stepsize)
- o By combining with a particular adaptive stepsize we can get:
 - (i) the optimal $\mathcal{O}(1/\sqrt{T})$ in the online setting
 - (ii) while maintaining the optimal $\mathcal{O}(1/T)$ in the deterministic offline monotone setting.

References |

- Axel Böhm, Michael Sedlmayer, Ernö Robert Csetnek, and Radu Ioan Bot. Two steps at a time—taking GAN training in stride with Tseng's method. SIAM Journal on Mathematics of Data Science, 4(2):750–771, 2022. (Cited on page 36.)
- [2] Yang Cai, Argyris Oikonomou, and Weiqiang Zheng.

 Tight last-iterate convergence of the extragradient method for constrained monotone variational inequalities.

```
arXiv preprint arXiv:2204.09228, 2022. (Cited on page 9.)
```

- [3] Volkan Cevher, Georgios Piliouras, Ryann Sim, and Stratis Skoulakis. Min-max optimization made simple: Approximating the proximal point method via contraction maps. In Symposium on Simplicity in Algorithms (SOSA), pages 192–206. SIAM, 2023. (Cited on page 31.)
- [4] Volkan Cevher and Bang Cong Vu. A reflected forward-backward splitting method for monotone inclusions involving lipschitzian operators. Set-Valued and Variational Analysis, pages 1–12, 2020.
 (Cited on page 36.)

References II

[5] Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training GANs with optimism.

```
arXiv preprint arXiv:1711.00141, 2017. (Cited on page 36.)
```

[6] Pontus Giselsson.

Nonlinear forward-backward splitting with projection correction.

```
SIAM Journal on Optimization, 31(3):2199–2226, 2021.
```

```
(Cited on page 27.)
```

7] Noah Golowich, Sarath Pattathil, and Constantinos Daskalakis.

Tight last-iterate convergence rates for no-regret learning in multi-player games.

```
Advances in neural information processing systems, 33:20766–20778, 2020.
```

```
(Cited on page 9.)
```

[8] Hamed Karimi, Julie Nutini, and Mark Schmidt.

Linear convergence of gradient and proximal-gradient methods under the polyak-undefinedojasiewicz condition.

In European Conference on Machine Learning and Knowledge Discovery in Databases - Volume 9851, ECML PKDD 2016, pages 795–811, Berlin, Heidelberg, 2016. Springer-Verlag.

```
(Cited on page 14.)
```

References III

[9] Galina M Korpelevich.

The extragradient method for finding saddle points and other problems.

Matecon, 12:747-756, 1976.

(Cited on page 36.)

[10] Puya Latafat and Panagiotis Patrinos.

Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators. *Computational Optimization and Applications*, 68(1):57–93, Sep 2017.

(Cited on page 27.)

[11] Zhi-Quan Luo and Paul Tseng.

Error bounds and convergence analysis of feasible descent methods: a general approach.

Annals of Operations Research, 1993.

(Cited on page 14.)

[12] Yu Malitsky.

Projected reflected gradient methods for monotone variational inequalities.

SIAM Journal on Optimization, 25(1):502-520, 2015.

(Cited on page 36.)

References IV

[13] Yura Malitsky and Matthew K Tam.

A forward-backward splitting method for monotone inclusions without cocoercivity.

```
SIAM Journal on Optimization, 30(2):1451–1472, 2020. (Cited on page 36.)
```

[14] Arkadi Nemirovski.

Prox-method with rate of convergence o (1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems.

```
SIAM Journal on Optimization, 15(1):229-251, 2004.
```

```
(Cited on page 31.)
```

[15] Thomas Pethick, Puya Latafat, Panagiotis Patrinos, Olivier Fercoq, and Volkan Cevher.

Escaping limit cycles: Global convergence for constrained nonconvex-nonconcave minimax problems.

```
arXiv preprint arXiv:2302.09831, 2023.
```

```
(Cited on page 27.)
```

[16] Leonid Denisovich Popov.

A modification of the arrow-hurwicz method for search of saddle points.

```
Mathematical notes of the Academy of Sciences of the USSR, 28(5):845–848, 1980.
```

```
(Cited on page 36.)
```

References V

[17] Quentin Rebjock and Nicolas Boumal.

Fast convergence to non-isolated minima: four equivalent conditions for C^2 functions. arXiv preprint arXiv:2303.00096, 2023.

(Cited on page 13.)

[18] M. V. Solodov and P. Tseng.

Modified projection-type methods for monotone variational inequalities.

SIAM Journal on Control and Optimization, 34(5):1814–1830, 1996.

(Cited on page 27.)

[19] Mikhail V Solodov and Benar F Svaiter.

A hybrid projection-proximal point algorithm.

Journal of convex analysis, 6(1):59-70, 1999.

(Cited on page 27.)

[20] Paul Tseng.

On linear convergence of iterative methods for the variational inequality problem.

Journal of Computational and Applied Mathematics, 60(1-2):237-252, 1995.

(Cited on page 14.)

References VI

[21] Paul Tseng.

A modified forward-backward splitting method for maximal monotone mappings. SIAM Journal on Control and Optimization, 38(2):431–446, 2000. (Cited on page 36.)