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20th Century SP: From AR(1) to coding standards
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DCT is asymptotically equivalent to Karhunen-Loève transform (KLT)

�s(!) =
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Generation by analog filtering of Gaussian white noise

s(t) = (⇢↵1 ⇤ w)(t) with ⇢↵1(t) = F�1
n
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j!�↵1
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= +(t)e↵1t

, s = (D� ↵1I)
�1w

Discrete AR(1) and linear prediction

s[k]� e↵1s[k � 1] = wd[k] is i.i.d. Gaussian for k 2 Z



Coding standards
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Linear Predictive Coding

Transform Coding

Joint Photographic Experts Group

DCT vs.  Wavelets

Wavelets and CAR(1) processes
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(Khalidov-U., 2006)
Operator-like wavelet:  i = L⇤�i with �i: smoothing kernel

Innovation model: Ls = w , s = L�1w with L = (D� ↵1I)

Stability: Re(↵1) < 0

 0 = L⇤�0

 1 = L⇤�1
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↵1 ! 0



Gaussian vs. non-Gaussian AR(1)
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 KLT = DCT
 Haar WT
 E−spline WT
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 E−spline WT
 Haar WT
 KLT = DCT

(a): Gaussian

(b): sparse (Cauchy)

Fig. 1. Wavelets vs. KLT (or DCT) for the M -term approximation of Gaussian vs. sparse AR(1) processes with ↵ = �0.1: (a) classical

Gaussian scenario, (b) sparse scenario with symmetric Cauchy innovations. The E-spline wavelets are matched to the innovation model. The

displayed results (relative quadratic error as a function of M/N ) are averages over 1000 realizations for AR(1) signals of length N = 1024;

the performance of DCT and KLT is undistinguishable.

[1], [13])

(D � ↵Id)s

↵

(t) = w(t), (2)

or, equivalently, the stochastic differential equation (SDE) (cf. [19])

ds

↵

(t) � ↵s

↵

(t)dt = dW (t),

where W (t) =

R
t

0
w(⌧)d⌧ is a standard Brownian motion (or Wiener process) excitation. In the statistical literature,

the solution of the above first-order SDE is often called the Ornstein-Uhlenbeck process.

Let (s

↵

[k] = s

↵

(t)|
k=t

)

k2Z denote the sampled version of the continuous-time process. Then, one can show that

s

↵

[·] is a discrete AR(1) autoregressive process that can be whitened by applying the first-order linear predictor:

s

↵

[k] � e

↵

s

↵

[k � 1] = wd[k] (3)

where wd[·] (prediction error) is an i.i.d. Gaussian sequence. Alternatively, one can decorrelate the signal by

computing its discrete cosine transform (DCT), which is known to be asymptotically equivalent to the Karhunen-

Loève transform (KLT) of the process [29], [30]. Eq. (3) provides the basis for classical linear predictive coding

(LPC), while the decorrelation property of the DCT is often invoked to justify the popular JPEG transform-domain

coding scheme [31].

In this paper, we are concerned with the non-Gaussian counterpart of this story, which, as we shall see, will result

in the identification of sparse processes. The idea is to retain the simplicity of the classical innovation model, while

substituting the continuous-time Gaussian noise by some generalized Lévy innovation (to be properly defined in the
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Statistical, spline-based justification of jpeg2000?

M term approximation

Correlation: e↵1 = 0.9

(Gray, 1972;
            Ahmed-Rao, 1975

U., 1984)

(Mallat, 1989;
     Donoho, 1992)

DCT/KLT era:

Wavelet era:
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OUTLINE
■ Introduction: M-term approximation ✔
■ From legos to wavelets
■ Decoupling and sampling of CAR(1) processes

■ Generalized innovation model
■ Discrete innovation model
■ Transform-domain statistics for S!S processes

■ Independent component analysis (ICA)
■ Mutual information
■ Comparison of transforms
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Wavelets: on the virtues and applications of the
mathematical microscope

M I C H A E L U N S E R
Biomedical Imaging Group, EPFL, Lausanne, Switzerland

Key words. Deconvolution, denoising, wavelets, image analysis,
multiresolution, computational imaging.

Summary

The paper provides a short introduction to wavelets and dis-
cusses their main applications in microscopy and biological
imaging.

Wavelets as a virtual microscope

Wavelets offer a powerful way of decomposing signals or im-
ages into their elementary constituents across scale (multires-
olution decomposition). They provide a one-to-one representa-
tion in very much the same way as the Fourier transform does,
with the fundamental difference that the wavelet-basis func-
tions are jointly localized in space and frequency (Daubechies,
1988; Mallat, 1989; Unser & Aldroubi, 1996; Mallat, 2009).

There is a striking analogy between the wavelet transform
and a microscope. To keep the discussion simple, we shall focus
on the one-dimensional scenario where the input image f (x) is
a function of the space variable x ∈ R. The wavelet transform
involves a series of dyadic magnification factors a = 2i , with
i ∈ Z. It corresponds to a mathematical microscope whose
point-spread function (PSF) φ can be dilated (or contracted
when i < 0) at will by powers of two, like

φi (x) = φ(x/2i ).

There the virtual PSF is a reference functionφ (scaling function
or wavelet) to be specified in the sequel. The leading concept
behind wavelets is to observe f (x) by forming correlations
with φi (or convolutions with its space-reversed version) and
sampling the data at the appropriate rate. Specifically, the
observation at resolution level i and location index k ∈ Z is
given by

⟨ f,φi,k⟩ =
∫

R
f (x)φi (x − 2i k)dx,

This work was founded in part by the Swiss National Science Foundation under

Grant 200020-121763.
Correspondence to: Michael Unser, Biomedical Imaging Group, EPFL, CH-1015

Lausanne, Switzerland. Tel +41 21 693 51 75; e-mail: michael.unser@epfl.ch

with the notational convention

φi,k (x) = φi (x − 2i k)

where the corresponding sampling step a = 2i is matched to
the size of the integration window φi (virtual PSF at resolu-
tion 2i ). The underlying principle is that the virtual PSF is
engineered to maximize the intake of information; first, within
a given resolution level i (scale of the microscope) by ensur-
ing that the shifted replicates of φi – that is, φi,k with k ∈ Z –
are orthogonal to one another, and, second, by avoiding re-
dundancies across scale (global inter-scale orthogonality). The
latter requirement translates into the virtual PSF being band-
pass (that is, a wavelet denoted by φ = ψ) rather than the
more traditional lowpass solution (denoted by φ = ϕ) that
would better fit the description of a physical microscope.

The Haar transform: from Legos to wavelets

The fundamental idea in the theory of wavelets is to construct
a series of fine-to-coarse approximations { fi }i∈Z of a function
f (x) and to exploit the structure of the multiresolution approx-

imation errors, which are orthogonal across scale. Here, we
shall illustrate the concept by taking fi (the best approxima-
tion of f at resolution i ) to be a piecewise-constant function
represented by the (Lego-like) expansion

fi (x) =
∑

k∈Z
ci [k]ϕi,k(x), (1)

where the basis functions ϕi,k are adjacent rectangular func-
tions of size 2i . Specifically,

ϕi,k (x) = ϕ

(
x − 2i k

2i

)
=

{
1, for x ∈

[
2i k, 2i (k + 1)

)

0 otherwise.
(2)

The optical analogy is that of a microscope with ideal op-
tics whose resolution is determined by the size of its CCD-
type (charge coupled device) detector (rectangular window of
size 2i ), while the spatial location is encoded by k. An exam-
ple of such a sequence of approximations is shown in Fig. 1,
where each ci [k] is given by the height of the corresponding

C⃝ 2014 The Authors
Journal of Microscopy C⃝ 2014 Royal Microscopical Society

Wavelets: Haar transform revisited
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s0(x)

Multi-scale signal representation

si(x) =
�

k�Z
ci[k]�i,k(x)

Multi-scale basis functions

�i,k(x) = �

�
x� 2ik

2i

�

  

s1(x)

  

s2(x)

  

s3(x)

Signal representation

s0(x) =
�

k�Z
c[k]�(x� k)

Scaling function

�(x)
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Wavelets: Haar transform revisited
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ri(x) = si−1(x) − si(x)
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Wavelet:
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Wavelets: Haar transform revisited
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Haar revisited

r1(x) =
�

k

d1[k]�1,k
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�
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�

k
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�

k
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�

k
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Haar revisited
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Wavelet:
�(x)
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Haar wavelet and 2D basis functions
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Beyond legos: Fractional B-spline wavelets

Remarkable property

Each of these wavelets generates a Riesz basis of L2(R)

(Unser & Blu, SIAM Rev, 2000)

 

↵
+(x/2) =

X

k2Z

(�1)k

2↵

X

n2N

✓
↵+ 1

n

◆
�

2↵+1
⇤ (n+ k � 1)

�↵+1
+ (x� k)↵+
�(↵+ 1)

Only known wavelet bases that have an explicit time-domain formula !
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Sparse processes and generalized innovation model 

White noise

Whitening operator

Generic test function ' � S plays the role of index variable

E{ejhw,'i} = dPw(')

0 5 10 15 20

w

Formal characterization
= e�k'k↵

L↵ (S↵S)

Observation: X = hw,'i Y = hs, i = hw,L�1⇤ i

) p̂X(!) = E{ej!X} = dPw(!')

L

L�1

L

´

evy process: L = D

= e�|s0!|↵ with s0 = k'kL↵

s = L�1w

Sampling and decoupling of CAR(1) processes

14
= prediction error of LPC (perfect decoupling)

Exponential B-spline: �

↵1(x) = [0,1)(x)e
↵1x

Discrete operator: u(x) = �↵1s(x) = s(x)� e

↵1
s(x� 1)

=
�
�↵1 ⇤ w

�
(x)

u[k] = hw,�_
↵1
(·� k)i ) u[·] are i.i.d. infinite divisible

with modified L

´

evy exponent

Sampling: AR(1) process

s[k] = s(x)|
x=k

such that s[k] = e

↵1
s[k � 1] + u[k]

f�_
↵1
(!) =

Z

R
f

�
!�↵1(�x)

�
dx

S!S

s0 = k�↵1kL↵

= �s0|!|↵
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A. S↵S AR(1) Processes

In [11], the authors model the stochastic signal s as a
purely innovative process (i.e., white noise), having undergone
a linear operation. Thus,

s = L

�1w (10)

where w is a continuous-domain white noise and L

�1 (the
inverse of the whitening operator L) is a linear operator.

A general white noise is a probability measure on the dual
space of a set of test functions that has the following properties
[17]:

• For a given test function ', the statistics of the random
variable hw,'i do not change upon shifting ', where w
(the realization of the noise) denotes a generic random
element in the dual space of test functions (typically,
Schwartz space of tempered distributions).

• If the test functions in the collection {'�}�2B (B is
an index set) have disjoint supports, then the random
variables in {hw,'�i}�2B are independent.

Under some mild regularity conditions, there is a one-to-one
correspondence between the infinitely divisible (id) random
variables and the white noises specified above. Thus, specify-
ing a white noise is equivalent to having the random variable
hw,'i for any test function '.

Correspondingly, if L

⇤ denotes the adjoint operator of L,
then we have

hs,'i = hw,L�1⇤'i (11)

which means that one can readily deduce the statistical distri-
bution of hs,'i from the characterization of the process w.

Now, if w is S↵S white noise, then the random variable
hw,'i has an S↵S distribution whose characteristic function
is given by

p̂hw,'i(!) = E{ej!hw,'i} = e

�|k'k↵!|↵ . (12)

In the case of an AR(1) process, we have that

L = D+ I (13)

where D and I are respectively the differentiator and the
identity operator; then, s in (10) is a continuous-domain S↵S
AR(1) process. The impulse response of L

�1 is the causal
exponential

⇢(t) = e

�t1+(t) (14)

where 1+(t) is the unit step. Thus, as a function of t, we can
write

s(t) = (⇢ ⇤ w) (t). (15)

The AR(1) process is well-defined for  > 0. The limit
case  = 0 can also be handled by setting the boundary
condition s(0) = 0, which results in a Lévy process that is
non-stationary. Realizations of AR(1) processes for  = 0.05
and for different values of ↵ are depicted in Figure 1. When
↵ decreases, the process becomes sparser in the sense that its
innovation becomes more and more heavy-tailed.
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Fig. 1: Examples of AR(1) processes for different ↵.

Now, for a given integer k and time period T , set

'k(t) = �(t� kT )� e

�T � (t� (k � 1)T ) (16)

and define wk as

wk = hs,'k(t)i = s(kT )� e

�T s((k � 1)T ). (17)

This means that the sampled version {sk = s ((k � 1)T )}k2Z
of s(t) satisfies the first-order difference equation

sk = e

�T sk�1 + wk. (18)

Also, we have that

wk = hs,'k(t)i = hw, (⇢̌ ⇤ 'k)(t)i (19)

where ⇢̌(t) = ⇢(�t) is the impulse response of L

�1⇤, the
inverse of the adjoint operator of L. Also,

(⇢̌ ⇤ 'k)(t) = �,T (t� kT ) = 1⇥
kT,(k+1)T

�

e

�(t�kT ) (20)

is the exponential B-spline with parameters  and T
[12]. The fundamental property here is that the kernels
{�,T (·� kT )}k2Z are shifted replicates of each other and
have compact and disjoint supports. Thus, according to the
definition of a white noise, {wk}k2Z is an iid sequence of S↵S
random variables with the common characteristic function

p̂w(!) = E{ej!hw,�,T i} = e

�|k�,T k↵!|↵ . (21)

The conclusion is that a continuous-domain AR(1) process
maps into the discrete AR(1) process {sk}k2Z that is uniquely
specified by (18) and (21).

We now consider N consecutive samples of the process
and define the random vectors s = [s1 · · · sN ]

> and w =

[w1 · · · wN ]

>. This allows us to rewrite (18) as

s = L�1w (22)

where L�1
=

⇥

¯lij
⇤

N⇥N
and

¯lij = e

�T (j�i) · 1{j�i} (23)

which is the discrete-domain counterpart of (14).
In the next sections, we are going to study linear transforms

applied to the signal s (or s). Here, we recall a fundamental
property of stable distributions that we shall use in our
derivations.

Examples of S!S  AR(1)  processes

Sparser

Independent component analysis for S!S AR(1) 
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Orthogonal transform and mutual information

y = Ts with TTT = I

ICA: minimum mutual information

Differential entropy: HU = �
R
R pU (x) log pU (x)dx

I(Y1, . . . , YN ) =

 
NX

n=1

HYn

!
�

H(S1:SN )=NHU

z }| {
H(Y1:YN )

Discrete innovation model for AR(1)

u = (U1, . . . , UN ) = Ls with Un = hw,�↵1(n� ·)i i.i.d. S↵S

z = (Z1, . . . , ZN ) = TICAx: “most independent” representation



Stability w.r. to linear combinations
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Characteristic function of S↵S random variable

p̂U (!) = e�|s0!|↵

Linear combination of i.i.d. S↵S random variables

Z =
NX

n=1

anUn = aTu , p̂Z(!) =
NY

n=1

p̂U (an!)

) Z is S↵S with parameter r0 = s0

 
X

n=1

|an|↵
!1/↵

= s0kak↵

= exp

 
�

NX

n=1

|ans0!|↵
!

= e�|r0 !|↵

ICA: From entropy to     -norms
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A = TL�1 = [a1 · · ·aN ]T

=) HYn = HU � log kank`↵

Orthogonality constraint: TTT = I

Min-entropy solution:

NX

n=1

HYn = I(Y
1

, . . . , YN )�H
(Y1:YN )| {z }
Const

`↵

=) Yn is S↵S with dispersion sn = s0kank`↵ = s0

 
NX

m=1

|an,m|↵
! 1

↵

=) I(T;↵) = �
NX

n=1

log kank`↵ = �
NX

n=1

1

↵
log

 
NX

m=1

��
[TL�1

]n,m

��↵
!

Special case of S↵S processes: f(!) = �|s0!|↵

p̂Yn(!) = exp

 
NX

m=1

� |s0an,m!|↵
!

= e

�|sn!|↵



ICA for discrete S!S processes 
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Minimization of mutual information

argmin

T

(
�

NX

n=1

1

↵
log

 
NX

m=1

[TL�1
]

↵
n,m

!)
s.t. TTT = I

Orthogonal transform: y = Ts = TL�1u

Iterative gradient-based algorithm

Update using analytical computation of gradient

Projection on space of orthogonal matrices

Discrete innovation model

s = L�1u with u = (U1, . . . , UN ) i.i.d. S↵S
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Fig. 6: Two rows of the optimal H (ICA) for ↵ = 2 down to 1 when N = 64. In each row, we see the evolution from
sinusoidal waves to Haar wavelets by increasing the sparsity of the underlying innovation process.

To substantiate those findings, we present a theorem that
states that, based on the above mentioned criteria and for any
↵ < 2, the operator-like wavelet transform outperforms the
DCT (or, equivalently, the KLT associated with the Gaussian
member of the family) as the block-size N tends to infinity.

Theorem 1: If ↵ < 2 and  � 0, we have that

lim

N!1
R(OpWT) < lim

N!1
R(DCT) = 1 (41)

and

lim

N!1
MSE(OpWT) < lim

N!1
MSE(DCT) = �2, (42)

where OpWT stands for the operator-like wavelet transform.

The proof is given in Appendix II.
In addition, this theorem states that, for ↵ < 2 and as

N tends to 1, the performance of the DCT is equivalent
to the trivial identity operator. This is surprising because,
since the DCT is optimal for the Gaussian case (↵ = 2),
one may expect that it has a good result for other AR(1)
processes. However, although this theorem does not assert
that operator-like wavelets are the optimal basis, it still shows
that, by applying them, we obtain a better performance than
trivial transformations. Also, through simulations we observed
that operator-like wavelets are close to optimal transform,
particularly when the underlying white noise becomes very
sparse.

Orthogonal expansion of a stable AR(1) process
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e↵1 = 0.9, M = 64(Pad-U., ICASSP’13, ArXiv)



Addendum: Compressibility of sparse processes 
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s 2 Bn+1/↵�1
↵,1 (T) with probability 1

(Fageot-U.-Ward, ACHA 2016)

Sparsity index: ↵ 2 (0, 2]

L =
dn

dtn
+ an�1

dn�1

dtn�1
+ · · ·+ a1

d

dt
+ a0I

Stochastic ODE driven by periodic S↵S noise

Ls = w↵ ) s = L�1w↵

B⌧
p,q(T): Besov space over the circle

M -term approximation (in matched wavelet basis)

ks� sMkL2(T) = O(M�⌧0) with ⌧0 = n+ 1
↵ � 1� ✏
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CONCLUSION
■ Unifying continuous-domain stochastic model
■ Backward compatibility with classical Gaussian theory
■ Operator-based formulation: Lévy-driven SDEs or SPDEs
■ Gaussian vs. sparse (generalized Poisson, student, SαS)

■ Decoupling and regularization
■ Sparsification via “operator-like” behavior (whitening)
■ Specific family of id potential functions (typ., non-convex)

■ Conceptual framework for sparse signal recovery
■ New statistically-founded sparsity priors
■ Derivation of optimal estimators (MAP, MMSE)
■ Principled approach for the development of novel algorithms
■ Implementation of MMSE solution (belief propagation)
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Gaussian Sparse

Fourier analysis Wavelet analysis

Norbert Wiener Paul Lévy
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