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Stratis Skoulakis, Kimon Antonakopoulos, Thomas Pethick, Igor Krawczuk
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Introduction

o Offline minimax problems: Last week we showed O(1/+/T) rate using no-regret algorithms (FTRL/OGD).

Goals of today

1. Show when we can obtain a O(1/T) rate with the gradient descent ascent method (GDA)
2. Extend the class for which we have a O(1/T) rate by using extragradient-like schemes

Remarks: o For a basic exposure to extragradient-like schemes, see Math of Data.

o This material introduces monotone operators (the “right” abstraction).

o We will rediscover sufficient structures for O(1/T) rate through the convergence analysis.
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A motivating example

Example (Unconstrained convex-concave minimax)

Consider the following (unconstrained) minimax problem

min max f(z,y), 1
min_ max f(z,1) o)

where f is differentiable, f(-,y) is convex Yy € R™ and f(z,-) is concave Vx € R™.

Remarks: o There are many solution concepts for optimization problems. Here are two relevant ones:

> first-order stationarity, i.e., for unconstrained a point (z*, y*) such that

Vaof(z*,y") =0and V, f(z*,y*) =0

> saddle point or more generally the Nash equilibrium, i.e., a point (z*, y*) such that

fx*y) < fa*,y") < fz,y") Ve eR™,y eR™.

o For convex-concave problems, they coincide

o For this reason, we will start with the first-order stationarity and describe more later
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A motivating example

Example (Unconstrained convex-concave minimax)

Consider the following (unconstrained) minimax problem

min max f(z,y), 1
min_ max f(z,1) o)

where f is differentiable, f(-,y) is convex Yy € R™ and f(z,-) is concave Vx € R™.

An operator view: o The gradient V5 f(-,y) : R — R™ is an operator
o We can compactly write z = (z,y) and F(z) = (Vz f(z,y), —Vy f(z,y))
o The operator is thus a mapping F : R — R? where d = n + m.

o The first order stationary point can be written as

F(z) = 0. (2)

o We will write F’z := F(z) for short.

o Note that F' is not necessarily a linear operator: F(z1 + z2) # Fz1 + Fz2 in general.
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Gradient descent ascent: why we flip the sign for y in Fz = (V, f(x,y), -V, f(z,y))

Gradient descent ascent
Consider the (simultaneous) gradient descent ascent (GDA)

wt+1 = xt - ’ytvif(xtayt)a
Yy =yt + 3V, f(2h ).

Remarks: o Using F' we can compactly write the update as
2 =ty PRt (GDA)
o The average iterate of GDA converges for convex-concave minimax if ~¢ is diminishing

v x 1/ vt
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Gradient descent ascent: why we flip the sign for y in Fz = (V, f(x,y), -V, f(z,y))

Gradient descent ascent
Consider the (simultaneous) gradient descent ascent (GDA)

wt+1 = xt - ’ytvif(xtayt)a
Yy =yt + 3V, f(2h ).

Remarks: o Using F' we can compactly write the update as
2 =ty PRt (GDA)
o The average iterate of GDA converges for convex-concave minimax if ~¢ is diminishing

v x 1/ vt

Exercise: o What online algorithms reduce to GDA in the unconstrained case?

> Deduce GDA from simultaneously played no-regret algorithms.

IHETil  Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 33 EP



An informative example: unconstrained bilinear game

o Bilinear game are linear in both players: Fz = (My, —MTx)

o Captures the core problem: rotation

mingepn Maxyepm (T, My)
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Remarks: o The last iterate diverges!

o The average iterate converges as O(1/v/'T) if we take v o< 1/ v
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Can we improve on the O(1/+/T) rate for the unconstrained bilinear game?
o Extragradient (EG) [2] takes an extrapolated step:

AT =2t — g F (2t — yF2Y) (EG)
15 N
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x Iteration ke
Remarks: o The average iterate converges at a faster O(1/T).

o Warning! Bilinear can be misleading—rate for last iterate is linear (see next week).
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Warm-up to operator view: Analyzing GDA z't! = 2t — ~Fz?

o Under what conditions can we take the GDA stepsize 7 constant (and improve the rate to O(1/T))?
o Goal: find z* € zer F' where

zer F := {z ¢ R | Fz = 0}.

o To answer, we will begin by analyzing one step of the algorithm.

Proof.

3)

254 = 2*|12 = ||2* — vFz* — 2*|1? @)
= |l = 2* |12 + 2IF2 |2 - 29(F2t, 2" — 2*)
. (to be continued)

Remark: o We need a way to convert (Fzt 2t — 2*) into ||F2t||2. Then we would decrease:

2+ — 242 < 2t 2 - el Fa R, (5)
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Cocoerciveness

o Cocoercivity assumption can “convert” (Fzt, 2t — 2*) into ||Fzt||? (i.e., what we will need)

Definition (Cocoercivity)

An operator F : R% — R% s said to be 3-cocoercive for 3 > 0 if

(Fz—F2,z—2') > B||Fz — FZ'|> Vz,2 eR% (6)

Remarks: o Relationship to other structural assumptions:

> [B-cocoercivity implies monotonicity and /%-Lipschitz continuity (defined later).
> For a convex function f, V f is L-Lipschitz continuous iff V f is %—cocoercivity.

> A p-strongly-monotone and L-Lipschitz continuous operator is also ﬁ—cocoercive.

o Due to the second point the result we are proving will apply to smooth convex minimization.

Interpretation: o Geometrically, (Fzt, 2t — z*) > B||F2*||? ensure —Fz! points towards the solution set.
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Analysis GDA (continued)

Proof (Cont.)

We can convert the inner product in (4) into ||Fzt||?, by using cocoercivity on z
Fz* = 0 by assumption,

t 2z* and recalling that

(F2%, 2" — 2*) = (F2* — F2*,2% — 2*) 2 B||F2* — F2*|? = | F2*||?,

such that (4) reduces to
254 = 2*||? < |l2* — 2% = (298 — V)IIF=*|I°.

Then, it is just a matter of summing and telescoping as follows:
T-1 T-1
mo VB = VIF2? <30 20 28 — 2*[|7 — |l2t+! — 2|2
= [12% = 2% 2 = 1277 = 2*)1 < 120 - 217,
from which it immediately follows that

12°—=* 12

1 —~7-1 12
?tho 1E2° < Grp=y7

The proof is complete by noting that the minimum is always smaller than the average.
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GDA convergence under cocoercivity

Theorem (Best iterate of (GDA))

Suppose F : R% — R? js B-cocoercive. Consider the sequence (2)ten generated by (GDA) with v < 23. Then
for all z* € zer F,

) 2 o 120 =24
min |Fz** £ ——=. @)
te{o,...,T—1} v(28 —7)T
Remarks: o The full range v € (0,2p) is allowed but the “optimal” choice is v = 3.

o The convergence rate is O(1/T).

o Implies convergence of (fixed stepsize) gradient descent for convex and %—Lipschitz.

o The best iterate can be hard to select in practice

> next week we will derive /ast iterate convergence results
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Beyond cocoercivity: Lipschitz and monotone

o We have seen that cocoercivity implies monotone and Lipschitz, but the converse does not hold.
o Can we still get a O(1/T)-rate in this more general setting?

Definition (Monotone)

An operator F': R? — R? is said to be monotone if (Fz — Fz',z — 2') >0 Vz,2' € R%.

Examples: o For F = V f monotonicity reduces to convexity: (Vf(z) — Vf(z'),z—2') >0

o For F = (V4 f,—Vyf) monotonicity reduces to convex-concavity of f(z,y)
Definition (Lipschitz)

An operator I : R* — R? is said to be L-Lipschitz for L > 0 if |[Fz — F2'|| < L||z — 2’| Vz,2’ € R

Example (Bilinear game)

A simple example of an operator which is monotone and Lipschitz but is not cocoercive, is a skew-symmetric
linear operator F' = M € R?*? (aka bilinear game).

Exercise: o Convince yourself.
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Cocoercivity of H = id —F
o Cocoercivity of F' is the key to convergence for GDA. What operator is cocoercive when F' is only Lipschitz?
o First attempt: the GDA update rule (also known as the forward operator)

Hz=z—~Fz. (8)

o A quick computation shows that H is indeed cocoercive!

Lemma

Suppose F is L-Lipschitz and v < 1/L. Then, the mapping H = id —yF is 1/2-cocoercive for all u € R?, where
id is the identity operator. Specifically, it holds that

(Hz— HZ,z— %) > }|Hz — HZ|® + $(1 — +*L?)

|z—z||? Vz,zeR% (9)
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Cocoercivity of H = id —F
o Cocoercivity of F' is the key to convergence for GDA. What operator is cocoercive when F' is only Lipschitz?
o First attempt: the GDA update rule (also known as the forward operator)

Hz=z—~Fz. (8)

o A quick computation shows that H is indeed cocoercive!

Lemma

Suppose F is L-Lipschitz and v < 1/L. Then, the mapping H = id —yF is 1/2-cocoercive for all u € R?, where
id is the identity operator. Specifically, it holds that

(Hz— HZ,z— %) > 3| Hz — HZ|? + $(1 — 2 L?)||2 — 2| Vz,z e R (9)
Proof.
(Hz — Hz,z—z) = (Hz— Hz,Hz — Hz + vFz — vFz)
1 _ v 1
= SllHz = HZ|* = - ||Fz = F2||* + ||z — 2| (10)
1
2 7||HZ - H2H27
2
where the last line follows from Lipschitzness of F' and from assuming v < 1/L. o
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Using H = id —F": Convergence for monotone and Lipschitz

o Building on the cocoercivity of the forward operator H, we can motivate the forward-forward method:

zt = Hzt (FF)
A =2t —(Hzt — HZY),
where a > 0 is a step-size
Theorem (Best z-iterate of FF)
Suppose F : R% — R% is L-Lipschitz and monotone. Consider the sequence (2%)ten generated by FF with
v <1/L and a € (0,1). Then, for all z* € zer F, it holds that
0 _ *||12
min [[Hzt - H2t|? < 12— 2] (11)
te{0,...,T—1} ol —a)T
Remark: o By the update rule, Hz* — Hz* = yFZz!, so convergence is given in terms of 72| Fz?||2.

o For this proof, we need to have a < 1.

o When o = 1, we stumble upon EG.
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Proof using H = id —F

o For the GDA analysis before, we use cocoercivity of F' to cancel ||zt+1 — 2t||2 = 42| F2||?

o Cocoercivity of H gives us —||Hz — HZ||?, motivating the following update rule
2 =2t —o(HZ - HEY),
where o > 0 is a step-size and z! is to be defined.

Proof.

Let us attempt to prove convergence by expanding the iterate as in the cocoercive case. Hence, we have

|27 — 2%|12 = ||zt — 2*||® + o®||H2t — HZY||? — 2(H 2t — HZE, 2t — 2*). (12)
We cannot immediately apply cocoercivity to the last term so we expand as follows
(Hzt — HZ, 2t — 2*) = (Hz* — HZ?, 2% — 2) + (Hzt — HZ%, 70 — 2¥)
(cocoercive H) > %HHZt = fIZtH2 ar <Hzt = Hit,ft = Z*> (13)

(monotone F—see remark) > %HHZt = I’Ift”2

. (to be continued, also see Slide 24)

Remark: o Pick Hz? — Hz! = vFZz! so monotonicity applies to the last term.

o Equivalently, we can choose zt = Hzt.
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Proof using H = id —F

Proof (Cont.)
Continuing from (12) and using (13), we have

|28 — 2%)|2 = ||zt — 2*||% + o?||Hzt — HZ||? — 20(Hzt — Hz?, 2% — z*)

14
13) < |2 = 2*||* — a(l - o) | Hz" — HZ'|%. o

Summing and telescoping 14 completes the proof.

IGEHEEI]  Online Learning in Games | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 33



Convergence of best 2! and equivalence to extragradient EG

o What if we want to characterize another commonly used criterion ||[Fzt||? < ¢ instead?

o We can use the additional “good” term (||z¢ — zt||2) from cocoercivity of H:

Theorem (Best z-iterate of FF)

Suppose F : R% — R% is L-Lipschitz and monotone. Consider the sequence (2%)ten generated by FF with
v <1/L and o € (0,1]. Then, for all z* € zer F, it holds that

: t_ stp2 [[2° — =*|?
min |z = 2*|* < ——————. (15)
te{0,...,T—1} a(l —~2L%)T
Remarks: o From the update rule, 2t — 2! = yF2t, so we get convergence of v2||Fzt||2.

o The scheme reduces to extragradient (EG) for o =1

zt = Hzt = 2t — yF2t,

2Tl =2t —a(Hz' — HZ) = 2t — anyFZL.

o Using H will help us generalize to the constrained cases.
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Constrained problems as monotone inclusions

o So far the performance measure has been: ||Fz|| <e.
o How can we treat constraints (and more generally a nonsmooth objective term g)?

The proximal operator

1
prox,,(z) := arg min {)\g(z') + =2 — z||2} .
2/ €R4 2

Remark: o The proximal operator reduces to a projection on Z C R% when g is the indictor function

0 zeZ
oo otherwise

9(z) =6z(2) :== {
o Under convexity we can equivalent express the prox using the first order stationarity condition
0€XNg(Z)+2 —2 & 2 =(id+XNg) 1(2) = Jray (2)
~—~
resolvent

o Note that dg is a set-valued operator (A : R? =3 R?): for any z it assigns a subset dg(z) C RY.
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Constrained problems as monotone inclusions: an overview

min max f(z,y) min max f(z,y) + g1(z) — g2(y) 0€ Sz:=Fz+ Az with z = (z,y)
zEX yey zER™ yeER™
0 zeX
reX gl(m):SX(x)z{ )
oo otherwise
9g91(z) = Nx(z) ={v | {(v,2’ —z) <0Va' € X} | Az = (0g1(x),dg2(y))
() prox,,, (z) = (id +A3g) ! (x) (id+AA) "1z = (proxyg, (), proxyg, (¥))
X convex g1 is proper Isc convex A is maximally monotone
//
/
Remarks: © So far implicitly assumed single-valued operators (e.g., F': R4 — Rd) / ¢
o The operator A is set-valued (consider for instance the normal cone Ny)- / ]
o To indicate A assigns a subset of R%, we write A : RY =3 RY NF(;;‘//
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Properties of the resolvent J) 4 := (id +)\A4)7!
o To treat constraints , we can consider inclusions: find z € R such that
0€ Sz:=Fz +Az

o Unlike F : R — R9, we cannot use Az? in the algorithm since A : R = R? is set-valued!

o Instead, we use the resolvent to evaluate A (it helps to think of it as a projection),

2 =(d4+XA)" . o 2 ez—)AZ.

Lemma
When A : RY 3 RY s maximally monotone, then the resolvent J 4 is
(i) single-valued, i.e., Jxa : R4 — RY,

(i) defined everywhere on RY.

Remarks: o From an algorithmic perspective both are crucial.
o Claim (i) is easy to prove, while (ii) is difficult to prove (in general)

o Maximality is a technical (but important) requirement (reviewed in the appendix)
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Modifying FF to handle a more general inclusion

oletzerS:={z€R?|0€ Sz}

Inclusion problem
Find 2 € zer S where S := A+ F.
Remarks: o We could still run FF which only involves the operator F'.
o Issue: Theorem 6 shows convergence of ||Hz! — Hz!|| = ||yFZzt|| and not ||Fzt + AZY||.

o We can modify the update rule for z* to satisfy this requirement

Hz' — H7' € yFz' + yAZ' & H2' € 28 + yAZ!

& Hz' e (id +yA)z!
(resolvent lemma) <= zt = (id +')/A)71Hzt.
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Convergence under constraints
o Based on the previous derivation, it is clear that we should modify FF as follows:

st — id A —1 H t7
7 = S~ (FBF)

A =2t —a(Hzt — HZY).

o We almost immediately obtain the following theorem.

Theorem (Best z-iterate of FBF)

Suppose F : R — R% js L-Lipschitz and monotone and A : R = R? js maximally monotone. Consider the
sequence (zt)ten generated by FBF with v < 1/L and o € (0,1). Then, for z* € zer S, where zer denotes the
optimality set, we have the following hold

t ez o 12° =24
min |Hz" — HZ"||® < —— . (best iterate guarantee)
te{0,...,T—1} a(l—a)T
Remarks: o We could rewrite as dist?(0,vSz!) < ||Hzt — Hz!||? where dist(v, V) := min,cy [|[v — v/

o Compare such a guarantee to a “average iterate guarantee”
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Proof for FBF

o The proof is almost immediate following the unconstrained result.

Proof.

> Cocoercivity of H holds regardless of the redefinition of z¢.
> The only step to re-verify is the use of monotonicity in (13).
> We will use that S = F' + A is monotone when F' and A are monotone.

> Together with the definition, Hz! — Hz! € 7SZzt, and the fact that 0 € Sz*, it follows that

(Hz' — Hzt, 2t — 2*) > 0.
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Solution concepts: Monotone inclusions and variational inequalities
Monotone inclusion (MI)
So far we have considered the monotone inclusions using
find z* € R? such that 0 € Fz* 4+ Az*, (M1)
where F: R% — R? is Lipschitz and A : R 3 R? is maximally monotone.
Remark: o For constrained problems take A = Nz := {v | (v,2’ — 2) <0, V2’ € Z} (i.e., normal cone).
Variational inequality
> The Stampacchia variational inequality
find z* € R? such that (Fz*,z —2*) >0 Vz € Z. (SVI)
> The Minty variational inequality

find 2* € R? such that (Fz,z —2*) >0 Vz € 2. (MVI1)

Remarks: o (SVI) is the first order condition of a (possibly nonconvex) constrained problem.

o A star-convex function satisfies (MVI): Notice the close resemblance to linearized regret.
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Solution concepts: relationships

o We have the following relations (see [5, 1] and [3] for additional discussion)

Lemma

For F:R?* — R? and A = Nz, the following holds
1. (MI) & (SVI)
2. (SVI) <= (MVI) if F is Lipschitz and Z is convex
3. (SVI) = (MVI) if F is monotone

Proof.

The equivalence between (MI) and (SVI) follows immediately from the following argument
0€ Fz* + Nz(z*) & —Fz* € Nz(z*) & (Fz*,z—2")>0 Vze2Z.
The third claim follows directly from the definition of monotonicity. o

Remark: Consequently we can translate our (best iterate) convergence results for (MI) into (SVI).

[¢]

o We will now show convergence for the average iterate.

o As we will see, it is easier to show convergence to (MVI).
[¢]

Through monotonicity we directly obtain the (SVI).
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Restricted gap function

o For Vls, we will use the restricted gap function [4] as a measure of progress

Gape (2) = S*uelzZ(FZ*,Z*Z*) +9(2) —9(z"), (16)

where F : R¢ — R%, g is a proper convex lower semicontinuous function, and C is a compact subset of R?.

o Without restricting z* to C: the gap could be infinite everywhere (except at the solution)!

Example

Consider the unconstrained problem mingecr maxyecr vy where Fz = (Vg f(x,y), —Vy f(z,y)) = (y, —x).

Remark: o If not restricted:

> the gap would be infinite except at the unique solution z* = (0, 0).

> Thus useless as a measure of progress for approximate methods.
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Restricted gap function: conversion

o We will now show a “last” iterate guarantee on the average iterate in Vls.

o A guarantee on the iterates on average is sufficient... (due to monotonicity!)

Lemma
Let S:=F + A, F:R* — R?% be monotone and A = Og, where g is proper Isc convex. Generate (z%)scn and

take 2T = % 3:01 zt. Then for all z* € zer S which also belongs to C,
Gape(27) < & tT;OI (vt 2t — z*) Vot € Szt (average iterate guarantee)
Remarks: o Compare this guarantee with “best iterate guarantee”
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Proof of restricted gap function conversion lemma

o The lemma below follows directly from the convexity of dg and the monotonicity of F.

Proof.
Let 2* € zer S and ul € 9g(z'). From convexity of 9g, we have that for all u € 9g(2)

9(2) < g(z*) + (u, 2 — 2%), (17)

from which it immediately follows that

T-1
=0

@) > SO HF2t 2t — 2%) + g(3T) — g(2*) 2 (Fz*, 2T — 2*) + g(87) — g(2*),

3:01<th+ut,zt—z*) = Fzt 2t — 2%) + (ut, 2t — 2*)

where the last line follows from monotonicity of F'. The proof is complete by restricting z* to C. o
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Restricted gap function: warmup by revisiting GDA

o Applying cocoercivity to the inner product in (4) is a choice. We can also apply cocoercivity to the norm:
2
2 =242 < l2f = 24017 = (27 - g)(th,zt —2%).

o Summing and telescoping, we get convergence on a different performance measure (assuming v < 23):

T-1
1 0 _ %2
- § <th72:t 7Z*> S HZ Z'y H ,
T v(2 — E)T
t=0

o The above can be converted into a guarantee on the restricted gap using the previous lemma:

Theorem (Gap for average iterate of (GDA))

Suppose F : R% — R9 js B-cocoercive. Consider the sequence (z!)tcy generated by (GDA) with v < 28. Then,

for all z* € zer F' and any compact neighborhood C C R¢ of z*, it holds that

" 120 — 2|12

Gape(27) < :
(2-3)T

2T _ 1 T—1
where 21 = T i—0 2
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Restricted gap: forward-backward-forward (FBF)

o A similar argument as in the analysis for (GDA) also applies to (FBF).

Theorem (Gap for average iterate of FBF)

Suppose F : R% — R% js L-Lipschitz and monotone. Consider the sequence (2Y)ten generated by FBF with
v <1/L and a € (0,1]. Then, for all z* € zer S and any compact neighborhood C C R? of z*,

0 * (|2
=3
Gapc(éT) < II H )
20T
2T _ 1 T—1 4
where 2% = % » | Z"
Remark: o Since (SVI) < (MI) under monotonicity, the average iterate also converges in norm.
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Proof of restricted gap for FBF

Proof.

> The descent inequality before applying monotonicity and keeping “good” term from cocoercivity of H:
2 — 2712 < 12t = 212 — a1 — )|z — Hat|?
—2a(Hzt — Hzt, 2t — 2*) — (1 — v2L?)| 2t — 2F|2.
> The norms can be made negative, so by summing and telescoping we get:

Tr—1

0 * 12
t ot % lz"—=="1| t t
i (V552 fz)gw Yo' € Szt

> Converting into the restricted gap function through the gap lemma finishes the proof.
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Summary

We have seen:
o Best iterate and average iterate (next week last iterate)
o Descent inequality = convergence of residual, operator norm, gap (next week iterate distance)

o How we arrived at extragradient-like schemes is still mysterious (next week we will see two elegant derivations)
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Monotone operators

o A set-valued mappings, S : R™ = R%, maps each input z € R™ to a subset Sz C R%.

o The domain of S is defined as
dom S = {z € R" | Sz # 0}. (18)

o All input-value pairs are called the graph of S, denoted as

gph S = {(z,y) | y € Sz}, (19)

and the inverse of S is defined through its graph via

gph S = {(y, ) | y € Sz} (20)

Notice that, by the definition, the inverse always exists.
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Maximal monotonicity

Definition (Monotone)
An operator S : R® = R? is said to be monotone if (u — v,z —y) >0 V(z,u),(y,v) € gph S.

Remark: o A more stringent condition, which might seem technical at first, is the notion of maximality.

Definition (Maximally monotone)

An operator S : R” = R? is said to be maximally monotone if it is not strictly contained within the graph of
another monotone operator.

Remarks: o We should not be able to add (z,u) ¢ gph A to gph S without violating monotonicity.
o Geometrically, for 1-dim (A : R = R), it corresponds to having no "holes" in the line
characterizing the graph.

Maximal monotonicity is important algorithmically
> Monotonicity ensures resolvent J4 = (id +A)~! is single valued. If J4 was instead set-valued, then one
update of the iteration 2fT1 = J4(2%) could potentially leave us with a set of iterates!

> Maximality ensures dom J4 = R%. If the domain was further restricted then the update rule zt*t1 = Jz
would be undefined for some input.

25
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