Online Learning in Games

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture by Thomas Pethick

Lecture 5: A practitioner's guide to monotone operators (Part I)

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-735 (Spring 2024)

License Information for Online Learning in Games Slides

- ▶ This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - ▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
 - ► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes unless they get the licensor's permission.
- ▶ Share Alike
 - ► The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- ► Full Text of the License

Logistics

Credits 4

Lectures Monday 9:15-11:00 (ELG120)

Practical hours Monday 9:15-12:00 and 14:15-17:00 starting 3rd of April (ELG116)

Prerequisites Previous coursework in calculus, linear algebra, and probability is required. Familiarity with optimization is useful.

Grading Preparation & presentation of a lecture given in week 14 (cf., coursebook).

Moodle https://moodle.epfl.ch/course/view.php?id=17204.

Course book https://edu.epfl.ch/coursebook/en/online-learning-in-games-EE-735

LIONS Stratis Skoulakis, Kimon Antonakopoulos, Thomas Pethick, Igor Krawczuk

Introduction

 \circ Offline minimax problems: Last week we showed $\mathcal{O}(1/\sqrt{T})$ rate using no-regret algorithms (FTRL/OGD).

Goals of today

- 1. Show when we can obtain a $\mathcal{O}(1/T)$ rate with the gradient descent ascent method (GDA)
- 2. Extend the class for which we have a $\mathcal{O}(1/T)$ rate by using extragradient-like schemes

- o For a basic exposure to extragradient-like schemes, see Math of Data.
- o This material introduces monotone operators (the "right" abstraction).
- $\circ~$ We will rediscover sufficient structures for $\mathcal{O}(1/T)$ rate through the convergence analysis.

A motivating example

Example (Unconstrained convex-concave minimax)

Consider the following (unconstrained) minimax problem

$$\min_{x \in \mathbb{R}^n} \max_{y \in \mathbb{R}^m} f(x, y), \tag{1}$$

where f is differentiable, $f(\cdot,y)$ is convex $\forall y \in \mathbb{R}^m$ and $f(x,\cdot)$ is concave $\forall x \in \mathbb{R}^n$.

Remarks:

- o There are many solution concepts for optimization problems. Here are two relevant ones:
 - first-order stationarity, i.e., for unconstrained a point (x^*, y^*) such that

$$\nabla_x f(x^\star, y^\star) = 0$$
 and $\nabla_y f(x^\star, y^\star) = 0$

 \triangleright saddle point or more generally the Nash equilibrium, i.e., a point (x^*, y^*) such that

$$f(x^*, y) \le f(x^*, y^*) \le f(x, y^*) \quad \forall x \in \mathbb{R}^n, y \in \mathbb{R}^m.$$

- For convex-concave problems, they coincide
- o For this reason, we will start with the first-order stationarity and describe more later

A motivating example

Example (Unconstrained convex-concave minimax)

Consider the following (unconstrained) minimax problem

$$\min_{x \in \mathbb{R}^n} \max_{y \in \mathbb{R}^m} f(x, y), \tag{1}$$

where f is differentiable, $f(\cdot,y)$ is convex $\forall y \in \mathbb{R}^m$ and $f(x,\cdot)$ is concave $\forall x \in \mathbb{R}^n$.

An operator view:

- o The gradient $abla_x f(\cdot,y): \mathbb{R}^n o \mathbb{R}^n$ is an operator
- $\circ~$ We can compactly write z=(x,y) and $F(z)=(\nabla_x f(x,y), -\nabla_y f(x,y))$
- $\circ \,$ The operator is thus a mapping $F: \mathbb{R}^d \to \mathbb{R}^d$ where d=n+m.
- o The first order stationary point can be written as

$$F(z) = 0. (2)$$

- We will write Fz := F(z) for short.
- Note that F is not necessarily a linear operator: $F(z_1 + z_2) \neq Fz_1 + Fz_2$ in general.

Gradient descent ascent: why we flip the sign for y in $Fz = (\nabla_x f(x,y), -\nabla_y f(x,y))$

Gradient descent ascent

Consider the (simultaneous) gradient descent ascent (GDA)

$$x^{t+1} = x^t - \gamma_t \nabla_x f(x^t, y^t),$$

$$y^{t+1} = y^t + \gamma_t \nabla_y f(x^t, y^t).$$

Remarks:

 \circ Using F we can compactly write the update as

$$z^{t+1} = z^t - \gamma_t F z^t \tag{GDA}$$

 \circ The average iterate of GDA converges for convex-concave minimax if γ_t is diminishing

$$\gamma_t \propto 1/\sqrt{t}$$

Gradient descent ascent: why we flip the sign for y in $Fz = (\nabla_x f(x,y), -\nabla_y f(x,y))$

Gradient descent ascent

Consider the (simultaneous) gradient descent ascent (GDA)

$$x^{t+1} = x^t - \gamma_t \nabla_x f(x^t, y^t),$$

$$y^{t+1} = y^t + \gamma_t \nabla_y f(x^t, y^t).$$

Remarks:

 \circ Using F we can compactly write the update as

$$z^{t+1} = z^t - \gamma_t F z^t \tag{GDA}$$

 \circ The average iterate of GDA converges for convex-concave minimax if γ_t is diminishing

$$\gamma_t \propto 1/\sqrt{t}$$

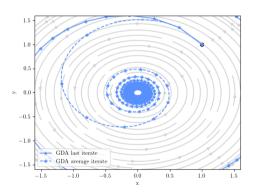
Exercise:

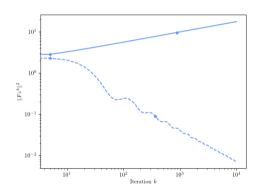
- What online algorithms reduce to GDA in the unconstrained case?
 - Deduce GDA from simultaneously played no-regret algorithms.

An informative example: unconstrained bilinear game

 $\min_{x \in \mathbb{R}^n} \max_{y \in \mathbb{R}^m} \langle x, My \rangle$

- \circ Bilinear game are linear in both players: $Fz = (My, -M^{\top}x)$
- o Captures the core problem: rotation



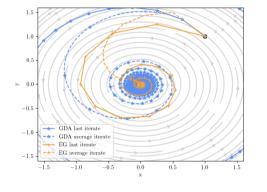


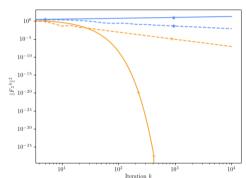
- The last iterate diverges!
- $\circ~$ The $\it average$ iterate converges as $\mathcal{O}(1/\sqrt{T})$ if we take $\gamma_t \propto 1/\sqrt{t}$

Can we improve on the $\mathcal{O}(1/\sqrt{T})$ rate for the unconstrained bilinear game?

o Extragradient (EG) [2] takes an extrapolated step:

$$z^{t+1} = z^t - \gamma F(z^t - \gamma F z^t) \tag{EG}$$





- $\circ\,$ The average iterate converges at a faster $\mathcal{O}(1/T).$
- o Warning! Bilinear can be misleading—rate for last iterate is linear (see next week).

Warm-up to operator view: Analyzing GDA $z^{t+1} = z^t - \gamma F z^t$

- \circ Under what conditions can we take the GDA stepsize γ constant (and improve the rate to $\mathcal{O}(1/T)$)?
- o Goal: find $z^* \in \operatorname{zer} F$ where

$$\operatorname{zer} F := \{ z \in \mathbb{R}^d \mid Fz = 0 \}. \tag{3}$$

o To answer, we will begin by analyzing one step of the algorithm.

Proof.

$$||z^{t+1} - z^{\star}||^{2} = ||z^{t} - \gamma F z^{t} - z^{\star}||^{2}$$

$$= ||z^{t} - z^{\star}||^{2} + \gamma^{2} ||F z^{t}||^{2} - 2\gamma \langle F z^{t}, z^{t} - z^{\star} \rangle$$
(4)

... (to be continued)

Remark:

• We need a way to convert $\langle Fz^t, z^t - z^* \rangle$ into $||Fz^t||^2$. Then we would decrease:

$$||z^{t+1} - z^{\star}||^{2} \stackrel{?}{\leq} ||z^{t} - z^{\star}||^{2} - \epsilon ||Fz^{t}||^{2}.$$
 (5)

Cocoerciveness

 \circ Cocoercivity assumption can "convert" $\langle Fz^t, z^t - z^{\star} \rangle$ into $\|Fz^t\|^2$ (i.e., what we will need)

Definition (Cocoercivity)

An operator $F:\mathbb{R}^d o \mathbb{R}^d$ is said to be eta-cocoercive for eta>0 if

$$\langle Fz - Fz', z - z' \rangle \ge \beta \|Fz - Fz'\|^2 \quad \forall z, z' \in \mathbb{R}^d.$$
 (6)

Remarks:

- o Relationship to other structural assumptions:
 - ightharpoonup eta-cocoercivity implies monotonicity and $rac{1}{eta}$ -Lipschitz continuity (defined later).
 - For a convex function f, ∇f is L-Lipschitz continuous iff ∇f is $\frac{1}{L}$ -cocoercivity.
 - ightharpoonup A μ -strongly-monotone and L-Lipschitz continuous operator is also $\frac{\mu}{L^2}$ -cocoercive.
- o Due to the second point the result we are proving will apply to smooth convex minimization.

Interpretation:

 \circ Geometrically, $\langle Fz^t, z^t - z^\star \rangle \geq \beta \|Fz^t\|^2$ ensure $-Fz^t$ points towards the solution set.

Analysis GDA (continued)

Proof (Cont.)

We can convert the inner product in (4) into $||Fz^t||^2$, by using cocoercivity on z^t, z^* and recalling that $Fz^* = 0$ by assumption,

$$\langle Fz^t, z^t - z^{\star} \rangle = \langle Fz^t - Fz^{\star}, z^t - z^{\star} \rangle \ge \beta \|Fz^t - Fz^{\star}\|^2 = \|Fz^t\|^2,$$

such that (4) reduces to

$$||z^{t+1} - z^{\star}||^2 \le ||z^t - z^{\star}||^2 - (2\gamma\beta - \gamma^2)||Fz^t||^2.$$

Then, it is just a matter of summing and telescoping as follows:

$$\begin{split} \sum_{t=0}^{T-1} (2\gamma\beta - \gamma^2) \|Fz^t\|^2 &\leq \sum_{t=0}^{T-1} \|z^t - z^\star\|^2 - \|z^{t+1} - z^\star\|^2 \\ &= \|z^0 - z^\star\|^2 - \|z^{T-1} - z^\star\|^2 \leq \|z^0 - z^\star\|^2 \end{split}$$

from which it immediately follows that

$$\frac{1}{T} \sum_{t=0}^{T-1} \|Fz^t\|^2 \le \frac{\|z^0 - z^*\|^2}{(2\gamma\beta - \gamma^2)T}.$$

The proof is complete by noting that the minimum is always smaller than the average.

GDA convergence under cocoercivity

Theorem (Best iterate of (GDA))

Suppose $F: \mathbb{R}^d \to \mathbb{R}^d$ is β -cocoercive. Consider the sequence $(z^t)_{t \in \mathbb{N}}$ generated by (GDA) with $\gamma < 2\beta$. Then for all $z^* \in \operatorname{zer} F$,

$$\min_{t \in \{0, \dots, T-1\}} \|Fz^t\|^2 \le \frac{\|z^0 - z^*\|^2}{\gamma(2\beta - \gamma)T}.$$
 (7)

- \circ The full range $\gamma \in (0, 2\beta)$ is allowed but the "optimal" choice is $\gamma = \beta$.
- \circ The convergence rate is $\mathcal{O}(1/T)$.
- \circ Implies convergence of (fixed stepsize) gradient descent for convex and $\frac{1}{\beta}$ -Lipschitz.
- o The best iterate can be hard to select in practice
 - next week we will derive *last* iterate convergence results

Beyond cocoercivity: Lipschitz and monotone

- o We have seen that cocoercivity implies monotone and Lipschitz, but the converse does not hold.
- \circ Can we still get a $\mathcal{O}(1/T)$ -rate in this more general setting?

Definition (Monotone)

An operator $F: \mathbb{R}^d \to \mathbb{R}^d$ is said to be monotone if $\langle Fz - Fz', z - z' \rangle \geq 0 \quad \forall z, z' \in \mathbb{R}^d$.

Examples:

- $\circ \,$ For $F=\nabla f$ monotonicity reduces to convexity: $\langle \nabla f(z) \nabla f(z'), z-z' \rangle \geq 0$
- $\circ \:$ For $F = (\nabla_x f, -\nabla_y f)$ monotonicity reduces to convex-concavity of f(x,y)

Definition (Lipschitz)

An operator $F: \mathbb{R}^d \to \mathbb{R}^d$ is said to be L-Lipschitz for L > 0 if $||Fz - Fz'|| \le L||z - z'|| \quad \forall z, z' \in \mathbb{R}^d$.

Example (Bilinear game)

A simple example of an operator which is monotone and Lipschitz but is not cocoercive, is a skew-symmetric linear operator $F=M\in\mathbb{R}^{d\times d}$ (aka bilinear game).

Exercise:

o Convince yourself.

Cocoercivity of $H = id - \gamma F$

- \circ Cocoercivity of F is the key to convergence for GDA. What operator is cocoercive when F is only Lipschitz?
- o First attempt: the GDA update rule (also known as the *forward* operator)

$$Hz = z - \gamma Fz. \tag{8}$$

 $\circ\,$ A quick computation shows that H is indeed cocoercive!

Lemma

Suppose F is L-Lipschitz and $\gamma \leq 1/L$. Then, the mapping $H = \mathrm{id} - \gamma F$ is 1/2-cocoercive for all $u \in \mathbb{R}^d$, where id is the identity operator. Specifically, it holds that

$$\langle Hz - H\bar{z}, z - \bar{z} \rangle \ge \frac{1}{2} \|Hz - H\bar{z}\|^2 + \frac{1}{2} (1 - \gamma^2 L^2) \|z - \bar{z}\|^2 \quad \forall \bar{z}, z \in \mathbb{R}^d.$$
 (9)

Cocoercivity of $H = id - \gamma F$

- \circ Cocoercivity of F is the key to convergence for GDA. What operator is cocoercive when F is only Lipschitz?
- o First attempt: the GDA update rule (also known as the forward operator)

$$Hz = z - \gamma Fz. \tag{8}$$

 \circ A quick computation shows that H is indeed cocoercive!

Lemma

Suppose F is L-Lipschitz and $\gamma \leq 1/L$. Then, the mapping $H = \mathrm{id} - \gamma F$ is 1/2-cocoercive for all $u \in \mathbb{R}^d$, where id is the identity operator. Specifically, it holds that

$$\langle Hz - H\bar{z}, z - \bar{z} \rangle \ge \frac{1}{2} \|Hz - H\bar{z}\|^2 + \frac{1}{2} (1 - \gamma^2 L^2) \|z - \bar{z}\|^2 \quad \forall \bar{z}, z \in \mathbb{R}^d.$$
 (9)

Proof.

$$\langle Hz - H\bar{z}, z - \bar{z} \rangle = \langle Hz - H\bar{z}, Hz - H\bar{z} + \gamma F\bar{z} - \gamma Fz \rangle$$

$$= \frac{1}{2} \|Hz - H\bar{z}\|^2 - \frac{\gamma^2}{2} \|F\bar{z} - Fz\|^2 + \frac{1}{2} \|\bar{z} - z\|^2$$

$$\geq \frac{1}{2} \|Hz - H\bar{z}\|^2,$$
(10)

where the last line follows from Lipschitzness of F and from assuming $\gamma \leq 1/L$.

Using $H = id - \gamma F$: Convergence for monotone and Lipschitz

 \circ Building on the cocoercivity of the forward operator H, we can motivate the forward-forward method:

$$\begin{split} \bar{z}^t &= Hz^t \\ z^{t+1} &= z^t - \alpha(Hz^t - H\bar{z}^t), \end{split} \tag{FF}$$

where $\alpha > 0$ is a step-size

Theorem (Best \bar{z} -iterate of FF)

Suppose $F: \mathbb{R}^d \to \mathbb{R}^d$ is L-Lipschitz and monotone. Consider the sequence $(z^t)_{t \in \mathbb{N}}$ generated by FF with $\gamma \leq 1/L$ and $\alpha \in (0,1)$. Then, for all $z^\star \in \operatorname{zer} F$, it holds that

$$\min_{t \in \{0, \dots, T-1\}} \|Hz^t - H\bar{z}^t\|^2 \le \frac{\|z^0 - z^*\|^2}{\alpha(1-\alpha)T}.$$
 (11)

- \circ By the update rule, $Hz^t H\bar{z}^t = \gamma F\bar{z}^t$, so convergence is given in terms of $\gamma^2 \|F\bar{z}^t\|^2$.
- \circ For this proof, we need to have $\alpha < 1$.
- \circ When $\alpha = 1$, we stumble upon EG.

Proof using $H = id - \gamma F$

- $\circ\,$ For the GDA analysis before, we use cocoercivity of F to cancel $\|z^{t+1}-z^t\|^2=\gamma^2\|Fz^t\|^2$
- \circ Cocoercivity of H gives us $-\|Hz-Har{z}\|^2$, motivating the following update rule

$$z^{t+1} = z^t - \alpha (Hz^t - H\bar{z}^t),$$

where $\alpha > 0$ is a step-size and \bar{z}^t is to be defined.

Proof.

Let us attempt to prove convergence by expanding the iterate as in the cocoercive case. Hence, we have

$$||z^{t+1} - z^{\star}||^2 = ||z^t - z^{\star}||^2 + \alpha^2 ||Hz^t - H\bar{z}^t||^2 - 2\alpha \langle Hz^t - H\bar{z}^t, z^t - z^{\star} \rangle.$$
(12)

We cannot immediately apply cocoercivity to the last term so we expand as follows

$$\langle Hz^t - H\bar{z}^t, z^t - z^{\star} \rangle = \langle Hz^t - H\bar{z}^t, z^t - \bar{z}^t \rangle + \langle Hz^t - H\bar{z}^t, \bar{z}^t - z^{\star} \rangle$$

$$(\text{cocoercive } H) \geq \frac{1}{2} \|Hz^t - H\bar{z}^t\|^2 + \langle Hz^t - H\bar{z}^t, \bar{z}^t - z^{\star} \rangle$$

$$(\text{monotone } F \text{—see remark}) \geq \frac{1}{2} \|Hz^t - H\bar{z}^t\|^2$$

$$(13)$$

... (to be continued, also see Slide 24)

- \circ Pick $Hz^t-H\bar{z}^t=\gamma F\bar{z}^t$ so monotonicity applies to the last term.
- \circ Equivalently, we can choose $\bar{z}^t = Hz^t$.

Proof using $H = id - \gamma F$

Proof (Cont.)

Continuing from (12) and using (13), we have

$$||z^{t+1} - z^{\star}||^{2} = ||z^{t} - z^{\star}||^{2} + \alpha^{2} ||Hz^{t} - H\bar{z}^{t}||^{2} - 2\alpha \langle Hz^{t} - H\bar{z}^{t}, z^{t} - z^{\star} \rangle$$

$$(13) \leq ||z^{t} - z^{\star}||^{2} - \alpha (1 - \alpha) ||Hz^{t} - H\bar{z}^{t}||^{2}.$$

$$(14)$$

Summing and telescoping 14 completes the proof.

Convergence of best z^t and equivalence to extragradient EG

- \circ What if we want to characterize another commonly used criterion $\|Fz^t\|^2 \leq \varepsilon$ instead?
- \circ We can use the additional "good" term $(\|z^t \bar{z}^t\|^2)$ from cocoercivity of H:

Theorem (Best z-iterate of FF)

Suppose $F: \mathbb{R}^d \to \mathbb{R}^d$ is L-Lipschitz and monotone. Consider the sequence $(z^t)_{t \in \mathbb{N}}$ generated by FF with $\gamma < 1/L$ and $\alpha \in (0,1]$. Then, for all $z^\star \in \operatorname{zer} F$, it holds that

$$\min_{t \in \{0, \dots, T-1\}} \|z^t - \bar{z}^t\|^2 \le \frac{\|z^0 - z^\star\|^2}{\alpha (1 - \gamma^2 L^2) T}.$$
 (15)

Remarks:

- \circ From the update rule, $z^t \bar{z}^t = \gamma F z^t$, so we get convergence of $\gamma^2 \|F z^t\|^2$.
- \circ The scheme reduces to extragradient (EG) for $\alpha=1$

$$\begin{split} \bar{z}^t &= Hz^t = z^t - \gamma Fz^t, \\ z^{t+1} &= z^t - \alpha (Hz^t - H\bar{z}^t) = z^t - \alpha \gamma F\bar{z}^t. \end{split}$$

 \circ Using H will help us generalize to the constrained cases.

Constrained problems as monotone inclusions

- \circ So far the performance measure has been: $||Fz|| \leq \varepsilon$.
- \circ How can we treat constraints (and more generally a nonsmooth objective term g)?

The proximal operator

$$\operatorname{prox}_{\lambda g}(z) := \operatorname*{arg\,min}_{z' \in \mathbb{R}^d} \left\{ \lambda g(z') + \frac{1}{2} \|z' - z\|^2 \right\}.$$

Remark:

 \circ The proximal operator reduces to a projection on $\mathcal{Z} \subseteq \mathbb{R}^d$ when g is the indictor function

$$g(z) = \delta_{\mathcal{Z}}(z) := egin{cases} 0 & z \in \mathcal{Z} \ \infty & ext{otherwise} \end{cases}$$

o Under convexity we can equivalent express the prox using the first order stationarity condition

$$0 \in \lambda \partial g(z') + z' - z \quad \Leftrightarrow \quad z' = (\operatorname{id} + \lambda \partial g)^{-1}(z) =: \underbrace{J_{\lambda \partial g}}_{\text{resolvent}}(z)$$

• Note that ∂g is a set-valued operator $(A : \mathbb{R}^d \rightrightarrows \mathbb{R}^d)$: for any z it assigns a subset $\partial g(z) \subseteq \mathbb{R}^d$.

Constrained problems as monotone inclusions: an overview

$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} f(x, y)$	$\min_{x \in \mathbb{R}^n} \max_{y \in \mathbb{R}^m} f(x, y) + g_1(x) - g_2(y)$	$0 \in Sz := Fz + Az$ with $z = (x, y)$
$x \in \mathcal{X}$	$g_1(x) = \delta_{\mathcal{X}}(x) = \begin{cases} 0 & x \in \mathcal{X} \\ \infty & \text{otherwise} \end{cases}$	
	$\partial g_1(x) = N_{\mathcal{X}}(x) = \{ v \mid \langle v, x' - x \rangle \le 0 \ \forall x' \in \mathcal{X} \}$	$Az = (\partial g_1(x), \partial g_2(y))$
$\Pi_{\mathcal{X}}(x)$	$\operatorname{prox}_{\lambda g_1}(x) = (\operatorname{id} + \lambda \partial g)^{-1}(x)$	$(\mathrm{id} + \lambda A)^{-1}z = (\mathrm{prox}_{\lambda g_1}(x), \mathrm{prox}_{\lambda g_2}(y))$
${\mathcal X}$ convex	g_1 is proper lsc convex	A is $maximally$ monotone

Remarks:

- $\circ\,$ So far implicitly assumed single-valued operators (e.g., $F\colon \mathbb{R}^d \to \mathbb{R}^d)$
- \circ The operator A is *set-valued* (consider for instance the normal cone $N_{\mathcal{X}}$)
- \circ To indicate A assigns a subset of \mathbb{R}^d , we write $A:\mathbb{R}^d \rightrightarrows \mathbb{R}^d$

C

Properties of the resolvent $J_{\lambda A} := (\operatorname{id} + \lambda A)^{-1}$

 \circ To treat constraints , we can consider inclusions: find $z \in \mathbb{R}^d$ such that

$$0 \in Sz := Fz + Az$$

- \circ Unlike $F: \mathbb{R}^d \to \mathbb{R}^d$, we cannot use Az^t in the algorithm since $A: \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is set-valued!
- \circ Instead, we use the resolvent to evaluate A (it helps to think of it as a projection),

$$z' = (\mathrm{id} + \lambda A)^{-1} z \quad \Leftrightarrow \quad z' \in z - \lambda A z'.$$

Lemma

When $A: \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is maximally monotone, then the resolvent $J_{\lambda A}$ is

- (i) single-valued, i.e., $J_{\lambda A}: \mathbb{R}^d \to \mathbb{R}^d$,
- (ii) defined everywhere on \mathbb{R}^d .

- o From an algorithmic perspective both are crucial.
- o Claim (i) is easy to prove, while (ii) is difficult to prove (in general)
- o Maximality is a technical (but important) requirement (reviewed in the appendix)

Modifying FF to handle a more general inclusion

 $\circ \ \mathsf{Let} \ \mathsf{zer} \, S := \{z \in \mathbb{R}^d \mid 0 \in Sz\}.$

Inclusion problem

Find $z \in \operatorname{zer} S$ where S := A + F.

- $\circ\,$ We could still run FF which only involves the operator F.
- \circ *Issue*: Theorem 6 shows convergence of $\|Hz^t H\bar{z}^t\| = \|\gamma F\bar{z}^t\|$ and not $\|F\bar{z}^t + A\bar{z}^t\|$.
- \circ We can modify the update rule for $ar{z}^t$ to satisfy this requirement

$$\begin{split} Hz^t - H\bar{z}^t &\in \gamma F\bar{z}^t + \gamma A\bar{z}^t \Leftrightarrow Hz^t \in \bar{z}^t + \gamma A\bar{z}^t \\ &\Leftrightarrow Hz^t \in (\mathrm{id} + \gamma A)\bar{z}^t \\ &\text{(resolvent lemma)} \Leftrightarrow \bar{z}^t = (\mathrm{id} + \gamma A)^{-1} Hz^t. \end{split}$$

Convergence under constraints

Based on the previous derivation, it is clear that we should modify FF as follows:

$$\bar{z}^t = (\mathrm{id} + \gamma A)^{-1} H z^t,$$

$$z^{t+1} = z^t - \alpha (H z^t - H \bar{z}^t).$$
(FBF)

o We almost immediately obtain the following theorem.

Theorem (Best \bar{z} -iterate of FBF)

Suppose $F:\mathbb{R}^d o \mathbb{R}^d$ is L-Lipschitz and monotone and $A:\mathbb{R}^d o \mathbb{R}^d$ is maximally monotone. Consider the sequence $(z^t)_{t\in\mathbb{N}}$ generated by FBF with $\gamma \leq 1/L$ and $\alpha \in (0,1)$. Then, for $z^\star \in \operatorname{zer} S$, where zer denotes the optimality set, we have the following hold

$$\min_{t \in \{0, \dots, T-1\}} \|Hz^t - H\bar{z}^t\|^2 \le \frac{\|z^0 - z^\star\|^2}{\alpha(1-\alpha)T}.$$
 (best iterate guarantee)

- $\quad \text{o We could rewrite as } \mathrm{dist}^2(0,\gamma S\bar{z}^t) \leq \|Hz^t H\bar{z}^t\|^2 \text{ where } \mathrm{dist}(v,\mathcal{V}) := \min_{v' \in \mathcal{V}} \|v v'\|.$
- o Compare such a guarantee to a "average iterate guarantee"

Proof for FBF

o The proof is almost immediate following the unconstrained result.

Proof.

- ightharpoonup Cocoercivity of H holds regardless of the redefinition of \bar{z}^t .
- ▶ The only step to re-verify is the use of monotonicity in (13).
- ightharpoonup We will use that S=F+A is monotone when F and A are monotone.
- ▶ Together with the definition, $Hz^t H\bar{z}^t \in \gamma S\bar{z}^t$, and the fact that $0 \in Sz^\star$, it follows that

$$\langle Hz^t - H\bar{z}^t, \bar{z}^t - z^* \rangle \ge 0.$$

Solution concepts: Monotone inclusions and variational inequalities

Monotone inclusion (MI)

So far we have considered the monotone inclusions using

find
$$z^* \in \mathbb{R}^d$$
 such that $0 \in Fz^* + Az^*$, (MI)

where $F: \mathbb{R}^d \to \mathbb{R}^d$ is Lipschitz and $A: \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is maximally monotone.

Remark:

 $\circ \text{ For constrained problems take } A = N_{\mathcal{Z}} := \{v \mid \langle v, z' - z \rangle \leq 0, \ \forall z' \in \mathcal{Z}\} \text{ (i.e., normal cone)}.$

Variational inequality

► The Stampacchia variational inequality

find
$$z^* \in \mathbb{R}^d$$
 such that $\langle Fz^*, z - z^* \rangle \ge 0 \quad \forall z \in \mathcal{Z}.$ (SVI)

► The Minty variational inequality

$$\text{find } z^\star \in \mathbb{R}^d \text{ such that } \langle Fz, z-z^\star \rangle \geq 0 \quad \forall z \in \mathcal{Z}. \tag{MVI}$$

- o (SVI) is the first order condition of a (possibly nonconvex) constrained problem.
- A star-convex function satisfies (MVI): Notice the close resemblance to linearized regret.

Solution concepts: relationships

 \circ We have the following relations (see [5, 1] and [3] for additional discussion)

Lemma

For $F: \mathbb{R}^d \to \mathbb{R}^d$ and $A = N_{\mathcal{Z}}$, the following holds

- 1. (MI) ⇔ (SVI)
- 2. (SVI) \Leftarrow (MVI) if F is Lipschitz and \mathcal{Z} is convex
- 3. (SVI) \Rightarrow (MVI) if F is monotone

Proof.

The equivalence between (MI) and (SVI) follows immediately from the following argument

$$0 \in Fz^{\star} + N_{\mathcal{Z}}(z^{\star}) \iff -Fz^{\star} \in N_{\mathcal{Z}}(z^{\star}) \iff \langle Fz^{\star}, z - z^{\star} \rangle \ge 0 \quad \forall z \in \mathcal{Z}.$$

The third claim follows directly from the definition of monotonicity.

- o Consequently we can translate our (best iterate) convergence results for (MI) into (SVI).
- We will now show convergence for the average iterate.
- As we will see, it is easier to show convergence to (MVI).
- o Through monotonicity we directly obtain the (SVI).

Restricted gap function

o For VIs, we will use the restricted gap function [4] as a measure of progress

$$\operatorname{Gap}_{\mathcal{C}}(z) = \sup_{z^{\star} \in \mathcal{C}} \langle Fz^{\star}, z - z^{\star} \rangle + g(z) - g(z^{\star}), \tag{16}$$

where $F: \mathbb{R}^d \to \mathbb{R}^d$, g is a proper convex lower semicontinuous function, and $\mathcal C$ is a compact subset of \mathbb{R}^d .

o Without restricting z^* to C: the gap could be infinite everywhere (except at the solution)!

Example

Consider the unconstrained problem $\min_{x \in \mathbb{R}} \max_{y \in \mathbb{R}} xy$ where $Fz = (\nabla_x f(x,y), -\nabla_y f(x,y)) = (y,-x)$.

- o If not restricted:
 - the gap would be infinite except at the unique solution $z^* = (0,0)$.
 - Thus useless as a measure of progress for approximate methods.

Restricted gap function: conversion

- We will now show a "last" iterate guarantee on the average iterate in VIs.
- o A guarantee on the iterates on average is sufficient... (due to monotonicity!)

Lemma

Let S:=F+A, $F:\mathbb{R}^d\to\mathbb{R}^d$ be monotone and $A=\partial g$, where g is proper lsc convex. Generate $(z^t)_{t\in\mathbb{N}}$ and take $\hat{z}^T=\frac{1}{T}\sum_{t=0}^{T-1}z^t$. Then for all $z^\star\in\operatorname{zer} S$ which also belongs to \mathcal{C} ,

$$\operatorname{Gap}_{\mathcal{C}}(\hat{z}^T) \leq \frac{1}{T} \sum_{t=0}^{T-1} \langle v^t, z^t - z^* \rangle \quad \forall v^t \in Sz^t.$$

(average iterate guarantee)

Remarks:

o Compare this guarantee with "best iterate guarantee"

Proof of restricted gap function conversion lemma

 \circ The lemma below follows directly from the convexity of ∂g and the monotonicity of F.

Proof.

Let $z^\star \in \operatorname{zer} S$ and $u^t \in \partial g(z^t)$. From convexity of ∂g , we have that for all $u \in \partial g(z)$

$$g(z) \le g(z^*) + \langle u, z - z^* \rangle, \tag{17}$$

from which it immediately follows that

$$\begin{split} \sum_{t=0}^{T-1} \langle Fz^t + u^t, z^t - z^\star \rangle &= \sum_{t=0}^{T-1} \langle Fz^t, z^t - z^\star \rangle + \langle u^t, z^t - z^\star \rangle \\ &\qquad \qquad (\text{17}) \geq \sum_{t=0}^{T-1} \langle Fz^t, z^t - z^\star \rangle + g(\hat{z}^T) - g(z^\star) \geq \langle Fz^\star, \hat{z}^T - z^\star \rangle + g(\hat{z}^T) - g(z^\star), \end{split}$$

where the last line follows from monotonicity of F. The proof is complete by restricting z^* to C.

Restricted gap function: warmup by revisiting GDA

o Applying cocoercivity to the inner product in (4) is a choice. We can also apply cocoercivity to the norm:

$$\|z^{t+1}-z^\star\|^2 \leq \|z^t-z^\star\|^2 - (2\gamma - \frac{\gamma^2}{\beta})\langle Fz^t, z^t-z^\star\rangle.$$

o Summing and telescoping, we get convergence on a different performance measure (assuming $\gamma < 2\beta$):

$$\frac{1}{T} \sum_{t=0}^{T-1} \langle Fz^t, z^t - z^* \rangle \le \frac{\|z^0 - z^*\|^2}{\gamma(2 - \frac{\gamma}{\beta})T},$$

o The above can be converted into a guarantee on the restricted gap using the previous lemma:

Theorem (Gap for average iterate of (GDA))

Suppose $F: \mathbb{R}^d \to \mathbb{R}^d$ is β -cocoercive. Consider the sequence $(z^t)_{t \in \mathbb{N}}$ generated by (GDA) with $\gamma < 2\beta$. Then, for all $z^\star \in \operatorname{zer} F$ and any compact neighborhood $\mathcal{C} \subseteq \mathbb{R}^d$ of z^\star , it holds that

$$\operatorname{Gap}_{\mathcal{C}}(\hat{z}^T) \le \frac{\|z^0 - z^{\star}\|^2}{\gamma(2 - \frac{\gamma}{\beta})T},$$

where $\hat{z}^T = \frac{1}{T} \sum_{t=0}^{T-1} z^t$.

Restricted gap: forward-backward-forward (FBF)

o A similar argument as in the analysis for (GDA) also applies to (FBF).

Theorem (Gap for average iterate of FBF)

Suppose $F: \mathbb{R}^d \to \mathbb{R}^d$ is L-Lipschitz and monotone. Consider the sequence $(z^t)_{t \in \mathbb{N}}$ generated by FBF with $\gamma \leq 1/L$ and $\alpha \in (0,1]$. Then, for all $z^\star \in \operatorname{zer} S$ and any compact neighborhood $\mathcal{C} \subseteq \mathbb{R}^d$ of z^\star ,

$$\operatorname{Gap}_{\mathcal{C}}(\hat{z}^T) \le \frac{\|z^0 - z^{\star}\|^2}{2\alpha\gamma T}.$$

where $\hat{z}^T = \frac{1}{T} \sum_{t=0}^{T-1} \bar{z}^t$.

Remark:

 \circ Since (SVI) \Leftrightarrow (MI) under monotonicity, the average iterate also converges in norm.

Proof of restricted gap for FBF

Proof.

▶ The descent inequality before applying monotonicity and keeping "good" term from cocoercivity of H:

$$\begin{split} \|z^{t+1} - z^{\star}\|^2 &\leq \|z^t - z^{\star}\|^2 - \alpha (1 - \alpha) \|H\bar{z}^t - Hz^t\|^2 \\ &- 2\alpha \langle Hz^t - H\bar{z}^t, \bar{z}^t - z^{\star} \rangle - \alpha (1 - \gamma^2 L^2) \|\bar{z}^t - z^t\|^2. \end{split}$$

▶ The norms can be made negative, so by summing and telescoping we get:

$$\sum_{t=0}^{T-1} \langle v^t, z^t - z^{\star} \rangle \leq \frac{\|z^0 - z^{\star}\|^2}{2\alpha\gamma T} \quad \forall v^t \in Sz^t.$$

Converting into the restricted gap function through the gap lemma finishes the proof.

Summary

We have seen:

- o Best iterate and average iterate (next week last iterate)
- o Descent inequality ⇒ convergence of residual, operator norm, gap (next week iterate distance)
- o How we arrived at extragradient-like schemes is still mysterious (next week we will see two elegant derivations)

Appendix

Monotone operators

- \circ A set-valued mappings, $S: \mathbb{R}^n \rightrightarrows \mathbb{R}^d$, maps each input $x \in \mathbb{R}^n$ to a subset $Sx \subseteq \mathbb{R}^d$.
- \circ The domain of S is defined as

$$dom S = \{ x \in \mathbb{R}^n \mid Sx \neq \emptyset \}.$$
 (18)

 \circ All input-value pairs are called the graph of S, denoted as

$$gph S = \{(x, y) \mid y \in Sx\},$$
 (19)

and the inverse of S is defined through its graph via

$$gph S^{-1} = \{(y, x) \mid y \in Sx\}.$$
(20)

Notice that, by the definition, the inverse always exists.

Maximal monotonicity

Definition (Monotone)

An operator $S: \mathbb{R}^n \rightrightarrows \mathbb{R}^d$ is said to be monotone if $\langle u-v, x-y \rangle \geq 0 \quad \forall (x,u), (y,v) \in \mathrm{gph}\, S.$

Remark:

o A more stringent condition, which might seem technical at first, is the notion of maximality.

Definition (Maximally monotone)

An operator $S: \mathbb{R}^n \rightrightarrows \mathbb{R}^d$ is said to be maximally monotone if it is not strictly contained within the graph of another monotone operator.

Remarks:

- \circ We should not be able to add $(x, u) \notin \operatorname{gph} A$ to $\operatorname{gph} S$ without violating monotonicity.
- o Geometrically, for 1-dim $(A : \mathbb{R} \Rightarrow \mathbb{R})$, it corresponds to having no "holes" in the line characterizing the graph.

Maximal monotonicity is important algorithmically

- Monotonicity ensures resolvent $J_A = (\operatorname{id} + A)^{-1}$ is single valued. If J_A was instead set-valued, then one update of the iteration $z^{t+1} = J_A(z^t)$ could potentially leave us with a set of iterates!
- Maximality ensures dom $J_A = \mathbb{R}^d$. If the domain was further restricted then the update rule $z^{t+1} = Jz^t$ would be undefined for some input.

References |

[1] Sándor Komlósi.

On the stampacchia and minty variational inequalities.

Generalized Convexity and Optimization for Economic and Financial Decisions, pages 231–260, 1999. (Cited on page 29.)

[2] Galina M Korpelevich.

The extragradient method for finding saddle points and other problems.

Matecon, 12:747-756, 1976.

(Cited on page 10.)

[3] Panayotis Mertikopoulos, Ya-Ping Hsieh, and Volkan Cevher.

Learning in games from a stochastic approximation viewpoint.

arXiv preprint arXiv:2206.03922, 2022.

(Cited on page 29.)

[4] Yurii Nesterov.

Dual extrapolation and its applications to solving variational inequalities and related problems.

Mathematical Programming, 109(2):319-344, 2007.

(Cited on page 30.)

References II

[5] Michael Patriksson and R Tyrrell Rockafellar.
 Variational geometry and equilibrium.
 In Equilibrium Problems and Variational Models, pages 347–368. Springer, 2003.
 (Cited on page 29.)