
Splines as a unifying mathematical concept
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The problems to be solved
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Generation of sparse stochastic processes

Solution of stochastic differential equation: Ls = w

Characterization of a L-spline s

Ls = w� =
KX

k=1

ak�(·� xk)

Tikhonov flavor:

arg min
f2HL

F (⌫(f),y) + �kLfk2L2(Rd)

) s = L�1
� {w�} =

KX

k=1

ak⇢L(·� xk) +
N0X

n=1

bnpn

) s = L�1
� {w}

s.t. �(s) = 0 (boundary conditions)

Operator L: spline-admissible with null space NL = span{pn}N0
n=1

Variational formulation of inverse problems

) General form of solution: s =
MX

m=1

amL�1
� L�1⇤

� {⌫m}+
N0X

n=1

bnpn

= L-spline with adaptive knots (xk)Kk=1 and K < M

= L⇤L-spline with knots at xm when ⌫m = �(·� xm)

Generalized TV/sparse flavor:

arg min
f2ML

F (⌫(f),y) + �kLfkM(Rd)



Mathematical challenges
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Inversion of operator L

Definition of native space = RKHS

HL = {f 2 S 0(Rd) : kLfkL2(Rd) < 1} ???

ML = {f 2 S 0(Rd) : kLfkM(Rd) < 1} ???

Question: what is the relation between those space and stochastic processes ???

Solution: Show that HL is a RKHS and provide its reproducing kernel

How does this concern you

You will need to do the work (=apply the theory) for your own family of operators L

9 unique L�1
� such that

(i) : LL�1
� {w} = w and (ii) : �(L�1

� {w}) = 0 (boundary conditions)

RKHS
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Reproducing kernel property

(i) h(·,x0) 2 HL for all x0 2 Rd

(ii) f(x0) = hh(·,x0), fiHL for all f 2 HL and x0 2 Rd.

) hh(·,x0), h(·,y0)iHL = h(x0,y0)

Desirata: HL ✓ Cb,↵(Rd) (continuous functions of slow growth)

Inner product: hf, giHL = hLf,Lgi + ???? (to solve unicity problem)

“lazy” formula for computing Gram matrices

Why is this useful

Any f 2 HL can be approached as closely as desired by an expansion of the form

fK =
KX

k=1

akh(·,xk) with a finite number of terms K


