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E Finite-dimensional probability theory

This appendix provides a short survey of the primary tools of classical proba-
bility theory with an emphasis on Fourier-domain techniques. It also includes
a complete characterization of multivariate Gaussian probabilities.

E.1 Background: The probabilistic formalism

Generally speaking, a random variable is a variable whose possible values
are the numerical outcomes of some random phenomenon or experiment. In
probability theory and mathematical statistics, it is customary to represent
such a random variable as a measurable function X (see terminology in Ap-
pendix F) that maps the outcome of an experiment w € —a point in a
conceptual sample space  of possible outcomes—into a concrete numerical
output or state X (w) € X where X is the so-called state space.

It is convenient to think of the elements of the outcome space as all the
different possibilities that could happen, and of a realization X (w) as the
value that the random variable X attains when one of the possibilities did
happen. To indicate the distinction between the random generation process
as a whole and an actual outcome, we use straight /capitalized roman letters
to denote random variables (e.g., XorX=(Xyg,...,X N)) and an ordinary
mathematical font for the corresponding domain or output variables (e.g.,
r€Rorx=(x1,...,2zy5) € RY). The latter span the space of possible out-
comes and also serve as index of the underlying probability density function
(e.g., Px 1T pX(cc)) considered in Section E.2.

At the more abstract level of probability theory where Q0 and X' can be
arbitrary sets, the complete statistical information available on X is encoded
in the probability measure &y, which provides the probability of any event
E € X(X) (the o-field associated with X', see Appendix F, Definition 42):

0< Px(E)=Prob(X e E)<1

where F C X is a subset of the state space describing the configurations of
interest. For instance, if X = R and E = (—o0, z¢], then Px(F) returns
the probability that the random variable X takes a value z = X (w) smaller
or equal to xg.

The formal basis for this description is the classical notion of a probability
space (€2,%, Z), which has three fundamental components:

1. The sample space €2, which is the set of all possible outcomes of an
experiment.
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2. The o-field ¥ = X(Q2), which is a collection of subsets €2 that satisfies
the completeness properties of Definition 42.

3. The probability measure & on 3, which is a map that associates a
consistent probability 0 < Z(E) <1 to any event £ € X.

Definition 38 (Probability measure). Let 2 be a sample space with corre-
sponding o-field (). The map & : £(Q) — [0, 1] is said to be a probalility
measure on %(Q2) if it satisfies the three consistency conditions

e Z(0)=0
e () =1

e Countable additivity: For any countable collection {E;}icr C X(Q) of
pairwise disjoint sets: ,@(Uiel EZ> = i1 Z(E).

In the formal representation of a random variable as a measurable func-
tion X : Q — X, the role of the sample space {2 is primarily notational, as
it provides us with an indexing mechanism to describe specific realizations
of X. The only constraint is that 2 should be rich enough to map into the
chosen state space X'. The assumption that the map w — X (w) is measur-
able implies that X "1(E) = {w : X(w) € E}, the preimage of E € ¥(X), is
included in () for any admissible event F in state space. Consequently, if
the underlying probability space is (2,3, &?), then the probability measure
Px : X(X) — [0,1] that is induced on the random variable X is such that

Py (B) = 2({w: X(w) € E}).

An obvious choice is to simply take (2 = X, ¥ = ¥(X), & = Px), which
ensures that all the compatibility conditions are met.

The bottom line is that the outcome of a random experiment yields
a realization X(w) = x € X of the random variable X and that all the
statistical information is condensed into the probability measure Px.

Example 6 (Binary variable). Here the sample space is Qpinary = {False,
True}, while the corresponding o-field is ¥ = {0, Eo, E1, Qpinary } with Ey =
{False} and Ey = {True}. The discrete probability measure on ¥ associated
with equiprobable outcomes is specified as P(0) =0, P(Ey) = %, P(Ey) =
%, and P (Qpinary) = 1. Finally, the binary random variable X : Qpinary —

{0,1} is defined as X (False) = 0 and X (True) = 1.

Example 7 (Scalar random variable). Here the sample space is Qx = R
which goes hand-in-hand with the Borel algebra B(R).
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Example 8 (Random vector). Here the sample space is Qx = RN and the
standard choice of o-field is the Borel o-algebra B(RN). The state space is
RN as well so that the random vector X specifies the map

w X(w) = (Xl(w), R ,XN(U)))

In this configuration, each component X, of X is a scalar random variable
on its own right.

E.2 Probability density functions and expectations

Our generic random variable X = (Xi,..., Xy) is multivariate because it
is composed of N scalar component random variables X1, ..., Xy. The out-
come of an experiment yields a realization (or observed value) = X (w) =
(X1(w),..., Xn(w)) that takes some fixed value in RV (the state space of
possible outcomes). We recall that the random aspect of this probabilistic
model is the mechanism that produces w (outcome of the experiment) in
accordance with the underlying probability law.

Since RY is a finite-dimensional vector space, it is convenient to char-
acterize the statistical distribution of X by its (joint) probability density
function (pdf) px : RN — R*. The only constraint here is that px, in
addition to being positive, should be Borel-measurable on RY and such that
Jen p(x)dz = 1. The corresponding probability measure Px : B(RN) —
[0,1] (see Section E.1) is then given by

Px(E) = /E px(z)dz = Prob{X € E} (131)

where E C RY is any Borelian subset of R™V. In particular, the positivity con-
dition px (x) > 0 ensures that Zx (E) > 0 for all E € B(R"), while the nor-
malization constraint [, p(z)de = 1 gives Prob(X € RY) = Zx (RY) = 1.

Definition 39 (Statistical independence). The random variables X; € RN
and Xo € RN2 with respective pdfs px, and px, are independent if their
Joint probability density function p(x, x,) RNM+N2 s R can be factorized
as

P(x1,%) (%1, 22) = px, (21)px, (X2).

The pdfs px, and px, in Definition 39 are also called the marginals of
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P(X1,X,) and are such that
px,(®1) = / P(X,.X,) (@1, T2)d@2
RN2

PXg(wz)Z/ p(Xl,Xg)(wlwa)dwl-
RN

In particular, when the components X, of the random variable X are i.i.d.
with common pdf px, then the multivariate (or joint) pdf of X is separable
with

N
px(z1,...,xn) = [ px(zn).
n=1

Basic examples of separable pdfs are the shifted Dirac distribution

N
pCOnst(m) = (5(13 - ﬂ') = H 5(xn - ,un)
n=1
and the multivariate standardized Gaussian distribution

_ 1 f%x

l €T
DPGauss(T) = ors = (Qﬂ)—N/Ze*QH 2 (132)

The first example represents the probability law of a constant—i.e, X = pu
with probability 1—while the second specifies a standardized white Gaussian
noise whose components are i.i.d. Gaussian with X, ~ N(u = 0,02 = 1).

Let f: @ — f(x) = (fi(®),...,fu(z)) be a multivariate function
RY — RM with measurable component functions f,,. Then, the expected
value of f(X), where X is a random vector with pdf px, is

B(f(X)) = [ f@px(@)a

In particular, the mean of X is defined as

px =E{X}= /RN xpx (x)dw = (p1, ..., 1N)

with u, = E{x,}. The second-order dependencies of X are conveniently
summarised by the N x N covariance matrix

Cx =E{(X — px)(X —pux)"},

which is symmetric and positive-definite. The entries of C x are the centered
correlations [Cx|m n = E{(@m — ttm)(@n — tn) } with the diagonal terms pro-
viding the variance of the component variables z,; i.e., [Cx]nn = Var{z,}.
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E.3 Characteristic function
The characteristic function (cf) px : RY — C of X is the (conjugate) N-
dimensional Fourier transform of px. Specifically,

px(€) =B} = [ px(@)d €z = F (px)}©)

where F* is the adjoint® of the conventional Fourier operator F with the
property F*{f}(&) = F{f}(—€). The Fourier transform being invertible,
the cf is in one-to-one correspondence with the pdf.

Theorem 34. The characteristic function px = F*{px} : RN — C enjoys
the following properties:

1. px (&) is continuous, bounded (i.e. |px(€)| < 1), Hermitian-symmetric
(i.e., px (&) = px(—&)) and such that px(0) = 1.

2. Invertibility:

px(@) = F i) = [ (@ en s

3. Preservation of separability (or joint cf of a collection of independent
random variables). Let X = (X1, X2) withpx () = p(x, x,)(T1,x2) =
px, (z1)px,(x2). Then,

Dix1,x5)(€) = Px, (€1)Dx,(&2)

where & = (&1,&2). In particular, if the components x,, are i.i.d. with
common cf px, then

N
px(wi, ... wn) = [ [ px(wn).
n=1

The converse is also true: the separability of the cf implies the separa-
bility of the pdf and hence independence.

5This slight inconvenience results from the convention of statisticians which is to use j
rather than —j in the definition of their Fourier transform (cf). Since px () is real-valued,
we also have that px (§) = F{px }(&).
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4. Linear transformation: Let H € RM*N be an arbitrary transformation
matriz and b € RM some constant offset vector. Then, the character-
istic function of the transformed variable Y = HX +b € RM s

A~ ~ ~ sk
Py (&) = Pux1b(€) = px (H € ¢
with Fourier-domain variable € € RM and HT¢ € RV,

5. Sum of independent random variables: Let X; € RY and Xy € RN be
two independent random variable with cfs px, and px,, respectively.
Then, the characteristic function of Y = X1 + X5 is

ﬁX1+X2 (E) = ﬁXl (E)p)@ (5)

Proof. Property 1 is a slight variation of the Riemann-Lebesgue lemma which
states that the Fourier transform of a function f € L;(R") is bounded,
continuous and decaying at infinity. The relevant bound here is

px (&) < /

[ x|z~ |

px(x)de = px(0) = 1.
RN

Likewise, px (z) |1 — e 1"®| is upper bounded by the measurable function
2px (x). This allows us to apply Lebesgue’s dominated convergence theorem
to show that

Jim [px () —px (6~ )| < Jim | px(e)1 —e I da

— ; =ik, —
—/RNpX(a:) }lLlE)%’l—e i m>’da:—0,

which establishes the continuity of px. Finally, px is Hermitian-symmetric
simply because it is the Fourier transform of a real-valued function.
Property 2 is the standard Fourier inversion formula with & being sub-
stituted by —€&.
Property 3 is a direct consequence of the separability of the Fourier kernel
if one sets & = (£1,&2) and « = (x1, x2):

Hi(En) @) _ (€ @)+ Em) _ Hilgm) Hileeze)

A concise derivation of Property 4 is

Py (€) = E{EHX P — proiH EX)GiEbN — 5 (HT¢)elEP),
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To prove Property 5, we consider the pooled variable X = (X, X5)

whose joint cf is simply ﬁ(Xl,XZ)(£17€2) = px, (&1)Px,(&2) (by Property 3).
We then apply the transformation matrix H = [Ty; Ips] € RV*2V and use
Property 4 to get the desired result.

O

The 1D Fourier transform pairs that are relevant to our two introductory

1 1
examples are F{J}(£{) =1 and f{e_§x2}(§) — V2re 28, The application
of Properties 3 and 4 in Theorem 34 then yields

ﬁConst (E) = ei(&lﬁ

N

A Ly _ L1z

pGauss(é) = H € 26 = € 2l . (133)
n=1

Another nice property of characteristic functions is that they are guar-
anteed to be positive-definite.

Definition 40 (Positive-definite function). A function f : RN — C is said
to be positive-semidefinite (positive-definite, for short) if

M M
Z Z 2 f (B — Ty )Zpy > 0

m=1m/=1
for every possible choice of &1,..., ey € RM 21,..., 2y € C, and M € N7,

Let us note the similarity with the definition of a positive-definite kernel
which has two variables instead of one (Definition 2). In fact, we reconcile the
two definitions by specifying the kernel h(x,y) = f(x —y) where f is a real-
valued, symmetric, positive-definite function (see Appendix A). As it turns
out, the latter can be specified as the Fourier transform (or characteristic
function) of some symmetric pdf (up to some normalization factor f(0) # 0
since px (0) = 1).
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Indeed, if px (&) = F*{px}(£) is a valid characteristic function, then

M M
Z szznﬁX (Em - En)

m=1n=1

m= n=1
M 2
_ / S e 16| (@) da > 0,
R|,=1 SN——

which proves that px is necessarily positive-definite. What is more remark-
able is that positive definiteness is also necessary when combined with the
analytical properties in the first statement of Theorem 34.

Theorem 35 (Bochner’s theorem). The function px : RY — C is a valid
characteristic function if and only if it is continuous, Hermitian-symmetric,
positive-definite and such that px (0) = 1. This is equivalent to the existence
of a unique real-valued function px = F* {px} (the pdf of X ) such that
px(x) >0 for all x € RN and Jen px(x)de = 1.

The interest of this theorem is that it provides a comprehensive Fourier-
domain criterion for the construction of valid characteristic functions. The
second foundational result for the Fourier-based formulation of probability
theory is as follows.

Theorem 36 (Lévy’s continuity theorem). Consider a series of N -dimensional
random vectors X, with respective characteristic functions px,, : RY — C.
If there exists a function px such that

Jim px, (&) =px(§)

pointwise on RN and if, in addition, px is continuous at & = 0, then px
is the characteristic function of some random vector X with pdf px =
F*Upx}. Moreover, X, converges to X in law, meaning that, for any
continuous function f: RN — R,

lim B{f(Xn)} = B{f(X)},

which is equivalent to the weak convergence of px, to px.
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In particular, Theorem 36 implies that two random vectors X; and Xy
with identical cfs are undistinguishable in law, which justifies the use of
Fourier analysis methods. A remarkable aspect in the statement of Theorem
36 is that the continuity of px at & = 0 is sufficient to ensure continuity on
RY (see Property 1 in Theorem 34).

E.4 Multivariate Gaussian distributions

An effective way of introducing the multivariate Gaussian distribution is
through the construction of its characteristic function. The idea is to gen-
eralize (133) by replacing ||£||? by the more general quadratic form £7Cg
(where C is some arbitrary symmetric, positive-definite matrix) and by in-
cluding an additional offset term.

Definition 41 (Multivariate Gaussian). The characteristic function of a
multivariate Gaussian random variable of dimension N with mean p € RN
and symmetric positive-definite covariance matriz C € RV*N

Paanss (€1, C) = exp (—3€7CE +ju"€) . (134)

18

Henceforth, we shall denote the property that a random vector X is
multivariate Gaussian with mean p and covariance C by X ~ N (u, C).

The simplest instance of (134) is exp(—21[/€]|?) = Pcauss(€]0, In), which
specifies the standardized white Gaussian noise G ~ N (0,1y) of our intro-
ductory example. Let us now pick an arbitrary linear transformation matrix
H ¢ RV*N | By defining X = HG + p and applying Property 4 in Theorem
34, we obtain a specific instance of (134) with C = HH”. Likewise, we find
that the mean vector of X is simply

px =E{HG + p} = HE{G} + E{p} = p,
while its covariance matrix is
Cx = E{HGGTH'} = HE{GGT}HT = HIyH! = HH! = C,

which confirms the original claim in Definition 41. The described filtering
procedure is actually universal since it is possible to factorize any (symmet-
ric) covariance matrix as HH? = C.

In the event where C is invertible, we can also reverse the procedure by
computing G = H™!(X — p), which returns a “whitened” version of X. We
then exploit the one-to-one linear correspondence between X and G, whose
pdf is given by (132), to determine the explicit form of pgauss(x|w, C) by
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simple change of variable. Ultimately, we find that the generic form of a
N-dimensional multivariate Gaussian probability density function is

= ! ex —1 —u)lc? —
P Xt ©) = — s p(-5x - wretx ).
(135)

a formula that obviously requires the covariance matrix C to be invertible.
Likewise, one easily deduces that the component variables X, of X are
univariate Gaussian with mean px, = [p], and variance Var{X,} = [C], ».

The bottom line is that the Gaussianity property is invariant to general
affine transformations:

Proposition 27. Consider some fized matriz H € RN2*N1 an offset vec-
tor b € RM and some Ni-dimensional Gaussian random vector Xi ~
N(p1,C1). Then, Xo = HX1 + b ~ N (e, C2) is multivariate Gaussian
as well with

po=Hp +b
C, = HCHT.

In particular, for any u € RV the scalar “projection” Y = u’ X = (u, X)
of X ~ N(u,C) is a Gaussian random variable with mean py = u’'p =
(u, p) and variance 02 = u? Cu. Conversely, the Gaussianity of ¥ = (u, X)
for any u € RY implies that X is multivariate Gaussian, which is a high-level
property that can also serve as the definition of this class of distributions.

E.5 Gaussian conditional probabilities

To investigate conditional dependencies, we split the Gaussian random vector

X ~N(p,C) as

X1
X =
and rewrite the mean and covariance as

I Cii Cpo
= d C= .
g [W} - [Csz Cm]

The joint pdf px = p(x, x,) is multivariate Gaussian by assumption. By

integrating px (x1,x2) over xy (resp. x1)—or, equivalently, by using Prop-
erty 4 in Theorem 34 with H = [I;, On,] (resp., H =[Oy, In,])—we find
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that the marginal distributions px, and px, are multivariate Gaussian as
well, with X ~ N(Hl, Cll) and Xy ~ N(Hg, 022).

To determine the conditional probabilities, we use Bayes’ rule p(x1|x2) =
px (x1,T2)/px,(x2) and perform the relevant but somewhat lengthy algebra
to show that the conditional distribution of X7 given X, is multivariate
Gaussian with mean

E{X1|X2} = p1 + C12C5 (X2 — p2) (136)
and covariance matrix

Cx,x, = Cu1 — C12C3; Cl.

F Basic definitions from measure theory

A measurable space is a set considered together with a corresponding o-
algebra (also called o-field).

Definition 42 (o-field). Let Q be a set. A collection ¥ = 3(Q2) of subsets
of Q is said to be a o-field (or o-algebra) of Q0 if it satisfies the following
properties

e [full coverage: ) € 3
e Closure under complementation: If E € X, then E = Q\E € ¥

e Closure under countable unions: if E; € ¥ withi € I, then | J;c; E; € X
for any countable index set I.

The axioms in Definition 42 also imply that ¥ includes the empty set ()
and that it is closed under countable intersections; i.e., ();c; £ € X.

A subset E of 2 is said to be measurable if it is included in the under-
lying o-field. One can therefore also refer to ¥(2) as the collection of all
measurable sets of €.

When the set € is a vector space such as R, RY or, by extension, some
topological function space X, there is a systematic way of of specifying a
o-field by taking ¥(X) = B(X) where B(X) is the Borel algebra of X'; that
is, the smallest o-algebra that contains all the open sets (or, equivalently,
the closed sets) of X.

A function between two measurable spaces, say 2 and X, is said to be
measurable if the preimage of each measurable set of X' is measurable.

A measure on {Q is a systematic rule that assigns a non-negative number
to each suitable subset F of that set. It is typically used for measuring the
size of E or for assigning some probability to it.
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Definition 43 (Measure). Let (2, %) be a measurable space. Then, the map
w: Y — RT s called a measure if it satisfies the following properties:

e Non-negativity: u(Ey) > 0 for all By, € X(Q)
o Null empty set: pu(0) =0

o Countable additivity: For all countable collections {Ey}res of pairwise

disjoint sets of X2,
I (U Ek:) = u(Ey)

kesS kesS

A measure that is defined on the Borel sets B(X') of a topological vector space
X is called a Borel measure. It is a probability measure if pu(X) = 1.

In the context of probability theory, the set € is called the sample space.
The elements w € €2 represent the possible outcomes of an experiment. The
members E C Q of the o-field X(f2) are called events; these are measurable
by definition. The individual points of the sample space are elementary
events, which are typically also part of the o-field ¥(2). The final ingredient
is the probability measure & : () — [0, 1] which provides the probability
law for the random generation mechanism that produces w (outcome of the
experiment): Prob(w € E) = Z(E).
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