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A Positivity and positive-definiteness

We recall that a real number = € R is said to be (strictly) positive if x > 0,
and nonnegative if x > 0. With a slight abuse of language, we shall say that
a function f : R? — R is positive (meaning “nonnegative”) if f(z) > 0, for
all x € R?. Likewise, one extends the definition to tempered distributions.

Definition 27. A tempered distribution g : S(RY) — R is said to be positive
(also denoted as g > 0) if

(g,0) >0
for every positive test function ¢ € S(R?) with ¢ > 0.

Positive distributions are also called tempered measures as they can al-
ways be represented in terms of a Lebesgue integral (g, ) = [pa o(2)1g(d)
where the corresponding measure p, is allowed to exhibit some polynomial
growth at infinity. In other words, there must exist some k € N such that
Jaa(1+ |12) 11y (dz) < oo.

Positive-definiteness is a related property that identifies the important
subclass of operators (or kernels) whose spectrum is positive. The notion
comes in a variety of forms as it applies to symmetric matrices, kernels,
linear operators, bilinear forms, functions, generalized functions (or linear
functionals) as well as general functionals (not necessarily linear). These
can all be unified if one starts from the following abstract definition.

Definition 28 (Positive-definiteness). Let E be some arbitrary set and h
a bivariate complex-valued function E x E — C. Then, h is said to be
positive-semi-definite (positive-definite, for short) on E x E if

N N
> D Fmhl(Em, wn)m 2 0 (123)

m=1n=1

for every possible choice of x1,...,xnx € E, 21,...,2n € C, and any positive
integer N. Likewise, h is said to be strictly positive-definite if (123) can be
replaced by a strict inequality for any z € CN\{0} and any series of distinct
points x,, € E.

The four special instances that are relevant for our purpose are:
1. A square-matrix matrix H € CV*V_ whose entries are indexed by

m,n € E={1,2,..., N} and specify the map

h:(m,n) — him,n] = [H]nmn.

)
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Hence, the positive-definiteness of H is equivalent to

N N
Z meh[m, n)z, = z'’Hz > 0, (124)

m=1n=1
— N
for any z = (21,...,2n) € CV.

2. A bivariate kernel h : R4 xR? — C, which is indexed by ,y € E = R%.
In this case, the above definition of positive-definiteness is equivalent
to the standard one in Definition 2.

3. A function f : R? — C. The positive-definiteness of the latter (see
Definition 40) is equivalent to the positive-definiteness of the “shift-
invariant” kernel h(z,y) = f(x — y) with 2,y € E = R%

4. A complex-valued functional F': X — C defined over some topological
space X = E. Here too, the positive-definiteness of F' (see Definition
25) is compatible with the above definition if we take h(x,y) = F(z—y)
with z,y € F = X.

The next observation is that, in the case of a matrix, positive definiteness
implies Hermitian symmetry, as well as the positivity of the eigenvalues
(spectrum).

Proposition 18 (Positive-definite matrix). The square matriz H € CN*N 4
positive-definite (resp., strictly positive-definite) if and only if it is Hermitian-

symmetric and all its eigenvalues are non-negative (resp., strictly positive).

S

Proof. The requirement that the double sum in (124) must be real-valued is
expressed as z! Hz = 2/ Hz = 7ZTH z for all z € CV, which is equivalent
to H = H (Hermitian symmetry). Since H is Hermitian, it admits an
eigendecomposition H = U diag(\1, ..., Ax) U where the eigenvalues \; >
Ag > -+ > Ay are real-valued and the eigenvector matrix U = (uy,...,uy)
is unitary—i.e., such that, U”U = I. Consequently, we can rewrite z/’ Hz

as
z'Hz = Z Al |2

n=1

where y, = ullz. Since the eigenvectors {u,}N_; form a basis of C", the

above quantity is nonnegative for all z iff. the eigenvalues A, are all nonneg-
ative. Likewise, we deduce that the Hermitian matrix H is strictly positive-
definite iff. A, >0 forn=1,... N. O
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Hence, the positive definiteness of the bivariate function A in Definition
28 is equivalent to the positive definiteness of all “sampling” matrices H
whose entries are given by [Hl,, , = h(m,x,). Moreover, if the positive
definiteness is strict, then the matrices H are all invertible. We now list
some of the structural implications of this connection.

Proposition 19 (Hermitian symmetry). Let E be some set and h a bivariate
complez-valued function Ex E — C. Then, h enjoys the following properties:

e Non-negative diagonal: h(z,x) >0 for allz € E

e Hermitian symmetry: h(x,y) = h(y,z) for allx,y € E

o |h(x,y)| < \/h(x,x)\/h(y,y) < W for all x,y € E.

Proof. The first statement follows directly from (123) with N =1 and z; =
x. To derive the two others, we take N = 2 with x; = = and x92 = y and
write the corresponding sampling matrix

_ | Mz,x) h(z,y)
He = ( hy,x) h(y,y) ) ’

which must be (semi-)positive-definite and hence Hermitian-symmetric (by
Proposition 18). The final inequality is deduced from the nonnegativity of
the determinant: det(Hsz) = A A2 = h(z, 2)h(y,y) — |h(z,y)]* > 0. O

A positive-definite function (Item 3 in the list) can also be seen as a
special case of a positive-definite functional with X = R%, whose properties
are now examined in more detail.

Proposition 20 (Boundedness of positive-definite functionals). Let F' :
X — C be a positive-definite functional over some topological vector space
X. Then, F enjoys the following properties

e Boundedness: 0 < |F(p)| < F(0) for all p € X

o Hermitian symmetry: F(p) = F(—yp) for all p € X
o [F(¢) = F(9)| < 2V/F(0)/[F(0) — F(p — ¢)| for all p,¢ € X

Proof. The first two properties are deduced using the same technique as in
the proof of Proposition 19. As for the third one, it is derived from the
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positive-definiteness of the “sampling” matrix with N = 3,901 = 0, p2 = ¢,
and 3 = ¢:
0)  Fle) F(¢)

—p)  F(0) F(¢-9)
—¢) Flp—¢) F(0)

F
H;= | F(
E(

with F(—¢) = F(¢), F(—¢) = F(¢) and F(¢ — ¢) = F(p — ¢) (Hermitian
symmetry). The non-negativity of the determinant then yields
0 < det(Hz) =F(0)° = F(0)|F(¢ — ¢)]> = F(9) (F(0)F(p) — F(p — ¢)F(¢))+
F(¢)(F(p)F (¢ — ¢) — F(0)F(¢))
< AF(0)2|F(0) = F(p — )| — F(0)|F(p) — F(9)[?

where we have made use of the inequality a®—ab® > 2a?|a—b| for |b| < a. O

A remarkable consequence of the last property in Proposition 20 is that
the continuity of F' in the neighborhood of ¢ = 0 is sufficient to ensure its
continuity everywhere.

The notion of positive-definiteness may also be extended to objects that
are generalized functions. This extension relies on the equivalence between
kernels and linear operators, as stated in Schwartz’ kernel theorem (Theo-
rem 33). The resulting criterion should be viewed as the infinite-dimensional
counterpart of the condition z' Hz = (Hz,z) > 0 that characterizes a
positive-definite matrix.

Definition 29 (Positive-definiteness for generalized functions). In order to
cover all Hermitian-symmetric kernels, we are momentarily considering the
Schwartz spaces S(R?) and 8'(R?) to be complex-valued.

1. Let h € S'(RYxR?) be the (complea-valued) Schwartz kernel of the con-
tinuous operator H : S(R?) — S'(RY). Then, h is said to be positive-
definite if (Ho, ) > 0 for all ¢ € X, which may also be written sym-
bolically as

//w(w)h(w,y)@(y)dwdyZO.
Rd JRd

2. The (complez-valued) generalized function g : S(R?) — C is said to be
positive-definite if

/Rd /R o(@)g(x — y)p(y)dady = (g+.7) = (9. (7" x¢)) >0
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where ¢ denotes the reversed version p; i.e., ¢V () = (—x) for any
x € RY,

The above formulation of positive definiteness is an extension of Def-
inition 28 for E = R? where the two finite sums have been replaced by
integrals (these actually represent duality products with respect to the vari-
ables  and y). The two formulations can be shown to be equivalent when h
and g are ordinary bivariate or univariate continuous functions; that is, when
h € Cpho(RY x RY) and g € Cpo(R?) for some a € R (see [?, Proposition
12.3, p. 90]).

We also note that the second condition in Definition 28 is a special in-
stance of the first with h(x,y) = g(x — y), in which case the underlying
operator H : S(R?) — S’(R?) is linear shift-invariant with impulse response
g = T{6} € S'(R?). An interesting twist is that the latter convolutional
form, which is more general than the classical definition of a positive-definite
function (see Definition 40 in Appendix E.3), actually facilitates the deriva-
tion of Bochner’s theorem (Theorem 35), which states the equivalence be-
tween this property and Fourier-domain positivity.

Theorem 26 (Schwartz-Bochner). A generalized function § € S'(R?) is
positive-definite if and only if it is the generalized Fourier transform of a
positive distribution with corresponding tempered measure pg > 0; that is,

.9 = (0.9 = [ pl@hde)

where (w) = [pa o(x)e 12 dx is the Fourier transform of the test func-
tion o € S(RY). Moreover, if § is continuous at the origin with G(0) = 1,
then it is the (ordinary) Fourier transform of a Borel measure jug > 0 with
Mg(Rd) =1

We outline the proof of Theorem 26, which takes advantage of two basic
properties: (1) the product of two test functions is a test function, and, (2)
the Fourier transform maps a convolution into a product. Consequently,
¢ = ¢V % is a test function whose Fourier transform is ¢ = |3|? where
¢ = F{p} € S(RY) is the (ordinary) Fourier transform of ¢. Next, we recall
that a generalized function § € S’(R?) is the generalized Fourier transform
of g € §&'(R%)—that is, § = F{g}—iff.

<§, 90> = <g7 @>
for all ¢ € S(RY). For the particular case of ¢ € S(R?), this yields

0< (g, (9" %)) = (3, 0) = (9.6) = (g, |¢]*),
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which shows that the positive definiteness of § is equivalent to the multiplica-
tive positivity of its generalized inverse Fourier transform g; i.e., (g, [|?) > 0
for all ¢ € S(RY). The final technical step is to show that the latter prop-
erty is equivalent to the positivity of ¢ in the sense of Definition 27. This is
achieved by proving that every positive function 9 (x) > 0 in S(R?) can be
written as the limit of a series of functions ¢, () (z) with ¢, € S(RY)
(see |7, p. 149-150]).

As for the last statement in Theorem 26, we use the property that the
continuity of ¢ at the origin implies its continuity everywhere (see third
statement in Proposition 20 with X = RY). Hence, §(w) is well-defined
pointwise for all w € R? with [§(w)| < §(0) = [pa pg(dx) = pg(RY) = 1.
The latter bound ensures that the generalized Fourier transform of g (or j)
can be expressed as a classical Fourier-Lebesgue integral; that is, g(w) =
Jra e @)y (da).

More generally, we note that the property of p, being a tempered (pos-
itive) measure is equivalent to the boundedness of the positive measure
pr = (1+]-]|*)"* g for some suitable k. This yields the following equivalent
statement of Theorem 26.

Corollary 7. § = F{ug} is a positive-definite distribution iff. there exist

an integer k and a continuous positive-definite function f such that g =
A 2 :
(Id — A)* f where A = Ei:l (837,1)2 is the Laplacian operator.
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