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3 Variational splines and representer theorems

The leading idea is that splines can be defined as solutions of variational
problems subject to some convex linear measurement constraints. While
such splines are defined over the continuum, the pleasing outcome of the
theory is that they live in a finite-dimensional subspace that is tied to the
underlying regularization operator.

Given a suitable RKHS H, we like to view a generalized spline as a
function f € H that is uniquely characterized through the values z,, =
(Um, f) of a finite number M of linear functionals vy,...,vp € H'. The
traditional setting corresponds to the choice of the sampling functionals v,,, =
d(- — @), which translates into the (non-uniform) interpolation conditions
f(@m) = Ym, m = 1,..., M. Since the specification of the value of these
linear functionals is obviously not enough to determine f unambiguously,
the unicity of the spline is achieved by minimizing the corresponding spline
energy ||L f||%2 where L is an admissible regularization operator.

The notion of spline is also suitable for dealing with approximate or
perturbed measurements vy, = (Vm, f) + €, where €, is some unknown dis-
turbance term that is typically assumed to be random (noise) and identically
distributed for each component. The best fitting spline is then determined
by minimizing the least-squares functional

M
Js(Fly:N) =3 Wm — (oo 1) + AILFIZ, g (96)

m=1

where L is the regularization operator and A € R* is a tradeoff parameter
that controls the closeness of the fit. We note that the exact fit with y,,, =
Zm = (Um, f) is achieved by letting A — 0.

3.1 Regularization functional induced by an inner product

Let us start with the easier scenario where the optimization is performed
over a Hilbert space H and the regularization functional is the quadratic
norm induced by its inner product. To set up the problem, it is convenient
to recall that the effect of a measurement functional v, € H' (the continuous
dual of H) has an equivalent representation as

<Vm>f> = <V7tzvf>?-[

where v}, = R{v,,,} € H is the (unique) Riesz conjugate of vy, (see Theorem
4).

83



M. Unser (EPFL) RKHS, Splines, and Gaussian Processes

Our first approach for deriving the spline solution is to recast (96) as the
minimization of a generic quadratic form covered by Theorem 35 in Appendix
A. To that end, we rewrite Jrg(fly, ) as

M
Jis(Flyo N = 37 (m — (5, F20)° + MIFIF = La(f. ) = v(f) + Co

m=1

with
M M
Cozzyzrm v(f):2zym<y:;wf>7{
m=1 m=1

M
a(fr, f2) = 2X{f1, for + 2 ) (Wi ) Wi, F2) 2,

m=1

where v = Zr]\r/{:l Yymvy, € H' is a continuous linear functional on H and
a:H xH — R a continuous symmetric bilinear form on H. We also note
that the bilinear form is coercive when A > 0. Theorem 35 then tells us that
the minimizer of this functional, fo = argminsey J(f|y,A), is unique and
such that v(f) = a(fo, f), which translates into

M M
O ymbis D = Moy Fha+ O Wi fo)nvims Fu
m=1 m=1
for all f € H. This is equivalent to
M
Moo= Wm — W fo)r) Vi, (97)
m=1

which implies that fy € Span{u;"n}%zl, or, stated explicitly,

M

*

f0: § aAmVpy,
m=1

for some suitable weights aq, ..., ayr € R. Upon substitution of this latter ex-
pansion in (97), we find that the optimal coefficient vector a = (a1, ..., anr)
is the solution of the linear system of equations

(G+Mya=y (98)
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where y = (y1,...,yn) is the data vector and G = (v*, (v*)T)g; the M x M
Gram (or correlation) matrix whose entries are given by

[G]m,n = <V:;zv’/;;>% = <Vm77/n>H’ = <Vm77/;;>'

For further reference, we summarize the result in Proposition 15 while
we also provide the concrete representation associated with a RKHS.

Proposition 15 (Regularized least-squares approximation). Let us consider
the following.

e H is a Hilbert space associated with the inner product (f,g)w;

o vy,...,vn € H is a finite set of linear measurement functionals on H
with corresponding Riesz conjugates vy, ..., vy, € H such that (U, ) =

(Vi [y Jor all f € H;

o G € RMXM 45 4 symmetric positive-definite matriz with entries Glmn =

(Vm,v)) = (V) vy and Iy the identity matriz of size M ;

oy =(y1,....,ynm) € RM is some arbitrary data vector and A\ € RT an
adjustable regularization parameter.

Then, the abstract reqularized least-squares reconstruction problem

M
argmin (Z ‘ym_<ym7f>‘2+)‘<faf>%{> (99)

feH

has a unique solution that is given by
M
f= Z amvy,  with  a=(ay,...,apy) = (G + M) ly.
m=1

In particular, when H is a RKHS over R? with reproducing kernel vy (x,y),
the minimizer f admits the functional representation

M
@)= awinf@) i) = [ rule )y
m=1
while the entries of G can be evaluated as
Gl = [ [ @)l v (y)dady. (100)
R4 JR4
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Proof. There are many ways of establishing the result. The simplest is to de-
fine ¥V = span{v}, %:1 and to use the same of orthogonality argument as in
the proof of Theorem 18 to show that the minimizer fo € span{v;,}M_,,
while G is Gram matrix of the underlying basis. Once the parametric
form of the solution is established, one simply verifies that v(f) = Ga and
| f1I3, = a’ Ga so that the optimal optimal expansion coefficients are found

by minimizing the quadradic cost
J(aly,\) = |ly — Ga|j3 + \a’ Ga.
This is achieved by evaluating the partial derivative of J with respect to a,

dJ(aly, )

o =2G(y — Ga) + 2AGa =2G(y — (G + AIy)a).

This gradient clearly vanishes if we set y = (G + Alps)a, which yields the
desired solution. In fact, the latter condition is also necessary for optimality,
due to the unicity of the solution (see Hilbert’s projection Theorem 34). [J

We observe that the approach can be taken to the limit with A — 0
whenever G is invertible. Moreover, we can readily determine the “spline
energy” of the solution as

1£13 = (f. Fa
M
= Z am Z an(Vy Vi )y = a’Ga,

which is a quadratic form associated with the Gram matrix G.

Proposition 15 provides us with a simple linear algorithm for the res-
olution of regularized least-squares problems. We shall now generalize the
result and show that the parametric form of the solution is preserved for a
much broader class of optimization problems.

Theorem 18 (Abstract representer theorem). Let H be a Hilbert space with
inner product (-,-)3y and Riesz map R : H' — H. Letv : H — RM :
f=v(f) = (v, )., (vms, f) with vy, € H' be a continuous linear
measurement operator and C be a closed conver subset of RM such that its
preimage in H, U = v=1(C) = {f € H : v(f) € C}, is nonempty (feasibility
hypothesis). Then, the problem

i 2 st C 101
arg%ngHHS v(f) e (101)
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has a unique solution of the form

M
fo=>_ amvi, (102)
m=1

with v}, = R{vm} € H and suitable weights ay, € R form =1,..., M.

Proof. The unicity of the solution follows from Hilbert’s projection theorem
(Theorem 34). In the present context, we are projecting the origin f = 0
onto the convex set U, which is nonempty because of the feasibility hypoth-
esis. The enabling property is that convexity (resp., closedness) is preserved
through linear (resp., continuous) transformations so that the preimage U of
the closed convex set C is guaranteed to be closed and convex as well.

Next, we invoke Riesz’ representation theorem (Theorem 4) and rewrite
(Um, [) = (v, [)n, for m = 1,..., M, where v}, = R{v,,} € H is the
conjugate of v, € H'. Defining V = span{v},}M_, we then specify V* =
{feH: {fiv)n=0m=1,... M} as the orthogonal complement of V
in H. The key is then to observe that V* coincides with the null space of
the measurement operator v. Since H =V @ V1, every f € H has a unique
decomposition as f = u +u with v € V and u* € V*. The solution fy can
therefore be written as fo = ug + uy with v(fo) = v(ug) and v(ug) = 0,
which implies that ug also lies in V. Since fj is the minimal-norm solution,
we have that

1foll, < lluoll3, = lluo + ug I3, = lluollF, + llug 13 < lluoll
= |lug|lx =0« ug =0

M

m—1, which is equivalent to

Thus, fo = up implying that fy € span{v},
(102).

O

Let us now briefly show that the result in Theorem 18 is also applicable
to our initial quadratic minimization problem (96). Given the data vector
y = (y1,...,ym), the underlying loss function is the quadratic error

Fy(z,y) = |y — 2l with z=w(f),

which is a continuous convex function of z € R™ and, by composition, of
f € H since the measurement map f — z = v(f) is linear and bounded. By
considering the level sets of Fb (~, y), one obtains a series of embedded closed
convex sets

Cyo={z €RY :|ly — 2|} < 0®}
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that are parametrized by ¢? > 0. The application of Theorem 18 ensures
the existence of a unique solution f(y ,) such that v(fy ) € Cy, and
|ILf||3 is minimum. Moreover, since the projection of a function onto a
closed convex set is necessarily located on the frontier of that set, we have
ly = v(fy.o))I> = 2. On the other hand, since the solution of our ini-
tial problem f\, = argmin J(f|y,\) with A fixed is unique, there exists a
corresponding “optimal” oy = o(\) > 0 such that ||y — v(f))|3 = 0%. It
then follows that the two problems are equivalent if we set o = o) with
fiyon) = Ix

The extreme scenario is ¢ = 0, which yields an interpolating solution
such that v(f(y,0)) = y. The latter also corresponds to the solution of (96)
as A — 0.

Now, the truly powerful aspect of Theorem 18 is that the above reasoning
remains applicable for non-quadratic loss functionals, subject to some mild
convexity constraints, as further discussed in Sections 3.1.2 and 3.2.3.

3.1.1 Smoothing splines and ridge regression

As already announced in the introduction, the classical scenario of spline in-
terpolation corresponds to the choice of a series of ideal sampling functionals
U = 0(- — @) wWith (U, f) = f(@m),m =1,..., M. Since the location of
the x,, € R? can be arbitrary, the sampling is called non-uniform.

In the event where the data is noisy, one considers a relaxed form of
interpolation also known as a smoothing spline. Mathematically, this is for-
mulated as a regularized least-squares recovery problem

M
Jus = arg}né% (Z (ym - f(wm))Q + )‘Hng-l)

m=1
where the choice of the quadratic data term—that is, the loss function
By (v(f),y) = ||z — y||* with zp, = f(@,,)—is primarily motivated by com-
putational convenience.

Once more, the general form of the solution is given by (102) in Theorem
18. In the present case, this simplifies to

M M
fus(@®) = amR{O(- — zm)} (@) = D amru (@, Tm) (103)
m=1 m=1

where we have used the identity ry(z, ) = R{0(- — &m)}(x), which is
a restatement of the definition of the reproducing kernel (see Property 6 in
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Proposition 2). Based on (98), we also obtain the expression of the expansion
coefficients

ars = (ala e aaM) = (R+ )‘IM)_ly7 (104)

where the generalized Gram matrix G in (98) reduces to the symmetric
inner-product matrix R € RM*M with entry

Rlmn = (ra( @m), 1 @n) )1 = r3(Tm, Tn).- (105)

Moreover, the use of Property 2 in Proposition 2 yields

| fusll3, = alg Ras,

which provides the spline energy of the solution.

In statistical regression, one usually assumes that the samples of the
signal are corrupted by AWG noise of variance ¢?. The minimum mean
square error (MMSE) reconstruction of the signal is then given by the same
formula as (103) with the reproducing kernel ry (-, @,,) being substituted
by the covariance function of the signal r¢(-, @y,) = E{f(-)f(%m)} and A =
o2 (see Section 4.6). The corresponding estimation method is called ridge
regression since the qualitative effect of (104) is to add a ridge (i.e., a constant
diagonal term of height 02) to the covariance matrix R of the signal. The
same type of estimator is also used in geostatistics where is known as kriging.

The good news with the smoothing spline problem is that (R + AI) with
A > 0 is always invertible (including for the limit case A — 0) because R is
symmetric positive-definite, as a consequence of the strict positive definite-
ness of the reproducing kernel (see Definition 2). The geometric interpreta-
tion of this results is that the functions r4(-, @,,) are linearly independent;
hence they provide a bona fide basis for representing the solution of spline-
related optimization problems.

For further reference, we specify our “optimal” spline interpolant as fin:
it is the minimum-norm member of H that satisfies the interpolation con-
straints fint(€m) = ym for m = 1,..., M. fin lives in the M-dimensional
subspace specified by (103) and is uniquely characterized by its expansion
coefficients

Qint = R_1Y-

In fact, we can vary y to generate the whole spline space that is spanned
by {ry(~,1:m)}%[:1, while we have the property that ||fint||§_[ = aﬁtRaim =
y' Ry =y au.
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Description Definition Convex Coercive
M
Square loss |z —yl3 = Z (Zm — Ym)* Yes Yes
m=1
M
Absolute loss |z =yl = Z |Zm — Yml Yes Yes
m=1
M
Hinge loss Z max(1l — z,Ym) Yes Yes
m=1

3.1.2 Representer theorem for statistics and machine learning

The next step in the progression is machine learning because it typically
involves loss functions that are more sophisticated than the least-square cri-
terion in (96). The measurement functionals, on the other hand, are still
kept simple with v, = 6(- — @y,) and (6(- — &), f) = f(xm).

In essence, the problem is to find a function f : R® — R such that
f(®m) = ym (with a training set of size M) where the proximity (or loss)
between the samples z(f) = (f(z1),..., f(®n)) and y = (y1,...,ym) is
measured by some loss function RM x RM — R.

The two key properties that help us ensure the unicity of the solution
are convexity and coercivity.

Definition 15 (Convex function). A multivariate function g : RM — R is
convex if

g(TZl +(1—1)z2) < Tg(Z1> +(1- T)g(ZQ,y)

for all 21,29 € RM and all T € [0,1]. It is strictly convex if the order relation
holds with a strict inequality for z1 # z9 and T € (0,1).

An important property of finite-dimensional convex functions is that they
are continuous inside their domain (see [?, Corollary 2.3, p. 12 |).

Definition 16 (Coercive function). A multivariate function g : RM — R is
said to be coercive if im0 g(z) = 0.

With a slight abuse of language, we shall say that the loss function
F:RM x RM 5 R is convex (resp., coercive) if F(-,y) : RM — R is convex
(resp., coercive) for any fixed y € R For instance, the condition is auto-
matically met when the cost functional can be written as F(z,y) = g(z—y)
where ¢ is a convex (resp., coercice) function.
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In the statement of our optimization problem, the first argument of the
loss function is not defined on RM, but rather on some Hilbert space H via
the composition of some finite-dimensional linear map f — z(f). The main
point for our argumentation is that this composition preserves convexity
and continuity under the assumption that v, € H’. The final ingredient is
the regularization functional f +— || f H%, which is generally quadratic and
associated with a given RKHS H.

The fundamental result for machine learning is the celebrated Represen-
ter Theorem which is often used to justify the use of kernel methods such
as support vector machines (SVM), radial basis functions (RBF) and kernel
PCA. This is a very powerful result whose proof is actually much simpler as
one would expect.

Theorem 19 (Representer theorem for machine learning). Let H be a RKHS
space with reproducing kernel ry : R4 x RY — R. We consider the samples
z(f) = (f(a:l),...,f(a:M)) with x1,...,xy € R of a function f € H and
corresponding data values y = (y1,...,yn) € RM. Then, the solution of the
generic minimisation problem

arg min (F(2(f),y) + AIFI3) (106)

where the cost function F' is strictly convex, is unique and of the form

M
f(x) = Z am T3 (T, Ty (107)
m=1
with suitable weights aq,...,a) € R.

Proof. Since the map f ~— z(f) is linear and continuous, the functional
f = F(z(f),y) is strictly convex and continuous on H for any fixed y € RV
(see Appendix B for the definition of the relevant properties in the functional
setting). Likewise, the regularization term A||f||3, is strictly convex, contin-
uous and trivially coercive on H in the sense of Definition 39. It follows
that the functional in (106) is strictly convex, continuous (and, a fortiori,
lower semicontinuous) and coercive over H, which ensures that the problem
has a unique minimizer fy (by Proposition 27 in Appendix B). This solution
achieves some “optimal” sample values z(fo) = yo = (v0,1,---,Yo,m) € RM,
which fixes the data term (or loss functional) in (106) to F(z(fo),y) =
F(yo,y). By imposing the condition z(f) = yo, we freeze the data term,
which allows us to reformulate the minimization of (106) as a classical spline
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interpolation problem

. 2 M
.t Ty) = =1-
i 117 st (f(®m) = Yom)m=1

From the analysis in Section 3.1.1, we know that this problem admits a
unique solution fin = fo given by (103) with aj,s = R 'y, which is consis-
tent with (107). O

In view of the discussion following Theorem 11, we can also formulate the
constrained version of the optimization problem by considering the convex
set

Cyo={z € RY . F(z,y) < 02}

where o € R is a suitable bound on the loss. Moreover, the solution fy of
the constrained problem is such that F' (z( fo), y) = 02 since the minimum is
generally achieved on the frontier of the convex set (by Hilbert’s projection
theorem). Thus, we may divide (106) by A and interpret (1/X) as the La-
grange multiplier associated with the norm-minimization problem with an
equality constraint on the loss. At any rate, the main point is that, whatever
the formulation—unconstrained or constrained with a bound on the loss or
a bound on the regularization—the parametric form (107) of the solution
remains the same. It is universal in the sense that it is independent of the
choice of the loss function provided that the latter is convex. The caveat,
of course, is that the determination of the optimal a,, generally requires the
deployment of an iterative solver; typically, some type of steepest descent
algorithm.

3.2 Non-coercive regularization functionals

The construction of generalized splines is also possible for the type of non-
coercive regularization operator L : Hy, — La(R?) considered in Section
2.7. The operators that are suitable for this purpose are the ones that are
spline-admissible in the sense of Definition 13. They are characterized by a
non-trivial, finite-dimensional null space N, that admits some biorthogonal
system {¢p,, pn}ivil with the property that

No
p =Proja; {p} = > _(¢n,p)pn = p" B (p)

n=1

for all p € N, = span{pn}ﬁfil. The corresponding native space Hi, is the
Hilbert space Hi, equipped with the composite norm

|l = \JILAIB, + ()13,
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where the second component [|¢(f)|]2 = [[@(p)|2 with p = Projy, {f} is
required to remove the ambiguity for the elements of Hy, that are in the null
space of L. Since ||Lf]|r, is only a semi-norm, it is harder to ensure unicity
which calls for a more involved analysis.

Supplementary material:

3.2.1 Generalized boundary value problem

The simplest solution for avoiding any potential unicity problem is to fix
the null-space component of the solution, which is achieved by imposing
suitable boundary conditions. This results in a generalized boundary value
problem that falls within the general Hilbert-space framework of Theorem
18. While the proposed reformulation deviates from our initial optimization
problem, we shall see that the framework is rich enough to encompass the
unconstrained scenarios that are covered by the representer Theorems 19
and 20.

Corollary 4. Let us consider the following:

o (L,¢) is an admissible pair and p = (p1,...,pN,) @ corresponding
biorthogonal basis of Ny, such that {¢m,pn) = Om—n;

e v:f—v(f)=n,f)...,(vm, f)) is a bounded linear measurement
operator from Hy, — RM:

e C is a closed convex subset of RM and ¢ = (co,...,cn,) € RM @
constant vector such that the set U, = {f € Hy, : v(f) € C and ¢(f) =
c} is nonempty (feasibility hypothesis).

Then, the solution of the minimization problem

: 2
arg min [Lf|7,ga) st v(f) €C,

(1, f) =1
<¢N07 f> = CNy
is unique and of the form
M No
fo=> amAg{vm}+ > capn (108)
m=1 n=1
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where the a,, € R are some suitable weights and where Ay = (L;IL?*) :
Hi — Hy, is the linear operator whose kernel is specified by (59) in Theorem
11.

Proof. Since Hr, is the direct sum of Hy,  and Ny, every element f € Hy, has
a unique decomposition as f = g+¢ with g € Hy, 4 and ¢ € Ni,. Conversely,
for any g € Hi, 4 and ¢ € Ny, we have that f = g+q € Hy, with the property
that |Lf|z,®e) = [[Lgllr,maey = 9ll3y.,- Moreover, since ¢(g) = 0 for all

g € Hi,4 and thanks to the biorthogonality of (pp, ¢n)7]yi1» we can enforce

the boundary conditions ¢(f) = ¢ by taking the null-space component as

No
qo = Z CnPn-
n=1

This allows us to rewrite the optimization problem as

. 2
— S.t. eC
g0 A génHlI{lw HgHHL,cﬁ st v(g) q0

where Cy, = {z : z + v(go) € C} is a closed convex set of RM that is
the translated version of C by v(qy). The solution gg is then derived from
Theorem 18, while the corresponding reproducing kernel and factorization
of the Riesz map Ay : ’th) — Hi,4 is obtained from Theorem 11. The
solution of our initial problem is fo = go + qo. ]

In principle, the generic form of the expansion (102) is also transferable
to the unconstrained scenario with the caveat that we first need to make
sure that such a solution exists.

In the absence of boundary conditions, the limiting factor is the lack of
coercivity of the regularization functional ||L f||%2. This forces us to impose
constraints on the operator L to ensure the existence and unicity of the
solution.

3.2.2 Proper regularization of an inverse problem

The regularization has obviously no effect on the null-space component of
the signal. Accordingly, we must ensure that the measurements v(f) are
rich enough to characterize this component unambiguously. This property
is uncapsuled in the following definition.

Definition 17 (Proper regularization operator). The operator L : Hp, —
Ly(RY) with finite-dimensional null space Ny, = span{pn}fyil C Hy is a
proper reqularization operator for the measurement operator v : f+— v(f) =
((v1, )y, (ar, f)) if the following technical conditions are met:
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1. L is spline-admissible in the sense of Definition 13
2. v1,...,vm € Hy,
3. For all g € Ny, |[v(q)|l2 > 0 with equality if and only if ¢ = 0.

Condition 2 is merely a restatement of the fact that the linear measure-
ment operator v must well defined (i.e., bounded) on the full native space
‘Hr.. The critical requirement is Condition 3, which has the following impli-
cations.

Proposition 16 (Criteria for a proper regularization). Let L and v be such
that the two first conditions in Definition 17 are satisfied. Then, the third
condition for a proper regularization can be restated in any of the following
equivalent forms.

M
1. For any q1,q2 €NL, Y [(Wn,q1) — (Wn, @) P =0 1 = g2

m=1

2. For any basis {pn}gil of N1, the singular values of the M x Ny matriz
P=[v(p1) - vipn,)] are strictly positive and bounded.

3. For any biorthogonal basis {gbn,pn}nNil of Ny, there exists a constant
¢ > 0 such that, for all g € Ny,

No 1 M
lal® =D 1o ) <~ > [(vn: 0 (109)
n=1 m=1

4. Within {v, YM_, with M > Ny, there exists at least one subset of Ny
functionals that are linearly independent on Ni,. Hence, by assuming
that the vy, are ordered such that these Ny functionals come first, we
can truncate the sum over m in Statements 1 and 3 to the first Ny
terms only.

5. For any basis {pn}fyil of N1, there exists a set of biothogonal func-
tionals ¢1,- -+ ,dN, € span{un}ivil where the underlying v, satisfy the
linear independence property identified in 4.

Proof. Ttem 1 is obvious: Since v is linear, the statement |v(g)|2 = 0 &
g = 0 is equivalent to saying that any ¢ € N, is uniquely determined by its
measurements b = v(q). If we now expand ¢ as ¢ = 2]21 cnpn = P’ c, this
results in the overdetermined system of equations Pc = b where P is the
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cross-product matrix of size M x Ny specified in Item 2. It is well known
that such a linear system admits a unique solution

c=(PTP)"'PTb (110)

(which is also the least squares one) if and only if the normal matrix (P7P) is
invertible. The latter is equivalent to the singular values of P being bounded
away from 0, as stated in Item 2. As for Item 3, we convert (110) in the
following inequality

Umax(P)
lall = llell2 < 2 (P) v (a)l2
where 0 < opin(P) and omax(P) < oo are the minimum and maximum
singular values of P, respectively (the boundedness of o« (P) simply follows
from the assumption v, € Hj).

Let P = [p1 --- pu]’ with p,, € RY. The geometric implication of
Statement 2 is that the vectors {pm}nj\f:1 span the Euclidean space RMNo.
Accordingly, when M > Np, we can recursively drop dependent row vectors
from P such as to end up with a subset of size Ny that forms a basis of
RNo. In other words, we can ensure that RYo = span{pn}ﬁfi1 modulo some
proper reordering of the vectors. This implies that the reduced matrix Py =
[P1 -+ Pn,)T of size Ny satisfies the stability condition in Item 2, which
takes care of Statement 4. Moreover, this ensures that the reduced cross-
correlation matrix Py is invertible.

As for the last statement, it translates into the selection of the dual
space N = span{v, }Y°, C H} , which admits a unique basis {¢,}2°, that
is biorthogonal to {p,}. The constructive procedure is the dual of the one in
Proposition 9: Specifically, ¢ = P Yvo where vy = (v1, - - - , VN, ) denotes our
reduced vector of measurement functionals that are linearly independent.

O

3.2.3 Representer theorem for linear inverse problems

The other related issue is that the mere convexity of the cost function F' :
RY x RN — R¥ is no longer sufficient to ensure unicity. To regain control
over the null-space component of the signal, we need to add the coercivity
requirement.

Theorem 20 (Representer theorem for linear inverse problems). Let us con-
sider the following.
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v:fev(f)= (v, f)....(vm, f)) is a bounded linear operator
Hi, — RM that extracts M measurements from the signal f;

L : Hy, — Lo(R?) is a proper regularization operator with respect to v
in the sense of Definition 17;

{pn}gil s a basis of the null space of the reqularization operator;

F:RM xRM 5 R is a continuous loss function that is strictly convex
and coercive in its first argument;

y € RM s a given data vector and A\ € RY an adjustable reqularization

parameter.

Then, the solution of the generic minimization problem
arg min J(fly,A) - with  J(fly,A) = F@(F),3) + ML e (111)

is unique and of the form

M No
foy =D amem + Y bapn (112)
m=1 n=1
with
pm = My} = /Rd Gru( y)vm(y)dy (113)
where a = (a1, ...,ap) € RM and b = (by,...,by,) € RN are suitable coef-

ficient vectors and where Gy«1, is a symmetric Green’s function of L*L, as
specified in Theorem 11. Moreover, the leading term in (112) is “orthogonal”
to the second in the sense that (a,v(py)) =0 forn=1,..., Ny.

Proof. The proof is similar to the one of Theorem 19, except that we now
also need to establish the coercivity and strict convexity of J : Hr, — R.
To that end, we use the property that any element f € Hp has a unique
decomposition as f = L;lw +q with w = Lf, ¢ = Projy, {f}, and | f||* =
lwliZ, + llall* with llqll = [[¢(g)ll2 (see Theorem 12).

(1) Coercivity of J: Imposing || f|| — oo forces at least one of the norm
components ||w||z, or ||¢|| to grow to co. Now, the lower bound (109) and the
coercivity of F' imply that F(V(L(;lw) +v(g),y) — o< as ||q|| = oo, while
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the coercivity of the regularization term with respect to the w component is
obvious. This implies that J(f|y,A) — oo as || f]| = oo.

(ii) Strict-convezity of J: Let us pick some w € Lo(RY) and set f=
L;lw. Then, for any qi,q2 € N1, we define f1 = f +q1, fo = f + ¢2 and
invoke the strict convexity of F' to write

Fw(f+ra+0-7)g).y)=Ffi+(1-1)f)y)
<7F(v(f1),y) + 1 —1)F(v(f2),y)
<tFw(f+aq),y) +(1-7)Fw(f+a)y).

This shows that the data term of J is strictly convex in ¢ when w is fixed,
while the same applies if we switch the role of the components. Since the
regularization term is strictly convex in w, this implies that J is strictly
convex in (w, q) and hence in f € Hj, by linearity.

(i1i) Continuity of J: It simply follows for the fact that all the underlying
operators and functionals are continuous.

Properties (i), (ii) and (iii) ensure that the minimizer fy of J(:|y, A) over
Hj, exists and is unique (by Theorem 36). To obtain its parametric form,
we define the constants yo = v(fo) € RM and ¢ = (c1,...,cn,) = @(fo) €
RN Using the property that Hy, is the direct sum of Hi,p and Ni, we
then rewrite the solution as fo = fo + qo with go = Projy; {fo} € N and
fo=fo—qo € M1, 4. Since &(fo) = 0 as a result of this projection, we have
¢(qo) = cp, which implies that

No
qdo = Z CnPn-
n=1

Similarly, v( fo) =yo — v(qo), which allows us to specify fo as the solution
of the generalized interpolation problem

a‘rg ~min Hf~H’2HL¢ S't' V(f) = YO - V(qo)
feHL,¢ ’

with HfH”QHL¢ = HLfHLZ(Rd) = HL{f—l—qo}HLz(Rd). We then invoke the abstract

representer theorem (Theorem 18) which tells us that fo € span{v}, }M_,

where v is the corresponding Riesz conjugate of v,,,. The combination of
these elements yields the parametric expansion

M Ny
fO = Z amAqb{Vm} + Z CnPn
m=1 n=1
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where the operator Ay (see Theorem 13) is the Riesz map Hj 4 — Hie -
The reverse Riesz map Hr, ¢ — Hp, 4 is the operator (L*L), which can

be applied to fo to obtain the conjugate function
. . M
fo = WL fo} =D amvm,
m=1

which is included in H’L ® by definition (see functional mapping in Figure 2).

Hence, we necessarily have that p( f(}*) = 0, which translates into the stated
orthogonality property. Finally, we rewrite the solution as

No
fo= A(ﬁ{fg} + chpn

n=1

No
= ALY+ ((A{on}, f5) + en)pn

n=1

M No
= Z amA{Vm} + Z bnpn
m=1 n=1

where we have made use of Property 5 in Theorem 13 to readjust the con-
stants associated with the null-space component.
O

3.3 Discretization and numerical solutions

Besides the guarantee of unicity, the remarkable outcome of Theorem 20
is that the generic form of the solution (112) is a linear combination of
the basis vectors ¢ = (¢1,...,¢n) and p = (p1,...,pN,) where the ¢, are
specified by (113). Consequently, we can obtain an exact discretization of the
problem by searching for the optimal solution within the finite-dimensional
reconstruction space

Viy={9=¢"’a+p'b:acR and b e RV}, (114)
In other words, we have that

a 1 J ,)\ = a. i <] 7)‘
rg min (fly,\) rg min, (g9ly,N)

where the minimization on the left-hand side converts the original continuous-
domain problem into a finite-dimensional optimization in terms of the pa-
rameter vectors a and b.
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To set up the numerical problem, we need to express J(gly,\) = F(v(g),y)+
)\||LgH%2 for g € V1, in terms of (a,b). Due to the specific form (113) of
the basis functions and the null-space property L{p,} = 0, we readily find
that

Lo}, = IL{e"alIE, = (L'L){¢"a}.¢"a)
~ (v"a,¢"a) = a'Ga

where G = (v, ") is a symmetric matrix of size M whose the entries are
given by

[G]m,m’ = <Vm790m’> = /Rd /]Rd Vm(m)GL*L(a:ay)Vm’(y)dmdy (115)

The latter can also be written as [Glym = (Vm, A{vyy}) where A is a
positive operator (?7), which implies that the matrix G is positive-definite
(see Appendix A). Likewise, by invoking the linearity of the measurement
operator v : Hr, — RM | we find that

v(g) = Ga+ Pb

where G is same as before and where P is a matrix of size M x Ny whose
entries are given by

Plinn = (Vm,pn) = /d U () pp(x2)de. (116)
R
To sum up, given the error function F : RM x RM — R and the data
point y € RM | we restate the optimization problem (111) as
arg  min {F(Ga+Pb,y)+ A aTGa} (117)
acRM beRNo
where the corresponding “sensing” matrices G € RM*M and P ¢ RM*MNo
are defined as

G = [V((,O1) v(pg) - V(SDM)]
P =[v(p1) -~ v(pn,)]

and where A € RT is our adjustable regularization parameter. Since F' is
convex, we can then solve (117) iteratively by applying a steepest-descent
algorithm or a variant thereof. This requires the specification of the gradient

of the loss functional
OF (z,y)

P VFE(z,Yy)
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and the choice of an appropriate step size 7 € R*. Starting from an arbi-
trary initialization (ag, byp), the values of (a, b) are then updated recursively
according to the formulas

a1 —ag — TG (VF(Gak + Pby, y) + 2)\ak)
b1 = by — 7P VF(Gay, + Pby,y)

until a suitable stopping criterion is met. This algorithm is guaranteed to
converge to some fixed point (a, by) as k — oo provided that 7 > 0 be taken
sufficiently small. The exact (and unique) continuous-domain solution of
the problem is then obtained by injecting these coefficients in the expansion
formula (112).

3.3.1 Least-squares approximation problems

For demonstration purposes, we consider the generalized smoothing spline
problem where the loss functional is the least-squares criterion ||v(g) — y||3.
The optimal solution is then specified as

Jis(a,bly,\) = ||Ga+Pb —y|3 + Xa’Ga (118)
i J bly, A 119
L orn Ls(a, bly; A) (119)

By using standard differential calculus and the property that G = GT, we
first partially differentiate Jpg(a,bly, A) with respect to a, which gives

aJLS(av b|Y7 )‘)

7 =2G(Ga+Pb —y) + 2\Ga,

- 2G<(G +ADa+Pb — y).
This leads to the identification of the first condition of optimality
(G+X)a+Pb=y (120)

which forces the above partial derivative to vanish. Similarly, we calculate
the partial derivative of Jpg(a, bly, A) with respect to b and set it to zero as

aJLS(aa b’ya )‘)
ob

Upon substitution of the value of y given by (120), this provides us with a
second equation

=2P"(Ga+Pb—y) =0

Pla=0 (121)
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which is equivalent to the “orthogonality” property in Theorem 20. The
optimal spline is then found by jointly solving (120) and (121), which results
in the closed-form solution

(2)-(%" ) (3)

For the limit case where A — 0, we get the generalized interpolant f) €
Hy, with expansion coefficients (a(g), b)), which is such that v(f)) = y.
Based on (120) and (121), it is then possible to simplify the corresponding
spline energy as

HLf(o) ||%2 = a%)Ga(o) = a?(}) (y - Pb(o)) = a%;))y - b%E)) (PTa(O)) = a%)y

At the other extreme for A — oo, we have that

-1
a(oo) RT Al P Yy
(b(oo))_xlﬂi‘o<PT 0 0

This yields a(,) = 0 and
b = (PTP)'PTy

where the latter represents the orthogonal projection of y in the space
spanned by the column vectors of P.

3.3.2 Specific examples
3.3.3 Generalized interpolation revisited

The orthogonality property P7a = 0 introduces a linear dependency between
the expansion coefficients a € RM and b € R™0 in (114). This suggests that
the search space actually only has M degrees of freedom. Since the optimal
solution f() of the generic optimization problem in Theorem 20 is uniquely
determined by its measurement values v(f(y)), it suffices to identify the
underlying basis functions for the generalized interpolation problem

o [ILFIL, e st v(F) =y

We shall do so by using the fact that Hy, is a RKHS with respect to the
inner product given in Theorem 12. Without loss of generality, we assume
that the first Ny measurement functionals are linearly independent with
respect to N, to take advantage of the last property in Proposition 16.
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Let yo = (y1,...,Yn,) and vg = (v1,...,vn,). Since the cross-product
matrix Py € RNoxNo with

Po = [vo(p1) -+ vol(pn)]

is invertible by hypothesis, we construct ¢g = (¢1,...,¢n,) =Py Yy, which
yields the unique biorthogonal system {qﬁn,pn}ivil with the property ¢, €
Span{um}gil. Within that framework, any f € Hy, = Hi, ¢, ® Ny, has a
unique decomposition as f = ¢ + g with ¢ = Projy, {f} € M, and g =
f —q € Hi, ¢, Moreover, v4(g) = Pogo(g) = 0 by construction, so that we
can transfer the constraint vy(f) = yo to the null-space component. This
results in the basic interpolation problem

90 =q <€ NL:v(q) =Yo

the solution of which is simply
No
qo = Z CnPn
n=1

with ¢ = (1, ,en,) = Pglyo.

Next, we recall that Hy, ¢, is a Hilbert space equipped with the inner-
product (g1, g2)1r, = (Lg1, Lga) (see Theorem 10). Definingy; = (yYng+1,---,Ynm)
and v1 = (UNy+1,--.,Vm) so that y = (yo,y1) and v = (v, V1), we thereby
reformulate our optimization problem in the decoupled form

g1= min |[|g[f s.t. v1(g) = y1 — v1(q)-
9EHL, ¢

which falls within the Hilbert-space framework of Theorem 18. The minimum-
norm solution then takes the standard parametric form

M

E *
gl == Cme

m=No+1

with v, = Ag,{vim} where Ay, is the Riesz map Hy 5 — Hr,¢, Whose (re-
producing) kernel is specified in Theorem 11. By enforcing the interpolation
constraint, we find that the expansion coefficients of g; are given by

c1 = (CNg+1," " »CM) = Gl_l (Y1 —Pico)
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where the underlying sensing matrices are

Py =[vi(p1) -+ vi(pn)]

Gi = [1(vng4) - (vl

The solution of the original problem is the generalized spline interpolant
f = qo + g1, which can be written as

No M
f = Z CnPn + Z CmAqSo{Vm}' (122)
n=1

m=No+1

The bottom line is that f lies in a subspace of dimension M and that it
can be parametrized in terms of its measurements y = v(f) € RM. Specifi-
cally, the linear, one-to-one relation between y = (yo,y1) and the expansion
coefficients of f in (122) is summarized by the matrix equation

=(2)-(albry ) (31)
C1 —G;lplPal Gfl Yi ’

while the corresponding spline energy is

ILf1Z, = ILg1]l7, = ¢] Gic1 = cf (y1 — Pico).

3.4 Epilogue: back to the finite-dimensional world

We have used the term “representer theorem” to convey the remarkable prop-
erty that the continuous-domain minimizer of any convex cost functional
with a quadratic regularization term lives in a fixed finite-dimensional space
that solely depends on the type of measurements (e.g. the operator v) and
the regularization operator L. We have also discussed the practical benefit
of this reduction of dimensionality as it results in an exact discretization
where the problem is recast as a finite-dimensional numerical optimization
program.

To close the topic of functional minimization, we shall now adopt a purely
discrete point of view and provide the finite-dimensional counterpart of The-
orem 20; that is, the representer theorem for linear inverse problems with
Tikhonov (or ¢3) regularization. The task there is to recover an unknown
vector ¢ € RY (our discrete signal) from a noisy set of M < N linear mea-
surements y,, = (c, hy,)+€, where €, is some unknown /random disturbance
component.

The recovery is done by minimizing the discrepancy (fitting error) be-
tween the true measurements y and the predicted ones—as quantified by
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F(Hc,y)—subject to a regularization constraint on c. Specifically, the en-
tities that enter the formulation are:

e the finite-dimensional signal ¢ € RY to be recovered by the algorithm;
e the input data vector y € RM with M < N;

e the system matrix H = [hy ... hy]7 € RMXV,

e the error functional F : RM x RM — RT, which is assumed to be

convex and coercive;

RNXN

e the regularization operator specified by the matrix L € of rank

N'" < N;
e the null space of L: N, = span{pn}fyil with 0 < Ny = N — N/;
e the RKHS H C RY associated the inner product {(c1, c)g; = (Lcy, Les)

and the reproducing kernel R = (L”L)T (see Section 2.3 and Proposi-
tion 5);

e The adjustable regularization parameter A € RT.

Similar to the continuous-domain setting, we assume that the recovery
problem is well-posed over the null space of L. This is equivalent to the
existence of a constant ¢ > 0 such that ||pll2 < ¢||Hp||2 for all p € N, so
that Hp =0< p =0.

Theorem 21 (Discrete representer theorem). Let {p, }2°, with No < N be
an orthonormal basis of N1, with corresponding system matriz P € RM*No
of rank Ny (condition for a proper regqularization) with [Py, = (hy, Pn).
Then, the generic convex minimization problem

opt = in (F(Hc,y) + \|Lc||? 123
Copt = arg min (F(He,y) + A[Lel)3) (123)

has a unique solution solution Copt, which lies in a finite-dimensional sub-
space of dimension M fully determined by H and L. Specifically, there is a
unique set of coefficients a = (a;,) € RM and b = (b,) € R0 such that

M ~ No
Copt = Z amhy, + Z bnpn
m=1 n=1

with flm = Rbh,,, subject to the orthogonality constraint PTa = 0 which
restricts the effective number of degrees of freedom to M.
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The key element for the proof is the orthogonal projection operator
Projy, RN — N, which is specified by ¢ — Zgiﬁpmc)pn. Conse-
quently, any element ¢ € RY has a unique expansion as ¢ = p- + p
with p = Projy;, {c} € Ny and p* = ¢ — p € H with the property
that (p*,p) = 0. In other words, we have the direct sum decomposition
RN = H @ Ng which allows us to replicate the proof of Theorem 20 with
the subsequent list of substitutions:

e Regularization functional : (Lf,Lf) ~» (Lc,Lc)

e Measurement operator: f+— v(f) ~» ¢~ Hc

e RKHS associated with the regularization: Hy, 4 ~ H
e Riesz map: Ay =L 'L, ~ R =RYR!?

Stable right-inverse: L;l ~  RY2,

Once more, the solution is composed of two terms: a primary part, whose
parametric form follows from the abstract representation theorem (Theorem
18), and a secondary null-space component that does not affect the regular-
ization cost. The orthogonality condition ensures that the latter component
contributes maximally to the reduction of the fitting error (data term).
The simplest instance of (123) is the regularized least-squares problem

M

arg min (|[He —y/|3 + A||Lc|3),
ceR

which admits the well-known closed-form solution
Copt = (HTH + ALTL) 'Hy. (124)

To show that the compatibility of this classical formula with the expansion
in Theorem 21, let us assume, for simplicity, that the regularization operator
is invertible (i.e., Ng = 0 and R = (LTL)~!). This allows us to write the
following sequence of (equivalent) identities
T T T _ T T T T
(HH)RH' + \H' = (HHH)RH' + \(L' LR)H
=Iy
H” (HRH" + \Iy) = (H'H+ AL"L) RH"
(HTH + AL'L) " H” = RA” (HRH” + A\y) ',

By plugging the last equation in (124), we get copy = Z%zl amBy, With
a= (HRHT + )\IM)fl y, which is the desired form. In fact, if we set G =
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HRH”—the matrix equivalent of (100)—we end up with the same formula
as (98), which highlights the parallel between the discrete and continuous
forms of the problem.
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