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E Finite-dimensional probability theory

This appendix provides a short survey of the primary tools of classical proba-
bility theory with an emphasis on Fourier-domain techniques. It also includes
a complete characterization of multivariate Gaussian probabilities.

E.1 Background: The probabilistic formalism

Generally speaking, a random variable is a variable whose possible values
are the numerical outcomes of some random phenomenon or experiment. In
probability theory and mathematical statistics, it is customary to represent
such a random variable as a measurable function X (see terminology in Ap-
pendix F) that maps the outcome of an experiment ! 2 ⌦—a point in a
conceptual sample space ⌦ of possible outcomes—into a concrete numerical
output or state X(!) 2 X where X is the so-called state space.

It is convenient to think of the elements of the outcome space as all the
different possibilities that could happen, and of a realization X(!) as the
value that the random variable X attains when one of the possibilities did
happen. To indicate the distinction between the random generation process
as a whole and an actual outcome, we use straight/capitalized roman letters
to denote random variables

�

e.g., X or X = (X
1

, . . . , XN )
�

and an ordinary
mathematical font for the corresponding domain or output variables (e.g.,
x 2 R or x = (x

1

, . . . , xN ) 2 RN ). The latter span the space of possible out-
comes and also serve as index of the underlying probability density function
�

e.g., p
X

: x 7! p
X

(x)
�

considered in Section E.2.
At the more abstract level of probability theory where ⌦ and X can be

arbitrary sets, the complete statistical information available on X is encoded
in the probability measure PX , which provides the probability of any event
E 2 ⌃(X ) (the �-field associated with X , see Appendix F, Definition 42):

0  PX(E) = Prob(X 2 E)  1

where E ✓ X is a subset of the state space describing the configurations of
interest. For instance, if X = R and E = (�1, x

0

], then PX(E) returns
the probability that the random variable X takes a value x = X(!) smaller
or equal to x

0

.
The formal basis for this description is the classical notion of a probability

space (⌦, ⌃, P), which has three fundamental components:

1. The sample space ⌦, which is the set of all possible outcomes of an
experiment.
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2. The �-field ⌃ = ⌃(⌦), which is a collection of subsets ⌦ that satisfies
the completeness properties of Definition 42.

3. The probability measure P on ⌃, which is a map that associates a
consistent probability 0  P(E)  1 to any event E 2 ⌃.

Definition 38 (Probability measure). Let ⌦ be a sample space with corre-
sponding �-field ⌃(⌦). The map P : ⌃(⌦) ! [0, 1] is said to be a probalility
measure on ⌃(⌦) if it satisfies the three consistency conditions

• P(;) = 0

• P(⌦) = 1

• Countable additivity: For any countable collection {Ei}i2I ✓ ⌃(⌦) of
pairwise disjoint sets: P

⇣

S

i2I Ei

⌘

=
P

i2I P(Ei).

In the formal representation of a random variable as a measurable func-
tion X : ⌦ ! X , the role of the sample space ⌦ is primarily notational, as
it provides us with an indexing mechanism to describe specific realizations
of X. The only constraint is that ⌦ should be rich enough to map into the
chosen state space X . The assumption that the map ! 7! X(!) is measur-
able implies that X�1(E) = {! : X(!) 2 E}, the preimage of E 2 ⌃(X ), is
included in ⌃(⌦) for any admissible event E in state space. Consequently, if
the underlying probability space is (⌦, ⌃, P), then the probability measure
PX : ⌃(X ) ! [0, 1] that is induced on the random variable X is such that

PX(E) = P({! : X(!) 2 E}).

An obvious choice is to simply take (⌦ = X , ⌃ = ⌃(X ), P = PX), which
ensures that all the compatibility conditions are met.

The bottom line is that the outcome of a random experiment yields
a realization X(!) = x 2 X of the random variable X and that all the
statistical information is condensed into the probability measure PX .

Example 6 (Binary variable). Here the sample space is ⌦
binary

= {False,
True}, while the corresponding �-field is ⌃ = {;, E

0

, E
1

, ⌦
binary

} with E
0

=
{False} and E

1

= {True}. The discrete probability measure on ⌃ associated
with equiprobable outcomes is specified as P(;) = 0, P(E

0

) = 1

2

, P(E
1

) =
1

2

, and P(⌦
binary

) = 1. Finally, the binary random variable X : ⌦
binary

!
{0, 1} is defined as X(False) = 0 and X(True) = 1.

Example 7 (Scalar random variable). Here the sample space is ⌦X = R
which goes hand-in-hand with the Borel algebra B(R).
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Example 8 (Random vector). Here the sample space is ⌦
X

= RN and the
standard choice of �-field is the Borel �-algebra B(RN ). The state space is
RN as well so that the random vector X specifies the map

! 7! X(!) =
�

X
1

(!), . . . , XN (!)
�

In this configuration, each component Xn of X is a scalar random variable
on its own right.

E.2 Probability density functions and expectations

Our generic random variable X = (X
1

, . . . , XN ) is multivariate because it
is composed of N scalar component random variables X

1

, . . . , XN . The out-
come of an experiment yields a realization (or observed value) x = X(!) =
�

X
1

(!), . . . , XN (!)
�

that takes some fixed value in RN (the state space of
possible outcomes). We recall that the random aspect of this probabilistic
model is the mechanism that produces ! (outcome of the experiment) in
accordance with the underlying probability law.

Since RN is a finite-dimensional vector space, it is convenient to char-
acterize the statistical distribution of X by its (joint) probability density
function (pdf) p

X

: RN ! R+. The only constraint here is that p
X

, in
addition to being positive, should be Borel-measurable on RN and such that
R

RN p(x)dx = 1. The corresponding probability measure P
X

: B(RN ) !
[0, 1] (see Section E.1) is then given by

P
X

(E) =

Z

E
p
X

(x)dx = Prob{X 2 E} (131)

where E ✓ RN is any Borelian subset of RN . In particular, the positivity con-
dition p

X

(x) � 0 ensures that P
X

(E) � 0 for all E 2 B(RN ), while the nor-
malization constraint

R

RN p(x)dx = 1 gives Prob(X 2 RN ) = P
X

(RN ) = 1.

Definition 39 (Statistical independence). The random variables X

1

2 RN
1

and X

2

2 RN
2 with respective pdfs p

X

1

and p
X

2

are independent if their
joint probability density function p

(X

1

,X
2

)

: RN
1

+N
2 ! R+ can be factorized

as
p
(X

1

,X
2

)

(x
1

, x
2

) = p
X

1

(x
1

)p
X

2

(x
2

).

The pdfs p
X

1

and p
X

2

in Definition 39 are also called the marginals of
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p
(X

1

,X
2

)

and are such that

p
X

1

(x
1

) =

Z

RN
2

p
(X

1

,X
2

)

(x
1

, x
2

)dx

2

p
X

2

(x
2

) =

Z

RN
1

p
(X

1

,X
2

)

(x
1

, x
2

)dx

1

.

In particular, when the components Xn of the random variable X are i.i.d.
with common pdf pX , then the multivariate (or joint) pdf of X is separable
with

p
X

(x
1

, . . . , xN ) =

N
Y

n=1

pX(xn).

Basic examples of separable pdfs are the shifted Dirac distribution

p
Const

(x) = �(x � µ) =

N
Y

n=1

�(xn � µn)

and the multivariate standardized Gaussian distribution

p
Gauss

(x) =

N
Y

n=1

1p
2⇡

e�
1

2

x2

n = (2⇡)�N/2e�
1

2

kxk2 . (132)

The first example represents the probability law of a constant—i.e, X = µ

with probability 1—while the second specifies a standardized white Gaussian
noise whose components are i.i.d. Gaussian with Xn ⇠ N (µ = 0, �2 = 1).

Let f : x 7! f(x) =
�

f
1

(x), . . . , fM (x)
�

be a multivariate function
RN ! RM with measurable component functions fm. Then, the expected
value of f(X), where X is a random vector with pdf p

X

, is

E{f(X)} =

Z

RN
f(x)p

X

(x)dx

In particular, the mean of X is defined as

µ

X

= E{X} =

Z

RN
xp

X

(x)dx = (µ
1

, . . . , µN )

with µn = E{xn}. The second-order dependencies of X are conveniently
summarised by the N ⇥ N covariance matrix

C
X

= E
�

(X � µ

X

)(X � µ

X

)T
 

,

which is symmetric and positive-definite. The entries of C
X

are the centered
correlations [C

X

]m,n = E{(xm�µm)(xn�µn)} with the diagonal terms pro-
viding the variance of the component variables xn; i.e., [C

X

]n,n = Var{xn}.
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E.3 Characteristic function

The characteristic function (cf) p̂
X

: RN ! C of X is the (conjugate) N -
dimensional Fourier transform of p

X

. Specifically,

p̂
X

(⇠) = E{ejh⇠,xi} =

Z

RN
p
X

(x)ejh⇠,xidx = F⇤{p
X

}(⇠),

where F⇤ is the adjoint6 of the conventional Fourier operator F with the
property F⇤{f}(⇠) = F{f}(�⇠). The Fourier transform being invertible,
the cf is in one-to-one correspondence with the pdf.

Theorem 34. The characteristic function p̂
X

= F⇤{p
X

} : RN ! C enjoys
the following properties:

1. p̂
X

(⇠) is continuous, bounded (i.e. |p̂
X

(⇠)|  1), Hermitian-symmetric
(i.e., p̂

X

(⇠) = p̂
X

(�⇠)) and such that p̂
X

(0) = 1.

2. Invertibility:

p
X

(x) = F⇤�1{p̂
X

}(x) =

Z

RN
p̂
X

(⇠)e�jh⇠,xi d⇠

(2⇡)N
.

3. Preservation of separability (or joint cf of a collection of independent
random variables). Let X = (X

1

, X
2

) with p
X

(x) = p
(X

1

,X
2

)

(x
1

, x
2

) =
p
X

1

(x
1

)p
X

2

(x
2

). Then,

p̂
(X

1

,X
2

)

(⇠) = p̂
X

1

(⇠
1

)p̂
X

2

(⇠
2

)

where ⇠ = (⇠
1

, ⇠
2

). In particular, if the components xn are i.i.d. with
common cf p̂X , then

p̂
X

(!
1

, . . . , !N ) =

N
Y

n=1

p̂X(!n).

The converse is also true: the separability of the cf implies the separa-
bility of the pdf and hence independence.

6This slight inconvenience results from the convention of statisticians which is to use j

rather than �j in the definition of their Fourier transform (cf). Since pX(x) is real-valued,
we also have that p̂X(⇠) = F{pX}(⇠).
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4. Linear transformation: Let H 2 RM⇥N be an arbitrary transformation
matrix and b 2 RM some constant offset vector. Then, the character-
istic function of the transformed variable Y = HX + b 2 RM is

p̂
Y

(⇠) = p̂HX+b(⇠) = p̂
X

(HT
⇠)ejb

T
⇠

with Fourier-domain variable ⇠ 2 RM and HT
⇠ 2 RN .

5. Sum of independent random variables: Let X

1

2 RN and X

2

2 RN be
two independent random variable with cfs p̂

X

1

and p̂
X

1

, respectively.
Then, the characteristic function of Y = X

1

+ X

2

is

p̂
X

1

+X

2

(⇠) = p̂
X

1

(⇠)p̂
X

2

(⇠).

Proof. Property 1 is a slight variation of the Riemann-Lebesgue lemma which
states that the Fourier transform of a function f 2 L

1

(RN ) is bounded,
continuous and decaying at infinity. The relevant bound here is

|p̂
X

(⇠)| 
Z

RN
|p

X

(x)| |ejh⇠,xi|dx =

Z

RN
p
X

(x)dx = p̂
X

(0) = 1.

Likewise, p
X

(x) |1 � e�jhh,xi| is upper bounded by the measurable function
2p

X

(x). This allows us to apply Lebesgue’s dominated convergence theorem
to show that

lim
h!0

�

�p̂
X

(⇠) � p̂
X

(⇠ � h)
�

�  lim
h!0

Z

RN
p
X

(x)
�

�1 � e�jhh,xi�
�dx

=

Z

RN
p
X

(x) lim
h!0

�

�1 � e�jhh,xi�
�dx = 0,

which establishes the continuity of p̂
X

. Finally, p̂
X

is Hermitian-symmetric
simply because it is the Fourier transform of a real-valued function.

Property 2 is the standard Fourier inversion formula with ⇠ being sub-
stituted by �⇠.

Property 3 is a direct consequence of the separability of the Fourier kernel
if one sets ⇠ = (⇠

1

, ⇠
2

) and x = (x
1

, x
2

):

e±j

⌦

(⇠

1

,⇠
2

),(x
1

,x
2

)

↵

= e±j

�

h⇠
1

,x
1

i+h⇠
2

,x
2

i
�

= e±jh⇠
1

,x
1

ie±jh⇠
2

,x
2

i.

A concise derivation of Property 4 is

p̂
Y

(⇠) = E{ejh⇠,HX+bi} = E{ejhH
T
⇠,Xiejh⇠,bi} = p̂

X

(HT
⇠)ejh⇠,bi.
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To prove Property 5, we consider the pooled variable X = (X
1

, X
2

)
whose joint cf is simply p̂

(X

1

,X
2

)

(⇠
1

, ⇠
2

) = p̂
X

1

(⇠
1

)p̂
X

2

(⇠
2

) (by Property 3).
We then apply the transformation matrix H = [IM IM ] 2 RN⇥2N and use
Property 4 to get the desired result.

The 1D Fourier transform pairs that are relevant to our two introductory
examples are F{�}(⇠) = 1 and F�e�1

2

x2

 

(⇠) =
p

2⇡e�
1

2

⇠2 . The application
of Properties 3 and 4 in Theorem 34 then yields

p̂
Const

(⇠) = ejh⇠,µi

p̂
Gauss

(⇠) =

N
Y

n=1

e�
1

2

⇠2n = e�
1

2

k⇠k2 . (133)

Another nice property of characteristic functions is that they are guar-
anteed to be positive-definite.

Definition 40 (Positive-definite function). A function f : RN ! C is said
to be positive-semidefinite (positive-definite, for short) if

M
X

m=1

M
X

m0
=1

zmf(xm � xm0)zm0 � 0

for every possible choice of x

1

, . . . , xM 2 RM , z
1

, . . . , zM 2 C, and M 2 N+.

Let us note the similarity with the definition of a positive-definite kernel
which has two variables instead of one (Definition 2). In fact, we reconcile the
two definitions by specifying the kernel h(x, y) = f(x�y) where f is a real-
valued, symmetric, positive-definite function (see Appendix A). As it turns
out, the latter can be specified as the Fourier transform (or characteristic
function) of some symmetric pdf (up to some normalization factor f(0) 6= 0
since p

X

(0) = 1).
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Indeed, if p̂
X

(⇠) = F⇤{p
X

}(⇠) is a valid characteristic function, then
M
X

m=1

M
X

n=1

zmznp̂
X

(⇠m � ⇠n)

=

M
X

m=1

M
X

n=1

zmzn

Z

RN
ejh⇠m�⇠n,xip

X

(x)dx

=

Z

RN

M
X

m=1

zme�jh⇠m,xi
M
X

n=1

zne+jh⇠n,xi p
X

(x)dx

=

Z

R

�

�

�

�

�

M
X

m=1

zme�jh⇠m,xi
�

�

�

�

�

2

| {z }

�0

p
X

(x)
| {z }

�0

dx � 0,

which proves that p̂
X

is necessarily positive-definite. What is more remark-
able is that positive definiteness is also necessary when combined with the
analytical properties in the first statement of Theorem 34.

Theorem 35 (Bochner’s theorem). The function p̂
X

: RN ! C is a valid
characteristic function if and only if it is continuous, Hermitian-symmetric,
positive-definite and such that p̂

X

(0) = 1. This is equivalent to the existence
of a unique real-valued function p

X

= F⇤�1{p̂
X

} (the pdf of X) such that
p
X

(x) � 0 for all x 2 RN and
R

RN p
X

(x)dx = 1.

The interest of this theorem is that it provides a comprehensive Fourier-
domain criterion for the construction of valid characteristic functions. The
second foundational result for the Fourier-based formulation of probability
theory is as follows.

Theorem 36 (Lévy’s continuity theorem). Consider a series of N -dimensional
random vectors Xn with respective characteristic functions p̂

Xn : RN ! C.
If there exists a function p̂

X

such that

lim
n!1 p̂

Xn(⇠) = p̂
X

(⇠)

pointwise on RN and if, in addition, p̂
X

is continuous at ⇠ = 0, then p̂
X

is the characteristic function of some random vector X with pdf p
X

=
F⇤�1{p̂

X

}. Moreover, Xn converges to X in law, meaning that, for any
continuous function f : RN ! R,

lim
n!1 E{f(Xn)} = E{f(X)},

which is equivalent to the weak convergence of p
Xn to p

X

.
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In particular, Theorem 36 implies that two random vectors X

1

and X

2

with identical cfs are undistinguishable in law, which justifies the use of
Fourier analysis methods. A remarkable aspect in the statement of Theorem
36 is that the continuity of p̂

X

at ⇠ = 0 is sufficient to ensure continuity on
RN (see Property 1 in Theorem 34).

E.4 Multivariate Gaussian distributions

An effective way of introducing the multivariate Gaussian distribution is
through the construction of its characteristic function. The idea is to gen-
eralize (133) by replacing k⇠k2 by the more general quadratic form ⇠

TC⇠

(where C is some arbitrary symmetric, positive-definite matrix) and by in-
cluding an additional offset term.

Definition 41 (Multivariate Gaussian). The characteristic function of a
multivariate Gaussian random variable of dimension N with mean µ 2 RN

and symmetric positive-definite covariance matrix C 2 RN⇥N is

p̂
Gauss

(⇠|µ,C) = exp
��1

2

⇠

TC⇠ + jµT
⇠

�

. (134)

Henceforth, we shall denote the property that a random vector X is
multivariate Gaussian with mean µ and covariance C by X ⇠ N (µ,C).

The simplest instance of (134) is exp(�1

2

k⇠k2) = p̂
Gauss

(⇠|0, IN ), which
specifies the standardized white Gaussian noise G ⇠ N (0, IN ) of our intro-
ductory example. Let us now pick an arbitrary linear transformation matrix
H 2 RN⇥N . By defining X = HG+µ and applying Property 4 in Theorem
34, we obtain a specific instance of (134) with C = HHT . Likewise, we find
that the mean vector of X is simply

µ

X

= E{HG + µ} = HE{G} + E{µ} = µ,

while its covariance matrix is

C
X

= E{HGG

THT } = HE{GG

T }HT = HINHT = HHT = C,

which confirms the original claim in Definition 41. The described filtering
procedure is actually universal since it is possible to factorize any (symmet-
ric) covariance matrix as HHT = C.

In the event where C is invertible, we can also reverse the procedure by
computing G = H�1(X � µ), which returns a “whitened” version of X. We
then exploit the one-to-one linear correspondence between X and G, whose
pdf is given by (132), to determine the explicit form of p

Gauss

(x|µ,C) by
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simple change of variable. Ultimately, we find that the generic form of a
N -dimensional multivariate Gaussian probability density function is

p
Gauss

(X|µ,C) =
1

p

(2⇡)N |det(C)| exp

✓

�1

2
(X � µ)TC�1(X � µ)

◆

,

(135)

a formula that obviously requires the covariance matrix C to be invertible.
Likewise, one easily deduces that the component variables Xn of X are
univariate Gaussian with mean µXn = [µ]n and variance Var{Xn} = [C]n,n.

The bottom line is that the Gaussianity property is invariant to general
affine transformations:

Proposition 27. Consider some fixed matrix H 2 RN
2

⇥N
1 , an offset vec-

tor b 2 RN
1 and some N

1

-dimensional Gaussian random vector X

1

⇠
N (µ

1

,C
1

). Then, X

2

= HX

1

+ b ⇠ N (µ
2

,C
2

) is multivariate Gaussian
as well with

µ

2

= Hµ

1

+ b

C
2

= HC
1

HT .

In particular, for any u 2 RN , the scalar “projection” Y = uT
X = hu, Xi

of X ⇠ N (µ,C) is a Gaussian random variable with mean µY = uT
µ =

hu, µi and variance �2

Y = uTCu. Conversely, the Gaussianity of Y = hu, Xi
for any u 2 RN implies that X is multivariate Gaussian, which is a high-level
property that can also serve as the definition of this class of distributions.

E.5 Gaussian conditional probabilities

To investigate conditional dependencies, we split the Gaussian random vector
X ⇠ N (µ,C) as

X =



X

1

X

2

�

and rewrite the mean and covariance as

µ =



µ

1

µ

2

�

and C =



C
11

C
12

CT
12

C
22

�

.

The joint pdf p
X

= p
(X

1

,X
2

)

is multivariate Gaussian by assumption. By
integrating p

X

(x
1

, x
2

) over x

2

(resp. x

1

)—or, equivalently, by using Prop-
erty 4 in Theorem 34 with H = [IN

1

0N
2

] (resp., H = [0N
1

IN
2

])—we find
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that the marginal distributions p
X

1

and p
X

2

are multivariate Gaussian as
well, with X

1

⇠ N (µ
1

,C
11

) and X

2

⇠ N (µ
2

,C
22

).
To determine the conditional probabilities, we use Bayes’ rule p(x

1

|x
2

) =
p
X

(x
1

, x
2

)/p
X

2

(x
2

) and perform the relevant but somewhat lengthy algebra
to show that the conditional distribution of X

1

given X

2

is multivariate
Gaussian with mean

E{X

1

|X
2

} = µ

1

+ C
12

C�1

22

(X
2

� µ

2

) (136)

and covariance matrix

C
X

1

|X
2

= C
11

� C
12

C�1

22

CT
12

.

F Basic definitions from measure theory

A measurable space is a set considered together with a corresponding �-
algebra (also called �-field).

Definition 42 (�-field). Let ⌦ be a set. A collection ⌃ = ⌃(⌦) of subsets
of ⌦ is said to be a �-field (or �-algebra) of ⌦ if it satisfies the following
properties

• Full coverage: ⌦ 2 ⌃

• Closure under complementation: If E 2 ⌃, then E = ⌦\E 2 ⌃

• Closure under countable unions: if Ei 2 ⌃ with i 2 I, then
S

i2I Ei 2 ⌃
for any countable index set I.

The axioms in Definition 42 also imply that ⌃ includes the empty set ;
and that it is closed under countable intersections; i.e.,

T

i2I Ei 2 ⌃.
A subset E of ⌦ is said to be measurable if it is included in the under-

lying �-field. One can therefore also refer to ⌃(⌦) as the collection of all
measurable sets of ⌦.

When the set ⌦ is a vector space such as R, RN or, by extension, some
topological function space X , there is a systematic way of of specifying a
�-field by taking ⌃(X ) = B(X ) where B(X ) is the Borel algebra of X ; that
is, the smallest �-algebra that contains all the open sets (or, equivalently,
the closed sets) of X .

A function between two measurable spaces, say ⌦ and X , is said to be
measurable if the preimage of each measurable set of X is measurable.

A measure on ⌦ is a systematic rule that assigns a non-negative number
to each suitable subset E of that set. It is typically used for measuring the
size of E or for assigning some probability to it.
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Definition 43 (Measure). Let (⌦, ⌃) be a measurable space. Then, the map
µ : ⌃ ! R+ is called a measure if it satisfies the following properties:

• Non-negativity: µ(Ek) � 0 for all Ek 2 ⌃(⌦)

• Null empty set: µ(;) = 0

• Countable additivity: For all countable collections {Ek}k2S of pairwise
disjoint sets of ⌃,

µ

 

[

k2S
Ek

!

=
X

k2S
µ(Ek)

A measure that is defined on the Borel sets B(X ) of a topological vector space
X is called a Borel measure. It is a probability measure if µ(X ) = 1.

In the context of probability theory, the set ⌦ is called the sample space.
The elements ! 2 ⌦ represent the possible outcomes of an experiment. The
members E ✓ ⌦ of the �-field ⌃(⌦) are called events; these are measurable
by definition. The individual points of the sample space are elementary
events, which are typically also part of the �-field ⌃(⌦). The final ingredient
is the probability measure P : ⌃(⌦) ! [0, 1] which provides the probability
law for the random generation mechanism that produces ! (outcome of the
experiment): Prob(! 2 E) = P(E).
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