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Outline of this lecture

Recap Perspectives on extragradient methods
The descent inequality Projection onto a separating hyperplane
Comparing last iterate and average iterate As an approximation to the proximal point method
Last iterate Single-call variant
Gradient descent ascent Single-call variant: Modifying FBF
Extragradient Overview of methods
Linear convergence Connection to optimism

Contraction and gradient descent ascent
Error bound and extragradient
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Overview of today

o Last week,
> we have derived best iterate and average iterate results;
> we have arrived at the extragradient (EG) type updates via our analysis.
o This week,
> we will obtain ||[FzT||2 = O(1/T) last iterate convergence rates for monotone and Lipschitz operators;
> we will show that linear convergence is possible in particular cases.
o For the EG type methods, we will also answer the following questions:

> How would we more intuitively motivate the scheme?

> Can we avoid querying an extra gradient?
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Summary of FBF: The descent inequality

o Let H :=id —yF and recall the update:
St (s —1ppt
z' = (id+~A H:z*,
1 (id +~A) (FBF)

AT =2t —a(HZt — HZY).

o The descent inequality is all you need!

o The three convergence results for FBF are a consequence of the following inequality:

Descent inequality of FBF

Let F' be monotone and L-Lipschitz and A maximally monotone. Then the sequence generated by FBF satisfies

|27 — 2¢)12 < ||zt — 2| —a(l — o) ||HZt — HZ2Y||? —2a(H 2t — HZ', 28 — 2*) —a(1 — 42L3)| 2t — 2Y|2.

best || Fzt|2 gap for average: (Fz* 2T —z*) best || Fzt||2
Exercise: o Convince yourself that we can arrive at the above inequality.
Remarks: o When we telescope, we were not using the remaining “good” terms so far.

o We will make use of these “good” terms today.

ICLHEEI]  Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 37



A (subtle) difference between last iterate and average iterate
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Observations: o If v = 1/L exactly, the last iterate will actually cycle!

> Notice that we need v < 1/L strictly even for the best iterate convergence of || Fz?||.

o The average iterate still converges (through the gap since v = 1/L is allowed).

\HNELT{l  Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 37 EPFL



Last iterate of GDA under cocoercivity

o Let us first recall GDA:
2Tl =t — yF2t (GDA)

o It suffices to show that || F'z?||? is monotonically decreasing, i.e.,

[F22 < || P22 (1)

o It turns out that this is directly implied by cocoercivity!

Theorem (Last iterate of (GDA))

Suppose F : R* — R% s B-cocoercive. Consider the sequence (z!)icy generated by (GDA) with v < 28. Then,
for all z* € zer F', the following holds
[12° — =*||?

I1F2T)? < —————.
v(@28 - T

)
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Last iterate of GDA under cocoercivity

Proof.

Cocoercivity applied at z¢ and zt*! yields the following

5”th+1 _ FZtHZ

IN

<th+1 — Fat 2t — 2%)

= —y(F2tt — Fzt F2t)

—2)1Fat = Pt 4 P2 = LY Fat? + L Fattt - Pt 3)

Y 24 Y
—2NE 2 4 TYEA? + D Fat Pt

where the first equality follows from the update rule of (GDA). If we assume vy < 2/ then the above inequality
reduces to
[ F="H? < || F2*)12, 4)

and we have shown monotonicity. We can use this to show
1 T—1
T2 2
IF=TI2 < 2 CIF=R, (5)
t=1

which we can subsequently upper bound using the argument for the best iterate. This completes the proof. O
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Last iterate convergence rate for extragradient
o Recall the extragradient (EG) algorithm:

zZt =2t —yF2t,

(EG)
2Tl =2t - yFZt.
o Similarly to GDA, the EG iterates satisfy the following:
[F2H12 < |72 (6)

Theorem (Last z-iterate of (EG))

Suppose F : R% — R% is L-Lipschitz and monotone. Consider the sequence (2%)ten generated by EG with
v < 1/L. Then, for all z* € zer F, the following holds

e ™)
z = .
Y21 —~2L3)(T - 1)
Remarks: o In contrast, the gap of the last iterate has a O(1/+/T) rate with a matching lower bound [7].

o This is easily attained by converting (7) using Cauchy-Schwarz inequality [2, Lm. 2].
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Last iterate convergence rate for extragradient

Proof.
Monotonicity, Lipschitz and the update rule give us,
0 < (Fzt — Fattl 2t — 2t thy — (ot — i+l Rzt (8)
| F=t*t — F2H|? < 12|28 - 2%)|% = L?4®|| F2* — Fz*||? 9

Adding (8) and (9) with % and 1 respectively and rewriting the inner product,

|Fzt — F25442 < ||F2412 + | F2*||° - ||[F2t — F2*||?
— |F2H2 — | F2H)2 + || F2* — F24H)2 (10)
+L2’}’2HF2t _ th”Q
Observing that terms cancels,

0 < [|F2H|% — |[F2F12 + (L2 — 1)||Fz — Fz*|)? (11)

We conclude that ||Fz?||2 is monotonically decreasing for (EG) as well, which completes the proof. m]
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Contraction: fixed point iterations

o So far, the fastest rate we have seen is the O(1/T')-rate. When can we improve significantly on this?

o Let us redefine (GDA) through an operator S : R? — R¢ as follows
21 =52t where S :=id —F.
o We can ask when the algorithm no longer “moves” the iterates:

Fixed point
Find z € fix S where
fix S :={z | z = Sz}.

Remark: o By construction it is equivalent to finding a zero of F, i.e., zer F' = fix S.

o We will instead ask what we need of S to converge geometrically.
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Contraction: getting linear convergence

Definition (Contraction)

The operator S : R — R? is an contraction if S is ¢-Lipschitz with ¢ < 1.
Remark: o When ~F is strongly monotone and 1-Lipschitz then S :=id —vF is a contraction.

Theorem
Suppose S : RY — RY s an contraction and z* € fix S. Then, the iterates generated by z't1 = S(2!) satisfies

127 = 25|17 < 27| — 2. (12)

Proof.
The rate is an immediate consequence of the definition:
127 — 2512 = 8271 = 82512 < =T — 4|2 = 48T - S22 < ... < T2 — 4|2 (13)
m]
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Error bound condition: generalizing the linear convergence result

o Using EG we can expand the class for which we have this geometric convergence result.

o Let us return to the descent inequality in the proof of EG:

1270 = 2|2 < Jl2f = 2*)1* — a(1 = 2 L?)]" - 212

(14)
= |I2* = 2*)1? = an?(1 =2 L?)||F=|
o To apply a similar recursive argument as for GDA under contraction:
> We only need to convert ||Fz%||? to ||zt — z* ||
Definition (Error bound)
The operator F': R — RY satisfies, for all z € R? and some z* € zer F, with 7 > 0
IF2] = 7llz = 2" (15)

Remarks: o This class includes both strongly monotone and affine operators (i.e. the bilinear game).

o (local) error bound, Polyak-Lojasiewicz, and growth conditions can be all equivalent [17].
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Error bound condition: convergence of EG

Theorem
Suppose F : R% — R% js L-Lipschitz and monotone and satisfies the error bound condition. Consider the
sequence (2%)1cw generated by EG with v < 1/L. Then, for all z* € zer F, it holds that

127 = 2112 < (1= 7292(1 = 2127 |20 — 2|2 (16)
Remarks: o See Tseng [20] for a generalization to constraint settings when the set is a polyhedral.

o The error bound condition was first proposed in Luo et al. [11].

o For other sufficient conditions for linear convergence (in minimization) see Karimi et al. [8].
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Error bound condition: proof

Proof.

We continue from the descent inequality of EG for a monotone and Lipschitz operator F' as follows:

2 = 22 < 12t = 42 = (1 = A2 L2)]]s* = 22
= ll2* = 2|12 = 72(1 — LA F2* 2 (17)
< (=PIt — 22,

given that 42(1 — v2L?2) > 0 and where the error bound condition is used in the last inequality. m}
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Error bound condition: seeing it in action

o Consider the bilinear game:
min max xy

z€R y€R
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Observation: o We have linear convergence for EG!
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Different perspectives on extragradient

o We arrived at EG through the analysis last week.
o Is there a more intuitive motivation?
o Two powerful ideas:

> Each step of EG is a projection onto a particular hyperplane.

> EG can be seen as approximating to the proximal point method.
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GDA as a fixed point iteration

o The update of FBF can be cast as an iterative projection onto a set containing the solution set.

o We will now build up to this view.

Krasnosel'skii-Mann (KM) iteration
Let S : R? — R? be an operator and A > 0. The KM iteration is given by

2P = (1 — N2t + ASzt (KM)

Remarks: o GDA can be seen as an instance of Krasnosel'skii-Mann (KM) iteration with S = id —F'.
o We were able to show convergence when vF' was %—cocoercive.

o What is the equivalent condition expressed in terms of S instead?
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GDA convergence for cocoercive F' through KM

Definition (Nonexpansiveness)

An operator S : R” — R? is said to be nonexpansive if the following holds
ISz — 82| < ||z — 2| Vz,2" € R (18)
Remark: o The operator S = id —yF is nonexpansive iff vF is %—cocoercive.

o With this definition we can reprove the convergence of GDA.

Theorem (Best iterate of KM)

Assume S : R¢ — R? is nonexpansive. Consider the sequence (z!)icn generated by (KM) with X € (0,1).
Then, for all z* € fix S, the following holds
* HQ

0 _
st =1 < =" — = (19)
1

min _—
te{0,...,.T— A1 -NT
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GDA convergence for cocoercive F' through KM

Proof.

We proceed as usual with a one-step analysis:

Izt = 2% )12 = (1 = N)ll2" = 2% )12 + Al|S2" = 2*[12 = A1 = N)IS=" = 2|

= (1 =Nzt — 2%]|% + )||Szt — S2*||2 — A1 — N)||S2t — 2¢|2 (20)
< @ =Nl =22 + A2t = 277 = A1 - N)|IS2* — 22
= [|2* = 2* 117 =A@ = N)|IS=" - 24)1%,

where we have used nonexpansiveness of S and that Sz* = z*. Telescoping completes the proof. m]
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KM of firmly nonexpansive operator
o We can improve when S is firmly nonexpansive.
Definition (Firmly nonexpansive)

An operator S : R4 — R? is said to be firmly nonexpansive if

1Sz — S2||2 + ||(id =S)z — (id —8)2||2 < ||z — 2’||* V=, 2" € R (21)

Remark: o If S is firmly nonexpansive so is id —S and both are 1-cocoercive.

o A projection is firmly nonexpansive when the set is convex (This will be crucial!).

Theorem (Best iterate of KM)

Suppose S : R* — R% is firmly nonexpansive. Consider the sequence (z');cn generated by KM with X € (0,2).
Then, for all z* € fix S, it holds that

: t )2 [[2° — =*||?
min 152" = 2°|I* < =~ (22)
te{0,...,7—1} A2-NT
Remarks: o This implies convergence of GDA by taking S = id —nF" when nF' is 1-cocoercive.

o We can now crucially take X € (0,2) instead of only X € (0,1).
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KM of firmly nonexpansive operator

Proof.
The steps are the same as for the nonexpansive case, except we have an additional (good) term,
24 = 2% = (1 = N)ll2* = 272 + AlIS2* — 2*[|* = A1 = N)||S2* - 2|
= (1= Nllz* = 2*[I? + AlIS2* = S2*[|* — A1 = N)||S2* — 2|

(23)
S @ =N = 22 + A2t = 2*)* = ISzt — 282 = A1 - M)z — 2|2
= ll2% = 2% 112 =A@ - A8z - 2|12
We have used firmly nonexpansiveness of S and that Sz* = z*. Notice that we can now crucially take
A € (0,2) instead of only A € (0,1). Telescoping completes the proof. m]
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Hyperplane projection: capturing extragradient and forward-backward-forward (FBF)
o Recall that we wish to find z* € R? such that
z* € zer(F + A). (24)

o We will now use convergence of KM to reprove convergence of EG/FBF.
o It turns out that FBF can be seen as running KM on an iterative projection:
Projected interpretation of EG/FBF
Let H :=id —yF'. Consider the sequence generated by

2 = (1 - N2t + )\HD<Zt)(zt) (25)
which projects onto the half-space D(z) := {w | (Hz — HZ,Z — w) > 0} with z := (id + vA) " Hz.

Remark: o The proof (and construction) has two key components:

> first show that when a solution is found we will stay at the solution

> and otherwise we will make progress towards the solution set.

o Then we only need to show equivalence with EG/FBF.
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Hyperplane projection: proof step |

Proof.

Step 1. The set D(z) is constructed to contain the solution set defined as
S*={z" | (Fz+ Az,z — 2") > 0 Vz,z"}.
Let us verify this claim. From the definition of Z we have
% (Hz — HZ) € Az + Fz. (26)

So by monotonicity of A + F,
%(Hz —Hz z—2z*)>0. (27)

This confirms that S* C D (z). Thus, any solution z* € S* is a fixed point of the projection Ilp ), i.e.
z* € fixIIp(;) for any z € R™.
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Hyperplane projection: proof step Il

Proof (Cont.)

Step 2. To find the closed form solution for the projection we invoke the lemma below, concerning general

hyperplane projections, with a = Hz — Hz and b= —(Hz — HZz, z). By simple substitution, we have
Tp(t)(s) = 2 + ae(Hz! — Hz'), with o = HEHez2 o2 (28)
Dty (") = 2" + ar(Hz 2Y),  wi Ot = LT

This recovers FBF (modulo the adaptive parameter choice).
o We have used the following lemma.

Lemma
The projection Ilp(x) := argmin,cp %Hz — x||? onto the set D = {z | (a,z) > b} is given for x ¢ D as,

Op(z) =z — %a. (29)
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Hyperplane projection: proof step Ill

Proof (Cont.)

Step 3. We finally need to argue that we always improve (if we are not at a solution).
Notice that (25) is an instance of KM with S = IIp.+). By using that S is firmly nonexpansive we get

; t )2 [[2° — =*||?
min |9 — 22 < 2L (30)
te{0,...,7—1} A2-NT
where z* € S* due to step 1. Convergence follows by noting that
2" — 2*|1? = of || Hz" — Hz"|? (31)

and that oy is bounded away from zero by o > % due to cocoercivity of H.
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Hyperplane projection

o The scheme:

zt = (id +'yA)71Hzt

_ . Hz'—Hz' zt 2t (32)
24 =2t 4 Ny (HZ — H2Y), with ay = W
with A € (0,2).
Theorem (Best z-iterate of (25))
Assume F : RY — R® js L-Lipschitz and monotone and A : R =3 R? is maximally monotone. Consider the
sequence (z!)en generated by (32) with v < 1/L and X € (0,2). Then for z* € zer(F + A),
4 0 _ *|2
20 = =) -

min |Hzt — Hz!|? < —— .
te{0,...,T—1} A2-NT

Remark: o The stepsize is adaptive (but we can infer the constant stepsize result)
o Hyperplane projections are powerful due to their generality (see [10, 6, 15] for extension).

o The idea dates back to at least Solodov & Tseng [18] and Solodov & Svaiter [19].
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Another perspective: arriving at EG through proximal point

o For simplicity we will consider the unconstrained case where F': R — R? (single-valued) and A = 0.

o Consider the (implicit) proximal point method (PP)

AL A CLan ! (PP)

o We immediately have descent

20 =212 = Jl2® = 2|7 = [l = 287 — 29(F ("), 21+ - 2%)

(34)
= |l2" = 27|17 = A2F 2 — 29 (F (1), 2 — 27)

o However, PP is an implicit scheme. Can we approximate it?
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The proximal point method as a resolvent

o The proximal point update is an instance of the resolvent.
Definition (The resolvent)
Given an operator A : R* 3 R%, we define the associated resolvent:

Ja = (id+A)~L. (35)

Remarks: o If A is maximally monotone then J4 is firmly nonexpansive.
o By taking S = J4 in KM:
> PP convergence through the KM theorem when A is maximally monotone (A = 1 is allowed).

o The resolvent might not be known in closed form: Let us approximate it!
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Extragradient as approximating the resolvent
o One step of the resolvent requires us to find

2 =(d+~F)"tz o 2 =z—4F7.
o In other word, we seek to find

w* € fixC, where C,:ww— 2z —yFw. (36)
o Apply C repeatedly: A fast geometric rate is immediate by establishing that C. is a contraction.

Lemma
If vF is a contraction then the sequence (w")cn generated by repeatedly applying C, converges geometrically.

Proof.
The operator C, : R4 — R4 as defined in (36) is contractive when ~F' is a contractive. That is,

IC=(z) — Cz(W)l = lIvFz —vFyll < llz —yl|. (37)
Thus, the contraction argument applies, which completes the proof. m}
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Extragradient as approximating the resolvent

o Let C.(w) := z — vFw and define k inner iterations as:

CH(2):=C,0---0C,(2).
k times

o The outer iterations are then given as:

2 = (1= Nzt 4 a0k (2.

Example
Consider the resolvent J,r := (id +vF)~1 where F is monotone and L-Lipschitz F:

> With stepsize v < 1/L the operator vF is a contraction.

> The inner loop (approximate J,r) has linear rate, so we only need log T' number of inner steps.

Remarks: o To shave off the logarithmic factor in the complexity we want constant inner iterations.
o This motivates EG, since (S o S)(z!) and A = 1 exactly corresponds to one step of (EG).
o Original motivation behind MirrorProx Nemirovski [14] (a generalization of extragradient).

o The above argument is made precise in Cevher et al. [3].
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How to use the left-over “good” term: Single-call variant

o The method FBF we have derived so far requires two operator evaluations of F'.
o Can we construct a method that only uses a single call per iteration?
o There is hope since there is an unused “good” term (||zt — z*||2) as long as the stepsize v < 1/L.

o Let us alter the forward operator:
H.(z2) =z —~yF=z.

o We can now modify FBF to reuse the past operator evaluation Fzt~1:

2t = (id+yA) TH (271

IS
Il

(PFBF)
2 =2t —a(H, (271 ) - HZY).
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Single-call variant

o The proof for the single-call variant only requires one additional triangle inequality and Lipschitzness.

Theorem (Gap for average iterate of PFBF)

Suppose A : R* 3 R? is maximally monotone and F : R® — R? js L-Lipschitz and monotone. Consider the
sequence (2%)ten generated by PFBF with v < ﬁ and o = 1. Then, for all z* € zer(A + F') and any compact
neighborhood C C RY of z*, it holds that

[l2° — 2*|I?

Gapg(27) < .

pe(2") < T

where T = 1 ZZ:OI zt.

Remarks: o The maximal stepsize is half of FBF (a worse rate by a constant factor 2)

o However, PFBF only uses half the operator evaluations per iteration
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Single-call variant

Proof.
We can arrive at almost the same descent inequality as for FBF:
||Zt+1 _ Z*”Q
= |l2* = 2|12 + || H,e (277) — HE|? — 2(H . (2'7") — HZ', 2% — 2%)
= ||2® — 2|2 + | H e (221) — HZY||? — 2(H + (2" 1) — HZ?, 2% — 2) — 2(H . (z' 1) — HZ', 2" — 2*)
= ll2° = 2*11? = ll2* = 2°|® + | Hpe (271) — HZ' — 28 + 2°|° — 2(H,. (3*~ 1) — HZ', 2" — 2*)
= ||zt — 25|12 — ||zt — 2|2 4 A2 F2t=L — F2t||2 — o(H.. (3t~ 1) — Hzt, 5t — 2*
l gl 2 ;
<2t = 28|12 =zt = 212 +A2L2|25 7 = 2P - 2(H e (2Y) - HEY 2 - 2) (38)

However, the third (“bad”) term does not match the second (“good”) term. Using triangle inequality,

LI = 22 <110 = 2P 4 12 = 2P = ARIIFE 2 = PR 5t = o)

ma e _ (39)
S’Y2L2||Zt 2_Zt 1||2+||Zt_zt”2

where the equality follows from the update rule and the last inequality follows from Lipschitz.
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Single-call variant

Proof (Cont.)
Adding (39) to (38) and rearranging,

254 = 24112 + (5 = PPN = 247 < 128 = 2|1 + 42 L2 202 - 2212
— 2(H(z27Y) — Hz', 28 — 2%).

It will clearly no longer suffice to simply telescope ||zt — 2*||2.

Instead we now rely on the following potential function

ut+1 — Hz“‘l _ Z*HQ + Ct+l||2t_1 _ thQ.

L

S Telescoping,

For Ui 41 to telescope we need (% —42L?) > 4212, which is identical to requiring vy <

picking Z—! = 20, applying monotonicity of S = F + A,

I B

v e Sz7T.
< T v 2

(v, 2T — 2%)

Converting into the restricted gap function through the gap lemma finishes the proof.
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Overview of methods

Table: Overview of splitting methods for the maximally monotone inclusion 0 € Az + F'z where only F' is Lipschitz.

1 forward call 2 forward calls
1 backward call PFBF [5, 13, 1], Reflected-forward-backward (RFB) [12, 4] FBF [21]
2 backward calls Popov’s method [16] EG [9]
Historical notes: PFBF was studied under many names:

o Optimistic gradient descent ascent [5]
o Forward-reflected-backward [13]
o Forward-backward-forward-past [1]
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Connection to optimistic methods in online learning

o]

Simplifying the update:

Y

2t = (Id4yA) "1zt —yFzt )

A =7t —q(Fzt — FztTT) (PFBF)
o Condensing into one update:
28 = (id+yA) 7' (2" — 2y FE T 4 P2 (PFBF)
o We have derived what is essentially known as optimism in online learning (albeit with fixed stepsize)
o By combining with a particular adaptive stepsize we can get:

(i) the optimal O(1/+/T) in the online setting

(ii) while maintaining the optimal O(1/T') in the deterministic offline monotone setting.
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