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Prerequisites Previous coursework in calculus, linear algebra, and probability is required. Familiarity with
optimization is useful.
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Introduction

◦ Offline minimax problems: Last week we showed O(1/
√

T ) rate using no-regret algorithms (FTRL/OGD).

Goals of today
1. Show when we can obtain a O(1/T ) rate with the gradient descent ascent method (GDA)
2. Extend the class for which we have a O(1/T ) rate by using extragradient-like schemes

Remarks: ◦ For a basic exposure to extragradient-like schemes, see Math of Data.

◦ This material introduces monotone operators (the “right” abstraction).

◦ We will rediscover sufficient structures for O(1/T ) rate through the convergence analysis.
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A motivating example

Example (Unconstrained convex-concave minimax)
Consider the following (unconstrained) minimax problem

min
x∈Rn

max
y∈Rm

f(x, y), (1)

where f is differentiable, f(·, y) is convex ∀y ∈ Rm and f(x, ·) is concave ∀x ∈ Rn.

Remarks: ◦ There are many solution concepts for optimization problems. Here are two relevant ones:

▶ first-order stationarity, i.e., for unconstrained a point (x⋆, y⋆) such that

∇xf(x
⋆

, y
⋆) = 0 and ∇yf(x

⋆
, y

⋆) = 0

▶ saddle point or more generally the Nash equilibrium, i.e., a point (x⋆, y⋆) such that

f(x
⋆

, y) ≤ f(x
⋆

, y
⋆) ≤ f(x, y

⋆) ∀x ∈ Rn
, y ∈ Rm

.

◦ For convex-concave problems, they coincide

◦ For this reason, we will start with the first-order stationarity and describe more later
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A motivating example

Example (Unconstrained convex-concave minimax)
Consider the following (unconstrained) minimax problem

min
x∈Rn

max
y∈Rm

f(x, y), (1)

where f is differentiable, f(·, y) is convex ∀y ∈ Rm and f(x, ·) is concave ∀x ∈ Rn.

An operator view: ◦ The gradient ∇xf(·, y) : Rn → Rn is an operator

◦ We can compactly write z = (x, y) and F (z) = (∇xf(x, y), −∇yf(x, y))

◦ The operator is thus a mapping F : Rd → Rd where d = n + m.

◦ The first order stationary point can be written as

F (z) = 0. (2)

◦ We will write F z := F (z) for short.

◦ Note that F is not necessarily a linear operator: F (z1 + z2) , F z1 + F z2 in general.
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Gradient descent ascent: why we flip the sign for y in Fz = (∇xf(x, y), −∇yf(x, y))

Gradient descent ascent
Consider the (simultaneous) gradient descent ascent (GDA)

xt+1 = xt − γt∇xf(xt, yt),

yt+1 = yt + γt∇yf(xt, yt).

Remarks: ◦ Using F we can compactly write the update as

zt+1 = zt − γtF zt (GDA)

◦ The average iterate of GDA converges for convex-concave minimax if γt is diminishing

γt ∝ 1/
√

t

Exercise: ◦ What online algorithms reduce to GDA in the unconstrained case?
▶ Deduce GDA from simultaneously played no-regret algorithms.
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An informative example: unconstrained bilinear game minx∈Rn maxy∈Rm⟨x, My⟩

◦ Bilinear game are linear in both players: F z = (My, −M⊤x)

◦ Captures the core problem: rotation

Remarks: ◦ The last iterate diverges!
◦ The average iterate converges as O(1/

√
T ) if we take γt ∝ 1/

√
t
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Can we improve on the O(1/
√

T ) rate for the unconstrained bilinear game?
◦ Extragradient (EG) [2] takes an extrapolated step:

zt+1 = zt − γF (zt − γF zt) (EG)

Remarks: ◦ The average iterate converges at a faster O(1/T ).

◦ Warning! Bilinear can be misleading—rate for last iterate is linear (see next week).
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Warm-up to operator view: Analyzing GDA zt+1 = zt − γFzt

◦ Under what conditions can we take the GDA stepsize γ constant (and improve the rate to O(1/T ))?

◦ Goal: find z⋆ ∈ zer F where
zer F := {z ∈ Rd | F z = 0}. (3)

◦ To answer, we will begin by analyzing one step of the algorithm.

Proof.

∥zt+1 − z⋆∥2 = ∥zt − γF zt − z⋆∥2

= ∥zt − z⋆∥2 + γ2∥F zt∥2 − 2γ⟨F zt, zt − z⋆⟩
(4)

... (to be continued)

Remark: ◦ We need a way to convert ⟨F zt, zt − z⋆⟩ into ∥F zt∥2. Then we would decrease:

∥zt+1 − z⋆∥2 ?
≤ ∥zt − z⋆∥2 − ϵ∥F zt∥2. (5)
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Cocoerciveness

◦ Cocoercivity assumption can “convert” ⟨F zt, zt − z⋆⟩ into ∥F zt∥2 (i.e., what we will need)

Definition (Cocoercivity)
An operator F : Rd → Rd is said to be β-cocoercive for β > 0 if

⟨F z − F z′, z − z′⟩ ≥ β∥F z − F z′∥2 ∀z, z′ ∈ Rd. (6)

Remarks: ◦ Relationship to other structural assumptions:
▶ β-cocoercivity implies monotonicity and 1

β -Lipschitz continuity (defined later).
▶ For a convex function f , ∇f is L-Lipschitz continuous iff ∇f is 1

L -cocoercivity.

▶ A µ-strongly-monotone and L-Lipschitz continuous operator is also µ

L2 -cocoercive.

◦ Due to the second point the result we are proving will apply to smooth convex minimization.

Interpretation: ◦ Geometrically, ⟨F zt, zt − z⋆⟩ ≥ β∥F zt∥2 ensure −F zt points towards the solution set.
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Analysis GDA (continued)

Proof (Cont.)
We can convert the inner product in (4) into ∥F zt∥2, by using cocoercivity on zt, z⋆ and recalling that
F z⋆ = 0 by assumption,

⟨F zt, zt − z⋆⟩ = ⟨F zt − F z⋆, zt − z⋆⟩ ≥ β∥F zt − F z⋆∥2 = ∥F zt∥2,

such that (4) reduces to
∥zt+1 − z⋆∥2 ≤ ∥zt − z⋆∥2 − (2γβ − γ2)∥F zt∥2.

Then, it is just a matter of summing and telescoping as follows:∑T −1
t=0 (2γβ − γ2)∥F zt∥2 ≤

∑T −1
t=0 ∥zt − z⋆∥2 − ∥zt+1 − z⋆∥2

= ∥z0 − z⋆∥2 − ∥zT −1 − z⋆∥2 ≤ ∥z0 − z⋆∥2,

from which it immediately follows that

1
T

∑T −1
t=0 ∥F zt∥2 ≤ ∥z0−z⋆∥2

(2γβ−γ2)T
.

The proof is complete by noting that the minimum is always smaller than the average.
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GDA convergence under cocoercivity

Theorem (Best iterate of (GDA))
Suppose F : Rd → Rd is β-cocoercive. Consider the sequence (zt)t∈N generated by (GDA) with γ < 2β. Then
for all z⋆ ∈ zer F ,

min
t∈{0,...,T −1}

∥F zt∥2 ≤
∥z0 − z⋆∥2

γ(2β − γ)T
. (7)

Remarks: ◦ The full range γ ∈ (0, 2β) is allowed but the “optimal” choice is γ = β.

◦ The convergence rate is O(1/T ).

◦ Implies convergence of (fixed stepsize) gradient descent for convex and 1
β

-Lipschitz.

◦ The best iterate can be hard to select in practice
▶ next week we will derive last iterate convergence results
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Beyond cocoercivity: Lipschitz and monotone

◦ We have seen that cocoercivity implies monotone and Lipschitz, but the converse does not hold.

◦ Can we still get a O(1/T )-rate in this more general setting?

Definition (Monotone)
An operator F : Rd → Rd is said to be monotone if ⟨F z − F z′, z − z′⟩ ≥ 0 ∀z, z′ ∈ Rd.

Examples: ◦ For F = ∇f monotonicity reduces to convexity: ⟨∇f(z) − ∇f(z′), z − z′⟩ ≥ 0

◦ For F = (∇xf, −∇yf) monotonicity reduces to convex-concavity of f(x, y)

Definition (Lipschitz)
An operator F : Rd → Rd is said to be L-Lipschitz for L > 0 if ∥F z − F z′∥ ≤ L∥z − z′∥ ∀z, z′ ∈ Rd.

Example (Bilinear game)
A simple example of an operator which is monotone and Lipschitz but is not cocoercive, is a skew-symmetric
linear operator F = M ∈ Rd×d (aka bilinear game).

Exercise: ◦ Convince yourself.
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Cocoercivity of H = id −γF
◦ Cocoercivity of F is the key to convergence for GDA. What operator is cocoercive when F is only Lipschitz?

◦ First attempt: the GDA update rule (also known as the forward operator)
Hz = z − γF z. (8)

◦ A quick computation shows that H is indeed cocoercive!

Lemma
Suppose F is L-Lipschitz and γ ≤ 1/L. Then, the mapping H = id −γF is 1/2-cocoercive for all u ∈ Rd, where
id is the identity operator. Specifically, it holds that

⟨Hz − Hz̄, z − z̄⟩ ≥ 1
2 ∥Hz − Hz̄∥2 + 1

2 (1 − γ2L2)∥z − z̄∥2 ∀z̄, z ∈ Rd. (9)

Proof.
⟨Hz − Hz̄, z − z̄⟩ = ⟨Hz − Hz̄, Hz − Hz̄ + γF z̄ − γF z⟩

=
1
2

∥Hz − Hz̄∥2 −
γ2

2
∥F z̄ − F z∥2 +

1
2

∥z̄ − z∥2

≥
1
2

∥Hz − Hz̄∥2,

(10)

where the last line follows from Lipschitzness of F and from assuming γ ≤ 1/L. □
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Using H = id −γF : Convergence for monotone and Lipschitz

◦ Building on the cocoercivity of the forward operator H, we can motivate the forward-forward method:

z̄t = Hzt

zt+1 = zt − α(Hzt − Hz̄t),
(FF)

where α > 0 is a step-size

Theorem (Best z̄-iterate of FF)
Suppose F : Rd → Rd is L-Lipschitz and monotone. Consider the sequence (zt)t∈N generated by FF with
γ ≤ 1/L and α ∈ (0, 1). Then, for all z⋆ ∈ zer F , it holds that

min
t∈{0,...,T −1}

∥Hzt − Hz̄t∥2 ≤
∥z0 − z⋆∥2

α(1 − α)T
. (11)

Remark: ◦ By the update rule, Hzt − Hz̄t = γF z̄t, so convergence is given in terms of γ2∥F z̄t∥2.
◦ For this proof, we need to have α < 1.
◦ When α = 1, we stumble upon EG.
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Proof using H = id −γF
◦ For the GDA analysis before, we use cocoercivity of F to cancel ∥zt+1 − zt∥2 = γ2∥F zt∥2

◦ Cocoercivity of H gives us −∥Hz − Hz̄∥2, motivating the following update rule
zt+1 = zt − α(Hzt − Hz̄t),

where α > 0 is a step-size and z̄t is to be defined.

Proof.
Let us attempt to prove convergence by expanding the iterate as in the cocoercive case. Hence, we have

∥zt+1 − z⋆∥2 = ∥zt − z⋆∥2 + α2∥Hzt − Hz̄t∥2 − 2α⟨Hzt − Hz̄t, zt − z⋆⟩. (12)

We cannot immediately apply cocoercivity to the last term so we expand as follows

⟨Hzt − Hz̄t, zt − z⋆⟩ = ⟨Hzt − Hz̄t, zt − z̄t⟩ + ⟨Hzt − Hz̄t, z̄t − z⋆⟩
(cocoercive H) ≥ 1

2 ∥Hzt − Hz̄t∥2 + ⟨Hzt − Hz̄t, z̄t − z⋆⟩

(monotone F —see remark) ≥ 1
2 ∥Hzt − Hz̄t∥2

(13)

... (to be continued, also see Slide 24)

Remark: ◦ Pick Hzt − Hz̄t = γF z̄t so monotonicity applies to the last term.
◦ Equivalently, we can choose z̄t = Hzt.

Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 16/ 33



Proof using H = id −γF

Proof (Cont.)
Continuing from (12) and using (13), we have

∥zt+1 − z⋆∥2 = ∥zt − z⋆∥2 + α2∥Hzt − Hz̄t∥2 − 2α⟨Hzt − Hz̄t, zt − z⋆⟩

(13) ≤ ∥zt − z⋆∥2 − α(1 − α)∥Hzt − Hz̄t∥2.
(14)

Summing and telescoping 14 completes the proof.
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Convergence of best zt and equivalence to extragradient EG

◦ What if we want to characterize another commonly used criterion ∥F zt∥2 ≤ ε instead?

◦ We can use the additional “good” term (∥zt − z̄t∥2) from cocoercivity of H:

Theorem (Best z-iterate of FF)
Suppose F : Rd → Rd is L-Lipschitz and monotone. Consider the sequence (zt)t∈N generated by FF with
γ < 1/L and α ∈ (0, 1]. Then, for all z⋆ ∈ zer F , it holds that

min
t∈{0,...,T −1}

∥zt − z̄t∥2 ≤
∥z0 − z⋆∥2

α(1 − γ2L2)T
. (15)

Remarks: ◦ From the update rule, zt − z̄t = γF zt, so we get convergence of γ2∥F zt∥2.
◦ The scheme reduces to extragradient (EG) for α = 1

z̄t = Hzt = zt − γF zt,

zt+1 = zt − α(Hzt − Hz̄t) = zt − αγF z̄t.

◦ Using H will help us generalize to the constrained cases.
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Constrained problems as monotone inclusions

◦ So far the performance measure has been: ∥F z∥ ≤ ε.
◦ How can we treat constraints (and more generally a nonsmooth objective term g)?

The proximal operator

proxλg(z) := arg min
z′∈Rd

{
λg(z′) +

1
2

∥z′ − z∥2
}

.

Remark: ◦ The proximal operator reduces to a projection on Z ⊆ Rd when g is the indictor function

g(z) = δZ (z) :=
{

0 z ∈ Z
∞ otherwise

◦ Under convexity we can equivalent express the prox using the first order stationarity condition

0 ∈ λ∂g(z′) + z′ − z ⇔ z′ = (id +λ∂g)−1(z) =: Jλ∂g︸︷︷︸
resolvent

(z)

◦ Note that ∂g is a set-valued operator (A : Rd ⇒ Rd): for any z it assigns a subset ∂g(z) ⊆ Rd.
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Constrained problems as monotone inclusions: an overview

min
x∈X

max
y∈Y

f(x, y) min
x∈Rn

max
y∈Rm

f(x, y) + g1(x) − g2(y) 0 ∈ Sz := F z + Az with z = (x, y)

x ∈ X g1(x) = δX (x) =
{

0 x ∈ X
∞ otherwise

∂g1(x) = NX (x) = {v | ⟨v, x′ − x⟩ ≤ 0 ∀x′ ∈ X } Az = (∂g1(x), ∂g2(y))

ΠX (x) proxλg1 (x) = (id +λ∂g)−1(x) (id +λA)−1z = (proxλg1 (x), proxλg2 (y))

X convex g1 is proper lsc convex A is maximally monotone

Remarks: ◦ So far implicitly assumed single-valued operators (e.g., F : Rd → Rd)

◦ The operator A is set-valued (consider for instance the normal cone NX )

◦ To indicate A assigns a subset of Rd, we write A : Rd ⇒ Rd
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Properties of the resolvent JλA := (id +λA)−1

◦ To treat constraints , we can consider inclusions: find z ∈ Rd such that

0 ∈ Sz := F z +Az

◦ Unlike F : Rd → Rd, we cannot use Azt in the algorithm since A : Rd ⇒ Rd is set-valued!

◦ Instead, we use the resolvent to evaluate A (it helps to think of it as a projection),

z′ = (id +λA)−1z ⇔ z′ ∈ z − λAz′.

Lemma
When A : Rd ⇒ Rd is maximally monotone, then the resolvent JλA is
(i) single-valued, i.e., JλA : Rd → Rd,
(ii) defined everywhere on Rd.

Remarks: ◦ From an algorithmic perspective both are crucial.

◦ Claim (i) is easy to prove, while (ii) is difficult to prove (in general)

◦ Maximality is a technical (but important) requirement (reviewed in the appendix)
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Modifying FF to handle a more general inclusion

◦ Let zer S := {z ∈ Rd | 0 ∈ Sz}.

Inclusion problem
Find z ∈ zer S where S := A + F .

Remarks: ◦ We could still run FF which only involves the operator F .

◦ Issue: Theorem 6 shows convergence of ∥Hzt − Hz̄t∥ = ∥γF z̄t∥ and not ∥F z̄t + Az̄t∥.

◦ We can modify the update rule for z̄t to satisfy this requirement

Hzt − Hz̄t ∈ γF z̄t + γAz̄t ⇔ Hzt ∈ z̄t + γAz̄t

⇔ Hzt ∈ (id +γA)z̄t

(resolvent lemma) ⇔ z̄t = (id +γA)−1Hzt.
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Convergence under constraints

◦ Based on the previous derivation, it is clear that we should modify FF as follows:

z̄t = (id +γA)−1 Hzt,

zt+1 = zt − α(Hzt − Hz̄t).
(FBF)

◦ We almost immediately obtain the following theorem.

Theorem (Best z̄-iterate of FBF)
Suppose F : Rd → Rd is L-Lipschitz and monotone and A : Rd ⇒ Rd is maximally monotone. Consider the
sequence (zt)t∈N generated by FBF with γ ≤ 1/L and α ∈ (0, 1). Then, for z⋆ ∈ zer S, where zer denotes the
optimality set, we have the following hold

min
t∈{0,...,T −1}

∥Hzt − Hz̄t∥2 ≤
∥z0 − z⋆∥2

α(1 − α)T
. (best iterate guarantee)

Remarks: ◦ We could rewrite as dist2(0, γSz̄t) ≤ ∥Hzt − Hz̄t∥2 where dist(v, V) := minv′∈V ∥v − v′∥.

◦ Compare such a guarantee to a “average iterate guarantee”
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Proof for FBF

◦ The proof is almost immediate following the unconstrained result.

Proof.
▶ Cocoercivity of H holds regardless of the redefinition of z̄t.
▶ The only step to re-verify is the use of monotonicity in (13).
▶ We will use that S = F + A is monotone when F and A are monotone.
▶ Together with the definition, Hzt − Hz̄t ∈ γSz̄t, and the fact that 0 ∈ Sz⋆, it follows that

⟨Hzt − Hz̄t, z̄t − z⋆⟩ ≥ 0.

□
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Solution concepts: Monotone inclusions and variational inequalities

Monotone inclusion (MI)
So far we have considered the monotone inclusions using

find z⋆ ∈ Rd such that 0 ∈ F z⋆ + Az⋆, (MI)

where F : Rd → Rd is Lipschitz and A : Rd ⇒ Rd is maximally monotone.

Remark: ◦ For constrained problems take A = NZ := {v | ⟨v, z′ − z⟩ ≤ 0, ∀z′ ∈ Z} (i.e., normal cone).

Variational inequality
▶ The Stampacchia variational inequality

find z⋆ ∈ Rd such that ⟨F z⋆, z − z⋆⟩ ≥ 0 ∀z ∈ Z. (SVI)

▶ The Minty variational inequality

find z⋆ ∈ Rd such that ⟨F z, z − z⋆⟩ ≥ 0 ∀z ∈ Z. (MVI)

Remarks: ◦ (SVI) is the first order condition of a (possibly nonconvex) constrained problem.

◦ A star-convex function satisfies (MVI): Notice the close resemblance to linearized regret.
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Solution concepts: relationships
◦ We have the following relations (see [5, 1] and [3] for additional discussion)

Lemma
For F : Rd → Rd and A = NZ , the following holds

1. (MI) ⇔ (SVI)
2. (SVI) ⇐ (MVI) if F is Lipschitz and Z is convex
3. (SVI) ⇒ (MVI) if F is monotone

Proof.
The equivalence between (MI) and (SVI) follows immediately from the following argument

0 ∈ F z⋆ + NZ (z⋆) ⇔ −F z⋆ ∈ NZ (z⋆) ⇔ ⟨F z⋆, z − z⋆⟩ ≥ 0 ∀z ∈ Z.

The third claim follows directly from the definition of monotonicity. □

Remark: ◦ Consequently we can translate our (best iterate) convergence results for (MI) into (SVI).
◦ We will now show convergence for the average iterate.
◦ As we will see, it is easier to show convergence to (MVI).
◦ Through monotonicity we directly obtain the (SVI).
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Restricted gap function

◦ For VIs, we will use the restricted gap function [4] as a measure of progress

GapC(z) = sup
z⋆∈C

⟨F z⋆, z − z⋆⟩ + g(z) − g(z⋆), (16)

where F : Rd → Rd, g is a proper convex lower semicontinuous function, and C is a compact subset of Rd.

◦ Without restricting z⋆ to C: the gap could be infinite everywhere (except at the solution)!

Example
Consider the unconstrained problem minx∈Rmaxy∈R xy where F z = (∇xf(x, y), −∇yf(x, y)) = (y, −x).

Remark: ◦ If not restricted:

▶ the gap would be infinite except at the unique solution z⋆ = (0, 0).

▶ Thus useless as a measure of progress for approximate methods.
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Restricted gap function: conversion

◦ We will now show a “last” iterate guarantee on the average iterate in VIs.

◦ A guarantee on the iterates on average is sufficient... (due to monotonicity!)

Lemma
Let S := F + A, F : Rd → Rd be monotone and A = ∂g, where g is proper lsc convex. Generate (zt)t∈N and
take ẑT = 1

T

∑T −1
t=0 zt. Then for all z⋆ ∈ zer S which also belongs to C,

GapC(ẑT ) ≤ 1
T

∑T −1
t=0 ⟨vt, zt − z⋆⟩ ∀vt ∈ Szt. (average iterate guarantee)

Remarks: ◦ Compare this guarantee with “best iterate guarantee”
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Proof of restricted gap function conversion lemma

◦ The lemma below follows directly from the convexity of ∂g and the monotonicity of F .

Proof.
Let z⋆ ∈ zer S and ut ∈ ∂g(zt). From convexity of ∂g, we have that for all u ∈ ∂g(z)

g(z) ≤ g(z⋆) + ⟨u, z − z⋆⟩, (17)

from which it immediately follows that∑T −1
t=0 ⟨F zt + ut, zt − z⋆⟩ =

∑T −1
t=0 ⟨F zt, zt − z⋆⟩ + ⟨ut, zt − z⋆⟩

(17) ≥
∑T −1

t=0 ⟨F zt, zt − z⋆⟩ + g(ẑT ) − g(z⋆) ≥ ⟨F z⋆, ẑT − z⋆⟩ + g(ẑT ) − g(z⋆),

where the last line follows from monotonicity of F . The proof is complete by restricting z⋆ to C. □
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Restricted gap function: warmup by revisiting GDA
◦ Applying cocoercivity to the inner product in (4) is a choice. We can also apply cocoercivity to the norm:

∥zt+1 − z⋆∥2 ≤ ∥zt − z⋆∥2 − (2γ −
γ2

β
)⟨F zt, zt − z⋆⟩.

◦ Summing and telescoping, we get convergence on a different performance measure (assuming γ < 2β):

1
T

T −1∑
t=0

⟨F zt, zt − z⋆⟩ ≤
∥z0 − z⋆∥2

γ(2 − γ
β

)T
,

◦ The above can be converted into a guarantee on the restricted gap using the previous lemma:

Theorem (Gap for average iterate of (GDA))
Suppose F : Rd → Rd is β-cocoercive. Consider the sequence (zt)t∈N generated by (GDA) with γ < 2β. Then,
for all z⋆ ∈ zer F and any compact neighborhood C ⊆ Rd of z⋆, it holds that

GapC(ẑT ) ≤
∥z0 − z⋆∥2

γ(2 − γ
β

)T
,

where ẑT = 1
T

∑T −1
t=0 zt.
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Restricted gap: forward-backward-forward (FBF)

◦ A similar argument as in the analysis for (GDA) also applies to (FBF).

Theorem (Gap for average iterate of FBF)
Suppose F : Rd → Rd is L-Lipschitz and monotone. Consider the sequence (zt)t∈N generated by FBF with
γ ≤ 1/L and α ∈ (0, 1]. Then, for all z⋆ ∈ zer S and any compact neighborhood C ⊆ Rd of z⋆,

GapC(ẑT ) ≤
∥z0 − z⋆∥2

2αγT
.

where ẑT = 1
T

∑T −1
t=0 z̄t.

Remark: ◦ Since (SVI) ⇔ (MI) under monotonicity, the average iterate also converges in norm.
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Proof of restricted gap for FBF

Proof.
▶ The descent inequality before applying monotonicity and keeping “good” term from cocoercivity of H:

∥zt+1 − z⋆∥2 ≤ ∥zt − z⋆∥2 − α(1 − α)∥Hz̄t − Hzt∥2

−2α⟨Hzt − Hz̄t, z̄t − z⋆⟩ − α(1 − γ2L2)∥z̄t − zt∥2.

▶ The norms can be made negative, so by summing and telescoping we get:∑T −1
t=0 ⟨vt, zt − z⋆⟩ ≤ ∥z0−z⋆∥2

2αγT
∀vt ∈ Szt.

▶ Converting into the restricted gap function through the gap lemma finishes the proof.
□
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Summary

We have seen:

◦ Best iterate and average iterate (next week last iterate)

◦ Descent inequality ⇒ convergence of residual, operator norm, gap (next week iterate distance)

◦ How we arrived at extragradient-like schemes is still mysterious (next week we will see two elegant derivations)
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Appendix
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Monotone operators

◦ A set-valued mappings, S : Rn ⇒ Rd, maps each input x ∈ Rn to a subset Sx ⊆ Rd.

◦ The domain of S is defined as
dom S = {x ∈ Rn | Sx , ∅}. (18)

◦ All input-value pairs are called the graph of S, denoted as

gph S = {(x, y) | y ∈ Sx}, (19)

and the inverse of S is defined through its graph via

gph S−1 = {(y, x) | y ∈ Sx}. (20)

Notice that, by the definition, the inverse always exists.
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Maximal monotonicity

Definition (Monotone)
An operator S : Rn ⇒ Rd is said to be monotone if ⟨u − v, x − y⟩ ≥ 0 ∀(x, u), (y, v) ∈ gph S.

Remark: ◦ A more stringent condition, which might seem technical at first, is the notion of maximality.

Definition (Maximally monotone)
An operator S : Rn ⇒ Rd is said to be maximally monotone if it is not strictly contained within the graph of
another monotone operator.

Remarks: ◦ We should not be able to add (x, u) < gph A to gph S without violating monotonicity.
◦ Geometrically, for 1-dim (A : R ⇒ R), it corresponds to having no "holes" in the line

characterizing the graph.

Maximal monotonicity is important algorithmically
▶ Monotonicity ensures resolvent JA = (id +A)−1 is single valued. If JA was instead set-valued, then one

update of the iteration zt+1 = JA(zt) could potentially leave us with a set of iterates!
▶ Maximality ensures dom JA = Rd. If the domain was further restricted then the update rule zt+1 = Jzt

would be undefined for some input.
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