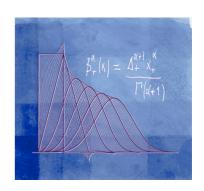


Sparse stochastic processes

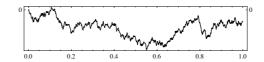
Part 3: Wavelet decomposition of sparse processes and ICA

Prof. Michael Unser, LIB



EPFL Doctoral School EDEE, Course EE-726, Spring 2017

20th Century SP: From AR(1) to coding standards



$$\Phi_s(\omega)=rac{\sigma_0^2}{|j\omega-lpha_1|^2}$$

Generation by analog filtering of Gaussian white noise

$$s(t) = (\rho_{\alpha_1} * w)(t) \quad \text{with} \quad \rho_{\alpha_1}(t) = \mathcal{F}^{-1} \left\{ \frac{1}{j\omega - \alpha_1} \right\} = \mathbb{1}_+(t) e^{\alpha_1 t} \\ \Leftrightarrow \quad s = (\mathbf{D} - \alpha_1 \mathbf{I})^{-1} w$$

$$s[k] - e^{lpha_1} s[k-1] = w_{
m d}[k]$$
 is i.i.d. Gaussian for $k \in \mathbb{Z}$

Optimality of sinusoidal transforms

☐ Transform coding

DCT is asymptotically equivalent to Karhunen-Loève transform (KLT)

Coding standards

Linear Predictive Coding

Transform Coding

DCT vs. Wavelets

Joint Photographic Experts Group

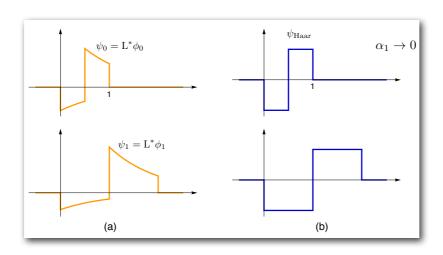
3

Wavelets and CAR(1) processes Stability: $Re(\alpha_1) < 0$

Innovation model: $Ls = w \Leftrightarrow s = L^{-1}w$ with $L = (D - \alpha_1 I)$

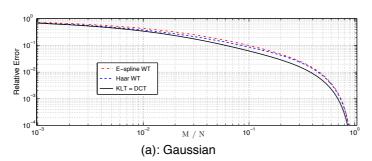
Operator-like wavelet: $\psi_i = L^* \phi_i$ with ϕ_i : smoothing kernel

(Khalidov-U., 2006)



Gaussian vs. non-Gaussian AR(1)

M term approximation



Correlation: $e^{\alpha_1} = 0.9$

DCT/KLT era:

(Gray, 1972; Ahmed-Rao, 1975 U., 1984)

Wavelet era:

(Mallat, 1989; Donoho, 1992)

Statistical, spline-based justification of jpeg2000?

5

OUTLINE

- Introduction: M-term approximation
- From legos to wavelets
- Decoupling and sampling of CAR(1) processes
 - Generalized innovation model
 - Discrete innovation model
 - Transform-domain statistics for SαS processes
- Independent component analysis (ICA)
 - Mutual information
 - Comparison of transforms

Journal of

Microscopy

Journal of Microscopy, Vol. 255, Issue 3 2014, pp. 123–127 Received 6 March 2014; accepted 3 June 2014

Wavelets: on the virtues and applications of the mathematical microscope

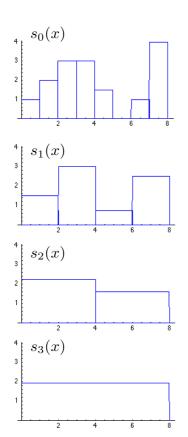
MICHAEL UNSER

Biomedical Imaging Group, EPFL, Lausanne, Switzerland

Key words. Deconvolution, denoising, wavelets, image analysis, multiresolution, computational imaging.

7

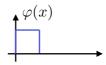
Wavelets: Haar transform revisited



Signal representation

$$s_0(x) = \sum_{k \in \mathbb{Z}} c[k] \varphi(x - k)$$

Scaling function

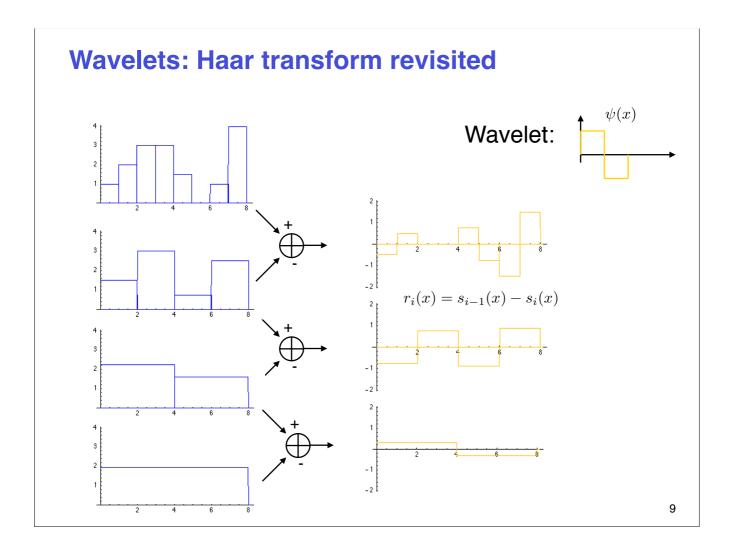


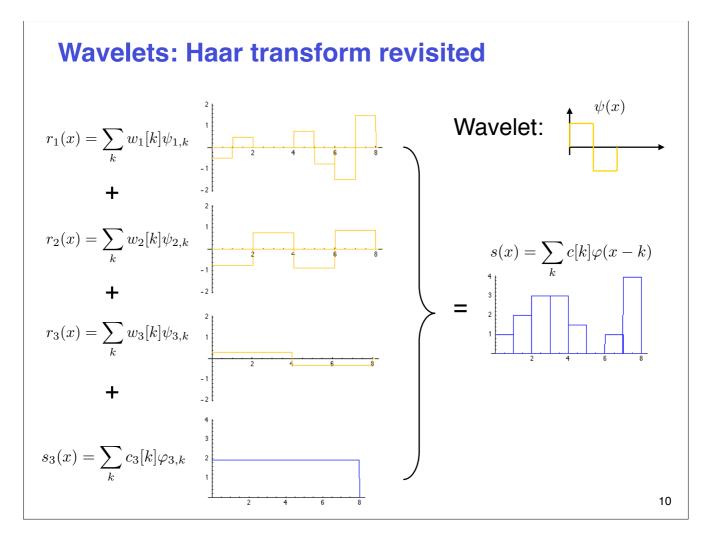
Multi-scale signal representation

$$s_i(x) = \sum_{k \in \mathbb{Z}} c_i[k] \varphi_{i,k}(x)$$

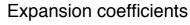
Multi-scale basis functions

$$\varphi_{i,k}(x) = \varphi\left(\frac{x - 2^i k}{2^i}\right)$$

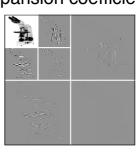




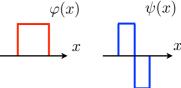
Haar wavelet and 2D basis functions



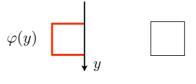
$$f(x,y) = \sum_{i,k} w_{i,k} \frac{\psi_{i,k}(x,y)}{\uparrow}$$

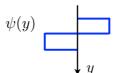


Tensor-product basis functions



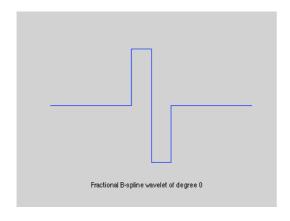
$$\begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} s \\ d \end{bmatrix}$$

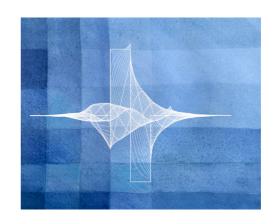




11

Beyond legos: Fractional B-spline wavelets





(Unser & Blu, SIAM Rev, 2000)

Remarkable property

Each of these wavelets generates a Riesz basis of $L_2(\mathbb{R})$

$$\psi_{+}^{\alpha}(x/2) = \sum_{k \in \mathbb{Z}} \frac{(-1)^{k}}{2^{\alpha}} \sum_{n \in \mathbb{N}} {\alpha+1 \choose n} \beta_{*}^{2\alpha+1}(n+k-1) \frac{\Delta_{+}^{\alpha+1}(x-k)_{+}^{\alpha}}{\Gamma(\alpha+1)}$$

Only known wavelet bases that have an explicit time-domain formula!

12

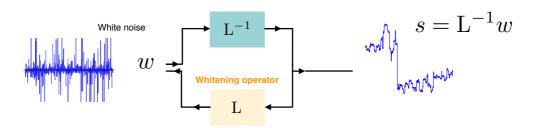
Sparse processes and generalized innovation model

Generic test function $\varphi \in \mathcal{S}$ plays the role of index variable

Formal characterization

Lévy process: L = D

$$\mathbb{E}\{e^{j\langle w,\varphi\rangle}\} = \widehat{\mathscr{P}_w}(\varphi) \ = e^{-\|\varphi\|_{L_\alpha}^\alpha} \ (\mathrm{S}\alpha\mathrm{S})$$



Observation: $X = \langle w, \varphi \rangle$

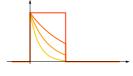
$$Y = \langle s, \psi \rangle = \langle w, L^{-1*} \psi \rangle$$

$$\Rightarrow \quad \widehat{p}_X(\omega) = \mathbb{E}\{e^{j\omega X}\} = \widehat{\mathscr{P}_w}(\omega\varphi) \quad = e^{-|s_0\omega|^\alpha} \text{ with } s_0 = \|\varphi\|_{L_\alpha}$$

13

Sampling and decoupling of CAR(1) processes

Exponential B-spline: $\beta_{\alpha_1}(x) = \mathbbm{1}_{[0,1)}(x)e^{\alpha_1 x}$



Discrete operator:
$$u(x) = \Delta_{\alpha_1} s(x) = s(x) - \frac{e^{\alpha_1}}{s} s(x-1)$$
$$= (\beta_{\alpha_1} * w)(x)$$

$$s_0 = \|\beta_{\alpha_1}\|_{L_\alpha}$$

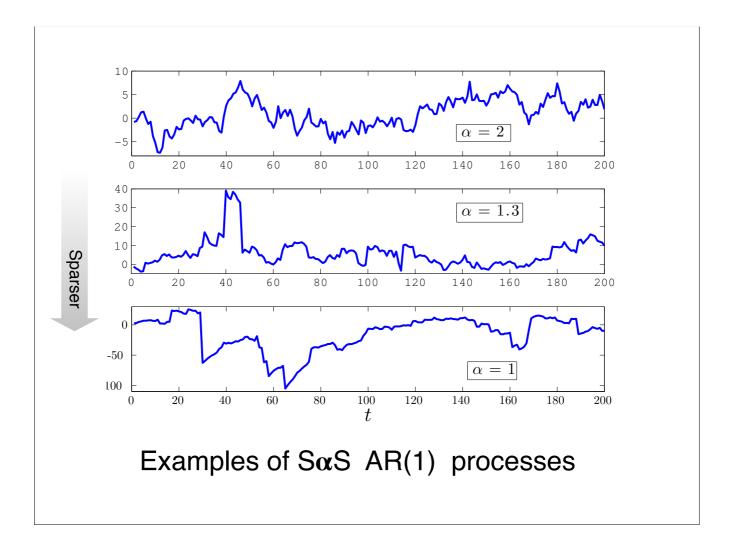
■ Sampling: AR(1) process

$$s[k] = \left. s(x) \right|_{x=k} \quad \text{such that} \quad s[k] = e^{\alpha_1} s[k-1] + u[k]$$

$$u[k] = \langle w, \beta_{\alpha_1}^\vee(\cdot - k) \rangle \quad \Rightarrow \quad u[\cdot] \text{ are i.i.d. infinite divisible}$$
 with **modified Lévy exponent**

$$f_{\beta_{\alpha_1}^{\vee}}(\omega) = \int_{\mathbb{R}} f(\omega \beta_{\alpha_1}(-x)) dx = -s_0 |\omega|^{\alpha}$$

= prediction error of **LPC** (perfect decoupling)



Independent component analysis for S α S AR(1)

■ Discrete innovation model for AR(1)

$$\mathbf{u}=(U_1,\ldots,U_N)=\mathbf{L}\mathbf{s}$$
 with $U_n=\langle w, eta_{lpha_1}(n-\cdot)
angle$ i.i.d. $\mathbf{S}lpha\mathbf{S}$

Differential entropy: $H_U = -\int_{\mathbb{R}} p_U(x) \log p_U(x) dx$

Orthogonal transform and mutual information

$$\mathbf{y} = \mathbf{T}\mathbf{s}$$
 with $\mathbf{T}^T\mathbf{T} = \mathbf{I}$

$$I(Y_1, \dots, Y_N) = \left(\sum_{n=1}^N H_{Y_n}\right) - \overbrace{H_{(Y_1:Y_N)}}^{H_{(S_1:S_N)} = NH_U}$$

■ ICA: minimum mutual information

$$\mathbf{z} = (Z_1, \dots, Z_N) = \mathbf{T}_{ICA}\mathbf{x}$$
: "most independent" representation

Stability w.r. to linear combinations

 \blacksquare Characteristic function of S α S random variable

$$\hat{p}_U(\omega) = e^{-|s_0\omega|^{\alpha}}$$

Linear combination of i.i.d. $S\alpha S$ random variables

$$Z = \sum_{n=1}^{N} a_n U_n = \mathbf{a}^T \mathbf{u} \quad \Leftrightarrow \quad \hat{p}_Z(\omega) = \prod_{n=1}^{N} \hat{p}_U(a_n \omega)$$
$$= \exp\left(-\sum_{n=1}^{N} |a_n s_0 \omega|^{\alpha}\right) = e^{-|r_0 \omega|^{\alpha}}$$

$$\Rightarrow Z \text{ is S} \alpha \text{S with parameter } r_0 = s_0 \left(\sum_{n=1} |a_n|^{\alpha} \right)^{1/\alpha} = s_0 \|\mathbf{a}\|_{\alpha}$$

17

ICA: From entropy to ℓ_{α} -norms

Orthogonality constraint: $\mathbf{T}^T\mathbf{T} = \mathbf{I}$

$$\mathbf{A} = \mathbf{T}\mathbf{L}^{-1} = [\mathbf{a}_1 \cdots \mathbf{a}_N]^T$$

$$\qquad \textbf{Min-entropy solution:} \quad \sum_{n=1}^N H_{Y_n} = I(Y_1,\ldots,Y_N) - \underbrace{H_{(Y_1:Y_N)}}_{\text{Const}}$$

■ Special case of SlphaS processes: $f(\omega) = -|s_0\omega|^{lpha}$

$$\hat{p}_{Y_n}(\omega) = \exp\left(\sum_{m=1}^N -|s_0 a_{n,m}\omega|^{lpha}\right) = \mathrm{e}^{-|s_n \omega|^{lpha}}$$

$$\implies Y_n \text{ is S}_{\alpha} \text{S with dispersion} \quad s_n = s_0 \|\mathbf{a}_n\|_{\ell} = s_0 \left(\sum_{m=1}^N |s_m a_m|^{2m}\right)$$

$$\implies Y_n \text{ is S} \alpha \text{S with dispersion} \quad s_n = s_0 \|\mathbf{a}_n\|_{\ell_\alpha} = s_0 \left(\sum_{m=1}^N |a_{n,m}|^\alpha\right)^{\frac{1}{\alpha}}$$

$$\implies H_{Y_n} = H_U - \log \|\mathbf{a}_n\|_{\ell_{\alpha}}$$

$$\implies I(\mathbf{T}; \alpha) = -\sum_{n=1}^{N} \log \|\mathbf{a}_n\|_{\ell_{\alpha}} = -\sum_{n=1}^{N} \frac{1}{\alpha} \log \left(\sum_{m=1}^{N} \left| [\mathbf{T}\mathbf{L}^{-1}]_{n,m} \right|^{\alpha} \right)$$

18

ICA for discrete $S\alpha S$ processes

Discrete innovation model

$$\mathbf{s} = \mathbf{L}^{-1}\mathbf{u}$$
 with $\mathbf{u} = (U_1, \dots, U_N)$ i.i.d. $S\alpha S$

- $lue{\mathbf{z}}$ Orthogonal transform: $\mathbf{y} = \mathbf{T}\mathbf{s} = \mathbf{T}\mathbf{L}^{-1}\mathbf{u}$
- Minimization of mutual information

$$\arg\min_{\mathbf{T}} \left\{ -\sum_{n=1}^{N} \frac{1}{\alpha} \log \left(\sum_{m=1}^{N} [\mathbf{T} \mathbf{L}^{-1}]_{n,m}^{\alpha} \right) \right\} \quad \text{s.t. } \mathbf{T}^{T} \mathbf{T} = \mathbf{I}$$

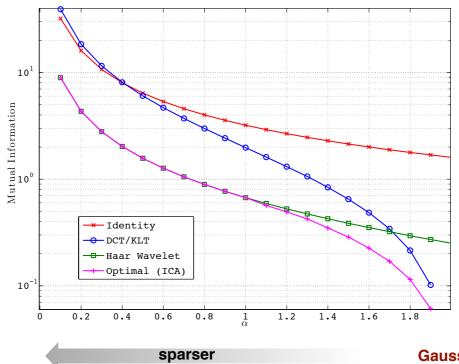
Iterative gradient-based algorithm

- Update using analytical computation of gradient
- Projection on space of orthogonal matrices

19

Orthogonal expansion of a stable Lévy process

$$\alpha_1 = 0$$



Gaussian

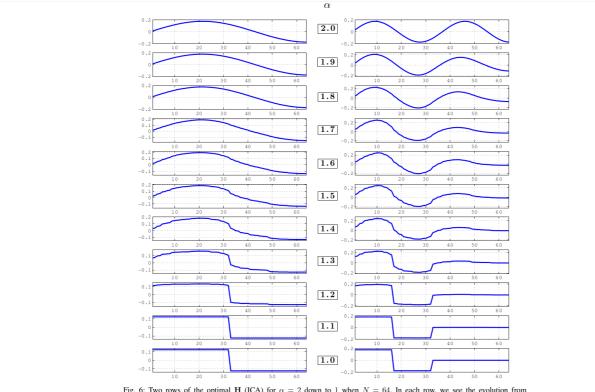
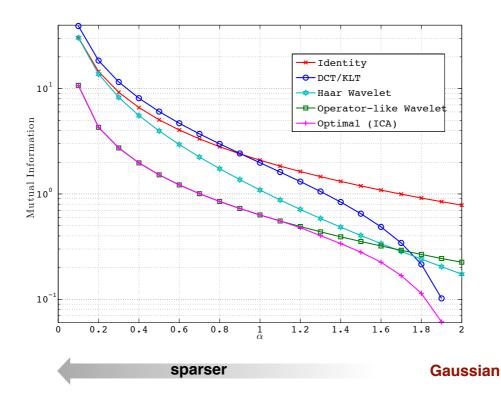


Fig. 6: Two rows of the optimal ${\bf H}$ (ICA) for $\alpha=2$ down to 1 when N=64. In each row, we see the evolution from sinusoidal waves to Haar wavelets by increasing the sparsity of the underlying innovation process.

Orthogonal expansion of a stable AR(1) process



(Pad-U., ICASSP'13, ArXiv)

 $e^{\alpha_1} = 0.9, M = 64$

Addendum: Compressibility of sparse processes

Stochastic ODE driven by periodic $S\alpha S$ noise

$$Ls = w_{\alpha} \quad \Rightarrow \quad s = L^{-1}w_{\alpha} \qquad \qquad L = \frac{\mathrm{d}^{n}}{\mathrm{d}t^{n}} + a_{n-1}\frac{\mathrm{d}^{n-1}}{\mathrm{d}t^{n-1}} + \dots + a_{1}\frac{\mathrm{d}}{\mathrm{d}t} + a_{0}I$$

$$s \in B^{n+1/\alpha-1}_{\alpha,\infty}(\mathbb{T})$$
 with probability 1

Sparsity index: $\alpha \in (0, 2]$

 $B^{ au}_{p,q}(\mathbb{T})$: Besov space over the circle

■ *M*-term approximation (in matched wavelet basis)

$$\|s-s_M\|_{L_2(\mathbb{T})}=O(M^{- au_0}) \quad ext{with} \quad au_0=n+rac{1}{lpha}-1-\epsilon$$

(Fageot-U.-Ward, ACHA 2016)

23

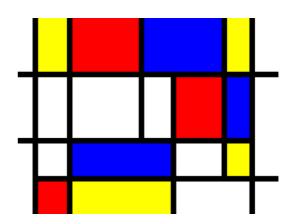
CONCLUSION

- Unifying continuous-domain stochastic model
 - Backward compatibility with classical Gaussian theory
 - Operator-based formulation: Lévy-driven SDEs or SPDEs
 - Gaussian vs. sparse (generalized Poisson, student, SαS)
- Decoupling and regularization
 - Sparsification via "operator-like" behavior (whitening)
 - Specific family of id potential functions (typ., non-convex)
- Conceptual framework for sparse signal recovery
 - New statistically-founded sparsity priors
 - Derivation of optimal estimators (MAP, MMSE)
 - Principled approach for the development of novel algorithms
 - Implementation of MMSE solution (belief propagation)

Gaussian

VS.

Sparse



Fourier analysis

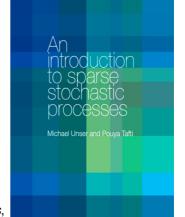
Wavelet analysis

Norbert Wiener

Paul Lévy

25

References



http://www.sparseprocesses.org

- M. Unser and P.D. Tafti, *An Introduction to Sparse Stochastic Processes*, e-book at http://www.sparseprocesses.org.
- M. Unser, P.D. Tafti, and Q. Sun, "A unified formulation of Gaussian vs. sparse stochastic processes—Part I: Continuous-domain theory," IEEE Trans. Information Theory, available at http://arxiv.org/abs/1
- P. Pad, M. Unser, "On the Optimality of Operator-Like Wavelets for Sparse AR(1) Processes," Proc. IEEE Int. Conf. Acoust. Speech Sig. Proc. (ICASSP'13), Vancouver, Canada, May, 2013.
- I. Khalidov and M. Unser, "From Differential Equations to the Construction of New Wavelet-Like Bases," *IEEE Transactions on Signal Processing*, vol. 54, no. 4, pp. 1256–1267, April 2006.

Acknowledgments

Many thanks to

- Dr. Pouya Tafti
- Pedram Pad
- Prof. Arash Amini
- Dr. John-Paul Ward
- Dr. Ulugbek Kamilov
- Emrah Bostan
- Dr. Masih Nilchain
- Julien Fageot

Members of EPFL's Biomedical Imaging Group

Preprints and demos: http://bigwww.epfl.ch/

1-27